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DECAY ESTIMATES OF THE NON-ISENTROPIC COMPRESSIBLE

FLUID MODELS OF KORTEWEG TYPE IN R3∗

XU ZHANG† AND ZHONG TAN‡

Abstract. The existence and optimal convergence rates of global-in-time classical solutions
to the Cauchy problem for the compressible non-isotropic Navier-Stokes-Korteweg system for small
initial perturbation is obtained. The global solution is obtained by combining the local existence
and the a priori estimates provided the initial perturbation around a constant state is small enough.
The optimal convergence rates are obtained by energy estimates and interpolation inequalities, and
without linear decay analysis.
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1. Introduction

The compressible Navier-Stokes-Korteweg system governs the motions of the com-
pressible viscous capillary fluids. This system was first introduced by Korteweg [4]
when he studied the theory of capillarity with diffuse interfaces and later was derived
rigorously by Dunn and Serrin [7]. For x∈R3, t>0, this fluid satisfies











∂tρ+div(ρu)=0,

∂t(ρu)+div(ρu⊗u)+∇P =div[S+K],

∂t(ρE)+div(ρuE+uP )=div(α∇θ)+div[(S+K)u].

(1.1)

The capillary tensor K is expressed as follows:

K=
k

2
(∆ρ2−|∇ρ|2)I−k∇ρ⊗∇ρ.

The stress tensor S is given by

S=2νD(u)+(λdivu)I,

where ρ(t,x), u(t,x), and θ(t,x) represent the density, the velocity, and absolute
temperature. D denotes the strain tensor, which is a n×n matrix with Dij(u)=
(∂iuj+∂jui)

2 . The pressure P is a function of ρ and θ with Pρ(1,1),Pθ(1,1)>0. E is
the total energy equaling to 1

2u
2+Cvθ with Cv a positive constant. The viscosity

coefficients λ, ν satisfy λ>0, λ+ 2ν
3 ≥0. k and α represent the capillary coefficient

and heat conduction respectively. I denotes the unit matrix.
Recently, a great deal of research has been devoted to many topics of the com-

pressible Navier-Stokes-Korteweg system. Hattori and Li [10, 11] considered the local
existence and global existence of smooth solutions for the compressible fluid models
of Korteweg type in Sobolev space. Danchin and Desjardins [13] proved existence and
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uniqueness results of suitably smooth solutions for isothermal compressible fluids in
critical spaces. Bresch, Desjardins, and Lin [5] and Haspot [3] showed the global exis-
tence of weak solutions for the compressible fluid models of Korteweg type. Kotschote
[16] proved the local existence of strong solutions for a compressible fluid model of
Korteweg type. Wang and Tan [17, 22] established the optimal decay rates of global
smooth solutions for the compressible fluid models of Korteweg type without any
external force. Later, Li extended Wang’s result in the case of external force in [18].

Most of these papers considered the isentropic case. So, in this paper, we discuss
the global existence and the optimal L2 decay rate of solutions for the initial value
problem of the three-dimensional non-isentropic compressible Navier-Stokes-Korteweg
equation (1.1).

Notation. Throughout this paper, ∇` with an integer `≥0 stands for the usual any
spatial derivatives of order ` and ∇0f :=f . When `<0 or ` is not a positive integer,
∇` stands for Λ` defined by (2.3). We use Ḣs(R3),s∈R to denote the homogeneous
Sobolev spaces on R3 with norm ‖·‖Ḣs defined by (2.15), and we use Hk(R3) to
denote the usual Sobolev spaces with norm ‖·‖Hs and Lp(R3),1≤p≤∞ to denote
the usual Lp spaces with norm ‖·‖Lp . We will employ the notation a. b to mean
that a≤Cb for a universal constant C>0 that only depends on the parameters com-
ing from the problem, and the indices N and s coming from the regularity on the
data. ‖(ρ,u,q)‖2Hk =‖ρ‖2Hk +‖u‖2Hk +‖q‖2Hk . We also use C0 for a positive constant
depending additionally on the initial data. In the article, we use t(n,u,q) or h(n,u,q)
to represent some function of (n,u,q) during the estimate.

For the global existence and large time behavior of strong solutions, we have the
following result.

Theorem 1.1. Under the assumption that ρ0−1∈HN+1, (u0(x),θ0−1)∈HN ,

N ≥3, and that there exists a constant ε0 such that

||ρ0−1||H4 + ||(u0,θ0−1)||H3 ≤ ε0, (1.2)

then the problem (1.1) admits a unique global solution (ρ,u,θ) satisfying, for all t≥0,

‖(ρ−1)(t)‖2HN+1 +‖(u(t),θ(t)−1)‖2HN (1.3)

+

∫ t

0

||∇ρ(τ)||2HN+1 + ||∇u(τ)||2HN +‖∇θ(τ)‖2HN dτ

≤C
(

||ρ0−1||2HN+1 + ||u0||
2
HN + ||θ0−1||2HN

)

. (1.4)

If, further, (ρ0−1,∇ρ0,u0,θ0−1)∈ Ḣ−s for some s∈ [0,3/2), then, for all t≥0,

‖ρ(t)−1‖2
Ḣ−s +‖∇ρ(t)‖2

Ḣ−s +‖∇ρ(t)‖2
Ḣ−s +‖u(t)‖2

Ḣ−s +‖θ(t)−1‖2
Ḣ−s ≤C0, (1.5)

and for k=0,1, · · · ,N , the following decay results hold:

||∇k(ρ−1)(t)||L2 + ||∇k(θ−1)(t)||L2 + ||∇ku(t)||L2 ≤C0(1+ t)−
k+s
2 . (1.6)

Corollary 1.2. Under the assumptions of Theorem 1.1 except that we replace

the Ḣ−s assumption by the assumption that ρ0,u0∈Lp for some p∈ (1,2], then the

following decay results hold:

||∇k(ρ−1)(t)||L2 + ||∇k(θ−1)(t)||L2 + ||∇ku(t)||L2 ≤C0(1+ t)−σp,k for k=0,1, · · · ,N.
(1.7)
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Here the number σp,k is defined by

σp,k :=
3

2

(

1

p
−

1

2

)

+
k

2
. (1.8)

The rest of this paper is organized as follows. The analytic tools used in this
paper will be collected in Section 2. In Section 3, we will do some crucial energy
estimates. In Section 4, the estimates of the negative Sobolev norms of the solution
are obtained. We will prove Theorem 1.1 in Section 5.

2. Preliminaries

Before we present the energy estimates method, we should recall the following
useful lemmas which we will use extensively.

Lemma 2.1. If 0≤m,α≤ ` and 2≤p<∞, then we have

‖∇αf‖Lp .‖∇mf‖1−θ
L2 ‖∇`f‖θL2 , (2.1)

where 0≤θ≤1 and α satisfy

1

p
−

α

3
=

(

1

2
−

m

3

)

(1−θ)+

(

1

2
−

`

3

)

θ. (2.2)

Proof. This can be found in [12, pp. 125, THEOREM] for the case when α is
an integer. We only need to prove the fraction case.

