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APPROXIMATING NEAR-GEODESIC NATURAL CUBIC SPLINES∗

LYLE NOAKES†

Abstract. A method is given for calculating approximations to natural Riemannian cubic
splines in symmetric spaces with computational effort comparable to what is needed for the classical
case of a natural cubic spline in Euclidean space. Interpolation of n+1 points in the unit sphere
Sm requires the solution of a sparse linear system of 4mn linear equations. For n+1 points in
bi-invariant SO(p) we have a sparse linear system of 2np(p−1) equations. Examples are given for
the Euclidean sphere S2 and for bi-invariant SO(3) showing significant improvements over standard
chart-based interpolants.
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1. Introduction
Natural (Riemannian) cubic splines are extrema of a variational problem for in-

terpolation of point data in a Riemannian m-manifold M , and turn out to be C2

track-sums of solutions of a nonlinear ODE for curves called Riemannian cubics
[15, 17, 18, 19, 16, 14, 2, 3, 4, 6, 20, 8]. Except when M is flat, Riemannian cubics
are usually calculated as numerical solutions of initial value problems; calculating
natural cubic splines as solutions of boundary and interior point problems is much
more difficult. On the other hand, in the Euclidean case, Riemannian cubics are just
cubic polynomial curves, and interpolation by natural cubic splines reduces to solving
a tridiagonal linear system [5].

For interpolation of rigid body motion relative to a fixed centre, M is the rotation
group SO(3). There is no algorithm for calculating natural cubic splines in SO(3) ap-
proaching the simplicity and convenience of the standard algorithm for the Euclidean
case. Chart-based interpolants reduce locally to interpolants in Euclidean space, with
only slightly more computational effort, but variational interpolants such as natu-
ral cubic splines are better behaved than chart-based interpolants. By definition,
variational interpolants are critical for some quantity of interest (the mean square
norm of covariant acceleration for the case of natural cubic splines) and depend only
on the geometry of M and on the data. Chart-based interpolants are nonintrinsic,
ungeometrical, unstable, and awkward (for instance when charts must be switched).

Our aim is to capture most of the good behaviour of natural cubic splines in
SO(3), with computational effort comparable to what is needed for the Euclidean
case. To achieve this we first restrict attention to a circumstance that often occurs
in practice: the data D should be near some geodesic γ (a numerical quantity µγ(D)
should not be too large). The other tradeoff for computational simplicity is to allow
suboptimal interpolants, namely the conditions for a natural cubic spline need only
be nearly satisfied (to the extent that µγ(D)2 is small).

Our main result, Theorem 4.4, gives a suitable interpolator in terms of so-called bi-
Jacobi fields along γ. Bi-Jacobi fields are generalizations of Jacobi fields, comprising
a 4m-dimensional real vector space. The bi-Jacobi fields are used in combination
with a quasiexponential map to construct an interpolator Iδ with the property that
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xỸ (D) = Iδ(D) nearly satisfies the conditions for a natural cubic spline. Calculation
of xỸ (D) reduces to a problem in linear algebra, closely resembling the classical case
of natural cubic splines in Em.

For symmetric spaces, such as Euclidean unit spheres Sm, and rotation groups
SO(p) with a bi-invariant Riemannian metric, the bi-Jacobi fields are easily written
down in terms of trigonometric functions. For M =Sm this is done in Section 5 where
an algorithm is given for calculating xỸ (D). The following example, for M =S2 with
3 interpolation points, illustrates the quality of xỸ (D) and gives an idea of what is
needed to calculate it. For full details we refer ahead to Section 5.

Example 1.1. Consider the geodesic γ in M =S2 given by γ(t) = (cost,sint,0) for t∈
[0,2π/3]. Our data consists of times t0 = 0, t1 =π/6, and t2 = 2π/3 and corresponding
interpolation points x0 =γ(0), x1 = (0.85529,0.486954,0.177074) (not especially near
γ(t1) = (1/2,

√
3/2,0)), and x2 =γ(2π/3).

For each t∈ [0,2π/3], the column spaces of the 3×8 matrices

B(t) =

−sint −tsint −t2 sint −t3 sint 0 0 0 0
cost tcost t2 cost t3cost 0 0 0 0

0 0 0 0 cost sint tcost tsint

,
C(t) =

0 −sint −2tsint −3t2 sint 0 0 0 0
0 cost 2tcost 3t2 cost 0 0 0 0
0 0 0 0 −sint cost −tsint+cost tcost+sint

,
D(t) =

0 0 −2sint −6tsint 0 0 0 0
0 0 2cost 6tcost 0 0 0 0
0 0 0 0 −cost −sint −tcost−2sint −tsint+2cost

,
HB(t) =

0 0 −2sint −6tsint 0 0 0 0
0 0 2cost 6tcost 0 0 0 0
0 0 0 0 0 0 −2sint 2cost


are orthogonal to γ(t), and the columns of B spans the space of bi-Jacobi fields along
γ. The nearly cubic interpolant xỸ (D) : [0,2π/3]→S2 is given by

xỸ (D)(t) =
γ(t)+B(t)y1

‖γ(t)+B(t)y1‖
for 0≤ t≤π/6,

xỸ (D)(t) =
γ(t)+B(t)y2

‖γ(t)+B(t)y2‖
for π/6≤ t≤2π/3,

where y1,y2∈R8 satisfy 5 homogeneous linear equations (5.1), (5.2), (5.3), (5.4), (5.5),
the nonhomogeneous linear equation (5.6), and two further nonhomogeneous linear
equations given by (5.7). These equations1 in E2 give 16 equations for the 16 real
coordinates of y1,y2. Solving this linear system, we find

y1 = (0,−0.0134274,0,0.00699674,0,0.0674479,0.322409,0),

y2 = (0.00133915,−0.0211002,0.0146539,−0.00233225,

−0.0129975,0.382353,0.0806023,−0.139607),

and J(xỸ (D)) = 0.109762.

