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H1-RANDOM ATTRACTORS OF STOCHASTIC MONOPOLAR

NON-NEWTONIAN FLUIDS WITH MULTIPLICATIVE NOISE∗

CHUNXIAO GUO† AND BOLING GUO‡

Abstract. In this paper, the authors study the asymptotic dynamical behavior for stochastic
monopolar non-Newtonian fluids with multiplicative noise defined on a two-dimensional bounded
domain, and prove the existence of an H

1-random attractor for the corresponding random dynamical
system. A random attractor is a random compact set absorbing any bounded subset of the phase
space V .
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1. Introduction

In this paper, suppose thatD⊂R2 is a two-dimensional bounded smooth open do-
main. We consider the following stochastic monopolar incompressible non-Newtonian
fluids with multiplicative noise:

du+
(

u ·∇u−∇·τ(e(u))
)

dt=g(x)dt+
m
∑

j=1

bju◦ dωj(t), x∈D, t>0, (1.1)

u(x,0)=u0(x), x∈D, (1.2)

∇·u(x,t)=0, (1.3)

subject to the boundary conditions

u(x,t)=0, x∈∂D, (1.4)

where ◦ denotes the Stratonovich sense in the stochastic term, and ωj(t),1≤ j≤m
are mutually independent two-sided Wiener processes on a probability space which
will be specified later, bj ∈R,1≤ j≤m are given. In the equation (1.1), the unknown
vector function u denotes the velocity of the fluid, g(x) is the external body force,
and τ =(τij) is the constitutive relation of the fluid, whose components are

τij =πδij−τ
ϑ
ij .

Here π is the pressure and τϑij is the viscous part of the stress tensor, which has the
following constitutive relation:

τϑij =(ν+2µ0|e|
p−2)eij , i,j=1,2,

eij(u)=
1

2

( ∂ui

∂xj
+
∂uj

∂xi

)

, |e(·)|2=

2
∑

i,j=1

|eij(·)|
2,
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where ν >0 is a constant, µ0>0 is the viscosity, and only the first derivative of the
velocity field is involved in the stress tensor.

If τϑij(u)=κeij(u), κ is a constant, then the fluids conform to the Stokes law, and
are called Newtonian fluids, such as water and alcohol, satisfying the linear constitu-
tive relation. If the random perturbations are not involved in equation (1.1), then the
equation turns out to be the well-known Navier-Stokes system [22]. Furthermore, if
τϑ=0, the system is an Euler system. For some fluid materials, their flow behavior
cannot be characterized by a Newtonian relationship in real life. The nonlinearity
in the constitutive relationship must be considered, and such fluids are called non-
Newtonian fluids; see [6, 18], e.g. molten plastics, dyes, adhesives, paints and greases.
A typical model is the monopolar incompressible viscous non-Newtonian fluid. The
fluids are shear thinning when 1<p<2, and shear thickening when p>2. We only
consider the shear thickening case 2<p< 7

3 throughout this paper.

We recall some results about the deterministic non-Newtonian fluids. There is
an extensive literature on the existence and uniqueness of solutions, the existence of
attractors for non-Newtonian fluids, etc.; see [1, 2, 3, 4, 5, 13, 14, 18, 19, 20, 21, 23, 24]
for further details. Ladyzhenskaya [19] established the existence of a weak solution of
the monopolar model for p>1+ 2n

n+2 (n=2,3) in a bounded domain and the existence

of unique regular weak solution for p≥2, dimension n=2, and for p≥ 5
2 , dimension

n=3. Du and Gunzburger [13] proved the existence of unique weak solution with
the condition n=3, and p≥ 11

5 . For the space-periodic version, Bellout et al. [1] have
established the following results in the periodic domain: for n=2,3, p≥1+ 2n

n+2 , there
exists a unique regular weak solution. Nečasová and Penel [20] studied the decay of
weak solutions to equations of monopolar non-Newtonian incompressible fluids in the
whole space.

In fact, the deterministic system model usually neglects the impact of many small
random perturbations, and stochastic equations can conform to physical phenomena
better. These random perturbations are intrinsic effects in a variety of settings and
spatial scales. It could be most obviously influential at the microscopic and smaller
scales but indirectly it plays a vital role in microscopic phenomena. Thus many
authors contributed their efforts to this stochastic field of research, and displayed
interesting structures and phenomena in physics.

