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A COARSE GRAINED STOCHASTIC MULTI-TYPE PARTICLE

INTERACTING MODEL FOR TROPICAL CONVECTION: NEAREST

NEIGHBOUR INTERACTIONS∗

BOUALEM KHOUIDER†

Abstract. Particle interacting systems on a lattice are widely used to model complex physical
processes that occur on much smaller scales than the observed phenomenon one wishes to model.
However, their full applicability is hindered by the curse of dimensionality so that in most practical
applications a mean field equation is derived and used. Unfortunately, the mean field limit does not
retain the inherent variability of the microscopic model. Recently, a systematic methodology was
developed and used to derive stochastic coarse-grained birth-death processes which are intermediate
between the microscopic model and the mean field limit, for the case of the one-type particle-Ising
system. Here we consider a stochastic multicloud model for organized tropical convection introduced
recently to improve the variability in climate models. Each lattice is either clear sky or occupied
by one of three cloud types. In earlier work, local interactions between lattice sites were ignored
in order to simplify the coarse graining procedure that leads to a multi-dimensional birth-death
process; Changes in probability transitions depend only on changes in the large-scale atmospheric
variables. Here the coarse-graining methodology is extended to the case of multi-type particle systems
with nearest neighbour interactions and the multi-dimensional birth-death process is derived for this
general case. The derivation is carried under the assumption of uniform redistribution of particles
within each coarse grained cell given the coarse grained values. Numerical tests show that despite the
coarse graining the birth-death process preserves the variability of the microscopic model. Moreover,
while the local interactions do not increase considerably the overall variability of the system, they
induce a significant shift in the climatology and at the same time boost its intermittency from the
build up of coherent patches of cloud clusters that induce long time excursions from the equilibrium
state.
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1. Introduction

Particle interacting systems on a lattice are very useful for studying processes
occurring on much smaller scales than those of the observed phenomenon one wants
to model. A rigorous theoretical treatment of this subject and a few abstract examples
are given in [1]. While the theory is often laid in the very general context, apart from
a few exceptions, including the present work, concrete examples with multiple particle
species or types are not very abundant. However, the relatively simple case of one-
type particle system, known as the Ising model, is widely used in practice [1, 2]; for
the Ising model, all the particles are assumed to be identical and each lattice site is
either occupied by a particle or is free. It is often represented by an order parameter
σ that accordingly takes the values 1 or 0. There is another variant of the Ising model
where the model assumes two particle types but each lattice site is always occupied by
one particle of either type and never empty. The order parameter takes accordingly
the values ±1.

While it is originally designed for magnetization [2], applications of the Ising
model range from the general treatment of the phase transition phenomenon [3] to
tropical convection [4, 5, 6] including material science [7, 8], front propagation [9], and

∗Received: January 21, 2013; accepted (in revised form): September 23, 2013. Communicated by
Eric Venden-Eijnden.

†Department of Mathematics and Statistics, University of Victoria, PO BOX 3045 STN CSC
Victoria, B.C., Canada V8W 3P4 (khouider@uvic.ca).

1379



1380 A COARSE GRAINED MULTI-TYPE PARTICLE INTERACTING SYSTEM

traffic flows [10, 11]. The coupling of this model to a deterministic dynamical system
is extensively explored in [12, 13]. See also [14] where more complex stochastic and
deterministic dynamics are considered.

For the case of the multi-type particles however very few applications are known
to exist and they are fairly recent. They include material science [15], wild fires [16],
tropical convection (the topic of the present paper) [17], and pedestrian traffic [18].
The description of the multi-type particle system for the case of tropical convection
is given below.

Despite the tremendous improvements in computational resources, today’s cli-
mate models (GCMs) simulate very poorly rainfall variability in the tropics [19, 20,
21, 22]. It is argued in the discipline literature that improving tropical climate vari-
ability will lead to improved long term weather predictions over a few weeks to months,
based on documented connections between tropical and midlatitude weather systems
[23, 24, 25]. The climate bias in GCMs is believed to be due to the inadequate
treatment of clouds and convection processes which occur, in nature, at the sub-grid
scale with respect to the climate model grid of 50 to 200 km. Because convection
can not be resolved on such grids, GCMs rely on parametrization to represent the
bulk effects of convection on the resolved atmospheric flow [26]. Because of their
deterministic nature, the traditional cumulus parameterizations used in operational
climate models fail to represent the subgrid scale variability associated with convec-
tion. Moreover, these parameterizations are not specifically designed to represent the
complex mesoscale organized dynamics of tropical convection, which involve inter-
actions between three main cloud types: cumulus congestus clouds with tops below
the freezing level (around 5 to 6 km), deep penetrative clouds that reach near the
tropopause, and stratiform anvil clouds that trail deep convection in the upper tropo-
sphere [27, 28]. Khouider and Majda [29, 30, 31] introduced a multicloud deterministic
model parameterization which by design incorporates these interactions between the
three cloud types. As such, the deterministic multicloud model is very successful in
representing the large scale (wave) variability associated with tropical convection in-
cluding synoptic scale and planetary/intra-seasonal convectively coupled waves that
are notoriously challenging for operational GCMs; this is done in the context of simple
models [29, 32, 30, 31, 33, 34] and in the context of an idealized climate model with
coarse resolution [35]. A comprehensive review of these results and other recent work
on tropical wave dynamics and PDEs is found in [36].

The need for stochastic parametrization in climate models become apparent only
recently, namely since the work of Buizza et al. [37]. Since then there were interesting
attempts to use a stochastic parameterization for convection in GCMs [38, 39, 40].
It is sought as a systematic way to represent the missing variability in GCMs due to
unresolved sub-grid processes [41]. Instead of the static sampling attempted in the
previous citations, Majda and Khouider [4] were the first to introduce a Markovian
stochastic parameterization for convective inhibition (CIN) based on the Ising model
of statistical mechanics. It is further coarse grained to obtain a Markov birth-death
process, which is two-way coupled to the large-scale dynamics and which can be inte-
grated into a GCM with very little computational overhead [5]. The stochastic CIN
model is used in [5, 6] to improve the wave variability and climate in an otherwise de-
ficient mass-flux like parameterization in the context of a simple one-and-a-half layer
toy GCM. Similar stochastic models were also used for statistical analysis of observa-
tional data of clouds and convective precipitation [42, 43] and for the parametrization
of convective momentum transport [44].
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A stochastic version of the stochastic multicloud model is introduced in [17] and
utilized recently in [45] and in [46] to improve the convective variability of the deter-
ministic multicloud model. In a recent paper [47], Peters et al. found that the variabil-
ity of the stochastic multicloud model compares very well with observations. Despite
this success, an apparent shortcoming of the stochastic multicloud model in [17] is the
neglect of local interactions between lattice sites. In other words, the lattice sites make
transitions from one cloud type to another with transition probabilities that depend
only on exogenous factors that represent the state of the large scale flow, according to
whether the large-scale atmospheric state favours one cloud type or another; the prob-
ability transitions do not depend on the particular microscopic configuration of the
lattice system. The reason for this simplification is because local interactions prevent
a straightforward derivation of a coarse-grained (multi-dimensional) birth-death pro-
cess that can be cheaply simulated during the time integration of the climate model
without any significant computational overhead.

The full applicability of particle interacting systems is hindered by the curse of
dimensionality so that in most practical applications a mean field equation is derived
and used [48, 18]. Unfortunately, the mean field limit does not retain the intrinsic
variability of the stochastic lattice model. A systematic coarse-graining technique
that leads to a stochastic birth-death process is developed in [49, 50] for the case of
the one particle-type Ising system, when local interactions are present, which nicely
approximates the dynamics of the particle interacting system and preserves the con-
vergence to the same mean field equation in the limit of large number of lattice sites
and long range interaction potential. This is the model used in [5] and in [6] for
tropical convection. A rigorous error analysis for this coarse graining methodology
is conducted in [51]. However, the application of this procedure to the multi-type
particle system is not straightforward.