1In Section 5 we take ξi :TS2
xi
→E2 to be projection to the last two coordinates for i= 0,1,2.

The ξi are linear isomorphisms because (1,0,0) is not orthogonal to any of our xi.
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Figure 1.1 shows xỸ (D) and the geodesic arc γ (blue) with the interpolation points

γ(0),x1,γ(2π/3) (black), and γ(π/6) (red). Figure 1.1 also shows another interpolant
xch (green), constructed as follows using a coordinate chart φ and a classical natural
cubic polynomial spline xE2 in E2.

Stereographic projection from (0,0,1) defines a chart φ :S2−{(0,0,1)}→E2.
Then xch :=φ−1 ◦xE2 : [0,2π/3]→S2, where xE2 is the natural Euclidean cubic spline
in E2 interpolating φ(γ(0)), φ(x1), φ(γ(2π/3)) at times 0, π/6, and 2π/3. In figure
1.1, xch appears more wavelike than xỸ (D) and, accordingly, J(xch) = 3.72049 is some

36 times larger than J(xỸ (D)).
Alternatively consider the natural Euclidean cubic polynomial spline xE3 :

[0,2π/3]→E3 in E3 interpolating γ(0), x1 and γ(2π/3). The normalised Eu-
clidean spline xnorm : [0,T ]→S2 (not shown in figure 1.1) is defined by xnorm(t) :=
xE3(t)/‖xE3(t)‖. We find J(xnorm) = 0.644315, still 6 times larger than J(xỸ (D)).
This is mainly due to significant differences in parameterizations of xnorm and xỸ (D),
whose plots are misleadingly similar.

Fig. 1.1. Geodesic, nearly cubic interpolant and chart-based interpolant (green) in Example 1.1.

Such algorithms also apply when M is the double-cover S3 of the bi-invariant
rotation group SO(3). However it is less complicated to deal with SO(3) directly,
without the covering; this avoids the use of unit quaternions for which 2n optimization
problems would need to be solved to find a natural cubic spline interpolating n+1
points in SO(3). In Section 6 our algorithm for SO(3) reduces to a sparse linear system
of dimension 12n where n+1 is the number of data points. In Example 6.1, n= 4 and
xỸ (D) is seen to be significantly better than a standard chart-based interpolant.

In Section 2 we give a more detailed discussion of interpolation by curves in Rie-
mannian manifolds, followed by the definition of natural cubic splines. Then Theorem
2.2 characterizes natural cubic splines as track-sums of solutions (Riemannian cubics)
of a nonlinear 4th order ODE together with boundary and interior point conditions.
The classical Euclidean case is reviewed (Example 2.2) and contrasted with the richer
case of a curved space-form (Example 2.4). Example 2.5 compares Riemannian cu-
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bics with Euler-Bernoulli elastica. Example 2.6 motivates the study of natural cubic
splines in SO(3). A precise definition is given of a nearly cubic spline, and then an
outline of the rest of the paper.

2. Natural cubic and nearly cubic Riemannian splines
Let M be a C∞ manifold of finite dimension m, with Riemannian metric 〈 , 〉,

associated Levi-Civita covariant derivative ∇, and Riemannian distance d. Let γ :
[0,T ]→M be a geodesic where T >0. A data list is an ordered n+1-tuple

D = ((t0,x0),(t1,x1),. ..,(tn,xn)),

where 0 = t0<t1<t2<...< tn=T , and xi∈M for 0≤ i≤n. Set τ := (t0,t1,. ..,tn) and
µγ(D) := max{d(xi,γ(ti)) : i≤0≤n}.

Example 2.1. The trivial data is characterised by µγ(Dτ ) = 0, namely
Dτ := ((t0,γ(t0)),(t1,γ(t1)),. ..,(tn,γ(tn))).

A continuous map x : [0,T ]→M is D-feasible when x(ti) =xi for all 0≤ i≤n. Fix
n and let D⊂ ([0,T ]×M)n+1 be a nonempty set of data lists, and let I :D× [0,T ]→M
be Ck where k≥1. Given D∈D define xD : [0,T ]→M by xD(t) := I(D,t).

Definition 2.1. I is an interpolator on D when xD is D-feasible for all D∈D. An
interpolator I is γ-consistent when

((t0,γ(t0)),(t1,γ(t1)),. ..,(tn,γ(tn)))∈D =⇒ x(t0,γ(t0)),(t1,γ(t1)),...,(tn,γ(tn))) =γ.

An interpolator I is linear when xD(t) can be found from D by solving a system of
linear equations. Given D∈D, define a functional J on C2 D-feasible curves by

J(x) :=

∫ T

0

〈∇tx(1),∇tx(1)〉 dt. A natural cubic spline is a critical point of J .

Theorem 2.2. A C2 D-feasible curve x is a natural cubic spline if and only if
∇tx(1)(0) =0, ∇tx(1)(T ) =0, and

∇3
tx

(1) +R(∇tx(1),x(1))x(1) =0 (2.1)

for t 6= ti for any 0≤ i≤n.

A Riemannian cubic is a C∞ curve satisfying equation (2.1). So a natural cubic
spline is a C2 track-sum of Riemannian cubics with vanishing covariant accelerations
at t0 = 0 and tn=T .

Example 2.2. In classical approximation theory [5] M is Euclidean m-space Em

and a natural cubic spline is the unique C2 interpolant x=xD such that

• for all i= 1,2,. ..,n the restriction of x to [ti−1,ti] is a cubic polynomial;

• x(2)(t0) =0=x(2)(tn).

These conditions reduce to a linear system for the coefficients of the cubic poly-
nomials, where the coefficient matrix is tridiagonal. The widespread use of Euclidean
natural cubic splines is due in part to ease of computation, which extends to cases
where the Riemannian manifold M is flat.

When M is not flat it is much more difficult to compute natural cubic splines. To
begin with, there are very few cases where Riemannian cubics are known explicitly in
terms of standard functions.
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Example 2.3. Let γ : [0,T ]→M be a geodesic in any Riemannian manifold M , and
let c : [0,S]→ [0,T ] be a cubic polynomial. As is easily verified, x :=γ ◦c : [0,S]→M is
a Riemannian cubic.