For important equations, such as the stochastic KdV equation, Navier-Stokes
equation, Burgers equation, Schrödinger equation, etc., there have been much work
and interesting results related to their existence, uniqueness, and attractors; for these
topics and the progress in these fields, see [7, 8, 9, 11, 12]. There is also a series
of papers which investigate stochastic non-Newtonian fluids. Some important results
have been obtained, such as [15, 16, 17, 25, 26], and so on. Especially, Zhao et
al. [25] proved the existence of a random attractor for two-dimensional stochastic
bipolar non-Newtonian fluids with multiplicative noise in the case of 1<p<2. Guo
and Guo [16] expanded this result to the case of 2<p<3. Along this line, we want
to know whether a similar result is also true for stochastic monopolar non-Newtonian
fluids. This is the main subject that we will develop in this work. Compared with the
work on stochastic Navier-Stokes equations, we here need to deal with the nonlinear
term ∇·(|e(u)|p−2eij(u)), and compared with the work on stochastic bipolar non-
Newtonian fluids, the lack of the highly regular four order term ∇·(∆e(u)) will make
it more difficult to obtain estimates. In this paper, we prove that there exist global
random attractors for two-dimensional stochastic monopolar non-Newtonian fluids
with multiplicative noise in the case of 2<p< 7

3 .
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Crauel, Debussche, and Flandoli [7, 8] present a general theory to study the
random attractors by defining an attracting set as a set that attracts any orbit starting
from −∞. Given a probability space, the random attractors are compact invariant
sets, which depend on chance and move with time. The main general result on
random attractors relies heavily on the existence of a random compact attracting set.
In this paper, we will apply this theory to prove the existence of random attractors for
two-dimensional stochastic monopolar non-Newtonian fluids in the case of 2<p< 7

3 .
First, we make use of the Stratonovich transform to change the stochastic equation to
a deterministic equation with random parameter; Second, we obtain the existence of
bounded absorbing sets by some estimates of solutions in the spaces H and V ; Third,
we use the compact embedding of Sobolev space to obtain the existence of a compact
random set.

The paper is organized as follows. In Section 2, we recall some definitions and
already known results concerning random attractors. In Section 3, we develop all the
results needed to prove the existence of random attractors in space V . In Section
4, we establish the existence of a compact random attractor in V by compactness of
Sobolev embedding.

We introduce some functional spaces and some notation.
Lq(D)-the Lebesgue space with norm ‖·‖Lq , and ‖·‖L2 =‖·‖. Particularly,

‖u‖L∞ = esssupx∈D |u(x)|, for q=∞.
Hσ(D)-the Sobolev space {u∈L2(D), Dku∈L2(D), k≤σ} with norm ‖·‖Hσ =

‖·‖σ.
C (I,X)-the space of continuous functions from the interval I to X.
Define a space of smooth functions

V ={u∈C∞
0 (D) :∇·u=0, x∈D,u=0, x∈∂D},

H=the closure of V in L2(D) with norm ‖·‖, and let (·, ·) denote the inner product
in H. V = the closure of V in H1(D) with norm ‖·‖1, and V

′ is the dual space of V .
By simple computation, we can obtain the result ∇·e(u)= 1

2∆u. For simplicity
in writing, we put ν=2.

For notational simplicity, C is a generic constant, and may assume various values
from line to line throughout this paper. In addition, the summation convention of
repeated indices is used in the whole paper.

2. Preliminaries

We introduce the linear operator A as follows: consider a bilinear form a :V ×V →
R by

a(u,υ)=

∫

D

∇u∇υdx, (u, υ∈V ).

As a consequence of the Lax-Milgram lemma, we obtain an isometry A∈V →V ′,

(Au,υ)=a(u,υ)=<f,υ>, u∈V, f ∈V ′, (2.1)

where V ′ is the dual space of V , A :V →V ′ is a linear operator, and D(A)=V ∩
H2(D). In fact A=−P∆, P is the projection from L2(D) to H.

According to the Rellich theorem, A−1 is compact in H, and

Aφn=λnφn, φn∈D(A), (2.2)
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where {φn}
∞
n=1 are the eigenfunctions and also are a basis of V . λn>0 are eigenvalues,

and λn→∞ when n→∞.

Moreover, ∀u∈V , we have ‖u‖21≥λ1‖u‖
2, where λ1 is the first eigenvalue.

Lemma 2.1 (Gagliardo-Nirenberg Inequality). For 1≤p′,q′,r′≤∞, and the dimen-
sion n≥1, for all integers m>k≥0, there exist two constants 0≤α≤1, C >1, such
that for all u∈C∞(D),

‖∇ku‖p′ ≤C‖∇mu‖αr′‖u‖
1−α
q′ ,

for 1
p′ −

k
n
=α( 1

r′
− m

n
)+ 1

q′
(1−α), and 1

p′ ≤
α
r′
+ 1−α

q′
. The only exception is that α=1,

if m− n
r′
=k, 1<r′<∞.

