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GLOBAL SMOOTH SOLUTIONS OF THE GENERALIZED KS-CGL

EQUATIONS FOR FLAMES GOVERNED BY A SEQUENTIAL

REACTION∗
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Abstract. In this paper, we investigate the periodic initial value problem and Cauchy problem of
the generalized Kuramoto-Sivashinsky-complex Ginzburg-Landau (GKS-CGL) equations for flames
governed by a sequential reaction. We prove the global existence and uniqueness of solutions to these
two problems in various spatial dimensions via delicate a priori estimates, the Galerkin method, and
so-called continuity method.
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1. Introduction

In this paper, we consider the global existence and uniqueness of solutions for
the following coupled generalized Kuramoto-Sivashinsky-complex Ginzburg-Landau
(GKS-CGL) equations for flames:

Pt = ξP +(1+ iµ)∆P −(1+ iν)|P |2P −∇P∇Q−r1P∆Q−gr2P∆2Q, (1.1)

Qt=−∆Q−g∆2Q+δ∆3Q− 1

2
|∇Q|2−η|P |2, (1.2)

with the periodic initial conditions

P (x+Lei,t)=P (x,t), Q(x+Lei,t)=Q(x,t), x∈Ω, t≥0, (1.3)

P (x,0)=P0(x), Q(x,0)=Q0(x), x∈Ω, (1.4)

or the initial conditions

P (x,0)=P0(x), Q(x,0)=Q0(x), x∈R
n. (1.5)

The spatial domain Ω is a bounded domain in n-dimensional real Euclidean space
R

n(n=1,2), and the time t≥0. The complex function P (x,t) is the rescaled amplitude
of the flame oscillations, the real function Q(x,t) is the deformation of the first front,
and both of them are L-periodic. The coefficient ξ=±1. The Landau coefficients
µ,ν and the coupling coefficient η>0 are real, while the parameters r1 and r2 are
complex, r1= r1r+ ir1i, r2= r2r+ ir2i. The coefficient g>0 is proportional to the
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supercriticality of the oscillatory mode. δ>0 is a constant, L>0 is the period, and
ei is the standard coordinate vector.

If we take δ=0 in equation (1.2), the coupled GKS-CGL equations (1.1) (1.2) are
reduced to the classical KS-CGL equations [1], which describe the nonlinear interac-
tion between the monotonic and oscillatory modes of instability of the two uniformly
propagating flame fronts in a sequential reaction. Specifically, they describe both the
long-wave evolution of the oscillatory mode near the oscillatory instability threshold,
and the evolution of the monotonic mode. For the background of the uniformly prop-
agating premixed flame fronts and the derivation of the KS-CGL model, we refer to
[1, 2, 3, 4] for details. If there were no coupling with the monotonic mode (terms with
Q in equation (1.1)), then equation (1.1) would be the well-known CGL equation
that usually describes the weakly nonlinear evolution of a long-scale instability [5]. If
we take δ=0 and the coupling coefficient η=0 in equation (1.2), then equation (1.2)
reduces to the well-known KS equation [6], which governs the flame front’s spatio-
temporal evolution and describes stationary (time independent) spatially periodic
patterns as well as further transitions. As can be seen, the coupled GKS-CGL equa-
tions (1.1) (1.2) can better describe the dynamical behavior for flames governed by a
sequential reaction, because they generalize the KS equations, the CGL equations, or
the KS-CGL equations.

So far, the mathematical analysis and physical study about the CGL equation
and KS equation have been done by many researchers. For example, the existence of
global solutions and attractor for the CGL equation and KS equation are studied in
[7, 8, 9, 10, 11]. For some other results, see [12, 13, 14, 15] and references therein.
However, little progress has been obtained for the coupled KS-CGL equations because
they were derived to describe the nonlinear evolution for flames by A. A. Golovin,
et al. [1]. They studied the traveling waves of the coupled equations numerically
and continued to study the spiral waves [16], which exhibit new types of instabilities.
Meanwhile, there are few works which consider mathematical analytical properties of
the KS-CGL equations and generalized KS-CGL equations, even the existence and
uniqueness of the solutions. In this paper, we are concerned with the global existence
and uniqueness theory for the periodic initial value problem (1.1)-(1.4) and the Cauchy
problem (1.1)(1.2)(1.5) via delicate a priori estimates and the Galerkin method. For
the Cauchy problem (1.1)(1.2)(1.5), we suppose that P (x,t), Q(x,t), and some of
their derivatives with respect to x tend to zero as |x|→∞.

The rest of paper is organized as follows. In Section 2, we briefly give some
notations and preliminaries. In Section 3, we will establish a priori estimates for the
solutions of the periodic initial value problem (1.1)-(1.4). In Section 4, the existence
and uniqueness of the global smooth solutions for the periodic initial value problem
(1.1)-(1.4) are obtained via the Galerkin method and so-called continuity method. In
Section 5, we employ the usual method of limiting process to obtain the solutions for
the Cauchy problem (1.1)(1.2)(1.5).

2. Notations and preliminaries

We shall use the following conventional notations throughout the paper. Let Lk
per

and Hk
per,k=1,2, · · · denote the Hilbert and Sobolev spaces of L-periodic, complex-

valued functions endowed with the usual L2 inner product (u,v)=
∫

Ω
u(x)v(x)dx and
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norms

‖u‖L2 =
√

(u,u), ‖u‖Hk =





∑

|α|≤k

‖Dαu(x)‖





1
2

.

Here v denotes the complex conjugate of v. For brevity, we write ‖u‖=‖u‖L2 and

denote the Lp-norm by ‖u‖p=
(∫

Ω
|u|pdx

)1/p
. Without any ambiguity, we denote a

generic positive constant by C which may vary from line to line.
In the following sections, we frequently use following inequalities.

Lemma 2.1 (Young’s inequality with ε [17]). Let a>0, b>0, 1<p,q<∞, 1
p +

1
q =

1. Then

ab≤ εap+C(ε)bq,

for C(ε)=(εp)−q/pq−1.

Lemma 2.2 (Gagliardo-Nirenberg inequality [18]). Let Ω be a bounded domain
with ∂Ω in Cm, and let u be any function in Wm,r(Ω)∩Lq(Ω), 1≤ q,r≤∞. For any
integer j, 0≤ j <m, and for any number a in the interval j/m≤a≤1, set

1

p
=

j

n
+a

(

1

r
−m

n

)

+(1−a)
1

q
.

