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BLOWUP CRITERION FOR 3-DIMENSIONAL COMPRESSIBLE

NAVIER-STOKES EQUATIONS INVOLVING VELOCITY

DIVERGENCE∗

LILI DU† AND YONGFU WANG‡

Abstract. In this paper, we provide a sufficient condition, in terms of only velocity divergence,
for global regularity of strong solutions to the three-dimensional Navier-Stokes equations with vacuum
in the whole space, as well as for the case of a bounded domain with Dirichlet boundary conditions.
More precisely, we show that the weak solutions of the Cauchy problem or the Dirichlet initial-
boundary-value problem of the 3D compressible Navier-Stokes equations are indeed regular provided
that the L2(0,T ;L∞)-norm of the divergence of the velocity is bounded. Additionally, initial vacuum
states are allowed and the viscosity coefficients are only restricted by the physical conditions.
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1. Introduction and main results

The motion of a viscous compressible isentropic fluid is governed by the Navier-
Stokes equations in three-dimensional space,















∂tρ+div(ρu)=0, in Ω×(0,T ),

∂t(ρu)+div(ρu⊗u)−µ∆u−(µ+λ)∇(divu)+∇P =0, in Ω×(0,T ),

(1.1)

together with the initial conditions,

(ρ(x,t),u(x,t))|t=0=(ρ0(x),u0(x)) in Ω. (1.2)

Here u, ρ, and P are the velocity, the density, and the scalar pressure of the fluid,
respectively, and Ω is either R

3 or a bounded domain in R
3. µ and λ are the shear

viscosity and bulk viscosity coefficients, respectively, which satisfy the physical re-
strictions

µ>0 and λ+
2

3
µ≥0.

The equation of state reads

p=p(ρ)=Aργ , (1.3)

for A>0 and γ >1.
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1428 BLOWUP CRITERION FOR VISCOUS BAROTROPIC FLOWS

In this paper, we will consider the Cauchy problem for the system (1.1) with
initial condition (1.2) and the far-fields behavior

u(x,t)→0, ρ(x,t)→ ρ̃≥0 in |x|→∞, (1.4)

in weak sense. Moreover, the initial-boundary problem (1.1)-(1.2) with

u(x,t)=0, on ∂Ω×(0,T ), (1.5)

will be also investigated.
It is well known that in absence of vacuum for the initial data, the smooth solution

exists globally in time provided that the initial data are close to an equilibrium (see
[15, 16, 26]). The question of global existence of the solutions to the compressible
Navier-Stokes equations with large data in three dimensions is a major and challenging
problem in applied analysis. The local existence and the uniqueness of the classical
solution without vacuum are shown in [27, 28] and for strong solution in [4, 5, 6],
where the initial density is allowed to vanish. The weak solutions are known to exist
globally in time for γ≥ 9

5 by Lions [25], γ > 3
2 by Feireisl et al. [10, 11] and γ >1 by

Jiang and Zhang [13, 14] for symmetric case. However, the uniqueness, regularity,
and continuous dependence on initial data for weak solutions are still open problems.

Since Huang, Li, and Xin firstly introduced some sufficient conditions (called the
Beale-Kato-Majda (BKM) type criterion in [19] and Serrin type in [20]) for the blowup
of the 3D compressible Navier-Stokes equations, many articles were dedicated to this
subjects. Most recently, there has been some progress along this lines (see for example
[8, 9, 17, 18, 22, 21, 23, 12, 30] and references therein) which states, roughly speaking,
that if T ∗<∞ is the maximal time for the existence of a strong (or classical) solution,
then

lim
T→T∗

‖∇u‖L1(0,T ;L∞)=∞ (Beale-Kato-Majda type) (1.6)

and

lim
T→T∗

(

‖divu‖L1(0,T ;L∞)+
∥

∥

∥
ρ

1

2u
∥

∥

∥

Ls(0,T ;Lr)

)

=∞ (Serrin type), (1.7)

where

2

s
+

3

r
≤1, 3<r≤∞.