Firstly, the ∇αf(Λαf) is defined by the inverse Fourier transformation:

∇sf(x)=

∫

R3

|ξ|sf̂(ξ)e2πix·ξdξ, (2.3)

where f̂ is the Fourier transform of f and the constant is set to be 1. Roughly
speaking, ∇αf denotes the α order derivative of f . This inequality depends on the
following proposition of the homogeneous Sobolev space which can be found in [9, pp.
29],

Proposition 2.2. If s is in [0, 32 ), then the space Ḣs(R3) is continuously embedding

in L
2d

d−2s (R3). The norm of Ḣs(R3) is defined by

‖u‖2
Ḣs(R3)

=

∫

R3

|ξ|2s|û(ξ)|2dξ<∞.

By the definition of ∇αf , it is easy to check that ∇α(∇γf)=∇α+γf , then with the
help of Proposition 2.2, we have

‖∇αf‖Lp ≤C‖∇αf‖Ḣγ(R3),with γ=3(
1

2
−

1

p
). (2.4)

Using the Parseval theorem and Holder’s inequality, together with ‖∇sg‖L2 =
‖|ξ|sĝ‖L2 and choosing appropriate m,` such that

α+γ=m(1−θ)+`θ, where α+β∈ [m,`] or [`,m],θ∈ [0,1],

we finally have

‖∇αf‖2
Ḣγ(R3)

=

∫

R3

|ξ|2γ
(

∇̂αf(ξ)
)2

dξ
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≤

∫

R3

|ξ|2(α+γ)f̂2(ξ)dξ

≤

∫

R3

(

|ξ|mf̂(ξ)
)2(1−θ)(

|ξ|lf̂(ξ)
)2θ

dξ

≤C‖|ξ|mf‖
2(1−θ)
L2 ‖|ξ|`f‖2θL2

≤C‖∇mf‖
2(1−θ)
L2 ‖∇`f‖2θL2 . (2.5)

This means

‖∇αf‖Lp ≤C‖∇mf‖1−θ
L2 ‖∇`f‖θL2 , (2.6)

where α, θ, m, and ` satisfy

α+3
(1

2
−

1

p

)

=m(1−θ)+`θ. (2.7)

This inequality is correct for the case p=∞, and one may check the [14] for detailed
derivation.

Next is the Gagliardo-Nirenberg interpolation inequality.

Lemma 2.3. For m = |α|, and j=0,1, · · · ,m−1, 1≤p, 1≤ q,

||D ju||Lr(R3)≤C{||Dmu||Lp(R3)}
a{||u||Lq(R3)}

1−a,

here

j

n
−

1

r
=a
(m

n
−

1

p

)

+(1−a)
(

0−
1

q

)

,

and

{

a∈ [ j
m ,1], with a 6=1 if 1<p<∞ and m−j− n

p ∈{0}
⋃

N ;

If j=0, pm<n, q=∞, then u→0 (|x|→∞), or ||u||Lw(R3)<∞, w>0.

(2.8)

Then in order to establish the Negative Sobolev estimate, we should review the
following necessary lemmas related to the negative Sobolev norm.

The operator Λs(∇s) in Rn for s∈R is defined by

Λsg(x)=

∫

Rn

|ξ|sĝ(ξ)e2πix·ξdξ, (2.9)

where ĝ is the Fourier transform of g and the constant has been set to 1. When the s
is negative, we rewrite s as −α with α>0. Λ−α is the usual Riesz potential operator.
There exists another definition for the Riesz potential operator. We will show these
definitions are equal.

Lemma 2.4. The Riesz potential operator Iαf in Rn can be defined as

(Iαf)(x)=
1

Cn,α

∫

Rn

f(y)

|x−y|n−a
dy with Cn,α=

Π
n
2 2αΓ(α2 )

Γ(n−α
2 )

, (2.10)
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or if we set the constant to be 1,

Λ−αf(x)=

∫

Rn

|ξ|−αf̂(ξ)e2πix·ξdξ, (2.11)

then (2.10) is equivalent to (2.11).

Proof. From (2.10), if we set Kα(x)=
1

Cn,α|x|n−α , we can rewrite Iαf(x) as

(Iαf)(x)=K ∗f.

Taking Fourier transform to (Iαf)(x), we have

ˆ(Iαf)= K̂αf̂ . (2.12)

To compute K̂α, we recall the following theorem in [9, pp. 23],

Proposition 2.5. If σ∈ (0,d), then F(|x|−σ)(ξ)= cd,δ|ξ|
σ−d for some constant cd,σ

depending only on d and s, where d denotes the dimension of space.

Set σ=n−α, then we obtain

ˆ(Iαf)=
1

(2π)α
|ξ|−αf̂(ξ). (2.13)

Taking the Fourier inverse transform and setting the constant to be 1, we have

Iαf =

∫

Rn

|ξ|−αf̂(ξ)e2πix·ξdξ. (2.14)

We can define the homogeneous Sobolev space Ḣs of g with the following norm:

‖g‖Ḣs :=‖Λsg‖L2 =‖|ξ|sĝ‖L2 . (2.15)

The index s can be any non-positive real number. However, for convenience, we will
change the index to be “−s” with s≥0, in this case. We will employ the following
special Sobolev interpolation that related the negative index s:

Lemma 2.6. Let s≥0 and l≥0, then we have

‖∇lg‖L2 ≤‖∇l+1g‖1−θ
L2 ‖g‖θ

Ḣ−s , where θ=
1

l+s+1
. (2.16)

Proof. By the Parseval theorem, the definition of (2.15) and Hölder’s inequality,
we have

‖∇lg‖L2 =‖|ξ|lĝ‖L2 ≤‖|ξ|l+1ĝ‖1−θ
L2 ‖|ξ|−sĝ‖θL2 =‖∇l+1g‖1−θ

L2 ‖g‖θ
Ḣ−s .

Lemma 2.7. Assume that ‖(ρ,u)‖H3 ≤ c0≤1, and Let f(ρ) be a smooth function of

ρ. Then for any integer k≥1 we have

‖∇lf(ρ) ·∇k−lu‖L2 . c0‖∇
k(ρ,u)‖L2 . (2.17)
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Proof. For 1≤k, 1≤ l≤k, using the Leibniz formula for
∑n

i=1γi= l we have

∇lf(n) ·∇k−lu= a sum of products fγ1,...,γn(ρ)∇γ1ρ· · ·∇γnρ∇k−lu, with γi≥1.
(2.18)

By the Sobolev interpolation inequality, we have ‖ρ‖L∞ ≤‖ρ‖H3 ≤ c0≤1. So, we have

|fγ1,...,γn(ρ)|≤C, C depends only on function f .