Lemma 2.2. If u∈W s1,p(D), 0≤s2≤s≤s1<∞, then there exists a constant C,
such that

‖u‖s,p≤C‖u‖
α
s1,p

‖u‖1−α
s2,p

,

where s=αs1+(1−α)s2.

Defining the trilinear form b on V ×V ×V as

b(u,υ,ψ)=

∫

D

ui
∂υj

∂xi
ψjdx, u,υ,ψ∈V,

one can check that b(u,υ,ω)=−b(u,ω,υ) and b(u,υ,υ)=0.
Next, define a bilinear map B on V ×V by

(B(u,u),ψ)= b(u,u,ψ), u,ψ∈V.

Define the map N(u) on V as follows:

(N(u),ψ)=2µ0

∫

D

|e(u)|p−2eij(u)eij(ψ)dx, u,ψ∈V.

Following these preparation, equations (1.1)-(1.4) can be translated into the following
abstract problems in H:

du+[Au+N(u)+B(u,u)]dt=gdt+

m
∑

j=1

bju◦ dωj(t), t>s, (2.3)

u(s)=us, s∈R, (2.4)

where we assume that us∈H, g∈H.
We next recall some definitions and results concerning the random attractors,

which can be found in [7, 8]. Let (X,d) be a separable metric space and (Ω,F ,P) be
a complete probability space. We will consider a family of mappings S(t,s;ω) :X→
X, −∞<s≤ t<∞, parameterized by ω∈Ω in the following.

Definition 2.1. Let {θt :Ω→Ω, t∈R} be a family of measure preserving trans-
formations of (Ω,F ,P) such that θ0= idΩ and θt+s=θt ◦θs for all t,s∈R. Here we
assume θt is ergodic under P. Especially, for all s<t∈R, and x∈X,

S(t,s;ω)x=S(t−s,0;θsω)x, P−a.e.
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Remark 2.1. For (2.3)-(2.4), we consider the probability space (Ω,F ,P), where
Ω={ω∈C(R,Rm)|ω(0)=0}, F is the Borel σ-algebra induced by the compact open
topology of Ω, and P is the product measure of two Wiener measures on the negative
and the positive time parts of Ω. Define the time shift θt by

(θtω)(s)=ω(t+s)−ω(t), ω∈Ω s,t∈R.

Then (Ω,F ,P,(θt)t∈R) is a metric dynamical system (see [7] for more details).

Definition 2.2. Let t∈R and ω∈Ω. A random dynamical system with time t on
a separable metric space (X,d) with Borel σ-algebra B over {θt} on (Ω,F ,P) is a
measurable map

S(t,s;ω) :X→X, −∞<s≤ t<∞,

such that S(0,0,ω)= id and S(t,0;ω)=S(t,s;ω)S(s,0;ω) for all t,s∈R and ω∈Ω.
The random dynamical system S(t,s;ω) is called continuous if the mapping x 7→

S(t,s,ω)x is continuous for all t,s∈R and ω∈Ω.

Definition 2.3. Given t∈R and ω∈Ω, K(t,ω)⊂X is an attracting set if for all
bounded sets B⊂X

d(S(t,s;ω)B,K(t,ω))→0, s→−∞,

where d(A,B) is the semidistance defined by

d(A,B)= sup
x∈A

inf
y∈B

d(x,y).

Definition 2.4. A family A(ω), ω∈Ω of closed subsets of X is measurable if for all
x∈X, the mapping ω 7→d(x,A(ω)) is measurable.

Definition 2.5. Define the random omega limit set of a bounded set B⊂X at time
t as

A(B,t,ω)=
⋂

T<t

⋃

s<T

S(t,s;ω)B.

Definition 2.6. Let S(t,s;ω)t≥s,ω∈Ω be a random dynamical system, and suppose
that A(t,ω) is a random set satisfying the following conditions:

(1) It is the minimal closed set such that for t∈R, B⊂X,

d(S(t,s;ω)B,A(t,ω))→0, s→−∞,

which implies A(t,ω) attracts B (B is a deterministic set).

(2) A(t,ω) is the largest compact measurable set which is invariant in sense that

S(t,s;ω)A(θsω)=A(θtω), s≤ t.

Then A(t,ω) is said to be the random attractor.

Theorem 2.1 (see [7]). Let S(t,s;ω)t≥s,ω∈Ω be a random dynamical system satis-
fying the following conditions:
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(1) S(t,r;ω)S(r,s;ω)x=S(t,s;ω)x, for all s≤ r≤ t and x∈X,

(2) S(t,s;ω) is continuous in X, for all s≤ t,

(3) for all s<t and x∈X, the mapping ω 7→S(t,s;ω)x is measurable from (Ω,F )
to (X,B(X)),

(4) for all t,x∈X and P-a.e. ω, the mapping s 7→S(t,s;ω)x is right continuous
at any point.