If m−j−n/r is not a nonnegative integer, then

‖Dju‖Lp ≤C‖u‖aWm,r‖u‖1−a
Lq . (2.1)

If m−j−n/r is a nonnegative integer, then (2.1) holds for a= j/m. The constant C
depends only on Ω, r, q, j, and a.

In the sequel, we will use the following inequalities as the specific cases of the
Gagliardo-Nirenberg inequality:

‖Dju‖L∞ ≤C‖u‖aHm‖u‖1−a, ma= j+n/2, (2.2)

‖Dju‖L2 ≤C‖u‖aHm‖u‖1−a, ma= j, (2.3)

‖Dju‖L4 ≤C‖u‖aHm‖u‖1−a, ma= j+n/4. (2.4)

3. A priori estimates

In this section, we derive some a priori estimates for the solutions of the problem
(1.1)-(1.4). Firstly we have the following result.

Lemma 3.1. Assume P0(x)∈L2
per(Ω), Q0(x)∈H1

per(Ω), and suppose that 2δ−g2r22r>
0. Then for the solutions of the problem (1.1)-(1.4), we have

‖P‖2≤ eK1t(‖P0‖2+‖∇Q0‖2), ‖∇Q‖2≤ eK1t(‖P0‖2+‖∇Q0‖2), (3.1)

where K1 is a positive constant.

Proof. First we differentiate equation (1.2) with respect to x once and set

W =∇Q. (3.2)
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Then equation (1.1) and (1.2) can be rewritten as

Pt= ξP +(1+ iµ)∆P −(1+ iν)|P |2P −∇PW −r1P∇W −gr2P∇∆W, (3.3)

Wt=−∆W −g∆2W +δ∆3W −W∇W −η∇(|P |2). (3.4)

Multiplying (3.3) by P , integrating with respect to x over Ω, and taking the real part,
we obtain

1

2

d

dt
‖P‖2= ξ‖P‖2−‖∇P‖2−

∫

Ω

|P |4dx−Re

∫

Ω

∇PPWdx

−r1r

∫

Ω

|P |2∇Wdx−gr2r

∫

Ω

|P |2∇∆Wdx, (3.5)

where

−Re

∫

Ω

∇PPWdx=
1

2

∫

Ω

|P |2∇Wdx. (3.6)

On the other hand, multiplying (3.4) by W and integrating over Ω, we have

1
2

d
dt‖W‖2 =‖∇W‖2−g‖∆W‖2−δ‖∇∆W‖2−

∫

Ω
W 2∇Wdx−η

∫

Ω
∇(|P |2)Wdx,

(3.7)
where

∫

Ω

W 2∇Wdx=
n
∑

i=1

∫

Ω

∂W

∂xi
W 2dx=

1

3

n
∑

i=1

∫

Ω

∂

∂xi
(W 3)dx=0, (3.8)

and

−η

∫

Ω

∇
(

|P |2
)

Wdx=η

∫

Ω

|P |2∇Wdx. (3.9)

Adding (3.5) and (3.7) together, and noticing (3.6), (3.8), and (3.9), there holds

d

dt

(

‖P‖2+‖W‖2
)

=2ξ‖P‖2−2‖∇P‖2−2

∫

Ω

|P |4dx+2‖∇W‖2−2g‖∆W‖2

−2δ‖∇∆W‖2+(1+2η−2r1r)

∫

Ω

|P |2∇Wdx−2gr2r

∫

Ω

|P |2∇∆Wdx. (3.10)

According to the Gagliardo-Nirenberg inequality (2.3), we have

2‖∇W‖2+(1+2η−2r1r)

∫

Ω

|P |2∇Wdx

≤2‖∇W‖2+ |1+2η−2r1r|
(∫

Ω

|P |4dx
)

1
2

‖∇W‖

≤ ε1

∫

Ω

|P |4dx+C‖∇W‖2

≤ ε1

∫

Ω

|P |4dx+C‖W‖
2
3

H3‖W‖ 4
3
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≤ ε1

∫

Ω

|P |4dx+ ε2
2
‖∇∆W‖2+C1‖W‖2, (3.11)

and
∣

∣

∣

∣

−2gr2r

∫

Ω

|P |2∇∆Wdx

∣

∣

∣

∣

≤ ε2
2
‖∇∆W‖2+ 2g2r22r

ε2

∫

Ω

|P |4dx. (3.12)

Combining (3.10)-(3.12) and noticing that |ξ|=1, we have

d

dt

(

‖P‖2+‖W‖2
)

≤2‖P‖2+C1‖W‖2−2‖∇P‖2−2g‖∆W‖2

−(2δ−ε2)‖∇∆W‖2−
(

2− 2g2r22r
ε2

−ε1

)∫

Ω

|P |4dx. (3.13)

Under the condition 2δ−g2r22r>0, we can choose ε2 such that 0<g2r22r<ε2≤2δ and

choose ε1 to be sufficiently small such that 2− 2g2r22r
ε2

−ε1>0. Then we have

d

dt

(

‖P‖2+‖W‖2
)

+2‖∇P‖2+2g‖∆W‖2

+(2δ−ε2)‖∇∆W‖2+
(

2− 2g2r22r
ε2

−ε1

)∫

Ω

|P |4dx.

≤2‖P‖2+C1‖W‖2

≤K1(‖P‖2+‖W‖2), (3.14)

where K1=max(2,C1). By Gronwall’s inequality, we have

‖P‖2+‖W‖2≤ eK1t(‖P0‖2+‖W0‖2), (3.15)

where K1 is a positive constant. Combining the transformation (3.2), one can com-
plete the proof of Lemma 3.1.

Lemma 3.2. Assume P0(x)∈H1
per(Ω), Q0(x)∈H3

per(Ω), and 2δ−g2r22r>0. If n=2,

we also suppose |ν|≤
√
3. Then for the solutions of the problem (1.1)-(1.4), we have

‖∇P‖2≤ eK2t(‖∇P0‖2+‖∆Q0‖2+‖∇∆Q0‖2+Ct), (3.16)

‖∆Q‖2+‖∇∆Q‖2≤ eK2t(‖∇P0‖2+‖∆Q0‖2+‖∇∆Q0‖2+Ct), (3.17)

where K2 and C are positive constants.