Using the Hölder inequality and the Gagliardo-Nirenberg interpolation inequality, we
have

‖∇lf(n)∇k−lu‖L2 .‖∇γ1ρ‖ 2k
γ1

‖∇γ2ρ‖ 2k
γ2

·‖∇γnρ‖ 2k
γn

‖∇k−lu‖ 2k
k−l

.‖∇ρ‖L3
1−

γ1
k ‖∇kρ‖L2

γ1
k · · ·‖∇ρ‖L3

1− γn
k

×‖∇kρ‖L2

γn
k ‖∇u‖L3

1− k−l
k ‖∇ku‖L2

k−l
k

.‖∇(ρ,u)‖L3
n−1

‖∇k(ρ,u)‖L2

. c0‖∇
k(ρ,u)‖L2 . (2.19)

3. L2 energy estimates

Denote n=ρ−1, u=u, q=θ−1, f(n)= n
n+1 , g(n,q)=

pn(n+1,q+1)
n+1 −1, h(n,q)=

pq(n+1,q+1)
n+1 −1, and B(n,q)= p(n+1,q+1)

n+1 −1. Without loss of generality, we assume
Pp(1,1)=Pθ(1,1)=Cv =k=λ=1. We can write the equation (1.1) as











∂tn+divu=g1,

∂tu−µ∆u−(µ+λ)∇divu+∇n+∇q−∇∆n=g2,

∂tq−∆q+∇·u=g3,

(3.1)

where










g1=−div(nu),

g2=−u∇u−f(n)(µ∆u+(µ+λ)∇divu)−g(n,q)∇n−h(n,q)∇q,

g3=−u∇q+f(n)∆q−B(n,q)∇u+ 1
n+1 [2µD(u) :D(u)+ν(∇u)2]+ divKu

n+1 .

(3.2)

In this section, we will derive the a priori energy estimates for the equivalent
system (1.1). Hence we assume a priori that for sufficiently small ε>0,

√

E3
0 (t)=‖n(t)‖H4 +‖u(t)‖H3 +‖q(t)‖H3 ≤ ε. (3.3)

Hence, for any k≥1, we immediately have

|f(n)|, |g(n,q)|, |h(n,q)|, |B(n,q)|≤C|n||q|,

|f (k)(n)|, |g(k)(n,q)|, |h(k)(n,q)|, |B(k)(n,q)|≤C.
(3.4)

Lemma 3.1. Under the assumption (3.3), for k=0,1, · · · ,N , we have

1

2

d

dt

∫

R3

|∇kn|2dx+

∫

R3

∇kdivu ·∇kndx.
√

E3
0

(

‖∇k+1n‖2L2 +‖∇k+1u‖2L2

)

. (3.5)
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Proof. Applying ∇k to (3.1)1, multiplying by ∇kn and integrating by part over
R3,

1

2

d

dt

∫

R3

|∇kn|2dx+

∫

R3

∇kdivu ·∇kndx.

∫

R3

∇kdiv(nu) ·∇kndx

.||∇kn||L6 ||∇k+1(nu)||
L

6
5
. ||∇k+1n||L2 ||∇k+1(nu)||

L
6
5
.

To estimate the ||∇k+1(nu)||
L

6
5
term,

||∇k+1(nu)||
L

6
5
=Cl

k+1
∑

l=0

||∇ln∇k+1−lu||
L

6
5

=Cl

[ k+1
2 ]
∑

l=0

||∇ln∇k+1−lu||
L

6
5
+Cl

k+1
∑

l=[ k+1
2 ]+1

||∇lu∇k+1−lu||
L

6
5

=W1+W2. (3.6)

For l≤ [k+1
2 ], together with the Sobolev interpolation of Lemma 2.1, we have

||W1||
L

6
5
≤C

[ k+1
2 ]
∑

l=0

||∇ln∇k+1−lu||
L

6
5
≤||∇ln||L3 ||∇k+1−lu||L2

. ||∇αn||θL2 ||∇k+1n||1−θ
L2 ||u||1−θ

L2 ||∇k+1u||θL2

.

√

E3
0‖∇

k+1u||θL2‖∇k+1n||1−θ
L2 . (3.7)

Here α, θ satisfy
{

l
3 −

1
3 =(α3 −

1
2 )θ+(k+1

3 − 1
2 )(1−θ),

k+1−l
3 − 1

2 =( 03 −
1
2 )(1−θ)+(k+1

3 − 1
2 )θ.

(3.8)

From (3.8),

θ=
k+1− l

k+1
, α=

k+1

2(k+1− l)
.

So, 0<θ<1, α∈ [ 12 ,1).

When l≥ [k+1
2 ]+1, in the same fashion, the following estimates are obtained:

||W2||
L

6
5
≤
√

E3
0 ||∇

k+1u||θL2 ||∇k+1n||1−θ
L2 . (3.9)

So, from (3.7) and (3.9), we obtain

||∇k+1(nu)||
L

6
5
.

√

E3
0

(

‖∇k+1n‖L2 +‖∇k+1u‖L2

)

. (3.10)

From (3.6) and (3.10), we conclude the proof of Lemma 3.1.

Lemma 3.2. Under the assumption (3.3), for k=0,1, · · · ,N , there exist a positive

constant C satisfying

1

2

d

dt

∫

R3

|∇ku|2+κ|∇k∇n|2dx+C

∫

R3

|∇∇ku|2dx
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+

∫

R3

∇ku ·∇k∇ndx+

∫

R3

∇ku ·∇k∇qdx

.

√

E3
0

(

‖∇k+1n‖2L2 +‖∇k+2n‖2L2 +‖∇k+1q‖2L2 +‖∇k+1u‖2L2

)

. (3.11)

Proof. Applying ∇k to (3.1)2, multiplying ∇ku and integrating by parts over R3,

1

2

d

dt

∫

R3

(∇ku)2dx+µ

∫

R3

(∇∇ku)2dx+(µ+λ)

∫

R3

(∇kdivu)2

+

∫

R3

∇ku ·∇k∇ndxdx+

∫

R3

∇ku ·∇k∇qdxdx−

∫

R3

∇∆∇kn ·∇kudx

=−

∫

R3

∇k(u ·∇u) ·∇kudx+

∫

R3

∇k[f(n)(µ∆u+(µ+λ)∇divu)] ·∇kudx

−

∫

R3

∇k(g(n,q)∇n) ·∇kudx+

∫

R3

∇k(h(n,q)∇q) ·∇kudx

=I1+I2+I3+I4. (3.12)

We treat the −
∫

R3∇∆∇kn∇kudx term first.