Example 2.4. For m>1 Riemannian cubics in real projective m-space RPm lift
to Riemannian cubics in the Riemannian double-cover, which is the unit sphere Sm

in Em+1. Riemannian cubics in S2 are also Riemannian cubics in S3. For m>3
Riemannian cubics in Sm are Riemannian cubics in totally geodesic copies of S3. So
Riemannian cubics in Sm and RPm reduce to Riemannian cubics in S3.

In E3 elastic curves are given by elliptic functions [23], whereas Riemannian cu-
bics are just cubic polynomial curves. On the other hand, in bi-invariant SO(3)∼=RP 3

elastic curves are also known in terms of elliptic functions [11, 22], but Riemannian
cubics in bi-invariant SO(3) are much less perfectly understood [16, 17]. The only
explicitly nontrivial examples are the codimension-3 family of null Riemannian cu-
bics, found by reducing to the completely integrable time-independent Schrödinger
equation with quadratic potential [21, Chapter 4].

Null Riemannian cubics in SO(3) also correspond to self-similar solutions z :
[0,S]× [0,∞)→E3 of the Da Rios equations [9] for the localized induction approxi-
mation

∂z

∂t
=
∂z

∂s
× ∂

2z

∂s2
(2.2)

modelling the motion of an isolated vortex filament in an incompresible inviscid fluid.
Here z(s,t) is the position at time t of a point on the filament with arc-length pa-
rameter s∈ [0,S]. Self-similar solutions of (2.2) have the form z(s,t) = t1/2w(st−1/2),
where w : [0,∞)→E3 satisfies [9, Equation (20)], namely

2w′′(u)×w′(u) =uw′(u)−w(u). (2.3)

Because w′(u) is a unit vector, 〈w′′,w′〉= 0. Taking cross-products with w′(u) on
both sides of (2.3) gives 2w′′(u) =w′(u)×w(u). Define V : [0,∞)→E3 by V (t) :=
2−1/2w(21/2t). Then

V (2)(t) =V (1)(t)×V (t),

namely V is the left Lie reduction of a null Riemannian cubic [15, 19, 14].

Lack of closed-form expressions for Riemannian cubics is not the main barrier
to calculation of Riemannianian natural cubic splines. After all, Riemannian cubics
can be computed numerically as solutions of initial value problems for equation (2.1).
By far the largest obstruction to computing natural cubic splines is the problem of
satisfying the boundary and interior point conditions of Theorem 2.2 for Riemannian
cubics. In theory this can be reduced by (multiple) shooting to a sequence of initial
value problems [12], but this seems a daunting task.

A suggestion by Jerrold Marsden was to apply a finite-dimensional optimizer to a
discretization of the variational problem for Riemannian cubic splines. Following this
direct method, good approximations were achieved by Marin Kobilarov for M the
unit 3-sphere S3 in E4 (private communication). Alternatively, Riemannian cubic
splines in S3 can be found using the indirect method of [7], achieving in seconds
what once took hours. Using either approach, the computational effort for accurate
approximations to Riemannian cubic splines is much greater than for the Euclidean
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case, and 2n natural cubic splines in S3 are needed to calculate a natural cubic spline
interpolating n+1 points in bi-invariant SO(3).

Indeed, solving nonlinear boundary and interior point problems is a familiar dif-
ficulty in approximation theory.

Example 2.5. The elastica in E2 are completely known [23], but the use of elastic
splines in E2 is limited by the difficulty of satisfying boundary value and interior
point conditions, as well as the condition that splines should be C2 with vanishing
covariant accelerations at endpoints. This is the principal reason for the popularity
of polynomial splines as an alternative.

More than anything, a useful interpolator should be robust and easily calculable,
and we are prepared to accept some small degree of suboptimality in order to achieve
this. The present paper constructs a γ-consistent linear interpolator Iδ where, for
near geodesic data D, the interpolator xD approximately satisfies the conditions for
a natural cubic spline. This would be applicable when data is sampled from trajec-
tories of an object subject to small unknown external forces, namely nearly geodesic
trajectories with respect to the polarization of kinetic energy [10].

Example 2.6. At time t the configuration of a rigid body relative to its centre
of mass is given by a point y(t) in the rotation group SO(3). Measurements xi :=
y(ti) are made of the configurations at times t0<t1<...< tn. The best estimate
x : [t0,tn]→SO(3) of y depends on what can be assumed about the dynamics of the
body, and on what is considered best in an approximation.

If the body can be assumed to move nearly freely, with small unknown external
torques, then y : [t0,tn]→SO(3) is near some geodesic γ with respect to a left-invariant
Riemannian metric on SO(3) (which might in principle be inferred from observations
[13]). An interpolant x may be considered optimal when it minimises the mean-square
norm of the applied external torque. Then, in particular, x is a natural Riemannian
cubic spline.

Definition 2.3. A C2 interpolator I on D is nearly cubic when, for any D∈D,
and x=xD,

max{‖∇tx(1)(0)‖x(0), ‖∇tx(1)(T )‖x(T ), ‖∇3
tx

(1) +R(∇tx(1),x(1))x(1)‖x(t) : t 6= ti}
≤Kµγ(D)2,

where i ranges from 1 to n−1, and K>0 depends on γ and on t0,t1,. ..,tn, but not
on x0,x1,. ..,xn. Then xD is called a nearly cubic spline.

Because natural cubic splines are difficult to compute, a nearly cubic spline x̂ is
acceptable as a first approximation. If µγ(D) is small then J(x̂) should be very small.
If I is linear then computation of x̂ should be straightforward.