The criteria (1.6) and (1.7) are motivated by the well-known Beale-Kato-Majda
criterion [1] for 3D ideal incompressible flows and Serrin criterion [29] for 3D in-
compressible viscous flows, respectively. The BKM criterion (1.6) implies that the
boundedness of |∇u| guarantees the global regularity of the 3D compressible isen-
tropic Navier-Stokes equations. The Serrin type criterion (1.7) indicates that the
divergence of both velocity and some norm of ρ1/2u can control the global regularity
of the solution to the 3D compressible Navier-Stokes equations. However, the two
criteria can not show whether or not only the boundedness of the divu can guarantee
the global regularity of the system (1.1) in three dimensions. Recently, in [3] Cao and
Titi provided sufficient conditions, only in terms of one entry of the velocity gradi-
ent tensor, to guarantee the global regularity of the 3D incompressible Navier-Stokes
equations. Motivated by these works, we try to establish the criterion only in terms
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of velocity divergence for 3D compressible barotropic flows and show that the singu-
larity can develop only if the size of the velocity divergence becomes sufficiently large,
instead of the velocity gradient tensor in this paper.

On the other side, mathematically, one can easily to show that the bound for divu
immediately implies the upper bound of the density. So, it is strongly expected to
improve the criteria (1.6) and (1.7), and only the bound of divu is enough to control
the blow-up of strong solutions to the 3D compressible Navier-Stokes equations, as it
has been shown in [32] for the 2D case.

We denote by Lp(Ω) and Hk(Ω) the standard Sobolev spaces, respectively, and
denote the Sobolev spaces by















Dk,p=
{

u∈L1
loc(Ω)

∣

∣‖∇ku‖Lp(Ω)<∞
}

, ‖u‖Dk,p =‖∇ku‖Lp(Ω),

Dk=Dk,2, D1
0 =

{

u∈L6(Ω)
∣

∣ ‖∇u‖L2(Ω)<∞ and (1.4) or (1.5) holds
}

.

Next, we give the definition of the strong solution and the local existence and
uniqueness of the strong solution.

Definition 1.1. (Strong solution) (ρ,u) is called a strong solution to (1.1) in
Ω×(0,T ), if for some q0∈ (3,6],

ρ≥0, ρ− ρ̃∈C
(

[0,T ];W 1,q0
)

, ρt∈C ([0,T ];Lq0) ,

u∈C
(

[0,T ];D1
0∩D2

)

∩L2
(

0,T ;D2,q0
)

,

ut∈L∞
(

0,T ;L2
)

∩L2
(

0,T ;D1
0

)

,

(1.8)

and (ρ,u) satisfies (1.1) a.e. in Ω×(0,T ).

Theorem 1.2. (Local existence and uniqueness of strong solutions in [4]) If the
initial data ρ0 and u0 satisfy

ρ0≥0, ρ0− ρ̃∈L1∩W 1,q, u0∈D1
0∩D2, (1.9)

for some q∈ (3,∞), and the compatibility condition

−µ∆u0−(λ+µ)∇divu0+∇p(ρ0)=ρ
1

2

0 g, (1.10)

for some g∈L2(Ω), then there exists a positive time T1∈ (0,∞) and a unique strong
solution (ρ,u) to the initial value problem (1.1), (1.2) with either (1.4) or (1.5) in
Ω×(0,T1].

In this paper, we give the blowup mechanism only in terms of the velocity di-
vergence for the Cauchy problem and the initial-boundary value problem. The main
results in this paper are stated as follows.

Theorem 1.3. Suppose that the initial data (ρ0,u0) satisfy (1.9) and compatibility
condition (1.10), and (ρ,u) be a strong solution to the Cauchy problem (1.1), (1.2)
with (1.4) or the initial-boundary value problem (1.1), (1.2), and (1.5) satisfying (1.8)
in Ω×(0,T ). If T ∗<∞ is the maximal time of existence, then

lim
T→T∗

‖div u‖L2(0,T ;L∞)=∞. (1.11)
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Remark 1.1. For the global regularity (in [2]) of the solution of the three-
dimensional incompressible Homogeneous Navier-Stokes equations, we only need to
control the regularity of the scalar pressure to guarantee the global regularity of the
Leray-Hopf weak solution. Compared with the corresponding results for incompress-
ible viscous flows, the results in this paper seem to be reasonable.