The goal of the present paper is to generalize the coarse-graining procedure of
[49, 50] to the case of multi-type interacting particles with local interaction dynamics,
in the context of the stochastic multi-cloud model for tropical convection [17]. To
avoid the long range interaction assumption, which is incompatible with the near-
est neighbour potential case (which is more appropriate for atmospheric convection
because the underlying physical process, via which clouds can influence each other,
such as gravity waves, turbulent mixing, and density currents, have a finite speed
of propagation), here we circumvent the Taylor approximation used in [49, 50] by
using instead conditional expectations of the microscopic transition rates. More re-
cent coarse-graining work for the case of local or short range interactions using other
techniques can be found in [52, 53, 54].

The reminder of the paper is organized as follows. In Section 2, we present the mi-
croscopic stochastic multicloud model with local interactions as a multi-type particle
interacting system having the Gibbs grand canonical distribution as an equilibrium
measure, based on the Ising model framework. The new coarse graining strategy
using a mean value approximation of the conditional expectations and the resulting
multi-dimensional birth-death process in the case of nearest neighbour interactions
are discussed in Section 3. In Section 4, we formally derive the mean field equa-
tions and in Section 5 we present a few numerical results to assess the ability of the
coarse-grained model to represent the stochastic chaotic dynamics of the multi-type
interacting particle system using the mean field limit as a bench mark. A conclusion
is given in Section 6.
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2. The microscopic multi-type interacting particle cloud model

We consider a two-dimensional lattice of N =n×n sites overlaying the horizontal
computational grid of a climate model (GCM), i.e, the surface of the Earth, for
example:

L≡ 1

n
Z
2∩ [0,1]× [0,1].

The lattice sites are assumed to be 1 to 10 km apart. At any given time t, each
lattice site is either occupied by a certain cloud type or it is a clear sky site. We
assume the prominence of three cloud types: congestus, deep, and stratiform that
are believed to play a central role in the dynamics of organized tropical convective
systems [27, 55, 17]; see figure 2.1.

Let Xt be the R
N vector field that takes values 0,1,2,3 at each lattice site, i,0≤

i≤N , according to whether the given site is occupied by a cloud of a certain type or
it is a clear sky site at time t.

Xt=















0, at a clear sky site,
1, at congestus site,
2, at a deep convection site,
3, at a stratiform site.

(2.1)

We assume that Xt is a stochastic Markov process on the state space Σ=
{0,1,2,3}N . In the jargon of particle interacting systems, an element X of the state
space Σ is called a configuration [1, 49]. In the sequel L will be referred to as the
microscopic lattice while Σ will be called the microscopic state space and its elements
are called microscopic configurations [49, 50] (figure 2.1).

Fig. 2.1. A microscopic lattice laid on top of a coarse GCM grid. Each lattice is either occupied
by a cloud of a certain type (congestus, deep, or stratiform) or it is a clear sky site.

2.1. The instantaneous infinitesimal transitions and the semi-group

generator. The “Markovian” property is equivalent to assuming that, starting
from any given configuration, the process Xt “waits” an exponentially distributed
random time Sj

kl before it makes a transition at a single site j from state k to l,
0≤k,l≤3. This results in a new configuration which is everywhere identical to the
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previous one but at the site j where the transition has occurred. Such transformation
is called an infinitesimal transition.

According to observations and theory of organized tropical convection [27, 17],
only the following seven infinitesimal transitions are assumed to prevail:

clear−→ congestus, clear−→deep, congestus−→deep, deep−→ stratiform,

congestus−→ clear, deep−→ clear, stratiform−→ clear. (2.2)

All other transitions are not allowed, i.e, the associated transition rates are zero. An
extensive discussion about the physical motivation behind these assumptions and a
more systematic physical derivation of “the stochastic multicloud model” are found in
[17]. We skip the details of this discussion here in an attempt to put this model in the
more general context where it can be adopted for many other applications, although
only the tropical convection example is treated throughout the paper.

More specifically, we have the following. A single transition occurs at a given site
j, during the time interval (t,t+∆t) (at time s 0≤s≤∆t), if

Xi
t+∆t=

{

Xi
t , if i 6= j,

Xj
t +η, if i= j,

(2.3)

η∈{−3,−2,−1,1,2}.

The value of η in (2.3) is determined by the type of transition that occurs.

η=1; for clear−→ congestus,congestus−→deep, and deep−→ stratiform,

η=2; for clear−→deep,

η=−1; for congestus−→ clear, (2.4)

η=−2; for deep−→ clear,

η=−3; for stratiform−→ clear.

For simplicity, the infinitesimal transitions in (2.3) are denoted by Xt+∆t=Xt+
ηej where ej is the jth canonical unit vector of R

N : eij = δij . We introduce the
indicator function:

1{Xj=k}=

{

1, if Xj =k,
0, elsewhere.

We denote by C(X,j,η) the rate at which the transition Xt+∆t=Xt+ηej occurs,
j=1,2, · · · ,N , η=−3,−2,−1,1,2. If R01, R02, R12, R23, R10, R20, and R30 are used
to denote the individual rates at which the physical/cloud transitions in (2.2) occur,
then the rates C(X,j,η) satisfy

C(X,j,1)=Rj
011{Xj

t=0}+Rj
121{Xj

t=1}+Rj
231{Xj

t=2},

C(X,j,2)=Rj
021{Xj

t=0},

C(X,j,−1)=Rj
101{Xj

t=1}, (2.5)

C(X,j,−2)=Rj
201{Xj

t=1},

C(X,j,−3)=Rj
101{Xj

t=0}.

Here Rj
k,l=R(U,X,j,k,l),0≤ l,k≤3 are the prescribed transition rates defined as

functions of an external potential U that dictates the dependence of the transition
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rates on the large-scale flow variables, the global configuration X, and the particular
site j at which the transition occurs.

Forbidden transitions: As noted above, on the physical grounds, only the
rates that are listed in (2.5) need to be defined. All other transition rates are set to
zero so that a transition permitting conversion of a congestus site to stratiform or a
clear to a stratiform, for example, are not allowed. Namely, we have

R13=R03=R32=R31=R21=0. (2.6)

By definition, the infinitesimal generator of the Markov process Xt is a linear
operator defined on the state of bounded functions, from Σ to R [1]:

LNf(X)=

N
∑

j=1

2
∑

η=−3,η 6=0

C(X,j,η)[f(X+ηej)−f(X)], ∀f ∈L∞(Σ), ∀X ∈Σ,

which defines a semi-group of operators from L∞(Σ) to R associated with each real-
ization (or path) of the Markov process Xt: f ∈L∞(Σ)−→E[f(Xt)] such that

d

dt
E[f(Xt)]=E[LNf(Xt)]

=

N
∑

j=1

2
∑

η=−3,η 6=0

E [C(Xt,j,η){f(Xt+ηej)−f(Xt)}] , (2.7)

where E[Y ] denotes the expected value of the random variable Y .

2.2. Invariant measure, detailed balance, and background prior. Con-
sistent with (2.7), a fundamental result from the theory of particle interacting systems
states that a probability measure µ on Σ is invariant for the Markov process Xt, if,
for all X ∈Σ, it satisfies [1]

∫

Σ

Lf(X)dµ(X)=0.

This is equivalent to

∑

X∈Σ

∑

j,η

C(X,j,η)f(X)dµ(X)=
∑

X∈Σ

∑

j,η

C(X−ηej ,j,η)f(X)dµ(X−ηej), ∀X ∈Σ.

(2.8)
Thus, a sufficient condition for a given probability measure µ to be an invariant

measure is given by the partial detailed balance relations

2
∑

η=−3,η 6=0

C(X,j,η)dµ(X)=
2

∑

η=−3,η 6=0

C(X−ηej ,j,η)dµ(X−ηej), (2.9)

∀j=1,2, · · · ,N, ∀X ∈Σ. This is equivalent to stating that the conditional measure µ
given the knowledge of Xt everywhere but at a single site j, is an invariant measure
for the restriction of X to the reduced four state space Σj : X

i
t ∈{0,1,2,3} if i= j and

Xi
t assumes fixed values for i 6= j, 0≤ j≤N . Intuitively, this guaranties that at each

fixed lattice site j, the random rate at which the reduced process leaves any given
state X to go to another state in Σj is balanced by the rate at which it enters it from
a randomly picked state in Σj , without leaving Σj . We note in particular that these
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balance relations are intermediate between the traditional detailed balance, which
requires that at each site j,0≤ j≤N , the effective transition from state Xj =k to
state Xj =k+ν, 0≤k≤3,−3≤ν≤2 is balanced by the rate at which it flips back,
i.e,

C(X,j,η)dµ(X)=C(X−ηej ,j,η)dµ(X−ηej),

and the more general balance relations in (2.8). However, detailed balance is not
possible in our case because of the imposed forbidden transitions in (2.6).