In Section 3 we introduce the notion of bi-Jacobi fields Y along a geodesic γ.
Then, after some choice of quasi-exponential map, we obtain approximations xY to
Riemannian cubics. In Section 4 track-sums of the xY are used to construct an
interpolator Iδ. The main result Theorem 4.4 says that Iδ is C2, γ-consistent, nearly
cubic, and (crucially) linear. The case where M =Sm is treated in detail in Section
5. In Section 6 we do the same for bi-invariant SO(3), and a nearly cubic interpolant
xỸ (D) is compared with a chart-based interpolant using cubic polynomial splines: the
former is markedly better behaved, much more nearly optimal and found in less than
one hundredth of a second. After a brief summary, Section 7 lists topics for further
study.
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3. Near-geodesic Riemannian cubics and bi-Jacobi fields
Let γ : [0,T ]→M be a geodesic in a Riemannian m-manifold M . For t∈ [0,T ]

define a linear endomorphism St of TMγ(t) by St(v) :=Rγ(t)(v,γ
(1)(t))γ(1)(t), where

R denotes Riemannian curvature. As is well-known St is self-adjoint with respect to
the inner product 〈 , 〉γ(t).

Example 3.1. If M is locally-symmetric then, given γ, the eigenvalues of St are
independent of t.

The Jacobi operator defined on C∞ fields X along γ is given by

H(X)(t) := ∇2
tX(t)+St(X(t)).

Elements of the kernel of H are Jacobi fields along γ, and comprise a 2m-dimensional
real vector space. More generally, consider the 4m-dimensional space of bi-Jacobi
fields.

Definition 3.1. A C∞ field Y along γ is a bi-Jacobi field when H2Y =0.

Our construction of curves in M from vector fields requires a generalized expo-
nential map.

Definition 3.2. Let N be an open neighbourhood of the 0-section of TM . A C∞

function E :N→M , with all derivatives bounded, is said to be quasiexponential when,
for any z∈M and any v∈TMz,

E(z,0) =z and
d

dh
E(z,hv)|h=0 =v.

Although the exponential map (with respect to any Riemannian metric) is quasi-
exponential, more elementary constructions may also be used.

Example 3.2. Let M be the unit m-sphere Sm in Euclidean m+1-space Em+1.
Define E(z,w) := (z+w)/‖z+w‖ where ‖ ‖ is the Euclidean norm. Then E is quasi-
exponential.

Example 3.3. Let M =SO(p) where p≥2. Given (z,w)∈TSO(p), the p×p matrix
v :=z−1w is skew-symmetric. Define E(z,w) :=z(1+v/2)(1−v/2)−1. Then E is
quasiexponential.

Remark 3.1. A local inverse of E is needed for calculation of F in the feasibility
equation (4.3) for near cubic splines. So, because of our preference for rational func-
tions over exponentials and logarithms, the quasiexponentials of examples 3.2 and 3.3
are used in examples 1.1 and 6.1 respectively.

Fix a quasiexponential map E. Given a Ck field Y along γ where k≥2, define
xY : [0,T ]→M by xY (t) :=E(γ(t),Y (t)). A Ck homotopy x̃Y : [0,1]× [0,T ]→M from
γ to xY is defined by x̃Y (h,t) :=xhY (t). Because E is quasiexponential,

∂x̃Y (h,t)

∂h
|h=0 =Y. (3.1)

Lemma 3.3. Let Y be C∞. Then ∇h∇tx̃(1)Y (h,t)|h=0 =HY (t).
Proof. From the definition of Riemannian curvature

∇h∇tx̃(1)Y (h,t) =∇t∇hx̃(1)Y +R
(∂x̃Y
∂h

,x̃
(1)
Y

)
x̃
(1)
Y =∇2

t

∂x̃Y
∂h

+R
(∂x̃Y
∂h

,x̃
(1)
Y

)
x̃
(1)
Y .
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Taking h= 0 the right hand side becomes HY , by (3.1).

Definition 3.4. For k≥1 set

‖Y ‖k,∞ := max{‖Y (t)‖γ(t),‖∇jtY (t)‖γ(t) : 1≤ j≤k, 0≤ t≤T}.

Lemma 3.5. For some Lends>0 depending on E and γ, and for t∗= 0,T , if Y is
C∞ with HY (t∗) =0 then, for all h∈ [0,1],

‖∇tx̃(1)Y ‖x̃Y (h,t∗) ≤ Lends‖Y ‖22,∞.

Proof. It suffices to argue with t∗= 0. Then we have x̃
(1)
Y (t) =E1(hY,h∇tY,t) :=

dExhY (t)
(γ(1)(t),hY (1)(t)), where E1 :TN⊕TN× [0,T ]→TM is C∞ with all deriva-

tives bounded. Similarly ∇tx̃(1)Y =E2(hY,h∇tY,h∇2
tY,t), where

E2 :TN⊕TN⊕TN× [0,T ]→TM

is C∞ with all derivatives bounded. Then, for some Lends>0 depending on E and γ,
and all (h,t)∈ [0,1]× [0,T ],

1

2
‖∇2

h∇tx̃
(1)
Y (h,t)‖x̃Y (h,t)≤Lends‖Y ‖22,∞.

The result now follows from Taylor’s Theorem and Lemma 3.3, since HY (0) =0.

Lemma 3.6. Let Y be C∞. Then ∇h(∇3
t x̃

(1)
Y +R(∇tx̃(1)Y ,x̃

(1)
Y )x̃

(1)
Y )|h=0 =H2Y (t).

Proof. The left hand side expands as

(∇h∇3
t x̃

(1)
Y +∇h(R)(∇tx̃(1)Y ,x̃

(1)
Y )x̃

(1)
Y +R(∇h∇tx̃(1)Y ,x̃

(1)
Y )x̃

(1)
Y

+R(∇tx̃(1)Y ,∇hx̃(1)Y )x̃
(1)
Y +R(∇tx̃(1)Y ,x̃

(1)
Y )∇hx̃(1)Y )|h=0

= (∇h∇3
t x̃

(1)
Y +R(HY,x̃

(1)
Y )x̃

(1)
Y )|h=0 = (∇h∇3

t x̃
(1)
Y )|h=0 +St(HY )

by Lemma 3.3, and because x̃Y (0,t) =γ(t) with γ a geodesic. By (3.1) and the defi-
nition of Riemannian curvature,

(∇h∇3
t x̃

(1)
Y )|h=0 = (∇t∇h∇2

t x̃
(1)
Y +R(Y,x̃

(1)
Y )∇2

t x̃
(1)
Y )|h=0

= (∇t(∇t∇h∇tx̃(1)Y +R(Y,x̃
(1)
Y )∇tx̃(1)Y ))|h=0.