Remark 1.2. We would like to mention the blowup criteria for the 3D full com-
pressible Navier-Stokes equations. In absence of vacuum, a BKM criterion has been
established in [9] and [31] with the additional condition λ <7µ. Recently, these re-
sults have been improved by removing the stringent condition λ <7µ and allowing
initial vacuum states in [22]. They established the following Serrin type criterion as

lim
T→T∗

(

‖divu‖L1(0,T ;L∞)+‖u‖Ls(0,T ;Lr)

)

=∞.

The ideas in this paper will also used for the 3D full compressible Navier-Stokes
equations and establish the blowup criterion in terms of the velocity divergence and
the temperature in the forthcoming work [7].

Remark 1.3. Generally, we would not expect better regularity of Lion’s weak so-
lutions to the 3D compressible Navier-Stokes equations, due to the significant works
of Xin [33] and Xin-Yan [34], who showed that any classical solutions to 3D full
Navier-Stokes equations will develop finite-time singularity with a nontrivial com-
pactly supported initial density. Hence, the investigation of the blowup mechanism
and structure of the possible singularity in this paper seems reasonable.

2. Proof of the main results

For the remainder of this paper, without loss of generality, we assume that ρ̃=0.
Let (ρ,u) be a strong solution to the Navier-Stokes equations as in Definition 1.1. The
usual energy inequality associated with the system (1.1) can be written as

sup
0≤t≤T

(

∥

∥

∥
ρ

1

2u
∥

∥

∥

2

L2(Ω)
+‖ρ‖γLγ(Ω)

)

+

∫ T

0

‖∇u‖2L2(Ω)dt≤C0, for 0≤T <T ∗, (2.1)

where C0 depends only on the initial data. This inequality can be established for
smooth solutions of (1.1) by multiplying the momentum equations by u and integrat-
ing in Ω× [0,T ].

Suppose, contrary to the conclusion of Theorem 1.3, that there exists a positive
constant M0>0, such that

lim
T→T∗

‖divu‖L2(0,T ;L∞)≤M0, (2.2)

for Cauchy problem and initial-boundary value problem.
The condition (2.2) implies that

lim
T→T∗

∫ T

0

‖divu‖L∞(Ω)dt≤M0, (2.3)

for Ω=R
3 or Ω⊂R

3 be a bounded domain. It follows from the estimate (2.3) and
the continuity equation that we obtain the following upper bound of the density

‖ρ(·,t)‖Lp(Ω)≤C, for 0≤ t<T ∗, (2.4)
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and 1≤p≤∞.
In [20], Theorem 1.1 gives the Serrin type criterion that

lim
T→T∗

(

‖divu‖L1(0,T ;L∞)+
∥

∥

∥
ρ1/2u

∥

∥

∥

Ls(0,T ;Lr)

)

=∞, (2.5)

for 2
s +

3
r ≤1, 3<r≤∞, provided that the maximal existence time T ∗ is finite. Hence,

due to the estimate (2.3), to show the results in this paper it suffices to show that
there exists a positive constant C, which depends only on µ, λ, A, γ, M0, T

∗, and
the initial data (ρ0,u0), such that

sup
0≤t≤T

∫

Ω

ρ|u|4dx≤C, (2.6)

which implies immediately
∥

∥

∥
ρ1/2u

∥

∥

∥

L8(0,T ;L4)
≤C.