Let X ∈Σ and j=1,2, · · · ,N fixed. For simplicity in exposition, we denote by
dµ(Xj =k), the probability of the event that the configuration X is in state k at site
j and remains unchanged at other sites, ∀k=0, · · · ,3. Using the relationships in (2.5),
the partial detailed balance equations (2.9) become

(R02+R01)dµ(Xj =0)=R10dµ(Xj =1)+R20dµ(Xj =2)+R30dµ(Xj =3),

(R12+R10)dµ(Xj =1)=R01dµ(Xj =0),

(R20+R23)dµ(Xj =2)=R02dµ(Xj =0)+R12dµ(Xj =1), (2.10)

R30dµ(Xj =3)=R23dµ(Xj =2), ∀j=1, · · · ,N, ∀X ∈Σ.

Here the superscript j and the dependence on X are dropped out for simplicity in
exposition.

Following Katsoulakis et al. [49, 50], we assume that our equilibrium distribution
is the compounded Gibbs grand canonical measure given by

µ(dX)∝ exp(−H(X))PN (dX), (2.11)

where H(X) is the energy Hamiltonian of statistical mechanics that represents the
energy of local interactions between neighbouring lattice sites and PN (X) is a prior
distribution given by

PN (dX)=
N
∏

i=1

ρ(dXi), ρ(Xi=k)=ρk, k=0,1,2,3,

∑1
k=0ρk=1; (ρk)k=0,1,2,3 is a background prior distribution that depends only on the

background state, i.e, the climate model variables that play the role of exogenous
factors. Below, we introduce background transition rates, toward which the rates in
(2.10) reduce to when the local interactions between lattice sites are ignored, that
fully determine the distribution ρ. We note that for the 2-state Ising process treated
in [49, 50], without loss of generality, one can always use a uniform background prior
and incorporate the external potential U into the Hamiltonian as Katsoulakis et al.
[50] did, but here it is a bit complicated.

Following the notation above we set Hk≡H(X/Xj =k), and the equations in
(2.10) are rewritten as

R02+R01=
ρ1
ρ0

R10e
H0−H1 +

ρ2
ρ0

R20e
H0−H2 +

ρ3
ρ0

R30e
H0−H3 ,

R01=
ρ1
ρ0

(R12+R10)e
H0−H1 ,

R02=
ρ2
ρ0

(R20+R23)e
H0−H2 − ρ1

ρ0
R12e

H0−H1 , (2.12)
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R30=
ρ3
ρ2

R23e
H2−H3 , ∀j=1, · · · ,N, ∀X ∈Σ

(Again the dependence of the rates and Hk on the site j is made implicit for ease of
notation).

Thus, if for example the “death” rates R10, R20, and R30, the rate of conversion
from congestus to deep, R12, and the prior distribution are known, then the three
remaining rates are fully determined by the equations in (2.12) provided the Hamil-
tonian H is also known. To close these equations we need to make a few assumptions
on those rates and the Hamiltonian H.

Assumption I: We assume that the “death” rates depend only on the large scale
state, i.e, independent of the state X of the system.

Rk0=
1

τk0
hk0,k=1,2,3, (2.13)

where τk0 are (arbitrary) background time scales that can be determined from data
and hk0 are prescribed functions of the external potential U . For simplicity in expo-
sition, the dependence of hkl on U is not written explicitly.

Assumption II: The rate of conversion of congestus to deep is assumed to be
proportional to the exponential energy difference between “deep” and “congestus”
states.

R12=
1

τ12
h12(U)eH1−H2 . (2.14)

Here again τ12 is a background time scale of creation of deep from congestus. Note that
the dependence of R12 on the energy difference is such that H1−H2>0 implies the
rate of conversion from congestus to deep is amplified (exponentially) if the targeted
state has a lower energy level. As we will see below, the same is true for the remaining
birth rates although they are systematically derived from the partial balance equation
(2.9) or equivalently (2.12).

The background prior distribution: To construct a background prior distribu-
tion, we introduce the background transition rates

R̃kl=
hkl

τkl
, k,l=0,1,2,3, (2.15)

where τkl are some background time scales and hkl are the exogenous factors that
depend on the large-scale (climate model) variables U .

We define ρ as the equilibrium distribution, solution of (2.12) when the Hamilto-
nian is zero, i.e, when local interactions are ignored. We have [17]









ρ0
ρ1
ρ2
ρ3









=
1

Z













1
R̃01

R̃12+R̃10(

R̃02+
R̃01R̃12

R̃12+R̃10

)

/(R̃23+R̃20)

R̃23

R̃30

(

R̃02+
R̃01R̃12

R̃12+R̃10

)

/(R̃23+R̃20)













. (2.16)

Thus, given the death rates and the rate of conversion of congestus to deep, as by
assumptions I and II, the dynamical process having the Gibbs canonical equilibrium
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measure given in (2.11) is uniquely determined in terms of the Hamiltonian H and
the background rates R̃kl. We have

Rk0= R̃k0, k=1,2,3,

R12= R̃12e
H1−H2 ,

R01=(R̃12+R̃10)
ρ1
ρ0

eH0−H1 = R̃01e
H0−H1 , (2.17)

R02=
1

ρ0
(ρ2R̃20−ρ1R̃12)e

H0−H2 +
ρ3
ρ0

R̃30e
H0−H3 ,

R23=
ρ3
ρ2

R̃30e
H2−H3 = R̃23e

H2−H3 .

In order to guarantee that the rate R02 is non negative, a physical constraint
must be imposed on the above relationships. Simple calculation shows that

R02≥0 ⇐⇒ eH2−H3 ≥1− ρ0
ρ2

R̃02

R̃23

.

This suggests the following constraint on the Hamiltonian:

min
X∈Σ

eH2(X)−H3(X)≥1− ρ0
ρ2

R̃02

R̃23

. (2.18)

Given the background prior and background transition rates, this in fact imposes
a constraint of the interaction potential that prevents the local interactions from
severely limiting the rate at which deep convective clouds are converted into stratiform
clouds, especially, when ρ2R̃23>ρ0R̃02, i.e, when the background rate of conversion
of deep to stratiform is larger than the background rate of birth of deep convective
clouds. This is in agreement with the general idea that if deep convective clouds have
the tendency of being converted to stratiform anvils with a high probability, then the
power of local interactions to reduce this tendency is limited.

2.3. The microscopic Hamiltonian and the nearest neighbour interac-

tion matrix. Let J11(|i−j|), J22(|i−j|), J33(|i−j|), J12(|i−j|), J13(|i−j|), and
J23(|i−j|) be non-negative functions that depend only on the distance |i−j| between
the two lattice sites i,j. This sequence of functions defines the matrix of microscopic

interaction potentials between neighbouring sites depending on their respective cloudy
states, congestus, deep, or stratiform clouds, respectively. In this paper we assume
nearest neighbour interactions to be more important and restrict the support of the
interaction functions to the size of one microscopic site. Accordingly we set

Jkl(|i−j|)=
{

J0
kl if |i−j|≤1,i 6= j,
0, otherwise.

(2.19)

Here J0
kl are constants defining the strength of the interactions and |.| is some ade-

quate norm defined on the lattice. For the examples of the Lp and L∞ distance norms,

defined, respectively, by |r−j|p=(|rx−jx|p+ |ry−jy|p)1/p and |r−j|∞=max(|rx−
jx|, |ry−jy|), we have: in the first case, each site j on the 2d lattice has exactly four
nearest neighbours, north, south, east, and west, denoted by jn, js, je, and jw, re-
spectively, while in the latter, each site has 8 neighbours: jn, jne, je, jw, jnw, js, jse,
and jsw; see figure 2.2.
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Fig. 2.2. Configuration of a microscopic site in red with its nearest neighbours. Left nb=8 and
right nb=4.