Proof. Similar to the first step in Lemma 3.1, we use the transformed equations.
Multiplying (3.3) by (−∆P ), integrating with respect to x over Ω, and taking the real
part, we get

1

2

d

dt
‖∇P‖2= ξ‖∇P‖2−‖∆P‖2+Re

∫

Ω

(1+ iν)|P |2P∆Pdx

+Re

∫

Ω

∇P∆PWdx+Re

∫

Ω

r1P∆P∇Wdx+Re

∫

Ω

gr2P∆P∇∆Wdx.

(3.18)
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Taking the inner product of (3.4) with (−∆W ) and ∆2W over Ω respectively,

1

2

d

dt
‖∇W‖2=‖∆W‖2−g‖∇∆W‖2−δ‖∆2W‖2

+

∫

Ω

W∇W∆Wdx+η

∫

Ω

∇(|P |2)∆Wdx (3.19)

and

1

2

d

dt
‖∆W‖2=‖∇∆W‖2−g‖∆2W‖2−δ‖∇∆2W‖2

−
∫

Ω

W∇W∆2Wdx−η

∫

Ω

∇(|P |2)∆2Wdx. (3.20)

Adding (3.18), (3.19), and (3.20) together yields that

d

dt
(‖∇P‖2+‖∇W‖2+‖∆W‖2)

=2ξ‖∇P‖2−2‖∆P‖2+2‖∆W‖2−2(g−1)‖∇∆W‖2

−2(δ+g)‖∆2W‖2−2δ‖∇∆2W‖2

+2Re

∫

Ω

(1+ iν)|P |2P∆Pdx+2Re

∫

Ω

∇P∆PWdx

+2Re

∫

Ω

r1P∆P∇Wdx+2Re

∫

Ω

gr2P∆P∇∆Wdx

+2

∫

Ω

W∇W∆Wdx+2η

∫

Ω

∇(|P |2)∆Wdx

−2

∫

Ω

W∇W∆2Wdx−2η

∫

Ω

∇(|P |2)∆2Wdx. (3.21)

Now we need to majorize the right hand side of (3.21). Notice that when the spatial
dimension is n=1, it is easy to find that

|2Re
∫

Ω

(1+ iν)|P |2PP xxdx|≤2|1+ iν|‖P‖2L8‖P‖L4‖Pxx‖

≤C‖Pxx‖
3
8 ‖P‖ 13

8 ‖Pxx‖
1
8 ‖P‖ 7

8 ‖Pxx‖

≤ 1

2
‖Pxx‖2+C‖P‖10

≤ 1

2
‖Pxx‖2+C. (3.22)

While n=2, we handle this term as follows:

2Re

∫

Ω

(1+ iν)|P |2P∆Pdx

=−2Re

∫

Ω

(1+ iν)(|P |2|∇P |2+P∇P∇(|P |2))dx

=−2

∫

Ω

|P |2|∇P |2dx−
∫

Ω

|∇(|P |2)|2dx+ν

∫

Ω

∇(|P |2|) · i(P∇P −P∇P )dx

=−1

2

∫

Ω

(3|∇(|P |2)|2−2ν∇(|P |2) · i(P∇P −P∇P )+ |P∇P −P∇P |2)dx. (3.23)
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We observe that the integrand in the last term in (3.23) is a quadratic form, and

under the condition of |ν|≤
√
3, the matrix

(

3 −ν
−ν 1

)

is nonnegative definite, which

implies the integrand is nonnegative. Thus we have

2Re

∫

Ω

(1+ iν)|P |2P∆Pdx<0≤ 1

2
‖∆P‖2. (3.24)

Meanwhile, according to Young’s inequality with ε and Gagliardo-Nirenberg inequal-
ity (2.2), (2.3), and (2.4), we obtain the following estimates:

2‖∆W‖2−2(g−1)‖∇∆W‖2+
∣

∣

∣

∣

2Re

∫

Ω

∇P∆PWdx

∣

∣

∣

∣

+

∣

∣

∣

∣

2Re

∫

Ω

r1P∆P∇Wdx

∣

∣

∣

∣

+

∣

∣

∣

∣

2Re

∫

Ω

gr2P∆P∇∆Wdx

∣

∣

∣

∣

+

∣

∣

∣

∣

2

∫

Ω

W∇W∆Wdx

∣

∣

∣

∣

≤2‖∆W‖2+2|g−1|‖∇∆W‖2+2‖W‖∞‖∇P‖‖∆P‖
+2|r1|‖P‖‖∆P‖‖∇W‖∞+2g|r2|‖P‖‖∆P‖‖∇∆W‖∞+2‖W‖‖∇W‖∞‖∆W‖

≤2‖∆W‖2+2|g−1|‖∇∆W‖2+C‖W‖
n
8

H4‖W‖ 8−n
8 ‖P‖

1
2

H2‖P‖ 1
2 ‖∆P‖

+
1

6
‖∆P‖2+C‖W‖

2+n
3

H3 ‖W‖ 4−n
3 +

1

6
‖∆P‖2

+C‖∇∆W‖2∞+C‖W‖
2+n
8

H4 ‖W‖ 6−n
8 ‖∆W‖

≤2‖∆W‖2+C‖W‖
3
2

H4‖W‖ 1
2 +C‖W‖

n
8

H4‖W‖ 8−n
8 ‖P‖

1
2

H2‖P‖ 1
2 ‖∆P‖

+
1

6
‖∆P‖2+C‖W‖

2+n
3

H3 ‖W‖ 4−n
3 +

1

6
‖∆P‖2+ 1

6
‖∆P‖2

+C‖W‖
6+n
5

H5 ‖W‖ 4−n
5 +C‖W‖

2+n
8

H4 ‖W‖ 6−n
8 ‖∆W‖

≤ 1

2
‖∆P‖2+ δ+g

2
‖∆2W‖2+ δ

2
‖∇∆2W‖2+C2‖∇P‖2+C3‖∇W‖2+C4‖∆W‖2+C.