−

∫

R3

∇∆∇kn ·∇kudx=

∫

R3

∆∇kn ·∇kdivudx

=

∫

R3

∆∇kn ·∇k (−nt−div(nu))dx

=
1

2

d

dt

∫

R3

(∇k∇n)2dx−

∫

R3

∆∇kn ·∇kdiv(nu)dx

=
1

2

d

dt

∫

R3

(∇k∇n)2dx−I5. (3.13)

Next, we treat Ii, i=1, · · · ,4. We now estimate the term I1. Employing the Leibniz
formula and the Hölder and Sobolev inequalities, we obtain

I1=−

∫

R3

∇k (u ·∇u) ·∇kudx=−
∑

0≤`≤k

C`
k

∫

R3

(

∇`u ·∇∇k−`u
)

·∇kudx

.
∑

0≤`≤k

∥

∥∇`u ·∇k−`+1u
∥

∥

L
6
5
‖∇ku‖L6

.
∑

0≤`≤k

∥

∥∇`u ·∇k−`+1u
∥

∥

L
6
5
‖∇k+1u‖L2 . (3.14)

If `≤
[

k
2

]

, by Hölder’s inequality and Lemma 2.1 we have
∥

∥∇`u ·∇k−`+1u
∥

∥

L
6
5
.‖∇`u‖L3‖∇k−`+1u‖L2

.‖∇αu‖
1− `

k+1

L2 ‖∇k+1u‖
`

k+1

L2 ‖u‖
`

k+1

L2 ‖∇k+1u‖
1− `

k+1

L2

.

√

E3
0

∥

∥∇k+1u
∥

∥

L2 , (3.15)

where α is defined by

`

3
−

1

3
=

(

α

3
−

1

2

)

×

(

1−
`

k+1

)

+

(

k+1

3
−

1

2

)

×
`

k+1

=⇒α=
k+1

2(k+1−`)
∈

[

1

2
,1

)

because `≤
k

2
.

(3.16)
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If `≥
[

k
2

]

+1, by Hölder’s inequality and Lemma 2.1 again we have

∥

∥∇`u ·∇k−`+1u
∥

∥

L
6
5
.
∥

∥∇`u
∥

∥

L2

∥

∥∇k−`+1u
∥

∥

L3

.‖u‖
1− `

k+1

L2

∥

∥∇k+1u
∥

∥

`
k+1

L2 ‖∇αu‖
`

k+1

L2

∥

∥∇k+1u
∥

∥

1− `
k+1

L2

.

√

E3
0

∥

∥∇k+1u
∥

∥

L2 , (3.17)

where α is defined by

k−`+1

3
−

1

3
=

(

α

3
−

1

2

)

×
`

k+1
+

(

k+1

3
−

1

2

)

×

(

1−
`

k+1

)

=⇒α=
k+1

2`
∈

(

1

2
,1

]

because `≥
k+1

2
.

(3.18)

In light of (3.15) and (3.17), we deduce from (3.14) that

I1.
√

E3
0

∥

∥∇k+1u
∥

∥

2

L2 . (3.19)

Next, we estimate the term I2. We do the approximation to simplify the presen-
tations as

I2 :=

∫

R3

−∇k[f(n)(µ4u+(µ+λ)∇divu)]∇kudx≈−

∫

R3

∇k(f(n)∇2u) ·∇kudx.

(3.20)
Because k≥1, we can integrate by parts to have

I2≈

∫

R3

∇k−1(f(n)∇2u) ·∇k+1udx

.
∑

0≤l≤k−1

∫

R3

∇lf(n) ·∇k−l+1u ·∇k+1udx

.
∑

0≤l≤k−1

‖∇lf(n)∇k−l+1u‖L2‖∇k+1u‖L2 . (3.21)

If l=0, because f(n)= n
n+1 ,

‖f(n)∇k+1u‖L2 .

√

E3
0‖∇

k+1u‖L2 . (3.22)

If 1≤ l, using Lemma 2.7 we have

∑

1≤l≤k−1

‖∇lf(n)∇k−l+1u‖L2‖∇k+1u‖L2 .

√

E3
0‖∇

k+1(n,u)‖L2‖∇k+1u‖L2

.

√

E3
0 (‖∇

k+1n‖2L2 +‖∇k+1u‖2L2). (3.23)

From (3.21), (3.22), and (3.23), we have

|I2|.
√

E3
0 (‖∇

k+1n‖2L2 +‖∇k+1u‖2L2). (3.24)

Now, we estimate the term I3. Because k≥1, we can integrate by parts to have

I3=−

∫

R3

∇k(g(n,q)∇n)∇kudx≤‖∇k(g(n,q)∇n)‖
L

6
5
‖∇ku‖L6



1446 DECAY RATES OF NON-ISENTROPIC NSK

≤
k
∑

i=l

‖∇lg(n,q)∇k+1−ln‖
L

6
5
‖∇k+1u‖L2 +‖g(n,q)∇k+1n‖

L
6
5
‖∇k+1u‖L2

:=

(

k
∑

i=1

I l31+I32

)

‖∇k+1u‖L2 . (3.25)

For I31, from the Leibniz formula we have

∇lg(n,q)=gr1,···,rm;β1,···,βk(n,q)∇r1n· · ·∇rmn∇β1q · · ·∇βhq, (3.26)

where

r1+ · · ·+rm+β1+ · · ·+βh= l; ri≥1, βj ≥1, 1≤ i≤m, 1≤ j≤h.

Set α=min{r1, · · · ,rm,β1, · · · ,βh}; without loss of generality, we assume r1=α. It is
obvious that r1≤ [k+1

2 ], so

|I l31|.‖∇r1n‖L3‖∇r2n‖ 2(k+1−r1)
r2

· · ·‖∇rmn‖ 2(k+1−r1)
rm

×‖∇β1q‖ 2(k+1−r1)
β1

· · ·‖∇βhq‖ 2(k+1−r1)
βh

‖∇k+1−r1n‖
L

2(k+1−r1)
k+1−l

.‖∇r1n‖L3‖∇n‖L3
1−

r2
k+1−r1 ‖∇k+1−r1n‖L2

r2
k+1−r1

×···‖∇n‖L3
1− rm

k+1−r1 ‖∇k+1−r1n‖L2

rm
k+1−r1

×‖∇q‖L3
1−

β1
k+1−r1 ‖∇k+1−r1q‖L2

β1
k+1−r1 ‖∇q‖L3

1−
βh

k+1−r1 ‖∇k+1−r1q‖L2

βh
k+1−r1

.‖∇(n,q)‖L3
k−r1‖∇r1(n,q)‖L3‖∇k+1−r1(n,q)‖L2

.||∇α1(n,q)||θL2 ||∇k+1(n,q)||1−θ
L2 ||(n,q)||1−θ

L2 ||∇k+1(n,q)||θL2

.

√

E3
0‖∇

k+1(n,q)||θL2‖∇k+1(n,q)||1−θ
L2 . (3.27)

Here we use the Hölder inequality and Lemma 2.3, and α1, θ satisfy
{

r1
3 − 1

3 =(α1

3 − 1
2 )θ+(k+1

3 − 1
2 )(1−θ),

k+1−r1
3 − 1

2 =( 03 −
1
2 )(1−θ)+(k+1

3 − 1
2 )θ.

(3.28)

From (3.8),

θ=
k+1−r1
k+1

, α=
k+1

2(k+1−r1)
.