Assume that there exists a group θt, t∈R, of measure preserving mappings such
that

S(t,s;ω)x=S(t−s,0;θsω)x, P−a.e. s<t,x∈X (2.5)

holds and for P-a.e. ω, there exists a compact attracting set K(ω) at time 0. If
for P-a.e. ω∈Ω, we set Λ(ω)=

⋃

B⊂XA(B,ω), where the union is taken over all the
bounded subsets of X and A(B,ω) is given by

A(B,ω)=A(B,0,ω)=
⋂

T<0

⋃

s<T

S(0,s;ω)B,

then Λ(ω) is a random attractor.

3. The existence of bounded absorbing set

Next, we show that there is a continuous random dynamical system generated by
the stochastic monopolar non-Newtonian fluid with multiplicative noise. We introduce
an auxiliary Stratonovich process which enables us to change the stochastic equation
to an evolution equation depending on a random parameter. Considering the process
η(t)= e−

∑m
j=1

bjωj(t) which satisfies the Stratonovich equation

dη(t)=−

m
∑

j=1

bjη(t)◦dωj(t). (3.1)

We set v(t)=η(t)u(t), so that it satisfies the equation

dv

dt
+Av+ηB(u,u)+ηN(u)=ηg, (3.2)

v(x,s)=vs=η(s)us(x), x∈D, s∈R. (3.3)

Similar to [10, 19, 21], we can use the Galerkin method and some a priori estimates
to prove that the following result holds for P-a.e. ω∈Ω:

For p≥2, vs∈V, s<T ∈R, there exists a unique weak solution to (3.2)-(3.3) sat-
isfying v∈C (s,T ;V )

⋂

L2(s,T ;H2
0 (D)) with v(s)=vs.

The above result shows that v(t,ω;s,vs) is unique and continuous with respect
to the initial value vs in V , where v(t,ω;s,vs) is the solution of (3.2)-(3.3). We can
define a random dynamical system (S(t,s;ω))t≥s,ω∈Ω by

S(t,s;ω)us=u(t,ω;s,us)=η
−1(t,ω)v(t,ω;s,η(s,ω)us).

Obviously, (S(t,s;ω))t≥s,ω∈Ω satisfies the conditions in Definition 2.2. Therefore, it
is a continuous random dynamical system on V . It can be easily checked that the
assumptions (1)-(4) are satisfied in Theorem 2.1.
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In the following, we will prove the existence of a compact attracting set K(ω) at
time 0 in V . First, we would obtain the existence of a bounded absorbing set by some
estimates in H and V ; second, we use the compactness of the embedding to prove the
existence of a compact random attractor.

Lemma 3.1. Letting p>2, g∈H, there exists a random radius r1(ω), such that ∀ρ>0,
there exists s(ω)≤−1, such that for all s≤s(ω), and for all us∈H, with ‖us‖≤ρ,
the solution of equations (3.2)-(3.3) with vs=η(s)us satisfies the inequality

‖v(−1,ω;s,η(s,ω)us)‖
2≤ r21(ω), P−a.e.,

where r21(ω)= e
λ1(1+ ||g||2

λ1

∫ −1

−∞
eλ1ση2(σ)dσ).

Proof. Taking the inner product of equation (3.2) with v in H, and noticing the
fact that b(u,u,v)=0, we get

1

2

d

dt
‖v‖2+‖∇v‖2+2µ0η

∫

D

|e(u)|p−2e(u)e(v)dx=(ηg,v). (3.4)

Noticing the condition v=ηu, we obtain e(v)=ηe(u).
Letting I=2µ0η

∫

D
|e(u)|p−2e(u)e(v)dx, we get

I=2µ0

∫

D

|e(u)|p−2|e(v)|2dx>0. (3.5)

We drop the term I in the equation (3.4), and deduce that

1

2

d

dt
‖v‖2+‖∇v‖2≤

‖ηg‖2

2λ1
+
λ1‖v‖

2

2
, (3.6)

where λ1 is the first eigenvalue of operator A.