This together with the blowup criterion (2.5), gives the result in this paper.
In fact, multiplying the momentum equations by ut and integrating by parts yield

that
∫

Ω

ρ|ut|
2dx+

1

2

d

dt

∫

Ω

µ|∇u|2+(µ+λ)(divu)2dx=−

∫

Ω

ρu ·∇u ·utdx+

∫

Ω

Pdivutdx

= I1+I2. (2.7)

Young’s inequality gives

I1≤

∫

Ω

ρ|u||∇u||ut|dx≤ ε

∫

Ω

ρ|ut|
2dx+C(ε)

∫

Ω

|u|2|∇u|2dx. (2.8)

For the second term in the right hand side of (2.7), one has

I2 =
d

dt

∫

Ω

Pdivudx−

∫

Ω

Ptdivudx

=
d

dt

∫

Ω

Pdivudx+

∫

Ω

div(Pu)divu+(γ−1)P (divu)2dx,

(2.9)

where we have used the fact that

Pt+div(Pu)+(γ−1)Pdivu=0,

which follows from the continuity equation and the γ-Law (1.3).
Furthermore, for the second term on the right hand side of (2.9), integrating by

part yields that

I2 =
d

dt

∫

Ω

Pdivudx−

∫

Ω

Pu ·∇(divu)dx+(γ−1)

∫

Ω

P (divu)2dx

≤
d

dt

∫

Ω

Pdivudx−

∫

Ω

Pu ·∇(divu)dx+C‖∇u‖2L2 .

(2.10)

It follows from the momentum equations that we have the elliptic systems

∆G=div(ρu̇), µ∆ω=∇×(ρu̇), (2.11)
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where

u̇=ut+u ·∇u, G=(2µ+λ)divu−P, ω=∇×u

are the material derivative of u, the effective viscous flux, and the vorticity of the
flows, respectively.

The standard Lp-estimate for the elliptic system (2.11) gives

‖∇G‖Lp(Ω)+‖∇ω‖Lp(Ω)≤C‖ρu̇‖Lp(Ω), (2.12)

for any p∈ [2,6]. Because divu=
1

2µ+λ
(G+P ), for the second term in the right hand

side of (2.10) we have

∣

∣

∣

∣

∫

Ω

Pu ·∇(divu)dx

∣

∣

∣

∣

=
1

2µ+λ

∣

∣

∣

∣

∫

Ω

Pu ·∇(G+P )dx

∣

∣

∣

∣

=
1

2µ+λ

∣

∣

∣

∣

∫

Ω

Pu ·∇Gdx+

∫

Ω

Pu ·∇Pdx

∣

∣

∣

∣

=
1

2µ+λ

∣

∣

∣

∣

∫

Ω

Pu ·∇Gdx−
1

2

∫

Ω

P 2divudx

∣

∣

∣

∣

≤ ε‖∇G‖2L2(Ω)+C(ε)

∫

Ω

ρ|u|2dx+C‖divu‖L2‖P‖2L4

≤ ε‖∇G‖2L2 +C(ε)

∫

Ω

ρ|u|2dx+C‖∇u‖L2 . (2.13)

By the estimate (2.12), we have

‖∇G‖2L2 ≤C
∥

∥

∥
ρ1/2ut

∥

∥

∥

2

L2

+C

∫

Ω

|u|2|∇u|2dx. (2.14)

Combining with (2.7), (2.8), (2.10), (2.13), and (2.14) and choosing ε sufficiently
small yield that

d

dt

∫

Ω

(

µ

2
|∇u|2+

µ+λ

2
(divu)2−Pdivu

)

dx+
1

2

∫

Ω

ρu2
tdx

≤C‖∇u‖2L2 +C1

∫

Ω

|u|2|∇u|2dx+C

∫

Ω

ρ|u|2dx+C‖∇u‖L2

≤C‖∇u‖2L2 +C1

∫

Ω

|u|2|∇u|2dx+C, (2.15)

where we have used the energy estimate (2.1) and the interpolation inequality.