So, 0<θ<1, α∈ [ 12 ,1).
For I32, noticing that g(n,q). |n| we have

|I32|.‖n‖L3‖∇k+1‖L2 . (3.29)

From (3.25), (3.27), and (3.29), we have

|I3|.
√

E3
0‖∇

k+1(n,q)‖2L2 . (3.30)

For I4, notice that I4 is similar to I3, the only difference being that the smooth
function g(n,q) is replaced by h(n,q) with the same property. We have the following
estimates:

I4.
√

E3
0‖∇

k+1(n,q)‖2L2 . (3.31)
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Finally, it remains to estimate the last term I5.

I5.
∣

∣

∣

∫

R3

∆∇kn∇kdiv(nu)dx
∣

∣

∣
.‖∇k+2n‖L2‖∇k+1(nu)‖L2

.

k
∑

`=1

‖∇k+2n‖L2‖∇`n‖L4‖∇k+1−`u‖L4

+‖∇k+2n‖L2

(

‖u‖L∞‖∇k+1n‖L2 +‖n‖L∞‖∇k+1u‖L2

)

.M1+M2. (3.32)

For M1,

M1=

k
∑

`=1

‖∇k+2n‖L2‖∇`n‖L4‖∇k+1−`u‖L4

.

k
∑

`=1

‖∇k+2n‖L2‖n‖θL∞‖∇k+1n‖1−θ
L2 ‖u‖θL∞‖∇k+1u‖1−θ

L2

. ε‖∇k+1(∇n,n,u)‖2L2 . (3.33)

where α is defined by

`

3
−

1

4
=0×θ+(1−θ)

(

k+1

3
−

1

2

)

,

θ=
4`−3

4(k+1)−6
∈ (0,1).

For M2,

M2. ε‖∇k+1(∇n,n,u)‖2L2 . (3.34)

From (3.33) and (3.34), we obtain

I5. ε‖∇k+1(∇n,n,u)‖2L2 . (3.35)

Finally, from (3.12), (3.13), (3.19), (3.24), (3.30), (3.31), and (3.35), choosing ε
small enough, we conclude the Lemma 3.2.

Lemma 3.3. Under the assumption (3.3), for k=0,1, · · · ,N , there exist a positive

constant C satisfying

1

2

d

dt

∫

R3

|∇kq|2dx+C

∫

R3

|∇∇kq|2dx++

∫

R3

∇kdivu ·∇kqdx

.

√

E3
0

(

‖∇k+1n‖2L2 +‖∇k+2n‖2L2 +‖∇k+1q‖2L2 +‖∇k+1u‖2L2

)

. (3.36)

Proof. Applying ∇k to (3.1)3, multiplying ∇kq and integrating by parts over R3

1

2

d

dt

∫

R3

(∇kq)2dx+µ

∫

R3

(∇∇kq)2dx+

∫

R3

∇kdivu ·∇kqdxdx

=−

∫

R3

∇k(∇q ·u)∇kqdx+

∫

R3

∇k(f(n)∆q)∇kqdx−

∫

R3

∇k(B(n,q)divu) ·∇kqdx
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+

∫

R3

∇k[
1

n+1
[2µD(u) :D(u)+ν(∇u)2]∇kqdx+

∫

R3

∇k[
K

n+1
:∇u]∇kqdx

+

∫

R3

∇k[∇∆nu]∇kqdx

=J1+J2+J3+J4+J5+J6. (3.37)

Applying the method used to estimate I1, I2, and I3 in Lemma 3.2, we have the
following estimates:

|J1|≤
√

E3
0

(

‖∇k+1q‖2L2 +‖∇k+1u‖2L2

)

. (3.38)

|J2|≤
√

E3
0‖∇

k+1q‖2L2 . (3.39)

|J3|≤
√

E3
0

(

‖∇k+1q‖2L2 +‖∇k+1u‖2L2 +‖∇k+1q‖2L2

)

. (3.40)

For J4, integrating by parts over R3,

|J4|≤
∣

∣

∣

∫

R3

∇k
[ 1

n+1
[2µD(u) :D(u)+ν(∇u)2]

]

∇kqdx
∣

∣

∣
.
∣

∣

∣

∫

R3

∇k
[ 1

n+1
(∇u)2

]

∇kqdx
∣

∣

∣

.
∣

∣

∣

∫

R3

∇k[t(n,∇n,u)(∇u)]∇kqdx
∣

∣

∣
+
∣

∣

∣

∫

R3

∇k[m(n,u)(∇2u)]∇kqdx
∣

∣

∣

+
∣

∣

∣

∫

R3

∇k[m(n,u)(∇u)]∇k+1qdx
∣

∣

∣

=J41+J42+J43. (3.41)

Similar to I2, we have

|J43|≤
√

E3
0

(

‖∇k+1q‖2L2 +‖∇k+1n‖2L2 +‖∇k+1u‖2L2

)

. (3.42)

Now, we turn to estimating J41.

|J41|.
∣

∣

∣

∫

R3

∇k−1[t(n,∇n,u)(∇u)]∇k+1qdx
∣

∣

∣
.

k−1
∑

l=0

∣

∣

∣

∫

R3

∇lt(n,∇n,u)∇k−lu∇k+1qdx
∣

∣

∣

.
∣

∣

∣

∫

R3

t(n,∇n,u)∇ku∇k+1qdx
∣

∣

∣
+

k−1
∑

l=1

∣

∣

∣

∫

R3

∇lt(n,∇n,u)∇k−lu∇k+1qdx
∣

∣

∣

:=J411+
k−1
∑

l=1

J l
412. (3.43)

For J411, we have

|J411|.
√

E3
0‖∇n‖L3‖∇ku‖L6‖∇k+1q‖L2 .

√

E3
0‖∇

k+1(u,q)‖2L2 . (3.44)

For J l
412, using the Leibniz formula and noticing that d1+ · · ·+dh+c1+ · · ·+cm= l+1,

we have

|J l
412|.‖∇d1n· · ·∇dhn∇c1u · · ·∇cmu∇k−l‖L2‖∇k+1q‖L2 . (3.45)



X. ZHANG AND Z. TAN 1449

Using a method similar to that which proved Lemma 2.7, we have

|J l
412|.