(3.25)

After a similar computation we also get
∣

∣2η
∫

Ω
∇(|P |2)∆Wdx

∣

∣ =
∣

∣2η
∫

Ω
|P |2∇∆Wdx

∣

∣

≤2η‖∇∆W‖‖P‖2L4

≤C‖W‖
3
2

H4‖W‖ 1
2 ‖P‖

n
2

H1‖P‖ 4−n
2

≤ δ+g
2 ‖∆2W‖2+C5‖∇P‖2+C6‖∇W‖2+C7‖∆W‖2+C,

(3.26)
and

∣

∣

∣

∣

−2

∫

Ω

W∇W∆2Wdx−2η

∫

Ω

∇(|P |2)∆2Wdx

∣

∣

∣

∣

≤
∣

∣

∣

∣

∫

Ω

W 2∇∆2Wdx

∣

∣

∣

∣

+2η

∣

∣

∣

∣

∫

Ω

|P |2∇∆2Wdx

∣

∣

∣

∣

≤ δ

2
‖∇∆2W‖2+C(‖W‖4L4 +‖P‖4L4)

≤ δ

2
‖∇∆2W‖2+C(‖W‖nH1‖W‖4−n+‖P‖nH1‖P‖4−n)
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≤ δ

2
‖∇∆2W‖2+C8‖∇P‖2+C9‖∇W‖2+C. (3.27)

Substituting (3.22)-(3.27) into (3.21) and noticing that |ξ|=1, we have

d

dt
(‖∇P‖2+‖∇W‖2+‖∆W‖2)+‖∆P‖2+(δ+g)‖∆2W‖2+δ‖∇∆2W‖2

≤ (2+C2+C5+C8)‖∇P‖2+(C3+C6+C9)‖∇W‖2+(C4+C7)‖∆W‖2+C

≤K2(‖∇P‖2+‖∇W‖2+‖∆W‖2)+C, (3.28)

where K2=max(2+C2+C5+C8,C3+C6+C9,C4+C7) is a positive constant. Ap-
plying Gronwall’s inequality, we have

‖∇P‖2+‖∇W‖2+‖∆W‖2 ≤ eK2t(‖∇P0‖2+‖∇W0‖2+‖∆W0‖2+Ct). (3.29)

This completes the proof of Lemma 3.2 with the transformation (3.2).

Corollary 3.3. Under the conditions of Lemma 3.2, we have the estimates

‖P‖H1
per

≤C, ‖∇Q‖∞≤C, (3.30)

where C is a positive constant.

Proof. From Lemma 3.1, Lemma 3.2, and the Gagliardo-Nirenberg inequality

(2.2), we have ‖∇Q‖∞≤C‖∇Q‖
n
4

H2‖∇Q‖ 4−n
4 ≤C, which concludes (3.30).

Lemma 3.4. Assume that P0(x)∈H2
per(Ω), Q0(x)∈H4

per(Ω), and the conditions of
Lemma 3.2. Then for the solutions of the problem (1.1)-(1.4), we have the estimates

‖∆P‖2+‖∆2Q‖2 ≤ eK3t(‖∆P0‖2+‖∆2Q0‖2+Ct), (3.31)

where K3 and C are positive constants.

Proof. After making the transformation (3.2), we take the inner product of (3.3)
with ∆2P over Ω and take the real part, and obtain

1

2

d

dt
‖∆P‖2

= ξ‖∆P‖2−‖∇∆P‖2−Re

∫

Ω

(1+ iν)|P |2P∆2Pdx

−Re

∫

Ω

∇P∆2PWdx−Re

∫

Ω

r1P∆2P∇Wdx−Re

∫

Ω

gr2P∆2P∇∆Wdx. (3.32)

Multiplying (3.4) by (−∆3W ) and integrating with respect to x over Ω,

1
2

d
dt‖∇∆W‖2 =‖∆2W‖2−g‖∇∆2W‖2−δ‖∆3W‖2

+
∫

Ω
W∇W∆3Wdx+η

∫

Ω
∇(|P |2)∆3Wdx.

(3.33)

Adding the above two equalities yields

d

dt
(‖∆P‖2+‖∇∆W‖2)

=2ξ‖∆P‖2−2‖∇∆P‖2+2‖∆2W‖2−2g‖∇∆2W‖2−2δ‖∆3W‖2
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−2Re

∫

Ω

(1+ iν)|P |2P∆2Pdx−2Re

∫

Ω

∇P∆2PWdx

−2Re

∫

Ω

r1P∆2P∇Wdx−2Re

∫

Ω

gr2P∆2P∇∆Wdx

+2

∫

Ω

W∇W∆3Wdx+2η

∫

Ω

∇(|P |2)∆3Wdx. (3.34)

First, according to the Gagliardo-Nirenberg inequality, Lemma 3.1, and Lemma 3.2,
we have

∣

∣

∣

∣

−2Re

∫

Ω

(1+ iν)|P |2P∆2Pdx

∣

∣

∣

∣

=

∣

∣

∣

∣

2Re

∫

Ω

(1+ iν)(|P |2∇P∇∆P +(P∇P +P∇P )P∇∆P )dx

∣

∣

∣

∣

≤6|1+ iν|‖P‖2∞‖∇P‖‖∇∆P‖

≤ 1

3
‖∇∆P‖2+C‖P‖nH2‖P‖4−n‖∇P‖2

≤ 1

3
‖∇∆P‖2+C10‖∆P‖2+C, (3.35)

and
∣

∣

∣

∣

−2Re

∫

Ω

∇P∆2PWdx

∣

∣

∣

∣

=

∣

∣

∣

∣

2Re

∫

Ω

∇P∇∆P∇Wdx+2Re

∫

Ω

∆P∇∆PWdx

∣

∣

∣

∣

≤2‖∇W‖∞‖∇P‖‖∇∆P‖+2‖W‖∞‖∆P‖‖∇∆P‖

≤ 1

3
‖∇∆P‖2+C‖∇W‖

n
2

H2‖∇W‖ 4−n
2 +C11‖∆P‖2

≤ 1

3
‖∇∆P‖2+C11‖∆P‖2+C12‖∇∆W‖2+C. (3.36)

In the same way, we can handle these terms as follows:

∣

∣

∣

∣

2‖∆2W‖2−2Re

∫

Ω

r1P∆2P∇Wdx−2Re

∫

Ω

gr2P∆2P∇∆Wdx

∣

∣

∣

∣

≤2‖∆2W‖2+
∣

∣

∣

∣

2Re

∫

Ω

r1(P∇∆P∆W +∇P∇∆P∇W )dx

∣

∣

∣

∣

+

∣

∣

∣

∣

2Re

∫

Ω

gr2(P∇∆P∆2W +∇P∇∆P∇∆W )dx

∣

∣

∣

∣

≤2‖∆2W‖2+2|r1|‖P‖‖∇∆P‖‖∆W‖∞
+2|r1|‖∇P‖‖∇∆P‖‖∇W‖∞+2g|r2|‖P‖‖∇∆P‖‖∆2W‖∞
+2g|r2|‖∇P‖‖∇∆P‖‖∇∆W‖∞