Because γ is a geodesic, the right hand side is

(∇2
t∇h∇tx̃

(1)
Y )|h=0 = (∇2

t (∇t∇hx̃
(1)
Y +R(Y,x̃(1))x̃

(1)
Y )|h=0

=∇2
t (∇2

tY +St(Y )) =∇2
tHY.

So ∇h(∇3
t x̃

(1)
Y +R(∇tx̃(1)Y ,x̃

(1)
Y )x̃

(1)
Y )|h=0 =∇2

tHY +StHY =H2Y , as stated.

Remark 3.2. Lemma 3.6 may be compared with the second variation of J along a
general Riemannian cubic, given by Theorem 2.4 of [4] “after many tedious manipula-
tions”. Lemma 3.6 of the present paper calculates the variation of the Euler-Lagrange
equation for J along a very special kind of Riemannian cubic, namely a geodesic. So
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(modulo boundary conditions and some additional effort) Lemma 3.6 should follow
from [4]. Because geodesics are so special it is easier to prove Lemma 3.6 directly, but
a connection with the more general results in [4] can be made as follows.

Formula (14) of [4] for K(Y,x(1)) has 12 terms involving covariant derivatives and
Riemannian curvature. For the special case where x is a geodesic, 7 terms vanish,
leaving 5 whose sum agrees with the expansion of H2Y . It seems that this simple
expression for the case of a geodesic has not been noted previously.

Lemma 3.7. For some Lint>0 depending on E and γ, if Y is a bi-Jacobi field then,
for all h∈ [0,1],

‖∇3
t x̃

(1)
Y +R(∇tx̃(1)Y ,x̃

(1)
Y )x̃

(1)
Y ‖x̃Y (h,t)≤Lint‖Y ‖23,∞.

The proof is similar to that of Lemma 3.5, with Lemma 3.6 replacing Lemma 3.3.

4. Track-sums
Given bi-Jacobi fields Y 1,Y 2,. ..,Y n along γ, their track-sum Ỹ is defined by

Ỹ (t) :=Y i(t) for t∈ [ti−1,ti) and Ỹ (tn) :=Y n(tn). Then Ỹ is a field defined along γ,
and is C∞ except possibly at t1,t2,. ..,tn−1.

Definition 4.1. The track-sum Ỹ is infinitesimally natural cubic when it is C2

and (HY 1)(t0) =0 and (HY n)(tn) =0.

The next result follows from lemmas 3.5, 3.7.

Lemma 4.2. Let the track-sum Ỹ be infinitesimally natural cubic. Then xỸ is C2

and, on taking x=xỸ ,

max{‖∇tx(1)(0)‖x(0), ‖∇tx(1)(T )‖x(T ), ‖∇3
tx

(1) +R(∇tx(1),x(1))x(1)‖x(t) : t 6= ti}
≤L‖Ỹ ‖23,∞,

where L= max{Lends,Lint}.

Let {B1,B2,. ..,B4m} be a basis of bi-Jacobi fields along γ. A bi-Jacobi field Y i

along γ is Byi where

B :=
[
B1 B2 .. . B4m

]
and yi :=


yi1
yi2
.. .
yi4m

∈R4m.

So the condition that the track-sum Ỹ of Y 1,Y 2,. ..,Y n be infinitesimally natural
cubic reads

B(ti)y
i=B(ti)y

i+1,
∇tB(ti)y

i=∇tB(ti)y
i+1,

∇2
tB(ti)y

i=∇2
tB(ti)y

i+1,
where 1≤ i≤n−1, and

HB(0)y1 =0,
HB(T )yn=0,

(4.1)

comprising (3n−1)m homogeneous linear equations in 4mn real unknowns yij . Then
xỸ is D-feasible when

E(γ(ti),B(ti)y
i) =xi for 0≤ i≤n, (4.2)

where y0 :=y1. Given δ>0 set Eδ :={(t,y)∈ [0,T ]×M :d(γ(t),y)<δ}. Because E is
quasiexponential, for some δ>0 there is a C∞ function F :Eδ→TM with the property
that F (t,γ(t)) = (γ(t),0) and E(γ(t),F (t,y)) =y.
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Example 4.1. Let E be defined as in Example 3.2 for the case where M =Sm.
Then

F (t,y) =y/〈γ(t),y〉−γ(t),

where 〈 , 〉 is the Euclidean inner product.
Example 4.2. Let E be defined as in Example 3.3 for the case where M =SO(p).
Then

F (t,y) =−2γ(t)(1+γ(t)−1y)−1(1−γ(t)−1y).

For D∈Dδ :={D= ((t0,x0),(t1,x1),. ..,(tn,xn)) :µγ(D)<δ}, (4.2) is equivalent to
the linear equations

B(ti)y
i=F (ti,xi) (4.3)

for the yi where 0≤ i≤n and y0 :=y1.

Definition 4.3. τ is ncs-nonconjugate along γ when for D=Dτ the linear system
(4.1), (4.3) has rank 4mn.

A separate study will be made of ncs-nonconjugacy. Meanwhile suppose the con-
dition is verified numerically for some choice of τ . By the implicit function theorem,
for some small δ>0, there is a unique C∞ assignment

D∈Dδ 7→y(D) := (y1,y2,. ..,yn)∈R4mn

with y(D(t0,t1,...,tn)) =0 such that (4.1), (4.3) hold for any D∈Dδ. For D∈Dδ let

Ỹ (D) be the infinitesimally natural cubic track-sum of bi-Jacobi fields given by y(D).