√

E3
0‖∇

k+1(u,q)‖2L2 . (3.46)

Finally, from (3.44) and (3.46), we have

|J41|.
√

E3
0‖∇

k+1(u,q)‖2L2 . (3.47)

Similar to J41, we have

|J42|.
√

E3
0‖∇

k+1(u,q)‖2L2 . (3.48)

From (3.48), and (3.42), (3.47) together with (3.41), we have

|J4|≤
√

E3
0

(

‖∇k+1n‖2L2 +‖∇k+2n‖2L2 +‖∇k+1q‖2L2 +‖∇k+1u‖2L2

)

. (3.49)

As for J5, for k≥1, integrating by parts, we have

|I5|≤

∫

R3

∇k(∆nI :∇u)∇kqdx+

∫

R3

∇k(w(n,∇n)∇u)∇kqdx

.‖∇k(∆n∇u)‖
L

6
5
‖∇k+1q‖L2 +

∫

R3

∇k
[ 1

n+1
|∇n|2∇u

]

∇kqdx

.‖∇k(∇2n∇u)‖
L

6
5
‖∇k+1q‖L2 +

∫

R3

∇k[w(n,∇n)∇u]∇kqdx

:=J51+J52. (3.50)

Using the method which bounded W1 in Lemma 3.1, we can estimate

J51.
√

E3
0 (‖∇

k+2n‖2L2 +‖∇k+1u‖2L2 +‖∇k+1q‖2L2), (3.51)

J52.
√

E3
0 (‖∇

k∇n‖2L2 +‖∇k+1u‖2L2 +‖∇k+1q‖2L2). (3.52)

From (3.50), (3.51), and (3.52), we have

J5.
√

E3
0

(

‖∇k+1n‖2L2 +‖∇k+2n‖2L2 +‖∇k+1q‖2L2 +‖∇k+1u‖2L2

)

. (3.53)

At last, we turn to estimate J6. After integrating by parts, we have

J6≤
∣

∣

∣

∫

R3

∇k(∆ndivu)∇kqdx
∣

∣

∣
+
∣

∣

∣

∫

R3

∇k(∆nu)∇k+1qdx
∣

∣

∣

≤
∣

∣

∣

∫

R3

∇k(∆ndivu)∇kqdx
∣

∣

∣
+
∣

∣

∣

∫

R3

∇k+1(∇nu)∇k+1qdx
∣

∣

∣

:=J61+J62. (3.54)

J61 is the same as J51, and using Hölder’s inequality and the method in (3.33), we
have

J62≤‖∇k+1(∇nu)‖L2‖∇k+1q‖L2

≤
√

E3
0

(

‖∇k+1n‖2L2 +‖∇k+2n‖2L2 +‖∇k+1(u,q)‖2L2

)

. (3.55)
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Combining (3.51) and (3.55), we have

J6.
√

E3
0

(

‖∇k+1n‖2L2 +‖∇k+2n‖2L2 +‖∇k+1q‖2L2 +‖∇k+1u‖2L2

)

. (3.56)

Finally, we conclude the Lemma 3.3 from (3.38), (3.39), (3.40), (3.49), (3.53), and
(3.56).

The following lemma provides the dissipation estimate for n.

Lemma 3.4. Under the assumption (3.3), for k=0,1, · · · ,N , there exist positive

constants C1 and C2 satisfying

d

dt

∫

R3

∇ku ·∇∇kndx+C1

(

‖∇k+1n‖2L2 +‖∇k+2n‖2L2

)

≤C2‖∇
k+1u‖2L2 . (3.57)

Proof. Applying ∇k to (3.1)2, multiplying ∇k∇n, integrating by parts over R3

and using Hölder’s inequality,

∫

R3

|∇∇kn|2dx−

∫

R3

∇k∇n ·∇∆∇kndx=

∫

R3

|∇∇kn|2dx+

∫

R3

∇k+2n ·∇k+2ndx

≤−

∫

R3

∇k∂tu ·∇∇kndx+(2µ+ |λ|)‖∇k+1u‖L2‖∇k+2n‖L2

+

∫

R3

∇k (g(n,q)∇n+h(n,q)∇q) ·∇k+1ndx

+

∫

R3

∇k (u ·∇u+f(n)(µ∆u+(µ+λ)∇divuu)) ·∇k+1ndx. (3.58)

The delicate first term in the right hand side of (3.58) involves the time derivative,
and the key idea is to integrate by parts in the t-variable and use the continuity
equation. Thus by (3.1)1 and integrating by parts for both the t- and x-variables, we
may compute

−

∫

R3

∇kut ·∇∇kndx

=−
d

dt

∫

R3

∇ku ·∇∇kndx−

∫

R3

∇kdivu ·∇kntdx

=−
d

dt

∫

R3

∇ku ·∇∇kndx+‖∇kdivu‖2L2 +

∫

R3

∇kdivu ·∇kdivu(nu)dx. (3.59)

By Hölder’s inequality, we have

∫

R3

∇kdivu ·∇kdiv(nu)dx.‖∇k+1(nu)‖L2‖∇k+1u‖L2 . (3.60)

By using the same method as in (3.35), we have

‖∇`n∇k+1−`u‖L2 .‖∇`n‖L∞‖∇k+1−`u‖L2

.‖∇αn‖
1− `

k+1

L2 ‖∇k+1n‖
`

k+1

L2 ‖u‖
`

k+1

L2 ‖∇k+1u‖
1− `

k+1

L2

.

√

E3
0

(

‖∇k+1n‖L2 +‖∇k+1u‖L2

)

, (3.61)
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where α is defined by

`

3
=

(

α

3
−

1

2

)

×

(

1−
`

k+1

)

+

(

k+1

3
−

1

2

)

×
`

k+1
,

=⇒α=
3(k+1)

2(k+1−`)
≤3 because `≤

k+2

2
.

(3.62)

While for `>
[

k+1
2

]

+1 (then k+1−`≤
[

k+1
2

]

), we can then interchange the roles of
n and u to deduce that (3.61) holds also for this case. Thus, in view of (3.59)–(3.61),
we obtain

−

∫

R3

∇kut ·∇∇kndx≤−
d

dt

∫

R3

∇ku ·∇∇kndx+C‖∇k+1u‖2L2 +C
√

E3
0‖∇

k+1n‖2L2 .

(3.63)

Applying the same method used in Lemma 2.7 and Lemma 3.1, we have
∫

R3

∇k (u ·∇u+f(n)(µ∆u+(µ+λ)∇divu)+g(n,q)∇n++h(n,q)∇q) ·∇k+1ndx

.

√

E3
0

(

‖∇k+1n‖L2 +‖∇k+1u‖L2 +‖∇k+1q‖L2 +‖∇k+2n‖L2

)

. (3.64)

Consequently, by (3.63), together with Cauchy’s inequality, choosing
√

E3
0 <ε small

enough, we then complete the proof of Lemma 3.4.

4. Negative Sobolev estimates

In this section, our goal is to give some estimates of (Λ−sn,Λ−su,Λ−sq,Λ−s∇u).
To control the nonlinear parts in (3.1), we need to use the the following Lp type
inequality for the Riesz potential. It can be found in [6, pp. 119]. In the sequel, we
have to set s∈ (0, 32 ).

If Λ−sf defined by (2.3) is the Riesz potential, then the Hardy-Littlewood-Sobolev
theorem implies

||Λ−sf ||Lq ≤C||f ||Lp , where s∈ (0,3), 1<p<q<∞,
1

q
+

s

3
=

1

p
. (4.1)

We will establish the following lemma.