1

2

d

dt
‖v‖2+λ1‖v‖

2≤
‖ηg‖2

2λ1
+
λ1‖v‖

2

2
. (3.7)

By Gronwall’s lemma on the interval [s,−1] for above inequality, we can deduce

‖v(−1)‖2≤ e−λ1(−1−s)‖η(s)u(s)‖2+

∫ −1

s

e−λ1(−1−σ) ‖g‖
2

λ1
η2(σ)dσ

≤ eλ1(eλ1sη2(s)‖us‖
2+

‖g‖2

λ1

∫ −1

−∞

eλ1ση2(σ)dσ). (3.8)

By a standard argument,

lim
t→−∞

1

t

m
∑

j=1

bjωj(t)=0, P−a.s.

It follows that s 7→eλ1sη2(s) is pathwise integrable over (−∞,0],

lim
s→−∞

eλ1sη2(s)=0 P−a.s.

Let r21(ω)= e
λ1(1+ ‖g‖2

λ1

∫ −1

−∞
eλ1ση2(σ)dσ). Given ρ>0, there exists s(ω) such that

eλ1sη2(s)ρ2≤1, for all s≤s(ω), and it follows that ‖v(−1,ω;s,η(s,ω)us)‖
2≤ r21(ω).
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Lemma 3.2. Letting p>2, g∈H, there exist random radii r2(ω) and r3(ω), such
that ∀ρ>0, there exists s(ω)≤−1, such that for all s≤s(ω), and for all us∈H, with
‖us‖≤ρ, the solution of equations (3.2)-(3.3) with vs=η(s)us satisfies the following
inequalities:

‖v(t,ω;s,η(s,ω)us)‖
2≤ r22(ω), t∈ [−1,0], P−a.e.,

∫ 0

−1

‖∇v‖2dt≤ r23(ω), P−a.e.,

where

r22(ω)= r
2
1(ω)+

‖g‖2

λ1

∫ 0

−1

η2(s)ds,

r23(ω)=
r21(ω)

2µ1
+
r2(ω)‖g‖

µ1

∫ 0

−1

η(t)dt.

Proof. From Lemma 3.1, using Gronwall’s lemma for inequality (3.7) again with
t∈ [−1,0], we get

‖v(t)‖2≤ e−λ1(t+1)‖v(−1)‖2+
‖g‖2

λ1

∫ t

−1

e−λ1(t−s)η2(s)ds

≤ e−λ1(t+1)r21(ω)+
‖g‖2

λ1

∫ t

−1

e−λ1(t−s)η2(s)ds

≤ r21(ω)+
‖g‖2

λ1

∫ 0

−1

η2(s)ds

.
= r22(ω). (3.9)

From (3.4) and (3.5), it follows that

d

dt
‖v‖2+2‖∇v‖2≤2η‖g‖‖v‖. (3.10)

Integrating the above inequality with t from −1 to 0, then

‖v(0)‖2+2

∫ 0

−1

‖∇v‖2dt≤‖v(−1)‖2+2

∫ 0

−1

η(t)‖g‖‖v‖dt. (3.11)

We drop the first term in the left hand side of (3.11), and thus get

∫ 0

−1

‖∇v‖2dt≤
r21(ω)

2
+

∫ 0

−1

η(t)‖g‖r2(ω)dt

=
r21(ω)

2
+r2(ω)‖g‖

∫ 0

−1

η(t)dt

.
= r23(ω). (3.12)

Lemma 3.3. Letting p>2, g∈H, there exists a random radius r4(ω), such that
∀ρ>0, there exists s(ω)≤−1, such that for all s≤s(ω), and for all us∈H, with
‖us‖≤ρ, the solution of equations (3.2)-(3.3) with vs=η(s)us satisfies the inequalities

‖v(t,ω;s,η(s,ω)us)‖
2
1≤ r

2
4(ω), t∈ [−1,0],P−a.e.,
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∫ 0

−1

‖∆v‖2dt≤ r25(ω), P−a.e.

Proof. Taking the inner product of equation (3.2) with −∆v in H, we can obtain

1

2

d

dt
‖∇v‖2+‖∆v‖2−ηb(u,u,∆v)

+2µ0η

∫

D

|e(u)|p−2e(u)e(−∆v)dx=(ηg,−∆v). (3.13)

First, letting J =2µ0η
∫

D
|e(u)|p−2e(u)e(−∆v)dx, we obtain

J =2µ0η
2

∫

D

|e(u)|p−2e(u)e(−∆u)dx

=2µ0η
2
[

∫

D

|e(u)|p−2 ∂eij(u)

∂xk

∂eij(u)

∂xk
dx+(p−2)

∫

D

|e(u)|p−2 ∂eij(u)

∂xk

∂eij(u)

∂xk
dx

]

=2µ0η
2(p−1)

∫

D

|e(u)|p−2 ∂eij(u)

∂xk

∂eij(u)

∂xk
dx. (3.14)