Theorem 4.4. Define Iδ :Dδ× [0,T ]→M by Iδ(D,t) :=xỸ (D)(t). For δ>0 suffi-

ciently small, Iδ is C2, γ-consistent, nearly cubic and linear.

Proof. By (4.2) and because y(D(t0,t1,...,tn)) =0, the interpolator Iδ is γ-
consistent. By (4.1) each xỸ (D) is C2 and so is Iδ because y is C∞. Because y

is C1 it is Lipschitz for δ>0 sufficiently small. So ‖Ỹ (D)‖3,∞≤ bµγ(D) where b>0
depends on B. Then Iδ is nearly cubic by Lemma 4.2. Because y(D) satisfies the
4mn-dimensional linear system (4.1), (4.3) we have Iδ linear.

So finding a C2, γ-consistent, nearly cubic linear interpolator reduces to calcu-
lating the bi-Jacobi fields along γ. When M is a symmetric space, in particular for a
Euclidean sphere Sm or for bi-invariant SO(3), this is a simple task.

5. Euclidean spheres
For m≥2 let M be the unit sphere Sm in Euclidean m+1-space Em+1, with

Riemannian metric 〈 , 〉 given by the first fundamental form. The group of isometries
of Sm is the orthogonal group O(m+1). So after rotation any nonconstant geodesic
γ : [0,T ]→Sm can be written γ(t) = (cosωt,sinωt,0) where 0∈Em−1 and ω>0. Any
C∞ field X along γ has the form

X(t) =f(t)γ(1)(t)+X⊥(t),

where f : [0,T ]→R and X⊥ : [0,T ]→{(0,0)}×Em−1∼=Em−1.
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The Levi-Civita covariant derivative of a vector field Y on Sm in the direction
of a vector field X at z∈Sm is given by ∇XY =dYz(X(z))+〈X(z),Y (z)〉z. For the
Riemannian curvature we have R(X,Y )Z= 〈Y,Z〉X−〈X,Z〉Y . So

(HX)(t) =f (2)(t)γ(1)(t)+
( d2
dt2

+ω2
)
X⊥(t) =⇒

(H2X)(t) =f (4)(t)x(1)(t)+
( d2
dt2

+ω2
)2
X⊥(t).

So X is a bi-Jacobi field when f is a cubic polynomial and
( d2
dt2

+ω2
)2
X⊥(t) =0. A

basis of such fields is given by

B1(t) =γ(1)(t), B2(t) = tγ(1)(t), B3(t) = t2γ(1)(t), B4(t) = t3γ(1)(t),

B2+j(t) =ej cosωt, Bm+1+j =ej sinωt, B2m+j(t) =ejtcosωt, B3m+j−1 =ejtsinωt,

where 3≤ j≤m+1, and {e1,e2,. ..,em+1} denotes the standard basis of Em+1. Here
B1,B2 are also Jacobi fields, as are the B2+j ,Bm+1+j for 3≤ j≤m+1. For t∈ [0,T ]
let π(t) :E3→TSmγ(t) be projection orthogonal to γ(t). Then

• ∇tBj(t) =π(t)◦B(1)
j (t),

• ∇2
tBj =π(t)◦(∇tBj)(1)(t), and

• HBj is ∇2
tBj or ∇2

tBj+ω2Bj according as 1≤ j≤4 or 5≤ j≤4m.

For 0≤ i≤n choose linear isomorphisms ξi :TS
m
xi
→Em. Denote by B(t), C(t),

D(t), and HB(t) the (m+1)×4m matrices whose jth columns are Bj(t), ∇tBj(t),
∇2
tBj(t), and HBj(t) respectively, for 1≤ j≤4m.

Given a data listD, there are (3n−1)m homogeneous linear equations (4.1) for the
4mn coordinates yij of the bi-Jacobi fields Y i in Section 4. For the remaining (n+1)m
nonhomogeneous equations (4.3) we use the map F from Example 4.1, namely

F (t,x) =
x

〈γ(t),x〉
−γ(t).

Taking the quasiexponential E from Example 3.2, we have for t∈ [ti−1,ti],

xỸ (D)(t) =
γ(t)+B(t)yi

‖γ(t)+B(t)yi‖
, where y1,y2,. ..,yn∈R4m satisfy the linear system of

equations corresponding to (4.1), (4.3):

ξi ◦B(ti)(y
i+1−yi) =0, for 1≤ i≤n−1, (5.1)

ξi ◦C(ti)(y
i+1−yi) =0, for 1≤ i≤n−1, (5.2)

ξi ◦D(ti)(y
i+1−yi) =0, for 1≤ i≤n−1, (5.3)

ξ0 ◦HB(0)y1 =0, (5.4)

ξn ◦HB(T )yn=0, (5.5)

ξ0 ◦B(0)y1 =F (0,x0), (5.6)

ξi ◦B(ti)y
i=F (ti,xi), for 1≤ i≤n. (5.7)

So we have (3n−1)m homogeneous linear equations and (n+1)m nonhomogeneous
linear equations for the 4mn real coordinates of the yi where 1≤ i≤n.

The algorithm is illustrated in Example 1.1 of Section 1 for a case where m=n= 2
and ω= 1.
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6. Bi-invariant SO(3)
Considering Euclidean 3-space E3 as a Lie algebra with respect to the cross-

product, the adjoint action defines a Lie isomorphism ad :E3→so(3). Corresponding
under ad to the Euclidean inner product on E3 is an ad-invariant inner product on
so(3), which extends by left multiplication to a bi-invariant Riemannian metric 〈 , 〉
on M =SO(3). For a nonconstant geodesic γ : [0,T ]→SO(3) satisfying γ(0) =1, we
write γ(1)(t) =ωE1(t) where E1(t)∈TSO(3)γ(t) is a unit vector and ω>0.