≤2‖∆2W‖2+ 1

3
‖∇∆P‖2+C‖∇W‖

2+n
3

H3 ‖∇W‖ 4−n
3

+C‖∇W‖
n
2

H2‖∇W‖ 4−n
2 +C‖∇W‖

6+n
5

H5 ‖∇W‖ 4−n
5 +C‖∇W‖

4+n
4

H4 ‖∇W‖ 4−n
4

≤ 1

3
‖∇∆P‖2+g‖∇∆2W‖2+ δ

4
‖∆3W‖2+4‖∆2W‖2+C‖∇∆W‖2+C

≤ 1

3
‖∇∆P‖2+g‖∇∆2W‖2+ δ

4
‖∆3W‖2+C‖∇W‖

3
2

H4‖∇W‖ 1
2 +C‖∇∆W‖2+C
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≤ 1

3
‖∇∆P‖2+g‖∇∆2W‖2+ δ

2
‖∆3W‖2+C13‖∇∆W‖2+C. (3.37)

For the last two terms, we also have that
∣

∣

∣

∣

2

∫

Ω

W∇W∆3Wdx+2η

∫

Ω

∇(|P |2)∆3Wdx

∣

∣

∣

∣

≤2‖W‖L∞‖∇W‖‖∆3W‖+4η‖P‖L∞‖∇P‖‖∆3W‖

≤ δ

2
‖∆3W‖2+C‖P‖

n
2

H2‖P‖ 4−n
2

≤ δ

2
‖∆3W‖2+C14‖∆P‖2+C. (3.38)

Then combining (3.34)-(3.38) and noticing that |ξ|=1, there holds

d

dt
(‖∆P‖2+‖∇∆W‖2)+‖∇∆P‖2+g‖∇∆2W‖2+δ‖∆3W‖2

≤ (2+C10+C11+C14)‖∆P‖2+(C12+C13)‖∇∆W‖2+C

≤K3(‖∆P‖2+‖∇∆W‖2)+C, (3.39)

where K3=max(2+C10+C11+C14,C12+C13) is a positive constant. Applying
Gronwall’s inequality, we have

‖∆P‖2+‖∇∆W‖2 ≤ eK3t(‖∆P0‖2+‖∇∆W0‖2+Ct), (3.40)

where K3 and C are positive constants. Noticing the transformation (3.2), the proof
of Lemma 3.4 is complete.

Corollary 3.5. Under the conditions of Lemma 3.4, we have the estimates

‖P‖L∞ ≤C, ‖∆Q‖L∞ ≤C, (3.41)

where C are positive constants.

Proof. Based on the results of Lemma 3.1-Lemma 3.4 and the Gagliardo-
Nirenberg inequality, one can obtain this corollary easily.

Lemma 3.6. Under the conditions of Lemma 3.4, then, for the solutions of the
problem (1.1)–(1.4), we have

‖P‖H2
per

≤C, ‖Q‖H4
per

≤C, (3.42)

where C is a positive constant.

Proof. From the estimates in Lemma 3.1-Lemma 3.4, we see ‖P‖H2
per

≤C.

However, we need to estimate ‖Q‖ for ‖Q‖H4
per

. Considering the original equation

(1.2), multiplying this equation by Q and integrating over Ω, we have

1
2

d
dt‖Q‖2 =‖∇Q‖2−g‖∆Q‖2−δ‖∇∆Q‖2− 1

2

∫

Ω
|∇Q|2Qdx−η

∫

Ω
|P |2Qdx. (3.43)

By the previous lemmas and the corollary (3.30), we get

∣

∣

∣

∣

‖∇Q‖2− 1

2

∫

Ω

|∇Q|2Qdx−η

∫

Ω

|P |2Qdx

∣

∣

∣

∣
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≤C‖Q‖H2‖Q‖+ 1

2
‖∇Q‖L∞‖∇Q‖‖Q‖+η‖P‖L∞‖P‖‖Q‖

≤C‖Q‖2+C. (3.44)

Substituting (3.44) into (3.43), we find that

d

dt
‖Q‖2≤2C‖Q‖2+C. (3.45)

By Gronwall’s inequality and Lemma 3.1-Lemma 3.4, we get ‖Q‖H4
per

≤C.

Lemma 3.7. Assume that P0(x)∈H3
per(Ω), Q0(x)∈H5

per(Ω), and the conditions of
Lemma 3.4. Then for the solutions of the problem (1.1)-(1.4), we have the following
estimates:

‖∇∆P‖2+‖∇∆2Q‖2 ≤ eK4t(‖∇∆P0‖2+‖∇∆2Q0‖2+Ct), (3.46)

where K4 and C are positive constants.

Proof. Using the transformed equations (3.3)(3.4) as before. Taking the inner
product of (3.3) with (−∆3P ) over Ω and taking the real part, we can obtain

1

2

d

dt
‖∇∆P‖2= ξ‖∇∆P‖2−‖∆2P‖2+Re

∫

Ω

(1+ iν)|P |2P∆3Pdx

+Re

∫

Ω

∇P∆3PWdx+Re

∫

Ω

r1P∆3P∇Wdx

+Re

∫

Ω

gr2P∆3P∇∆Wdx. (3.47)

Taking the inner product of (3.4) with ∆4W over Ω, we get

1

2

d

dt
‖∆2W‖2=‖∇∆2W‖2−g‖∆3W‖2−δ‖∇∆3W‖2

−
∫

Ω

W∇W∆4Wdx−η

∫

Ω

∇(|P |2)∆4Wdx. (3.48)

Adding the above two equalities gives

d

dt
(‖∇∆P‖2+‖∆2W‖2)=2ξ‖∇∆P‖2−2‖∆2P‖2+2‖∇∆2W‖2−2g‖∆3W‖2

−2δ‖∇∆3W‖2+2Re

∫

Ω

(1+ iν)|P |2P∆3Pdx

+2Re

∫

Ω

∇P∆3PWdx+2Re

∫

Ω

r1P∆3P∇Wdx

+2Re

∫

Ω

gr2P∆3P∇∆Wdx

−2

∫

Ω

W∇W∆4Wdx−2η

∫

Ω

∇(|P |2)∆4Wdx. (3.49)