Let

Ek,l(X)=−
N
∑

i,j=1,i6=j

Jk,l(|i−j|)1{Xi=k}1{Xj=l},1≤k≤ l≤3. (2.20)

The (total) Hamiltonian energy is then given by

H(X,U)=
3

∑

k=1

3
∑

l=k

Ek,l(X). (2.21)

Note that the Hamiltonian does not depend on the external large scale factors as this
dependence is automatically incorporated into the background transition rates and
into the prior distribution. While E11, E22, and E33 represent the individual energies
associated with each cloud type, Ek,l,k< l represent cross correlation contributions.
It is important to establish some guidelines or intuitive rules about the relative im-
portance of the components of H, based on observation and/or numerical simulation
of self-organization of cloud types. According to the intuition that congestus clouds
are more chaotic than both deep and stratiform, that deep clouds and noisier than
stratiform, and that clouds of the same type will tend to clump together, one may
assume

liminf |E3,3|< liminf |E2,2|< liminf |E1,1| and liminfEk,l> liminfEk,k,l 6=k.

However, a systematic quantification of the interaction matrix J0=[J0(k,l)] is needed
and will be conducted in the future based on detailed LES simulations and/or in situ
observations.

Using (2.20) and (2.21), we can derive closed formulae for the energy differences
in (2.17).

(H0−H1)j =

N
∑

i=1,i6=j

J11(|i−j|)1{Xi=1}+J1,2(|i−j|)1{Xi=2}+J1,3(|i−j|)1{Xi=3},
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(H0−H2)j =

N
∑

i=1,i6=j

J22(|i−j|)1{Xi=2}+J1,2(|i−j|)1{Xi=1}+J2,3(|i−j|)1{Xi=3},

(H0−H3)j =
N
∑

i=1,i6=j

J33(|i−j|)1{Xi=3}+J1,3(|i−j|)1{Xi=1}+J2,3(|i−j|)1{Xi=2},

(H1−H2)j =

N
∑

i=1,i6=j

J22(|i−j|)1{Xi=2}−J11(|i−j|)1{Xi=1}+J1,2(|i−j|)×

(

1{Xi=1}−1{Xi=2}

)

−J1,3(|i−j|)1{Xi=3}+J2,3(|i−j|)1{Xi=3},

(2.22)

(H2−H3)j =

N
∑

i=1,i6=j

J33(|i−j|)1{Xi=3}−J22(|i−j|)1{Xi=2}−J1,2(|i−j|)1{Xi=1}

+J1,3(|i−j|)1{Xi=1}+J2,3(|i−j|)
(

1{Xi=2}−1{Xi=3}

)

.

Notation: If we adopt the notation

∆kHj =H(X/Xj =k)−H(X/Xj =0)≡Hk−H0, k=1,2,3,

then we obtain the systematic relations

(H0−Hk)j =−∆kHj ,k=1,2,3

and

H2−H3=(∆2−∆3)Hj , H1−H2=(∆1−∆2)Hj ,

so that in practice only the quantities ∆kHj need to be obtained.
This completes the description of the (microscopic) stochastic multicloud model

with nearest neighbour interactions, which can readily be coupled to a climate model
[17]. However, this is computationally impractical given the high dimensionality of
the system. The next task is to derive a systematic coarse grained stochastic process
which preserves all the desired dynamical features of the microscopic system but is
computationally cheap. In fact, the coarse grained process derived below is in essence a
family of multi-dimensional birth-death processes with immigration, representing the
stochastic dynamics of the cloud area fractions within each GCM grid box, which can
then be directly coupled to the GCM’s cumulus parameterization in lieu of otherwise
fixed or deterministically diagnosed values.

3. The coarse-grained process

We introduce the coarse lattice [49]

Lc≡ 1

m
Z
2∩ [0,1]× [0,1],

where m is a positive integer such that n=mq, q≥1, and n×n is the number of
microscopic sites, the size of the fine lattice L. The total number of coarse sites
M =m×m satisfies N = q2M and Lc⊂L. Each coarse site j,j=1, · · · ,M , corresponds
to a coarse cell Dj which contains exactly q2 microscopic sites belonging to the fine
lattice L so that

L=

M
⋃

j=1

Dj .
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Lc can be thought of as a horizontal slice of the GCM grid and each Dj is a horizontal
slice of one GCM grid box.

We consider the coarse grained stochastic process X̄t defined as the “three-
dimensional vector-field” that takes values on the coarse lattice Lc constructed di-
rectly and consistently from the microscopic process Xt as follows:

X̄j
t =(N1,N2,N3)

j
t , j=1, · · · ,N,

where

N j
k =

∑

i∈Dj

1{Xi
t=k}, k=1,2,3

represent, respectively, the number of microscopic sites, within the coarse cell Dj ,
that are congestus, deep, or stratiform. Here X̄t is a Markov process on the state
space

Σc=
{

{0,1,2, · · · ,q2}×{0,1,2, · · · ,q2}×{0,1,2, · · · ,q2}
}M

.

The cloud area fractions of congestus, deep, and stratiform cloud types are obtained
by dividing Nk by the number of sites contained in each coarse cell Dj :

σj
c =

1

q2
N1, σj

d=
1

q2
N2, σj

s =
1

q2
N j

3 . (3.1)

We introduce the coarse-graining function F defined from Σ to Σc by [49, 50]

F (X)j = X̄j =(N1,N2,N3)
j . (3.2)

We recall that f 7−→Ef(Xt) is the semi-group of the Markov process Xt if it
satisfies (2.7).

Following [50], the coarse graining procedure starts by setting f(X)= f̄(F (X)) in
(2.7), where F is the coarse-graining function given in (3.2) and f̄ is a test function
in L∞(Σc). This yields

d

dt
Ef̄(X̄t)=E

2
∑

η=−3,η 6=0

M
∑

i=1





∑

j∈Di

C(Xt,j,η)f(Xt+ηej)−





∑

j∈Di

C(Xt,j,η)



 f̄(X̄t)



 .

(3.3)

We now need to express the factors f(Xt+ηej) in terms of f̄(X̄t+ āi), where āi is
some perturbation of X̄t that involves changes only within the coarse cell Di, i.e, a
single coarse site.

We introduce the family of three unit vectors defined on Σc:

For i′=1,2, · · · ,M, (ēki )
i′ =

{

(δ1k,δ2k,δ3k), if i′= i,
(0,0,0), elsewhere,

(3.4)

k=1,2,3. We fix i, 1≤ i≤M and let j, 1≤ j≤N be an arbitrary microscopic site
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contained in Di. We have

f(Xt+ηej)=







































f̄(X̄t− ē3i ) if η=−3 : death of one stratiform,
f̄(X̄t− ē2i ), if η=−2 : death of one deep,
f̄(X̄t− ē1i ), if η=−1 : death of one congestus,
f̄(X̄t+ ē1i ), if η=1 : birth of a congestus,

f̄(X̄t+ ē2i − ē1i ), if η=1 : conversion of a congestus to a deep,
f̄(X̄t+ ē3i − ē2i ), if η=1 : conversion of a deep to a stratiform,
f̄(X̄t+ ē2i ), if η=2 : birth of a deep,

(3.5)
covering all the microscopic infinitesimal transitions in (2.4). Equation 3.3 then be-
comes

d

dt
Ef̄(X̄t)=E

M
∑

i=1

∑

R̃kl 6=0





∑

j∈Di

Rj
kl1{Xj

t=k}





[

f̄(X̄t+ ēli− ēki )− f̄(X̄t)
]

, (3.6)

where ē0i is the zero vector. According to the conditional expectation formula (E[X]=
E[E[X/Y ]], e.g., [56]), this equation is viewed as the semi-group formulation of the
coarse-grained Markov process which is defined at each coarse cell Di, X̄

i
t := X̄t(Di),

as a multi-dimensional birth-death process with immigration [57] whose birth, death,
and immigration rates are given by the conditional expectations:

R̄i
0k≡E





∑

j∈Di

Rj
0k1{Xj

t=0}/X̄
i
t



 ,k=1,2 : Birth of one congestus or one deep, resp.,

R̄i
k0≡E





∑

j∈Di

Rj
k01{Xj

t=k}/X̄
i
t



 ,k=1,2,3 : Death rates,

R̄i
12≡E





∑

j∈Di

Rj
121{Xj

t=1}/X̄
i
t



 : Conversion of one congestus to one deep, (3.7)

R̄i
23≡E





∑

j∈Di

Rj
231{Xj

t=0}/X̄
i
t



 : Conversion of one deep to one stratiform.