Next, we will deal with the key term

∫

Ω

|u|2|∇u|2dx. Multiplying 4|u|2u into the

momentum equations and integrating in Ω yield that

d

dt

∫

Ω

ρ|u|4dx+4µ

∫

Ω

|u|2|∇u|2dx+4(µ+λ)

∫

Ω

(divu)2|u|2dx+8µ

∫

Ω

|∇|u||
2
|u|2dx

=−4(µ+λ)

∫

Ω

divu
(

u ·∇|u|2
)

dx+4

∫

Ω

div
(

|u|2u
)

Pdx

=J1+J2. (2.16)
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Furthermore, by the estimate (2.4) and Young’s inequality, we have

J2=4

∫

Ω

|u|2Pdivudx+8

∫

Ω

u ·∇u ·uPdx

≤C

∫

Ω

|u|2|∇u|Pdx

≤C

∫

Ω

ρ|u|2|∇u|dx

≤C‖∇u‖2L2 +C

∫

Ω

ρ|u|4dx, (2.17)

and

J1 =−8(µ+λ)

∫

Ω

divu(u ·∇u ·u)dx

≤C

∫

Ω

|divu||u|2|∇u|dx

≤ ε

∫

Ω

|u|2|∇u|2dx+C(ε)

∫

Ω

(divu)2|u|2dx,

where we have used a vector identity as follows:

1

2
∇|u|2=

1

2
∇(u ·u)=(u ·∇)u+u×(∇×u).

If Ω=R
3, by Hölder inequality, the interpolation inequality, and Sobolev’s in-

equality in [24], we obtain

J1≤ ε

∫

Ω

|u|2|∇u|2dx+C(ε)

(
∫

Ω

|divu|3dx

)
2

3

‖u‖2L6

≤ ε

∫

Ω

|u|2|∇u|2dx+C‖divu‖2L3‖∇u‖2L2

≤ ε

∫

Ω

|u|2|∇u|2dx+C
(

‖divu‖2L∞ +‖divu‖2L2

)

‖∇u‖2L2

≤ ε

∫

Ω

|u|2|∇u|2dx+C‖divu‖2L∞‖∇u‖2L2 +C‖∇u‖4L2 . (2.18)

If Ω⊂R
3 is a bounded domain, Young’s inequality and Poincaré inequality yield

that

J1≤ ε

∫

Ω

|u|2|∇u|2dx+C(ε)‖divu‖2L∞

∫

Ω

|u|2dx

≤ ε

∫

Ω

|u|2|∇u|2dx+C‖divu‖2L∞‖∇u‖2L2 . (2.19)

Combining (2.16), (2.17), (2.18), and (2.19), and choosing ε sufficiently small
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yields that

d

dt

∫

Ω

ρ|u|4dx+2µ

∫

Ω

|u|2|∇u|2dx+4(µ+λ)

∫

Ω

(divu)2|u|2dx+8µ

∫

Ω

|∇|u||
2
|u|2dx

≤















C

∫

Ω

ρ|u|4 dx+C‖divu‖2L∞‖∇u‖2L2 +C‖∇u‖4L2 , for Ω=R
3,

C

∫

Ω

ρ|u|4 dx+C‖divu‖2L∞‖∇u‖2L2 +C‖∇u‖2L2 , for Ω be a bounded domain.

(2.20)

Multiplying (2.20) by
C1

2µ
and adding (2.15) yield that

d

dt

∫

Ω

(

µ

2
|∇u|2+

C1

2µ
ρ|u|4+

µ+λ

2
(divu)2−Pdivu

)

dx

≤















































C

∫

Ω

ρ|u|4 dx+C‖divu‖2L∞‖∇u‖2L2 +C‖∇u‖4L2 +C,

for Ω=R
3,

C

∫

Ω

ρ|u|4 dx+C‖divu‖2L∞‖∇u‖2L2 +C‖∇u‖2L2 +C,

for Ω be a bounded domain.

It follows from Gronwall’s inequality, the energy inequality (2.1), and the condi-
tions (2.2) and (2.4) that

sup
0≤t≤T

∫

Ω

(

µ

2
|∇u|2+

C1

2µ
ρ|u|4+

µ+λ

2
(divu)2−Pdivu

)

dx≤C.

Note that

Pdivu≤
µ

4
|∇u|

2
+C(µ)P 2,

which yields the claim (2.6). This completes the proof of Theorem 1.3.
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