Lemma 4.1. Under the assumption (3.3), for s∈ (0,1/2] we have

d

dt

∫

R3

|Λ−sn|2+ |Λ−sq|2+ |Λ−su|2+ |Λ−s∇n|2dx+C(‖∇Λ−su‖2L2 +C‖∇Λ−sq‖2L2)

.
(

‖∇n‖2H2 +‖(∇u,∇q)‖2H1

)(

‖Λ−sn‖L2 +‖Λ−sq‖L2 +‖Λ−su‖L2 +‖Λ−s∇n‖L2

)

,

(4.2)

and for s∈ (1/2,3/2) we have

d

dt

∫

R3

|Λ−sn|2+ |Λ−sq|2+ |Λ−su|2+ |Λ−s∇n|2dx+C(‖∇Λ−su‖2L2 +C‖∇Λ−sq‖2L2)

.‖(n,u,q)‖
s−1/2
L2 (‖∇n‖H2 +‖∇u‖H1 +‖∇q‖H1)

5/2−s

×
(

‖Λ−sn‖L2 +‖Λ−s(u,q)‖L2 +‖Λ−s∇n‖L2

)

. (4.3)
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Proof. Applying Λ−s to (3.1)1, (3.1)2, and (3.1)3 and multiplying the result-
ing identities by Λ−sn, Λ−su, and Λ−sq respectively, summing up them, and then
integrating over R3 by parts,

1

2

d

dt

∫

R3

|Λ−s(n,u,q)|2dx−

∫

R3

Λ−s∇∆n ·Λ−sudx

+

∫

R3

µ|∇Λ−su|2+(µ+λ)|divΛ−su|2dx

=

∫

R3

Λ−s (−ndivu−u∇n)Λ−sn−Λ−s(u∇u+f(n)(µ∆u+(µ+λ)∇divu)Λ−sudx

+

∫

R3

Λ−s(g(n)∇n)Λ−s+

∫

R3

Λ−s div(Ku)

n+1
Λ−sqdxudx

+

∫

R3

Λ−s

(

−u∇q+f(n)∆q−B(n,q)∇u+
1

n+1
[2µD(u) :D(u)+ν(∇u)2]

)

Λ−sqdx

:=T1+T2+T3+T4+T5+T7. (4.4)

Let us treat −
∫

R3Λ
−s∇∆n ·Λ−sudx first.

−

∫

R3

Λ−s∇∆n ·Λ−sudx=

∫

R3

Λ−s∆nΛ−sdivudx

=

∫

R3

−Λ−s∆nΛ−s∂tn−Λ−s∆nΛ−sdiv(nu)dx

=

∫

R3

−Λ−s∆nΛ−s∂t∆n−Λ−s∆n ·Λ−sdivnudx

=
1

2

d

dt

∫

R3

|Λ−s∇n|2dx+

∫

R3

Λ−s∇n ·Λ−s∇2(nu)dx.

:=
1

2

d

dt

∫

R3

|Λ−s∇n|2dx+T6. (4.5)

For T1,

T1=−

∫

R3

Λ−s(ndivu)Λ−sndx≤‖Λ−s(ndivu)‖L2‖Λ−sn‖L2 . (4.6)

Applying inequality (4.1) to deal with ‖Λ−s(ndivu)‖L2 , together with Hölder’s in-
equality,

‖Λ−s(ndivu)‖L2 ≤‖ndivu‖
L

1
1/2+s/3

≤‖n‖L3/s‖∇u‖L2

.‖∇n‖
1/2−s
L2 ‖∇2n‖

1/2+s
L2 ‖∇u‖L2‖Λ−sn‖L2

.
(

‖∇n‖2H1 +‖∇u‖2L2

)

‖Λ−sn‖L2 . (4.7)

From (4.6) and (4.7),

T1≤‖n‖L3/s‖∇u‖L2‖Λ−sn‖L2 . (4.8)

Similarly, we can bound the remaining terms by

T2=−

∫

R3

Λ−s(u ·∇n)Λ−sndx.‖u‖L3/s‖∇n‖L2‖Λ−sn‖L2 , (4.9)
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T3=−

∫

R3

Λ−s (u ·∇u) ·Λ−sudx.‖u‖L3/s‖∇u‖L2‖Λ−su‖L2 , (4.10)

T4=−

∫

R3

Λ−s (f(n,q)(µ∆u+(µ+λ)∇divu))Λ−sudx

.‖(n,q)‖L3/s‖∇2u‖L2‖Λ−su‖L2 , (4.11)

T5=−

∫

R3

Λ−s (g(n,q)∇n) ·Λ−sudx.‖(n,q)‖L3/s‖∇n‖L2‖Λ−su‖L2 , (4.12)

T6=

∫

R3

Λ−s∇n ·Λ−s∇2(nu)dx≤‖(n,∇n,u)‖L3/s‖(∇2u,∇u,∇2n)‖L2‖Λ−su‖L2 .

(4.13)

T7 contains many items, but the way of estimating each item in T7 is similar to some
Ti(i=1, · · · ,6).

|T7|≤‖(n,∇n,u,q)‖L3/s‖(∇2u,∇u,∇2n,∇q)‖L2‖Λ−sq‖L2 . (4.14)

So, from (4.8), (4.9), (4.10), (4.11), (4.12), (4.13), and (4.14), together with (4.4) and
(4.5),

1

2

d

dt

∫

R3

|Λ−sn|2+ |Λ−s∇n|2+ |Λ−su|2+ |Λ−sq|2dx

+

∫

R3

µ|∇Λ−su|2+(µ+λ)|divΛ−su|2+ |∇Λ−sq|2dx

.‖(n,u,∇n,q)‖L3/s‖∇(n,u,q,∇u,∇n)‖L2‖Λ−s(n,u,q,∇n)‖L2 . (4.15)

Next, we turn to estimating ‖(n,u,q,∇n)‖L3/s .

Case 1. If s∈ (0, 12 ], note that 3
s ≥6. To estimate ||(n,∇n,u)||

L
3
s
, a higher order

of (n,u) is needed:

||u||
L

3
s
≤C||∇u||

1
2−s

L2 ||∇2u||
1
2+

s
2

L2

≤C(||∇u||L2 + ||∇2u||L2). (4.16)

So, the estimate of ||(n,u,q∇n)||L2 is

||(n,u,q,∇n)||
L

3
s
. ||(∇n,∇u,∇q)||H1 . (4.17)

Combining (4.15) and (4.17), we conclude (4.2).

Case 2. If s∈ (1/2,3/2), note that 1/2+s/3<1 and 2<3/s<6. We will estimate
‖(n,u,∇n)‖L3/s by interpolating between L2 and L6,

||u||
L

3
s
≤||u||

s− 1
2

L2 ||u||
3
2−s

L6 , (4.18)

||∇n||
L

3
s
≤||∇n||

s− 1
2

L2 ||∇n||
3
2−s

L6 , (4.19)

||n||
L

3
s
≤||n||

s− 1
2

L2 ||n||
3
2−s

L6 , (4.20)

||q||
L

3
s
≤||q||

s− 1
2

L2 ||q||
3
2−s

L6 . (4.21)

So from (4.18), (4.19), (4.20), and (4.21),

‖(n,u,q,∇n)‖L3/s . ||(n,u,q,∇n)||
s− 1

2

L2 ||∇(n,u,q,∇n)||
3
2−s

L2 . (4.22)

Consequently, from (4.15) and (4.22), we deduce Lemma 4.1.
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5. The proof of the Theorem 1.1

In this section, we shall combine Lemma 3.1, Lemma 3.1, Lemma 3.3, Lemma
3.4, Lemma 4.1, and the Sobolev interpolation to prove Theorem 1.1.