Now using the estimates of previous lemmas and corollaries, we can majorize the right
hand of (3.49) as follows. First, we have

∣

∣

∣

∣

2Re

∫

Ω

(1+ iν)|P |2P∆3Pdx

∣

∣

∣

∣
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=

∣

∣

∣

∣

2Re

∫

Ω

(1+ iν)(2(∇P )2P +2|P |2∆P +4P |∇P |2+P 2∆P )∆2Pdx

∣

∣

∣

∣

≤2|1+ iν|(6‖∇P‖2∞‖P‖+3‖P‖2∞‖∆P‖)‖∆2P‖

≤ 1

4
‖∆2P‖2+C‖P‖

2+n
3

H3 ‖P‖ 4−n
3 +C

≤ 1

4
‖∆2P‖2+C14‖∇∆P‖2+C, (3.50)

∣

∣

∣

∣

2Re

∫

Ω

∇P∆3PWdx

∣

∣

∣

∣

=

∣

∣

∣

∣

2Re

∫

Ω

(∆W∇P +2∇W∆P +W∇∆P )∆2Pdx

∣

∣

∣

∣

≤2(‖∆W‖‖∇P‖∞+2‖∇W‖∞‖∆P‖+‖W‖∞‖∇∆P‖)‖∆2P‖

≤ 1

4
‖∆2P‖2+C‖∇P‖

n
2

H2‖∇P‖ 4−n
2 +C‖∇∆P‖2+C

≤ 1

4
‖∆2P‖2+C15‖∇∆P‖2+C, (3.51)

and
∣

∣

∣

∣

2Re

∫

Ω

r1P∆3P∇Wdx

∣

∣

∣

∣

=

∣

∣

∣

∣

2Re

∫

Ω

(∆P∇W +2∇P∆W +P∇∆W )∆2Pdx

∣

∣

∣

∣

≤2(‖∇W‖∞‖∆P‖+2‖∆W‖‖∇P‖∞+‖P‖∞‖∇∆W‖)‖∆2P‖

≤ 1

4
‖∆2P‖2+C‖∇P‖

n
2

H2‖∇P‖ 4−n
2 +C

≤ 1

4
‖∆2P‖2+C16‖∇∆P‖2+C. (3.52)

Similarly, use the Gagliardo-Nirenberg inequality and previous estimates to obtain
that

∣

∣

∣

∣

2‖∇∆2W‖2+2Re

∫

Ω

gr2P∆3P∇∆Wdx

∣

∣

∣

∣

≤2‖∇∆2W‖2+
∣

∣

∣

∣

2Re

∫

Ω

gr2(∇∆2WP +2∆2W∇P +∇∆W∆P )∆2Pdx

∣

∣

∣

∣

≤2‖∇∆2W‖2+2g|r2|(‖P‖∞‖∇∆2W‖+2‖∇P‖‖∆2W‖∞)‖∆2P‖
+2g|r2|‖∆P‖‖∇∆W‖∞‖∆2P‖

≤ 1

4
‖∆2P‖2+2‖∇∆2W‖2+C‖W‖

5
3

H6‖W‖ 2
3

+C‖∆W‖
4+n
3

H4 ‖∆W‖ 4−n
4 +C‖∇W‖

4+n
3

H4 ‖∇W‖ 4−n
4

≤ 1

4
‖∆2P‖2+ g

2
‖∆3W‖2+4‖∇∆2W‖2+C‖∆2W‖2+C

≤ 1

4
‖∆2P‖2+g‖∆3W‖2+C17‖∆2W‖2+C. (3.53)

For the last two terms, we get
∣

∣

∣

∣

−2

∫

Ω

W∇W∆4Wdx−2η

∫

Ω

∇(|P |2)∆4Wdx

∣

∣

∣

∣
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≤
∣

∣

∣

∣

2

∫

Ω

((∇W )2+W∆W )∇∆3Wdx

∣

∣

∣

∣

+2η

∣

∣

∣

∣

∫

Ω

(∆PP +2|∇P |2+P∆P )∇∆3Wdx

∣

∣

∣

∣

≤2(‖∇W‖∞‖∇W‖+‖W‖∞‖∆W‖)‖∇∆3W‖
+2η(‖∆P‖‖P‖∞+2‖∇P‖∞‖∇P‖+‖P‖∞‖∆P‖)‖∇∆3W‖

≤ δ‖∇∆3W‖2+C18‖∇∆P‖2+C. (3.54)

Substituting (3.50)-(3.54) into (3.49) yields that

d

dt
(‖∇∆P‖2+‖∆2W‖2)+‖∆2P‖2+g‖∆3W‖2+δ‖∇∆3W‖2

≤ (2+C14+C15+C16+C18)‖∇∆P‖2+C17‖∆2W‖2+C

≤K4(‖∇∆P‖2+‖∆2W‖2)+C, (3.55)

where K4=max(2+C14+C15+C16+C18,C17) is a positive constant. Applying
Gronwall’s inequality and transformation (3.2) completes the proof of Lemma 3.7.

Corollary 3.8. Under the conditions of Lemma 3.7, we have the estimates

‖∇P‖L∞ ≤C, ‖∇∆Q‖L∞ ≤C, (3.56)

for the solutions of the problem (1.1)-(1.4), where C is a positive constant.

Lemma 3.9. Under the conditions of Lemma 3.1-Lemma 3.7, we have the estimate

‖Pt‖2+‖Qt‖2+‖∇Qt‖2≤C, (3.57)

for the solutions of the problem (1.1)-(1.4), where C is a positive constant.