We obtain

d

dt
Ef̄(X̄t)=E

M
∑

i=1

R̄i
30

[

f̄(X̄t− ē3i )− f̄(X̄t)
]

+R̄i
20

[

f̄(X̄t− ē2i )− f̄(X̄t)
]

+R̄i
10

[

f̄(X̄t− ē1i )− f̄(X̄t)
]

+R̄i
01

[

f̄(X̄t+ ē1i )− f̄(X̄t)
]

+R̄i
12

[

f̄(X̄t+ ē2i − ē1i )− f̄(X̄t)
]

+R̄i
23

[

f̄(X̄t+ ē3i − ē2i )− f̄(X̄t)
]

+R̄i
02

[

f̄(X̄t+ ē2i )− f̄(X̄t)
]

, (3.8)

where the expectations are now taking on the probability space of the coarse configu-
rations X̄t∈Σc. Because the microscopic (individual) decay rates are assumed to be
independent of the microscopic configuration (2.13), the coarse-grained death rates
are completely determined from the knowledge of the coarse-grained configuration X̄t.
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We have from (3.7)

R̄k0=
1

τk0
hk0(U)Nk

t ,k=1,2,3. (3.9)

The remaining task is to derive appropriate approximations for the birth and immi-
gration rates in terms of the coarse-grained configuration X̄t.

While the conditional expectations can be expressed explicitly in terms of X̄t, the
resulting formula may be very complicated and computationally expensive. Moreover,
the coarse grained process resulting from the exact computation of these “integrals”
may not be necessarily formulated in terms of a coarse-grained Hamiltonian having
a Gibbs canonical measure as its equilibrium distribution, a highly desired feature
because it facilitates the theoretical knowledge of the equilibrium distribution. Thus,
instead of computing exactly or using highly accurate quadrature formulae to compute
the conditional expectations in (3.7), here we use (partial) detailed balance with
respect to an assumed Gibbs equilibrium measure for the coarse grained process as a
design principle to derive approximate values for the coarse-grained transition rates
in (3.7).

3.1. Coarse-grained Gibbs equilibrium measure and detailed balance.

Let X̄i
t =(N1,i

t ,N2,i
t ,N3,i

t ) be the coarse grained process and āηi ,1≤η≤7 be the per-
turbations of X̄t that are associated with each one of the seven (allowed) infinitesimal
transitions of the coarse grained process in (3.7). Here the index i refers to a coarse
cell Di, 1≤ i≤M . For simplicity, we denote by C̄(X̄t,η,i), 1≤η≤7 the infinitesimal
transition rates of X̄t. Each transition rate is associated with a specific perturbation
of the process so that Prob{X̄t+∆t= X̄t+aiν}= C̄(X̄t,η,i)∆t. We have

C̄(X̄t,k,i)= R̄i
k0, āik=−ēki , k=1,2,3 (the death rates),

C̄(X̄t,k,i)= R̄i
0,k−3, āik= ēk−3

i , k=4,5 (the birth rates), (3.10)

C̄(X̄t,6,i)= R̄i
12, āi6= ē2i − ē1i , (immigration from congestus to deep),

C̄(X̄t,7,i)= R̄i
23, āi7= ē3i − ē2i , (immigration from deep to stratiform).

We require similar semi-detailed balance relations as for the microscopic process
in (2.9) to ensure that the coarse-grained measure µ̄ is an equilibrium measure, i.e,

∑

X̄∈Σc

M
∑

i=1

7
∑

η=1

C̄(X̄t,η,i)µ̄(X̄)
[

f̄(X̄t+ āiη)− f̄(X̄t)
]

=0.

Local equilibrium on each coarse cell (i.e, partial detailed balance) then requires

7
∑

η=1

C̄(X̄t,η,i)µ̄(X̄)
[

f̄(X̄t+ āiη)− f̄(X̄t)
]

=0, ∀X̄ ∈Σc, ∀i=1,2, · · · ,M,

where the transition rates and elementary perturbations āi are given in (3.10). This is
indeed equivalent to setting balance relations between birth, death, and immigration
transitions for each cloud type and each coarse cell Di,i=1, · · · ,M :

[

R̄i
12(X̄t+e1)+R̄i

10(X̄t+e1)
]

µ̄(X̄t+e1)=R̄i
01(X̄t)µ̄(X̄t),

[

R̄i
20(X̄t+e2)+R̄i

23(X̄t+e2)
]

µ̄(X̄t+e2)=R̄i
02(X̄t)µ̄(X̄t)+R̄i

12(X̄t+ ē1)µ̄(X̄t+ ē1),
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R̄i
30(X̄t+ ē3)µ̄(X̄t+ ē3)=R̄i

23(X̄t+ ē2)µ̄(X̄t+ ē2), (3.11)

which could be easily surmised from (2.10).
As in the microscopic case, we assume that µ̄ is a Gibbs canonical equilibrium

measure:

µ̄(dX̄)∝ e−H̄(X̄,U)P̄Q
M (dX̄), (3.12)

where H̄ is a coarse grained Hamiltonian to be determined (below) and P̄Q
M is the

coarse-grained prior distribution:

P̄Q
M (dX̄)=

M
∏

j=1

ρ̄Q(dX̄j), (3.13)

ρ̄Q(N
1
j =k1,N

2
j =k2,N

3
j =k3)=

Q!

k1! k2! k3! k0!
ρk1

1 ρk2

2 ρk3

3 ρk0

0 , j=1, · · · ,M,

where k0=Q−k1−k2−k3. The coarse grained Hamiltonian H̄ will be constructed
based on an approximation of some sort of the microscopic Hamiltonian introduced
above so that the dynamics and equilibrium measure of the coarse grained Hamiltonian
are somewhat similar to the microscopic dynamics: H̄(X̄)≈H(X) if F (X)= X̄.

For simplicity in exposition, we introduce the notation

H̄k(X̄,i) := H̄(X̄t+eki ), k=1,2,3.

Then, we obtain the following equations for the coarse grained birth and immigration
rates, in terms of the coarse-grained death rates in (3.9):

R̄
i
23(X̄+ ē

2
i )P̄

Q

M (X̄+ ē
2
i )=R̄

i
30(X̄+ ē

3
i )P̄

Q

M (X̄+ ē
3
i )e

H̄2(X̄,i)−H̄3(X̄,i)

=
h30

τ30
(N3

t +1)P̄Q

M (X̄+ ē
3
i )e

H̄2(X̄)−H̄3(X̄,i)
, (3.14)

R̄
i
02(X̄)P̄Q

M (X̄)=−R̄
i
12(X̄+e

1
i )P̄

Q

M (X̄+ ē
1
i )e

H̄(X̄)−H̄1(X̄,i)

+
[

R̄
i
20(X̄+ ē

2
i )+R̄

i
23(X̄+ ē

2
i )
]

P̄
Q

M (X̄+ ē
2
i )e

H̄(X̄)−H̄2(X̄,i)
,

[

R̄
i
01(X̄)+R̄

i
02(X̄)

]

P̄
Q

M (X̄)=R̄
i
10(X̄+ ē

1
i )P̄

Q

M (X̄+ ē
1
i )e

H̄(X̄)−H̄1(X̄,i)

+
[

R̄
i
20(X̄+ ē

2
i )+R̄

i
23(X̄+ ē

2
i )
]

P̄
Q

M (X̄+ ē
2
i )e

H̄(X̄)−H̄2(X̄,i)

=R̄
i
10(X̄+ ē

1
i )P̄

Q

M (X̄+ ē
1
i )e

H̄(X̄)−H̄1(X̄,i)

+R̄
i
20(X̄+ ē

2
i )P̄

Q

M (X̄+ ē
2
i )e

H̄(X̄)−H̄2(X̄,i)

+R̄
i
30(X̄+ ē

3
i )P̄

Q

M (X̄+ ē
3
i )e

H̄(X̄)−H̄3(X̄,i)
.