Summing up the estimates (3.5) of Lemma 3.1, (3.11) of Lemma 3.2, and (3.36)
of Lemma 3.3 for each k=0,1, · · · ,N , because ε is small, we obtain

d

dt

(

‖∇kn‖2L2 +‖∇ku‖2L2 +‖∇k∇n‖2L2 +‖∇kq‖2L2

)

+C1‖∇
k+1u‖2L2 ≤C2ε‖∇

k+1n‖2H1 .

(5.1)

From (3.57) of Lemma 3.4,

d

dt

∫

R3

∇ku ·∇∇kndx+C3‖∇
k+1n‖2H1 ≤C4‖∇

ku‖2H1 . (5.2)

Multiplying (5.2) by δ/C4, adding with (5.1), choosing δ>0 small enough, then there
exists a constant C5>0 satisfying

d

dt

{

(

‖∇kn‖2L2 +‖∇ku‖2L2 +‖∇k∇n‖2L2 +‖∇kq‖2L2

)

+
δ

C4

∫

∇ku ·∇∇kndx

}

+C5

{

‖∇k+1n‖2H1 +‖∇k+1u‖2L2 +‖∇k+1q‖2L2

}

≤0.(5.3)

Denote F k(t)=‖(∇kn,∇ku,∇kq,∇∇kn)‖2L2 , because δ is small enough, so that F k(t)
is equivalent to the expression under the time derivative in (5.3). Then we may rewrite
(5.3) as follows:

d

dt
F k(t)+C5

{

‖∇k+1n‖2H1 +‖∇k+1u‖2L2 +‖∇k+1q‖2L2

}

≤0. (5.4)

Summing up (5.4) from k=0 to k=N , and then integrating directly in time, we
get

‖n(t)‖2HN+1 +‖u(t)‖2HN +‖q(t)‖2HN .E3
0 (t)≤E3

0 (0).‖n0‖
2
HN+1 +‖u0‖

2
HN +‖q0‖

2
HN .

(5.5)

This verifies (1.3).
Next, we turn to prove Theorem 1.1. Firstly, we need to verify that

‖Λ−s(n,u,q,∇n)‖L2 ≤C0 for all t≥0. By Lemma 4.1, we shall prove them for
s∈ [0,1/2] first.

Proof.
Case 1. s∈ [0,1/2]

Define F−s(t) :=‖Λ−sn(t)‖2L2 +‖Λ−su(t)‖2L2 +‖Λ−sq(t)‖2L2 +‖Λ−s∇n(t)‖2L2 . Then,
integrating (4.2) in time, by the bound (1.3) we obtain that, for s∈ (0,1/2],

F−s(t)≤F−s(0)+C

∫ t

0

(

‖∇n‖2H2 +‖∇q‖2H1 +‖∇u‖2H1

)
√

F−s(τ)dτ

≤C0

(

1+ sup
0≤τ≤t

√

F−s(τ)

)

. (5.6)

This implies (1.5) for s∈ [0,1/2], that is,

‖Λ−sn(t)‖2L2 +‖Λ−su(t)‖2L2 +‖Λ−sq(t)‖2L2 +‖Λ−s∇n(t)‖2L2 ≤C0 for s∈ [0,1/2].
(5.7)
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If `=1, . . . ,N , we may use Lemma 2.6 to have

‖∇`+1f‖L2 ≥C‖Λ−sf‖
− 1

`+s

L2 ‖∇`f‖
1+ 1

`+s

L2 . (5.8)

By this fact and (5.7), we find

‖∇`+1u‖2L2 +‖∇`+1q‖2L2 +‖∇`+1∇n‖2L2 ≥C0

(

‖∇`u‖2L2 +‖∇`∇n‖2L2

)1+ 1
`+s . (5.9)

This together with (1.3) implies in particular that for k=0, . . . ,N ,

‖∇k+2n‖2L2 +‖∇k+1n‖2L2 +‖∇k+1u‖2L2 +‖∇k+1q‖2L2

≥C0

(

‖∇kn‖2L2 +‖∇ku‖2L2 +‖∇k+1n‖2L2 +‖∇kq‖2L2

)1+ 1
k+s .

(5.10)

From (5.4) and (5.10), we obtain the following time differential inequality:

d

dt
F k(t)+C0(F

k(t))
1+ 1

k+s ≤0 for k=0, . . . ,N. (5.11)

Solving this inequality directly gives

F k(t)≤C0(1+ t)−(k+s) for k=0, . . . ,N. (5.12)

This implies that for s∈ [0,1/2], and k=0, . . . ,N ,

‖∇kn(t)‖2L2 +‖∇ku(t)‖2L2 +‖∇kq(t)‖2L2 +‖∇k∇n(t)‖2L2 ≤C0(1+ t)−(k+s). (5.13)

Case 2. s∈ ( 12 ,
3
2 ).

Notice there is no damping effect on n, so the method for the case s∈ [0,1/2] can
not be applied to this case. However, observing that we have n0,u0,∇n0∈ Ḣ−1/2

because Ḣ−s∩L2⊂ Ḣ−s′ for any s′∈ [0,s], we then deduce from what we have proved
for Theorem 1.1 with s=1/2 that the following decay result holds for k=0, . . . ,N :

‖∇kn(t)‖2L2 +‖∇kq(t)‖2L2 +‖∇ku(t)‖2L2 +‖∇k∇n(t)‖2L2 ≤C0(1+ t)−(k+1/2). (5.14)

Hence, by (5.14), we deduce from (4.3) that, for k∈ (1/2,3/2),

F−s(t)≤F−s(0)+C

∫ t

0

‖(n,u,q)‖
s−1/2
L2 (‖n‖H2 +‖∇u‖H1 +‖∇q‖H1)

5/2−s
√

F−s(τ)dτ

≤C0+C0

∫ t

0

(1+τ)−(7/4−s/2)dτ sup
0≤τ≤t

√

F−s(τ)

≤C0

(

1+ sup
0≤τ≤t

√

F−s(τ)

)

. (5.15)

This implies (1.5) for s∈ (1/2,3/2), that is,

‖Λ−sn(t)‖2L2 +‖Λ−su(t)‖2L2 +‖Λ−sq(t)‖2L2 +‖Λ−s∇n(t)‖2L2 ≤C0 for s∈ (1/2,3/2).
(5.16)

Now that we have proved (5.16), we may repeat the arguments leading to Theorem
1.1 for s∈ [0,1/2] to prove that they hold also for s∈ (1/2,3/2).
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