Proof. We differentiate equation (1.1) and (1.2) with respect to t once, take
the inner product of the resulting equations with P t and (Qt−∆Qt) respectively, and
take the real parts to obtain

1

2

d

dt
‖Pt‖2= ξ‖Pt‖2−‖∇Pt‖2−Re

∫

Ω

(1+ iν)(2|P |2|Pt|2+P 2P
2

t )dx

−Re

∫

Ω

(∇Pt∇Q+∇P∇Qt)P tdx

−Re

∫

Ω

r1(|Pt|2∆Q+P∆QtP t)dx

−Re

∫

Ω

gr2(|Pt|2∆2Q+P∆2QtP t)dx, (3.58)

and

1

2

d

dt
(‖Qt‖2+‖∇Qt‖2)=‖∇Qt‖2−(g−1)‖∆Qt‖2−(δ+g)‖∇∆Qt‖2

−δ‖∆2Qt‖2−
∫

Ω

∇Q∇Qt(Qt−∆Qt)dx

−η

∫

Ω

(PtP +PP t)(Qt−∆Qt)dx, (3.59)
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Adding (3.58) and (3.59) together, noticing that |ξ|=1, and using the estimates in
Lemma 3.1-Lemma 3.7 yields

d

dt
(‖Pt‖2+‖Qt‖2+‖∇Qt‖2)

=2ξ‖Pt‖2−‖∇Pt‖2+2‖∇Qt‖2−2(g−1)‖∆Qt‖2−2(δ+g)‖∇∆Qt‖2

−2δ‖∆2Qt‖2−2Re

∫

Ω

(1+ iν)(2|P |2|Pt|2+P 2P
2

t )dx

−2Re

∫

Ω

(∇Pt∇Q+∇P∇Qt)P tdx

−2Re

∫

Ω

r1(|Pt|2∆Q+P∆QtP t)dx−2Re

∫

Ω

gr2(|Pt|2∆2Q+P∆2QtP t)dx

−2

∫

Ω

∇Q∇Qt(Qt−∆Qt)dx−2η

∫

Ω

(PtP +PP t)(Qt−∆Qt)dx

≤2‖Pt‖2−‖∇Pt‖2+2‖∇Qt‖2+2|g−1|‖∆Qt‖2−2δ‖∇∆Qt‖2

−2δ‖∆2Qt‖2+6|1+ iν|‖P‖2∞‖Pt‖2+2(‖∇Q‖∞‖∇Pt‖+‖∇P‖∞‖∇Qt‖)‖Pt‖
+2r1r‖∆Q‖∞‖Pt‖2+2|r1|‖P‖∞‖∆Qt‖‖Pt‖
+4g|r2|‖∇∆Q‖∞‖Pt‖‖∇Pt‖+2g|r2|‖∇P‖∞‖∇∆Qt‖‖Pt‖
+2g|r2|‖P‖∞‖∇∆Qt‖‖∇Pt‖
+2‖∇Q‖∞‖Qt‖(‖∇Qt‖+‖∆Qt‖)+4η‖P‖∞‖Pt‖(‖∇Qt‖+‖∆Qt‖)

≤C(‖Pt‖2+‖Qt‖2+‖∇Qt‖2), (3.60)

where we apply Young’s inequality with ε and the Gagliardo-Nirenberg inequality
repeatedly. Thus, Gronwall’s inequality yields the estimates of Lemma 3.9.

Generally based on the results of the previous lemmas and mathematical deduc-
tion, we have the following lemma for problem (1.1)-(1.4).

Lemma 3.10. Assume that P0(x)∈Hk(Ω), Q0(x)∈Hk+2(Ω) (k≥3), and 2δ−
g2r22r>0. If n=2, we also suppose |ν|≤

√
3. Then for the solutions of the problem

(1.1)–(1.4), we have the following estimates:

∥

∥∇kP
∥

∥

2
+
∥

∥∇k+2Q
∥

∥

2≤C. (3.61)

Furthermore, there also holds

∥

∥∇k−3Pt

∥

∥

2
+
∥

∥∇k−2Qt

∥

∥

2≤C, (3.62)

where the positive constant C depends on
∥

∥∇kP0

∥

∥ and
∥

∥∇k+2Q0

∥

∥ and is independent
of the period L.

4. The local solutions and global solutions

In this section, we will obtain the existence and uniqueness of the local solutions
and global solutions for the periodic initial value problem (1.1)-(1.4). First, we adopt
the Galerkin method to construct the approximate solutions for the problem (1.1)-
(1.4). Let ωj(x) (j=1,2, · · ·) be the unit eigenfunctions satisfying the equation

∆ωj+λjωj =0, j=1,2, · · · , ωj ∈H1
0 (Ω)∩L4(Ω), (4.1)
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with periodicity ωj(x)=ωj(x+Lei) (i=1,2) and where λj (j=1,2, · · ·) are the dis-
tinct eigenvalues corresponding to the orthogonal basis {ωj(x)} of L2(Ω). Thus the
approximate solutions can be written as

Pm(x,t)=
m
∑

j=1

αjm(t)ωj(x), Qm(x,t)=
m
∑

j=1

βjm(t)ωj(x). (4.2)

According to the Galerkin method, these undetermined coefficients αjm(t) and
βjm(t) have to satisfy the following initial value problem of the system of ordinary
differential equations

(Pmt,ωj) = ξ(Pm,ωj)−(1+ iµ)(∇Pm,∇ωj)−(1+ iν)(|Pm|2Pm,ωj)

−(∇Pm∇Qm,ωj)−r1(Pm∆Qm,ωj)−gr2(Pm∆2Qm,ωj),
(4.3)

(Qmt,ωj) =(∇Qm,∇ωj)−g(∆Qm,∆ωj)−δ(∇∆Qm,∇∆ωj)

− 1
2 (|∇Qm|2,ωj)−η(|Pm|2,ωj),

(4.4)

with initial conditions

Pm(x,0)=P0m(x), Qm(x,0)=Q0m(x), (4.5)

where 0≤ t≤T and j=1,2, . . . ,m.
We assume that

P0m(x)
H3

per(Ω)
−→ P0(x), Q0m(x)

H5
per(Ω)
−→ Q0(x), m→∞. (4.6)

As in the proof of Lemma 3.1-Lemma 3.9, we can establish estimates of the
solutions of the problem (1.1)-(1.4) which are uniform for m. By using the compact
principle, we can prove the following result.

Theorem 4.1 (Local existence). Assume that P0(x)∈H3
per(Ω), Q0(x)∈

H5
per(Ω), and 2δ−g2r22r>0. If n=2, we also suppose |ν|≤

√
3. Then the periodic

initial value problem (1.1)-(1.4) possesses periodic local solutions P (x,t) and Q(x,t),
which satisfy

P (x,t)∈L∞(0,t0;H
3
per(Ω)), Pt(x,t)∈L∞(0,t0;L

2
per(Ω)),

Q(x,t)∈L∞(0,t0;H
5
per(Ω)), Qt(x,t)∈L∞(0,t0;H

1
per(Ω)),

where t0 depends on ‖P0(x)‖H3
per

and ‖Q0(x)‖H5
per

.