Obviously J >0, so we drop it in the following computation.
For the third term in the left hand side of equation (3.13), we deduce that

|ηb(u,u,∆v)|≤η‖u‖L4‖‖∇u‖L4‖∆v‖

≤Cη‖u‖
1

2 ‖∇u‖
1

2 ‖∇u‖
1

2 ‖∆u‖
1

2 ‖∆v‖

=Cη−1‖v‖
1

2 ‖∇v‖‖∆v‖
3

2

≤
1

4
‖∆v‖2+Cη−4‖v‖2‖∇v‖4

=
1

4
‖∆v‖2+(Cη−4‖v‖2‖∇v‖2)‖∇v‖2, (3.15)

where the first inequality is due to the Hölder inequality, the second inequality is due
to the Gagliardo-Nirenberg inequality

‖u‖L4 ≤C‖u‖
1

2 ‖∇u‖
1

2 , for n=2,

and the third inequality is due to the ε-Young inequality.
Obviously, applying the ε-Young inequality, we get

|(ηg,∆v)|≤η2‖g‖2+
‖∆v‖2

4
.

Combining the above estimates, we can transfer (3.13) into the following inequality:

1

2

d

dt
‖∇v‖2+

1

2
‖∆v‖2≤η2‖g‖2+(Cη−4‖v‖2‖∇v‖2)‖∇v‖2. (3.16)

Applying Gronwall’s lemma for −1≤ τ ≤ t≤0, then

‖∇v(t)‖2≤‖∇v(τ)‖2e
∫

t

τ
Cη−4(σ)‖v‖2‖∇v‖2dσ+2‖g‖2

∫ t

τ

η2(σ)e
∫

t

σ
Cη−4(θ)‖v‖2‖∇v‖2dθdσ
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≤ (‖∇v(τ)‖2+2‖g‖2
∫ 0

−1

η2(σ)dσ)e
∫

0

−1
Cη−4(σ)‖v‖2‖∇v‖2dσ. (3.17)

Integrating with respect to τ over [−1,0], we obtain

‖∇v(t)‖2≤
(

∫ 0

−1

‖∇v(τ)‖2dτ+2‖g‖2
∫ 0

−1

η2(σ)dσ
)

e
∫

0

−1
Cη−4(σ)‖v‖2‖∇v‖2dσ

≤ (r23(ω)+2‖g‖2
∫ 0

−1

η2(σ)dσ)eC sup−1≤σ≤0
η−4(σ)r2

2
(ω)r2

3
(ω)

.
= r24(ω). (3.18)

Thus,

‖u(t,ω;s,us)‖
2
1=‖η−1(t,ω)v(t,ω;s,η(s,ω)us)‖

2
1

≤ sup
−1≤t≤0

1

η2(t,ω)
‖v(t,ω;s,η(s,ω)us)‖

2
1

≤ r24(ω) sup
−1≤t≤0

1

η2(t,ω)
, (3.19)

and from above results, r24(ω)sup−1≤t≤0
1

η2(t,ω) is bounded. This lemma implies the

existence of a bounded absorbing set.
Integrating the inequality (3.16) with t from −1 to 0, then

‖∇v(0)‖2+

∫ 0

−1

‖∆v‖2dt≤‖∇v(−1)‖2+2‖g‖2
∫ 0

−1

η2(t)dt

+2

∫ 0

−1

(Cη−4‖v‖2‖∇v‖2)‖∇v‖2dt. (3.20)

We drop the first term in the left hand side of (3.20), and thus we get

∫ 0

−1

‖∆v(t)‖2dt≤ r24(ω)+2‖g‖2
∫ 0

−1

η2(t)dt+2Cr22(ω)r
4
4(ω)

∫ 0

−1

η−4(t)dt

.
= r25(ω). (3.21)

4. The existence of random attractor

In this section, we will deduce some estimates in H2(D). Then we use these
estimates and the compactness of the embedding to obtain the existence of a compact
random attractor.

Lemma 4.1. Letting 2<p< 7
3 , g∈H

1, there exists a random radius r4(ω), such that
∀ρ>0, there exists s(ω)≤−1, such that for all s≤s(ω), and for all us∈H, with
‖us‖≤ρ, the solution of equations (3.2)-(3.3) with vs=η(s)us satisfies the inequality

‖v(0,ω;s,η(s,ω)us)‖
2
2≤ r

2
6(ω), P−a.e.