These are three equations with four unknowns (R̄i
01,R̄

i
02,R̄

i
12,R̄

i
23).

A sensible solution to this underdetermined system can be obtained by fixing
an “approximate” value for R̄i

12, according to (2.17), and then solve for the remain-
ing unknowns. Let X̄i=(N1

i ,N
2
i ,N

3
i ,N

4
i ) where Nk,k=0,1,2,3, · · ·i=1, · · · ,M are

the numbers of respectively clear sky, congestus, deep, and stratiform sites within
the coarse cell Di. We have N0

i =Q−N1
i −N2

i −N3
i , where Q= q2 is the number of

microscopic sites within each coarse cell Di.
Given H̄(X̄), we set

R̄i
12(X̄+e1i )=

h12

τ12
(N1+1)eH̄1(X̄,i)−H̄2(X̄,i), (3.15)
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so that

R̄i
12(X̄+e1i )e

H̄(X̄)−H̄1(X̄,i)=
1

τ12
h12(N

1+1)eH̄(X̄)−H̄2(X̄,i)

and

R̄i
12(X̄)=N1

i

h12

τ12
eH̄(X̄)−H̄(X̄−ē1i+ē2i ).

Let

∆k
iH(H̄) := H̄k(X̄,i)−H̄(X̄).

We have

R̄i
12(X̄)=

N1
i

τ12
h12e

(∆1

i−∆2

i )H̄(X̄−ē1i ). (3.16)

Before we derive the remaining transition rates, let us note that the coarse grained
prior in (3.13) satisfies

PQ
M (X̄+ek)

PQ
M (X̄)

=
ρk
ρ0

N0
i

Nk
i

.

Then, combining (3.9), (3.13), (3.14), and (3.15) yields

R̄i
23(X̄+ ē2i )=

ρ3
ρ2

h30

τ30
(N2

i +1)e(∆
2

i−∆3

i )H̄(X̄)=
h23

τ23
(N2

i +1)e(∆
2

i−∆3

i )H̄(X̄)

⇐⇒ Ri
23(X̄)=N2

i

h23

τ23
e(∆

2

i−∆3

i )H̄(X̄−e2i )

R̄i
02=

[

ρ3
ρ0

h30

τ30
e−∆3

i H̄(X̄)+

(

ρ2
ρ0

h20

τ20
− ρ1

ρ0

h12

τ12

)

e−∆2

i H̄(X̄)

]

N0
i (3.17)

R̄i
01=

h01

τ01
N0

i e
−∆1

i H̄(X̄)

Remark 3.1. The equal = sign to assign the new expression for the coarse grained
rates R̄i

kl in (3.9), (3.16), (3.17) is used for convenience although the main approxi-
mation will depend on the manner in which the coarse grained Hamiltonian will be
constructed. This is performed next.

3.2. The coarse grained Hamiltonian and mean value approximation.

It remains to compute appropriate approximate values for the potential differences

V̄kl(X̄,i) := H̄k(X̄,i)−H̄l(X̄,i), k,l=0,1,2,3,

to close the equations in (3.7). Here the convention H̄0(X̄,i)= H̄(X̄) is used. Let
∆kH̄(X̄,i)= H̄(X̄+eki )−H̄(X̄), k=1,2,3, i=1, · · · ,M . Then

V̄kl(X̄,i)=∆kH̄(X̄,i)−∆lH̄(X̄,i).
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From the microscopic process, we have

∆kH(X,j)=−
3

∑

l=1

N
∑

r=1,r 6=j

Jkl(|r−j|)1{Xr=l}. (3.18)

Let Di be the coarse cell that contains the microscopic site j (j∈Di). We derive
an approximation ∆kH̄(X̄,i) for ∆kH(X,j) for all j∈Di following the main strategy
used in [49, 50]. However, instead of using a Taylor expansion as Katsoulakis et al.
[49, 50] did, here we use conditional expectation, as a rather exact estimation of the
coarse grained potential differences. The Taylor approximation in [49, 50] is based on
the long range interaction potential assumption and cannot be justified (at least in
theory) for the case of nearest neighbour interactions. Other types of approximations
were previously used for the short range interaction case but they require multi-body
interactions [54].

Recall that the exact dynamics of the coarse grained process are given by the
conditional expectation coarse grained rates in (3.7), that can be written generically
as

R̄i
kl=E





∑

j∈Di

Rj
kl1{Xj=k}/X̄

i



 .

When the microscopic rates Rj
kl do not depend onX this expectation can be computed

exactly without the knowledge of the conditional distribution of X given X̄. In this
case we have R̄i

kl=RklN
k. This is the case for the death rates in (3.9) and for all the

transition rates in the case when local interactions were ignored [17].
Due to lack of knowledge, we assume that once the coarse process is fixed, the par-

ticles are “redistributed” uniformly within each coarse cell. This somewhat amounts
to ignoring the effect of interactions across coarse cell interfaces on the distribution
of particles within each coarse cell. More elaborate distributions that would take
into account such interactions can be easily constructed but the present assump-
tion is acceptable as a zeroth order approximation. Under such circumstances, the
conditional distribution of X (within each coarse cell Di) given the coarse grained
process X̄i=(N i

1,N
i
2,N

i
3), 1≤ i≤M , is that of a random variable consisting of ran-

domly choosing a ball from an urn containing N i
1 blue, N i

2 yellow, N i
3 red, and

N0=Q−N i
1−N i

2−N i
3 white balls, and these conditional expectations can be easily

computed.
At each site j∈Di, we have

P{Xj =k}=Nk/Q, k=1,2,3 and P{Xj =0}=1−(N1+N2+N3)/Q=
N0

Q
.

For j1,j2, · · · ,jr ∈Di, the joint distribution of Xj1 ,Xj2 , · · · ,Xjr is a multinomial distri-
bution corresponding to choosing r balls from an urn containing N i

1 blue, N i
2 yellow,

N i
3 red, and N0=Q−N i

1−N i
2−N i

3 white balls.
Thus, the expectations in (3.7) can indeed be expressed exactly for any known

interaction potentials Jkl. However, for the sake of simplicity we use the mean value
approximation:

E





∑

j∈Di

R̃kle
(∆k−∆l)H(X,j)

1{Xj=k}/X̄
i




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≈e(∆
k−∆l)E[H(X,j)/X̄,j∈Di]×

∑

j∈Di

R̃klE[1{Xj=k}/X̄]

=NkR̃kle
(∆k−∆l)E[H(X,j)/X̄,j∈Di]. (3.19)

Although the exact analytical expression for the conditional expectations in (3.7)
can be easily obtained, under the assumption of uniform conditional distribution (see
Appendix A), the approximation in (3.19) is preferred and used here because, besides
its computational simplicity, it preserves the Hamiltonian formulation of the process;
It results in a coarse-grained Hamiltonian Markov process and a coarse-grained Gibbs
canonical equilibrium measure. Nevertheless, the numerical tests performed in Section
5 demonstrate that the approximate-Hamiltonian coarse grained dynamics are quali-
tatively similar to the primitive microscopic process in terms of the time evolution of
the cloud area fractions.

In fact, the approximation in (3.26) is equivalent to assuming the following defi-
nition/construction of the coarse-grained potential in (3.16) and (3.17), based on the
conditional expectation:

∆kH̄(X̄,i)=E
[

∆kH(X,j)/X̄,j∈Di

]

, (3.20)

i.e, the coarse grained potential difference at coarse cell Di is given by the conditional
expectation of the corresponding microscopic potential difference at all sites j∈Di

given the knowledge of X̄.
Let nb be the total number of interacting nearest neighbours of each microscopic

site (figure 2.2). We assume nb is constant. Let Di be the coarse cell containing the
site j and let Dd

i ,d=1, · · · ,nb be the nb neighbouring coarse cells of Di. The expression
for microscopic potential difference reduces as follows. We have for all 1≤k,l≤3,

N
∑

r=1,r 6=j

Jkl(|r−j|)1{Xr=l}=
∑

r∈Di,r 6=j

Jkl(|r−j|)1{Xr=l}+

nb
∑

d=1

∑

r∈Dd
i

Jkl(|r−j|)1{Xr=l}.