Theorem 4.2 (Global existence). Under the conditions of Theorem 4.1. Then
there exists global solutions P (x,t) and Q(x,t), which satisfy

P (x,t)∈L∞(0,T ;H3
per(Ω)), Pt(x,t)∈L∞(0,T ;L2

per(Ω)),

Q(x,t)∈L∞(0,T ;H5
per(Ω)), Qt(x,t)∈L∞(0,T ;H1

per(Ω)),

for the periodic initial value problem (1.1)-(1.4).
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Proof. From Theorem 4.1 we know that the local solutions for the problem
(1.1)-(1.4) exist and t0 depends on ‖P0(x)‖H3

per
and ‖Q0(x)‖H5

per
. According to the

a priori estimates in Section 3 and by the so-called continuity method, we can obtain
the global solutions for the problem (1.1)-(1.4) easily.

Theorem 4.3 (Uniqueness for global solutions). Under the conditions of The-
orem 4.2, the global solutions P (x,t) and Q(x,t) of the periodic initial value problem
(1.1)-(1.4) are unique.

Proof. If P1(x,t),Q1(x,t) and P2(x,t),Q2(x,t) are two solutions of problem
(1.1)-(1.4), then the differences P =P1(x,t)−P2(x,t), Q(x,t)=Q1(x,t)−Q2(x,t) will
satisfy

Pt = ξP +(1+ iµ)∆P −(1+ iν)(|P1|2P1−|P2|2P2)−(∇P1∇Q1−∇P2∇Q2)
−r1(P1∆Q1−P2∆Q2)−gr2(P1∆

2Q1−P2∆
2Q2),

(4.7)

Qt=−∆Q−g∆2Q+δ∆3Q− 1

2

(

|∇Q1|2−|∇Q2|2
)

−η(|P1|2−|P2|2), (4.8)

P (x+Lei,t)=P (x,t), Q(x+Lei,t)=Q(x,t), (4.9)

P (x,0)=0, Q(x,0)=0. (4.10)

Taking the inner product of (4.7) with P and taking the real parts, taking the inner
product of (4.8) with −∆Q over Ω, then adding these two equations together, we
obtain

d

dt
(‖P‖2+‖∇Q‖2)

=2‖P‖2−2‖∇P‖2+2‖∆Q‖2−2g‖∇∆Q‖2−2δ‖∆2Q‖2

−Re

∫

Ω

2(1+ iν)(|P1|2P1−|P2|2P2)Pdx−2Re

∫

Ω

(∇P1∇Q1−∇P2∇Q2)Pdx

−2Re

∫

Ω

r1(P1∆Q1−P2∆Q2)Pdx−2Re

∫

Ω

gr2(P1∆
2Q1−P2∆

2Q2)Pdx

+

∫

Ω

(

|∇Q1|2−|∇Q2|2
)

∆Qdx+2η

∫

Ω

(|P1|2−|P2|2)∆Qdx

≤C(‖P‖2+‖∇Q‖2), (4.11)

where we majorize the right-hand side of (4.11) with Young’s inequality with ε and
the Gagliardo-Nirenberg inequality, because P1(x,t), Q1(x,t) and P2(x,t), Q2(x,t) are
the solutions of the problem (1.1)-(1.4) satisfying the estimates in Lemma 3.1-Lemma
3.9.

By Gronwall’s inequality and noticing the conditions (4.10), we can complete the
proof of the Theorem 4.3.

More generally, we have the following existence and uniqueness theorems for the
global smooth solutions from Lemma 3.10.

Theorem 4.4 (Existence and uniqueness for global smooth solutions). Suppose
that P0(x)∈Hk

per(Ω), Q0(x)∈Hk+2
per (Ω)(k≥3) and 2δ−g2r22r>0. If n=2, we also
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assume |ν|≤
√
3. Then there exists unique global smooth solutions P (x,t) and Q(x,t),

which satisfy

P (x,t)∈L∞(0,T ;Hk
per(Ω)), Pt(x,t)∈L∞(0,T ;Hk−3

per (Ω)),

Q(x,t)∈L∞(0,T ;Hk+2
per (Ω)), Qt(x,t)∈L∞(0,T ;Hk−2

per (Ω)),

for the periodic initial value problem (1.1)-(1.4).

5. Cauchy problem

In previous sections, we studied the existence and uniqueness of the global smooth
solutions for the periodic initial value problem (1.1)-(1.4). In this section, we will dis-
cuss the Cauchy problem (1.1)(1.2)(1.5) in the infinite domain ΩT ={(x,t)|x∈R

n,0≤
t≤T}(n=1,2). Because we have supposed that P (x,t),Q(x,t) and some of their
derivatives with respect to x tend to zero as |x|→∞, then the a priori estimates in
Section 3 also hold for the solutions of the problem (1.1)(1.2)(1.5) . Furthermore,
the a priori estimates are bounded and independent of the period L of the domain
Ω, thus we can choose sequence Lk (k→∞,Lk→∞) and obtain global existence in
[0,Tk]. Then we can employ the usual method of limiting process for Lk→∞(k→∞),
which is the so-called diagonal selection, to obtain the solutions of Cauchy problem.
The global existence and uniqueness theorems for the Cauchy problem (1.1)(1.2)(1.5)
which are parallel to Theorem 4.2, Theorem 4.3, and Theorem 4.4 can be stated as
follows.

Theorem 5.1. Suppose that 2δ−g2r22r>0, and if n=2, we also assume |ν|≤
√
3.

If P0(x)∈H3(Rn), Q0(x)∈H5(Rn), then there exists global solutions

P (x,t)∈L∞(0,T ;H3(Rn)), Pt(x,t)∈L∞(0,T ;L2(Rn)),

Q(x,t)∈L∞(0,T ;H5(Rn)), Qt(x,t)∈L∞(0,T ;H1(Rn)),

for the Cauchy problem (1.1)(1.2)(1.5).
Furthermore, if P0(x)∈Hk(Rn), Q0(x)∈Hk+2(Rn) (k≥4), then there exists

unique global smooth solutions P (x,t),Q(x,t) for the Cauchy problem (1.1)(1.2)(1.5),
which satisfy

P (x,t)∈L∞(0,T ;Hk(Rn)), Pt(x,t)∈L∞(0,T ;Hk−3(Rn)),

Q(x,t)∈L∞(0,T ;Hk+2(Rn)), Qt(x,t)∈L∞(0,T ;Hk−2(Rn)).
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