Proof. Taking the inner product of equation (3.2) with ∆2v in H, we can obtain

1

2

d

dt
‖∆v‖2+‖v‖23+ηb(u,u,∆

2v)+2µ0η

∫

D

|e(u)|p−2e(u)e(∆2v)dx=(ηg,∆2v). (4.1)
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Next, we estimate these terms in equation (4.1) respectively, letting

Q=2µ0η

∫

D

|e(u)|p−2eij(u)eij(∆
2v)dx

=2µ0η
2

∫

D

|e(u)|p−2eij(u)eij(∆
2u)dx

=−2µ0η
2

∫

D

|e(u)|p−2 ∂eij(u)

∂xk

∂eij(∆u)

∂xk
dx

−2µ0(p−2)η2
∫

D

|e(u)|p−2 ∂eij(u)

∂xk

∂eij(∆u)

∂xk
dx

=−2µ0(p−1)η2
∫

D

|e(u)|p−2 ∂eij(u)

∂xk

∂eij(∆u)

∂xk
dx. (4.2)

Furthermore, integrating by parts again,

Q=−2µ0(p−1)η2
∫

D

|e(u)|p−2 ∂eij(u)

∂xk

∂eij(∆u)

∂xk
dx

=2µ0(p−1)(p−2)η2
∫

D

|e(u)|p−4eij(u)
∂eij(u)

∂xk

∂eij(u)

∂xl

∂2eij(u)

∂xk∂xl
dx

+2µ0(p−1)η2
∫

D

|e(u)|p−2 ∂
2eij(u)

∂xk∂xl

∂2eij(u)

∂xk∂xl
dx

.
=Q1+Q2. (4.3)

From the assumed condition 2<p< 7
3 , we get Q2>0, thus we drop it in the following

computation. For the first term Q1, we have

|Q1|≤2µ0(p−1)(p−2)η2
∫

D

|e(u)|p−3 ∂eij(u)

∂xk

∂eij(u)

∂xl

∂2eij(u)

∂xk∂xl
dx

≤2µ0(p−1)(p−2)η2‖e(u)‖p−3
L∞ ‖∇2u‖2L4‖u‖3

≤2µ0C(p−1)(p−2)η2‖u‖p−3
3 ‖u‖

1

3 ‖u‖
5

3

3 ‖u‖3

=2µ0C(p−1)(p−2)η2−p‖v‖
1

3 ‖v‖
p− 1

3

3 , (4.4)

where the second inequality is due to the Hölder inequality, the third inequality is
due to the Sobolev embedding H2 ↪→L∞, for n=2, and the Gagliardo-Nirenberg
inequality

‖∇2u‖L4 ≤C‖∇3u‖
5

6 ‖u‖
1

6 .

Noticing the condition 2<p< 7
3 , we can apply the ε-Young inequality ab≤ εap

′

+

C(ε)bq
′

with ε= 1
4 , p

′= 6
3p−1 , q

′= 6
7−3p for (4.4), and we obtain

|Q1|≤
1

4
‖v‖23+

7−3p

6

(6p−2

3

)

3p−1

7−3p (

2µ0C(p−1)(p−2)η2−p‖v‖
1

3

)
6

7−3p

=
1

4
‖v‖23+

7−3p

6

(6p−2

3

)

3p−1

7−3p [

2µ0C(p−1)(p−2)
]

6

7−3p ‖v‖
2

7−3p η
12−6p

7−3p . (4.5)

For the last term in the left hand side of (4.1), we have

η|b(u,u,∆2v)|=η2|b(u,u,∆2u)|≤η2‖u‖L∞‖∆u‖‖D3u‖+η2‖∇u‖2L4‖D3u‖, (4.6)
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and we estimate the right hand side of (4.6) respectively.
For the first term, applying the Agmon inequality

‖u‖L∞ ≤C‖u‖
1

2 ‖∆u‖
1

2 ,

then

η2‖u‖L∞ ||∆u‖‖D3u‖≤Cη2‖u‖
1

2 ‖∆u‖
3

2 ‖D3u‖.

From Lemma 2.2, we know

‖u‖2≤C‖u‖
1

2

1 ‖u‖
1

2

3 ,

η2‖u‖L∞‖∆u‖‖D3u‖≤Cη2‖u‖
1

2 ‖u‖
3

4

1 ‖u‖
7

4

3 =Cη−1‖v‖
1

2 ‖v‖
3

4

1 ‖v‖
7

4

3 , (4.7)

and applying the ε-Young inequality with ε= 1
8 ,

η2‖u‖L∞‖∆u‖‖D3u‖≤
1

8
‖v‖23+

77

8
(C‖v‖

1

2 ‖v‖
3

4

1 )
8η−8. (4.8)

For the second term in the right hand side of (4.6), apply the Gagliardo-Nirenberg
inequality