For each j∈Di, we let Gk
j /i be the conditional expectation of ∆kH(X,j) given

X̄ and given j∈Di:

Gk
j/i=E[∆kH(X,j)/X̄i,j∈Di],

let Ds
i , D

e
i , D

n
i , D

w
i , D

ne
i , Dnw

i , Dse
i , and Dsw

i denote respectively the south, east,
north, west, north-east, north-west, south-east, and south-west coarse cell neighbours
of the cell Di and let X̄ixy be the value of the coarse process at the coarse cell Dxy

i .
Then under the key assumption of uniform redistribution of particles inside each
coarse cell, for fixed X̄t, we have

Gk
j/i=− 1

Q

3
∑

l=1

J0
kl×



























































nbN
i
l , if j∈ D̊i,

(nb−n′
b)N

i
l +n′

bN
is
l , if j∈∂D̊s

i ,

(nb−n′
b)N

i
l +n′

bN
iw
l , if j∈∂D̊w

i ,

(nb−n′
b)N

i
l +n′

bN
in
l , if j∈∂D̊n

i ,

(nb−n′
b)N

i
l +n′

bN
ie
l , if j∈∂D̊e

i ,
n1N

i
l +n2N

is
l +n2N

iw
l +n3N

isw
l , if j∈∂Ds

i ∩∂Dw
i ,

n1N
i
l +n2N

in
l +n2N

iw
l +n3N

inw
l , if j∈∂Dn

i ∩∂Dw
i ,

n1N
i
l +n2N

is
l +n2N

ie
l +n3N

ise
l , if j∈∂Ds

i ∩∂De
i ,

n1N
i
l +n2N

in
l +n2N

ie
l +n3N

ine
l , if j∈∂Dn

i ∩∂De
i .
(3.21)
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Here D̊i is the interior of the coarse cell Di, i.e, all the microscopic sites within Di

which do not share an interface with a neighbouring coarse cell, ∂D̊x
i ,x=n,s,e,w are

the boundary alleys formed by sites of Di that share an interface with the northern,
southern, eastern, and western coarse cells, respectively, and ∂Dx

i ∩∂Dy
i ,x 6=y repre-

sent the four corner sites of Di (see figure 2.1). The coefficients n′
b, n1, n2, and n3

are defined in (3.22):

nb n
′
b n1 n2 n3

4 1 2 1 0
8 3 3 2 1.

(3.22)

Taking the expectation over j, we get for q≥2

∆kH̄(X̄)=E[Gk
j/i]

=− 1

Q2

3
∑

l=1

J0
kl

[(

nb(q−2)2+4(nb−n′
b)(q−2)+4n1

)

N i
l

+(n′
b(q−2)+2n2)

(

N is
l +N in

l +N ie
l +N iw

l

)

+n3

(

N isw
l +N ise

l +N inw
l +N ine

l

)]

.
(3.23)

Recall that q=
√
Q is the resolution of the coarse cell. Note also that

∆k
i H̄(X̄− ēli)=∆k

i H̄(X̄)+
1

Q2

(

nb(q−2)2+4(nb−n′
b)(q−2)+4n1

)

J0
k,l. (3.24)

We note that despite the fact that (3.23) is derived for q≥2, it remains valid when
q=1, in which case the coarse grained and the microscopic formulations are equivalent.

Equations (3.9), (3.16), (3.22), (3.23), and (3.24) completely determine the in-
finitesimal rates of an ergodic coarse grained process, for which the probability mea-
sure in (3.12) is the stationary distribution. It remains to express the coarse grained
Hamiltonian.

According to the derivation above an expression for the coarse grained Hamilto-
nian is given by the conditional expectation given X̄:

H̄(X̄)=E[H(X)/X̄].

Thus

H̄(X̄)=
3

∑

k=1

3
∑

l=1

E[Ekl(X)/X̄]+
3

∑

k=1

gk(U)
M
∑

i=1

N i
k, (3.25)

E[Ekl(X)/X̄]=−
3

∑

k=1

N
∑

j=1

3
∑

l=1

N
∑

r=1,r 6=j

E
[

Jkl(|j−r|)1{Xj=k}1{Xj=l}/X̄
]

. (3.26)

Again conditioning on j∈Di, 1≤ j≤N, 1≤ i≤M (with N =QM), we arrive at

E[Ekl(X)/X̄]

=− 1

Q2

3
∑

k=1

3
∑

l=1

M
∑

i=1

J0
kl

[(

nb(q−2)2+4(nb−n′
b)(q−2)+4n1

)

N i
l
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+(n′
b(q−2)+n2)

(

N is
l +N in

l +N ie
l +N iw

l

)

+n3

(

N isw
l +N ise

l +N inw
l +N ine

l

)]

N i
k,

(3.27)

which is consistent with (3.23). This completes the description of the coarse grained
Hamiltonian. Interestingly, the coarse-grained Hamiltonian in (3.25)-(3.26) is identical
to the one derived in [50] for one-type particle systems using Taylor expansions. This
is not surprising at all since the Taylor expansion is performed based on the mean
value on the coarse cell. However, the Taylor approximation procedure requires long
range [49, 50] or multi-body interactions [54].

4. Equilibrium coverage and mean field equations

In equilibrium, the mean cloud coverage area fractions of congestus, deep, and
stratiform clouds are given respectively by

Eσc=
1

N

N
∑

j=1

E[1{Xj=1}]=
1

N

N
∑

j=1

Prob{Xj =1},

Eσd=
1

N

N
∑

j=1

E[1{Xj=2}]=
1

N

N
∑

j=1

Prob{Xj =2}, (4.1)

Eσs=
1

N

N
∑

j=1

E[1{Xj=3}]=
1

N

N
∑

j=1

Prob{Xj =3},

Prob{Xj =k}=
∑

x∈Σ,xj=k

P (X=x)=
1

Z

∑

x∈Σ,xj=k

PN (X=x)e−H(x),

where Z=
∑

x∈ΣPN (X=x)exp[−H(x)] and PN (X=x)=
∏N

r=1ρxr . When the local
interactions are ignored, we have Prob{Xj =k}=ρk and thus Eσc=ρ1, Eσd=ρ2,
and Eσs=ρ3, but when local interactions are involved there is no obvious analytical
formula for the probabilities in (4.1) and a brute force computation is nearly impos-
sible; for a simple 10×10 lattice, the evaluation of Z alone involves the summation
of about 1060 terms! Nevertheless, as shown by the numerical simulations below, the
dynamical evolution of the stochastic process converges quickly to its statistical equi-
librium and its running mean can be used to estimate the mean cloud area fractions.
Another cheap way to obtain approximate values for the equilibrium area fractions
is through the systematic derivation of the mean field equations, i.e, the differential
equations satisfied by the expected values of the area fractions in (4.1), in the limit
when the number of lattice sites is infinite. Formally, the mean field equations [48]
are obtained by considering in (3.6) the family of test functions

f̄x
k (X̄)=

N i
k

Q
for x∈Di, i=1,2, · · · ,M, k=1,2,3 (4.2)

and taking the limit when both Q and M are infinitely large. This yields

∂σ1

∂t
=α01σ0−(α10+α12)σ1,

∂σ2

∂t
=α02σ0+α12σ1−(α20+α23)σ2, (4.3)

∂σ3

∂t
=α23σ2−α30σ3.
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Here αkl(x,t)σk is the formal limiting value of the infinitesimal rates E[C(X,j,η)] in
(2.5) where x∈Di and σ0=1−σ1−σ2−σ3, σ1=Eσc, σ2=Eσd, σ3=Eσs.