Extend E1 to an orthonormal basis {E1,E2,E3} of fields translated parallely
along γ, and ordered so that [E1(0),E2(0)] =E3(0). Any vector field defined along γ

has the form X(t) =
∑3
k=1xk(t)Ek(t), where xk : [0,T ]→R for 1≤k≤3. Then ∇tX=∑3

k=1x
(1)
k Ek. So E1 is in the kernel of St, and E2,E3 are also eigenvectors of St, with

eigenvalues ω2/4. So

HX=

3∑
k=1

x
(2)
k Ek+

ω2

4
(x2E2 +x3E3) =⇒

H2X=

3∑
k=1

x
(4)
k Ek+

ω2

2
(x

(2)
2 E2 +x

(2)
3 E3)+

ω4

16
(x2E2 +x3E3).

So X is a bi-Jacobi field when both x1 is a cubic polynomial and x2,x3 sat-

isfy x(4) +
ω2

2
x(2) +

ω4

16
x= 0. A basis of bi-Jacobi fields along γ is given

by B1(t) =E1, B2(t) = tE1, B7(t) = t2E1, B8(t) = t3E1, and B9(t) = tB3(t), B10(t) =
tB4(t), B11(t) = tB5(t), B12(t) = tB6(t) with

B3(t) =E2 cos
ωt

2
+E3 sin

ωt

2
, B4(t) =−E2 sin

ωt

2
+E3 cos

ωt

2
,

B5(t) =E2 sin
ωt

2
+E3 cos

ωt

2
, B6(t) =−E2 cos

ωt

2
+E3 sin

ωt

2
.

Here B1, B2, B3, B4, B5, and B6 are also Jacobi fields. Define a linear isomor-
phism E(t) :R3→TSO(3)γ(t) by E(t)(v) :=

[
E1(t) E2(t) E3(t)

]
v, v∈R3, and set

D :=

0 0 0
0 1 0
0 0 1

 .

Then B(t) =E(t)B̃(t), ∇tB(t) =E(t)B̃(1)(t), ∇2
tB(t) =E(t)B̃(2)(t), and

HB(t) =E(t)(B̃(2)(t)+
ω2

4
DB̃(t)), where

B̃(t) :=

1 t 0 0 0 0 t2 t3 0 0 0 0
0 0 cos ωt2 −sin ωt

2 sin ωt
2 −cos ωt2 0 0 tcos ωt2 −tsin

ωt
2 tsin ωt

2 −tcos ωt2
0 0 sin ωt

2 cos ωt2 cos ωt2 sin ωt
2 0 0 tsin ωt

2 tcos ωt2 tcos ωt2 tsin ωt
2

.
Equations (4.1), (4.3) for the yk ∈R12 where 1≤k≤n read as

B̃(ti)y
i= B̃(ti)y

i+1,

B̃(1)(ti)y
i= B̃(1)(ti)y

i+1,

B̃(2)(ti)y
i= B̃(2)(ti)y

i+1,

where 1≤ i≤n−1,
(B̃(2)(0)+ ω2

4 DB̃(0))y1 =0,

(B̃(2)(T )+ ω2

4 DB̃(T ))yn=0

(6.1)



L. NOAKES 1421

and (still with y0 :=y1)

E(ti)B̃(ti)y
i=−2γ(ti)(1+γ(ti)

−1x(ti))
−1(1−γ(ti)

−1x(ti)) for 0≤ i≤n (6.2)

using the quasiexponential function from Example 3.3.

Lemma 6.1.

E(t) =γ(t)E(0)

 1 0 0
0 cos ωt2 sin ωt

2
0 −sin ωt

2 cos ωt2

.
Proof. For p= 1,2,3 denote by Ẽp(t) the left Lie reduction γ(t)−1Ep(t) of

Ep along γ. Then Ẽp : [0,T ]→so(3), Ẽp(0) =Ep(0), and Ẽ1(t) =E1(0). The left Lie
reduction of ∇tEp is

0= Ẽ(1)
p (t)+

ω

2
ad(E1(0))Ẽp(t) =⇒

Ẽ2 =E2(0)cos
ωt

2
−E3(0)sin

ωt

2
, Ẽ3 =E2(0)sin

ωt

2
+E3(0)cos

ωt

2
.

From Lemma 6.1 we find E(t)B̃(t) =γ(t)C(t), where

C(t) :=E(0)

1 t 0 0 0 0 t2 t3 0 0 0 0
0 0 1 0 sinωt −cosωt 0 0 t 0 tsinωt −tcosωt
0 0 0 1 cosωt sinωt 0 0 0 t tcosωt tsinωt

. (6.3)

Then equation (6.2) is equivalent to

C(ti)y
i=−2(1+γ(ti)

−1x(ti))
−1(1−γ(ti)

−1x(ti)) for 0≤ i≤n. (6.4)

Once the linear system (6.1), (6.4) is solved for the yk we have, for t∈ [ti−1,ti] where
1≤ i≤n,

xỸ (D)(t) =γ(t)(1+γ(t)−1E(t)B̃(t)yi/2)(1−γ(t)−1E(t)B̃(t)yi/2)−1

=γ(t)(1+C(t)yi/2)(1−C(t)yi/2)−1. (6.5)

Example 6.1. Let γ : [0,T ]→SO(3) be the geodesic given by γ(t) :=1 0 0
0 cosωt −sinωt
0 sinωt cosωt

, where T = 2.0 and ω= 0.8. Then

γ(1)(0) =ω

0 0 0
0 0 −1
0 1 0

=ω ad

 1
0
0

 =⇒ E1(t) =−

0 0 0
0 sinωt cosωt
0 −cosωt sinωt


and γ(1)(t) has length ω.