‖∇u‖L4 ≤C‖∆u‖
3

4 ‖u‖
1

4

to get

η2‖∇u‖2L4‖D3u‖≤Cη2‖u‖
1

2 ‖∆u‖
3

2 ‖D3u‖,

and similar to (4.7) and (4.8) we have

η2‖∇u‖2L4‖D3u‖≤
1

8
‖v‖23+

77

8
(C‖v‖

1

2 ‖v‖
3

4

1 )
8η−8. (4.9)

From estimates (4.6)-(4.9), we can obtain

η|b(u,u,∆2v)|≤
1

4
‖v‖23+

77

4
(C‖v‖

1

2 ‖v‖
3

4

1 )
8η−8. (4.10)

Obviously, applying the ε-Young inequality, we get

|(ηg,∆2v)|≤η2‖g‖21+
‖v‖23
4

.

Combining the above estimates, we can transfer (4.1) into the following inequality:

1

2

d

dt
‖∆v‖2+

1

4
‖v‖23≤

7−3p

6

(6p−2

3

)

3p−1

7−3p [

2µ0C(p−1)(p−2)
]

6

7−3p ‖v‖
2

7−3p η
12−6p

7−3p

+η2‖g‖21+
77

4
C‖v‖4‖v‖61η

−8.

It is clear that

1

2

d

dt
‖∆v‖2+

1

8
‖v‖23+

λ1

8
‖∆v‖2
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≤
7−3p

6

(6p−2

3

)

3p−1

7−3p [

2µ0C(p−1)(p−2)
]

6

7−3p ‖v‖
2

7−3p η
12−6p

7−3p

+η2‖g‖21+
77

4
C‖v‖4‖v‖61η

−8, (4.11)

where λ1 is the first eigenvalue of operator A.

Applying Gronwall’s inequality for −1≤s≤ t≤0, we can obtain

‖∆v(t)‖2

≤‖∆v(s)‖2e−
λ1

4
(t−s)+2‖g‖21

∫ t

s

e−
λ1

4
(t−τ)η2(τ)dτ

+
77

2
Cr42(ω)r

6
4(ω)

∫ t

s

e−
λ1

4
(t−τ)η−8(τ)dτ

+
7−3p

3

(6p−2

3

)

3p−1

7−3p [

2µ0C(p−1)(p−2)
]

6

7−3p r
2

7−3p

2 (ω)

∫ t

s

e−
λ1

4
(t−τ)η

12−6p

7−3p (τ)dτ

≤‖∆v(s)‖2+2‖g‖21

∫ 0

−1

η2(τ)dτ+
77

2
Cr42(ω)r

6
4(ω)

∫ 0

−1

η−8(τ)dτ

+
7−3p

3

(6p−2

3

)

3p−1

7−3p [

2µ0C(p−1)(p−2)
]

6

7−3p r
2

7−3p

2 (ω)

∫ 0

−1

η
12−6p

7−3p (τ)dτ. (4.12)

Integrating with respect to s over [−1,0], we obtain

‖∆v(t)‖2≤

∫ 0

−1

‖∆v(s)‖2ds+2‖g‖21

∫ 0

−1

η2(τ)dτ+
77

2
Cr42(ω)r

6
4(ω)

∫ 0

−1

η−8(τ)dτ

+
7−3p

3

(6p−2

3

)

3p−1

7−3p [

2µ0C(p−1)(p−2)
]

6

7−3p r
2

7−3p

2 (ω)

∫ 0

−1

η
12−6p

7−3p (τ)dτ

≤r25(ω)+2‖g‖21

∫ 0

−1

η2(τ)dτ+
77

2
Cr42(ω)r

6
4(ω)

∫ 0

−1

η−8(τ)dτ

+
7−3p

3

(6p−2

3

)

3p−1

7−3p [

2µ0C(p−1)(p−2)
]

6

7−3p r
2

7−3p

2 (ω)

∫ 0

−1

η
12−6p

7−3p (τ)dτ

.
=r26(ω). (4.13)

Especially, for t=0,

‖u(0)‖22=‖v(0)‖22
.
= r26(ω).

Theorem 4.1. Letting 2<p< 7
3 , g∈H

1, there exists a random attractor for the
stochastic monopolar non-Newtonian fluid with multiplicative noise (2.3)-(2.4) in V .

Proof. Letting K(ω) be the ball in H2(D) of radius r6(ω), we have proved that
for any B bounded in V , there exists s(ω) such that for s≤s(ω) ,

S(0,s;ω)B⊂K(ω)P−a.e.

This clearly implies that K(ω) is an attracting set at time t=0. Because it is compact
in V , Theorem 2.1 applies.
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