With E2(0) := ad

0
1
0

=

 0 0 1
0 0 0
−1 0 0

, E3(0) := ad

0
0
1

=

 0 −1 0
1 0 0
0 0 0

 we have

E(0)

 v1v2
v3

=

 0 −v3 v2
v3 0 −v1
−v2 v1 0

.
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Taking n= 4, set t0 = 0, t1 = 0.206811, t2 = 0.43208, t3 = 0.89426, t4 = 2, and the xi
as  .996136 −.0725445 .0494948

.0701445 .996351 .0486186
−.0528412 −.0449589 .99759

,
 .999253 −.0184091 −.0339881
.00628044 .944945 −.32717
.0381398 .326712 .944354

,
 .996511 −.0803521 −.0225835
.0365764 .663613 −.747181
.0750243 .743748 .664236

,
 .998571 .0501545 −.0184616
−.0158622 −.0517393 −.998535
−.0510362 .9974 −.0508698

,
 .998105 .0308313 −.0532549

.0531121 −.868682 .492515
−.0310767 −.49441 −.868673


respectively. With this choice of data D, figure 6.1 shows the curves in S2 obtained
by applying γ(t) (red) and xỸ (D)(t) (black) to a reference point pr = (0,1,0). The

xipr ∈S2 are labelled i where 0≤ i≤4, and the data is neither far from the geodesic
nor especially close.
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-0.5

0.0

0.5

1.0

Fig. 6.1. Geodesic, nearly cubic interpolant in Example 6.1.
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Chart based methods can also be used to interpolate in SO(3). Suppose given
a diffeomorphism φ :U→V where U and V are open subsets of SO(3) and E3, with
x0,x1,x2,x3,x4∈U . Then the natural Euclidean cubic spline xE : [t0,t4]→E3 for the
data

(t0,φ(x0)), (t1,φ(x1)), (t2,φ(x2)), (t3,φ(x3)), (t4,φ(x4))

is unique and easily calculated in 0.006 seconds on a 1.7GHz MacBook Air running
Mathematica (no attempt was made to exploit sparseness of the linear system deter-
mining Ỹ (D)). If xE([t0,t4])⊂V then xch :=φ−1 ◦xE : [t0,t4]→SO(3) is D-feasible.
Define

ψ :V ⊂E3∼=so(3)→SO(3)

by ψ(v) := (1+v/2)(1−v/2)−1, where v∈so(3) and V is chosen so that ψ is one-to-
one. Then set φ :=ψ−1 with U :=ψ(V ). Figure 6.2 shows the curves in S2 obtained
by applying xỸ (D)(t) (black) and xch(t) (green) to pr.
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Fig. 6.2. Nearly cubic and chart-based interpolants in Example 6.1.
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In figure 6.2 there is not much difference between the nearly cubic interpolant
xỸ (D) and the chart-based xch on the intervals [ti−1,ti] for i= 1,2, but the difference
is noticeable for i= 3. When i= 4 we find that xch takes a roundabout detour, as is
not uncommon for chart-based interpolants. The nearly cubic interpolant xỸ (D) is
intrinsic and better behaved.

Because xỸ (D) is nearly cubic we expect J(xỸ (D))<J(xch), and indeed

J(xỸ (D)) = 8.49251<<J(xch) = 343.664. To see how much of the relatively poor per-

formance of xch is due to the detour on [t3,t4] we tabulate the contributions to J for
both curves from each of the subintervals I= [ti−1,ti] for 1≤ i≤4.

I J(xỸ (D)|I) J(xch|I)

[t0,t1] 2.67332 2.05117
[t1,t2] 2.63957 4.03758
[t2,t3] 2.63603 23.5679
[t3,t4] 0.543595 314.007

The detour when i= 4 is very costly for xch, but xỸ (D) also outperforms xch when
i= 2,3. To a smaller extent xch outperforms xỸ (D) when i= 1. On balance, even

excluding [t3,t4], the nearly cubic interpolant xỸ (D) outperforms xch in terms of J .

Note that J measures cumulative squared accelerations in SO(3), including distortions
due to parameterizations, whereas figure 6.2 depicts only the unparameterized images
in S2 of curves in SO(3).

Figure 6.2 certainly depicts an extreme state of affairs. For natural splines (as
opposed to splines with prescribed end velocities) there is no condition on the end
velocities, and so it is unsurprising that the end velocities for the representations of
xỸ (D) and xch appear different at t4, but it is remarkable that they appear so different

(nearly opposite). This is related to the surprising detour made by xch on the interval
[t3,t4], and it may be useful to make some heuristic remarks, explaining how the
detour came about.

The key reason is that x0 and x4 are nearly as far away as it is possible to be
in SO(3), because Tω≈π/2. Therefore, and because the chart-based interpolant
has little regard for geometry, there was a near even chance of going the wrong way
round SO(3) =RP 3, as happened on our first attempt. This illustrates dramatically
the advantages of a geometrically defined interpolant such as xỸ (D). If our data
had been chosen randomly there would still have been a noticeable advantage with
J(xỸ (D))<J(xch), but not so dramatic (maybe no detour for xch), and if the data had
been very localised the advantage would have been correspondingly small. Generally
speaking, depending on the application, the pathology observed in figure 6.2 for chart-
based interpolants should not be unusual.

7. Conclusion

A method is given for calculating approximations to natural Riemannian cubic
splines in symmetric spaces such as Sm and SO(p), with computational effort com-
parable to what is needed for the classical case of a natural cubic spline in Euclidean
space. Our method offers significant improvements over standard chart-based inter-
polants.

Further work is needed to study the condition that τ is ncs-nonconjugate, and take
account of sparseness of the linear system for calculating Ỹ (D). Whereas our nearly
cubic splines approximately satisfy the necessary conditions for a natural cubic spline,
there is also scope for investigation of the suboptimal value achieved for J . Finally
there is a need to find Iδ for left-invariant Riemannian metrics on SO(3), rather than
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just the bi-invariant case of Section 6. This reduces to computation of bi-Jacobi fields
for left-invariant Riemannian metrics, which is the subject of ongoing work with Tudor
Ratiu.

Acknowledgment. I am grateful to the reviewer for a thoughtful reading and
helpful suggestions which have improved the presentation.
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