According to (2.17), we have

αk0= R̃k0,k=1,2,3, α01= R̃01e
Γ10 , α12= R̃12e

Γ12 , α23= R̃23e
Γ23 ,

α02=
1

ρ0
(ρ2R̃20−ρ1R̃12)e

Γ20 +
ρ3
ρ0

R̃30e
Γ30 , (4.4)

where [48]

Γ0k(x)=

3
∑

l=1

Jkl ∗σl(x) and Γkl(x)=Γ0l(x)−Γ0k(x), (4.5)

with f ∗g(x)=
∫

f(x−y)g(y)dy.
When solving the mean field equation (4.3) numerically the convolutions in (4.5)

are approximated according to the quadrature formula [4]

Jkl ∗σl(x1,x2)≈J0
kl [σl(x1+∆x,x2)+σl(x1−∆x,x2)

+σl(x1,x2+∆x)+σl(x1,x2−∆x)+ σl(x1+∆x,x2+∆x)+

σl(x1+∆x,x2−∆x)+σl(x1−∆x,x2+∆x)+σl(x1−∆x,x2−∆x)]
(4.6)

when nb=8 and

Jkl ∗σl(x1,x2)≈J0
kl [σl(x1+∆x,x2)+σl(x1−∆x,x2)

+ σl(x1,x2+∆x)+σl(x1,x2−∆x)] (4.7)

when nb=4. Here ∆x is the numerical grid size and (x1,x2) is an arbitrary point of
the grid.

5. Numerical tests

Here the microscopic and coarse-grained stochastic models and the mean field
equations are solved numerically and their solutions are compared to each other in
terms of the cloud-coverage area fractions. Both the cases with and without local
interactions are considered. Recall that in the case without local interactions, J0=0,
the microscopic and coarse-grained processes yield the same exact solutions because
the coarse grained rates are recovered exactly without any approximation.

To sample the stochastic models we use the exact algorithm of Gillespie [58,
59]. Given a configuration, X or X̄, of respectively the microscopic or the coarse-
grained stochastic process, the simulation algorithm consists in first finding the time at
which the first transition occurs by simply taking a random sample of the exponential
distribution whose rate is the sum of the rates of all the possible transitions, and then
a second random sample determines which or these transitions actually occurs. The
mean field equation (4.3) is integrated by the Matlab routine ODE45 on a 10×10
grid.

Unless otherwise stated all the simulations use the standard parameters listed in
Table 5.1. We note that most of these parameters (including the time scales) are
not physically realistic. They are picked arbitrarily just for the sake of illustration.
More realistic time scales, for the case without local interaction, can be found in the
disciplinary publications [45, 46] and especially in [47] where the stochastic multicloud
model is calibrated and assessed against observations.



1400 A COARSE GRAINED MULTI-TYPE PARTICLE INTERACTING SYSTEM

In figure 5.1, two realizations of the stochastic multicloud lattice model, (a) with
and (b) without (J0=0) local interactions are displayed. As we can see from figure 5.1,
one of the main differences from the local interactions and non local interaction models
is that local interactions allow self-organization of convection into coherent patches.
While in figure 5.1(b) the distribution of cloud types within the lattice appear to
be completely random, figure 5.1(a) show a different picture. It is characterized by
the clustering (especially, of congestus and deep) cloud states to form distinct and
persistent patches. Due to the largest coefficient of congestus-congestus interaction
in the interaction matrix in Table 5.1 congestus patches are more prominent and
consistently seconded by deep convective patches. We note that 40×40 sites are used
in figure 5.1 for a better illustration.

τ10=5 hours τ20=5 hours τ30=5 hours
τ12=2 hours τ01=2 hours τ02=2 hours
τ23=3 hours
C=0.25 Convection potential
D=0.5 Tropospheric dryness

h10=Γ(D)/τ10 h20=(1−Γ(C))/τ20 h30=1/τ30
h12=Γ(C)(1−Γ(D))/τ12 h23=Γ(C)/τ23 h01=Γ(D)Γ(C)/τ01
h02=(1−Γ(D))Γ(C)/τ02

Γ(x)=1−e−x if x>0, 0 otherwise

J0 Interaction matrix





0.25 0 0
0 0.125 0.05
0 0.05 0.125





n=20 q=10 nb=8

Table 5.1. List of parameter values used in the numerical simulations. See [17] for physical
meanings.

(A) Local Interaction
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(B) No Local Interaction
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Fig. 5.1. Snapshot of the multicloud microscopic lattice model. (a) With local interactions and
(b) without local interactions. n=40.

In figure 5.2, we plot the time evolution of the cloud coverage for the case of local
interactions using (a) the microscopic model and (b) the coarse grained process and
(c) for the case of non local interactions J0=0 [17] for the parameter values listed in
Table 5.1. All the simulations are run for a total time period of 10 days starting from
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(A) Local Interaction (q=1)
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(B) Local Interaction: Coarse grained
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Fig. 5.2. Time evolution of cloud area fractions for the case of local interactions using (a)
the microscopic lattice model and (b) the coarse grained process and (c) for the case without local
interactions. Solid: stochastic process, Dashes: mean field equation, Dots: prior distribution.

n,q Model σc σd σs

MF 0.24179 0.22822 0.076831
n=10, q=1 Micro 0.27398 0.21947 0.069977
n=10, q=5 GC 0.23681 0.22037 0.084618
n=10,q=10 GC 0.24038 0.23089 0.076733
n=20, q=1 Micro 0.27634 0.21613 0.072294
n=20,q=5 GC 0.24018 0.225 0.077071
n=20,q=10 GC 0.24766 0.23021 0.077164
n=20,q=20 GC 0.25271 0.21896 0.080075
n=40,q=1 Micro 0.2576 0.22589 0.072762
n=40,q=10 GC 0.2394 0.22703 0.077575
n=40,q=20 GC 0.23521964 0.23386534 0.07783689

Table 5.2. Time averaged cloud area fraction for the stochastic and mean field models with
local interactions. The mean is based on a 10 days simulation and computed over the last 7.5 days
of the simulation to discard the transient.

random initial data. Recall that in the latter case the microscopic and coarse grained
models are equivalent. In each case, the stochastic time series are plotted on top of the
corresponding deterministic solution of the mean field equations in (4.3), the dashed
lines. A common feature for all the stochastic time series is that after a short transient
period they quickly converge to their statistical equilibrium and then undergo chaotic
variability oscillations of significant amplitude around their corresponding statistical
means. The mean field equations on the other hand converge monotonically to their
equilibrium values and stay locked there forever.

The dotted lines in figure 5.2 correspond to the background prior distribution
values. As expected while in the case without local interactions in figure 5.2(c) this
corresponds to mean field limit, significant deviations from the prior are noticeable
due to local interactions. Various numeral tests (not shown here) demonstrate that as
the strength of local interactions is increased these deviations become more and more
important. A too strong J0

1,1 value for example yields an equilibrium value locked at
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(A) n=10, Microscopic
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(B) n=10, Coarse Grained
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(C) n=40, Microscopic

congestus

deep
stratiform

clear

0 100 200 300 400 500
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Time (Hours)

C
lo

u
d
 c

o
u
v
e
ra

g
e

(D) n=40, Coarse Grained
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Fig. 5.3. Same as figure 5.2(a) and (b) but for n=10,40.

all sites being congestus and has a very weak variability.

While in the case of non-local interactions the stochastic time series oscillate
around the associated mean field equilibrium values, the local interactions time se-
ries appear to have a time average slightly off the corresponding mean field values,
especially in the case of the microscopic process (q=1); the congestus time series in
figure 5.2(a) for example oscillate above the mean field limit and is characterized by
very long excursions biased towards the accumulation of congestus, consistent with
the persistence of the congestus patches seen in figure 5.1. Importantly, the same
behaviour is also observed in the case of the coarse grained solution in figure 5.2(b)
but the excursions are slightly short lived and they seem to occur equally in both
directions. Indeed, from the formal derivation of the mean field equations in Section
4, convergence to the mean field limit occurs when both q and n are infinitely large.
This is somewhat corroborated by the results in table 5 where the time average of the
stochastic time series corresponding to the local interaction case are calculated and
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compared against the mean field limit for various values of q and n; see also the plots
in figure 5.3.

While a systematic mathematical investigation of the convergence issue is desir-
able, the goal of this work is to develop a coarse grained stochastic model which is
intermediate between the microscopic lattice model with multi-type interacting parti-
cles and its mean field limit for the case of local interactions as a physically improved
version of the stochastic multicloud of Khouider et al. [17].

6. Conclusion

A coarse graining methodology for multi-type particle interacting systems on a
lattice is developed here in the context of tropical convection. The aim is to provide
a systematic way to include local interactions between lattice sites as an extension
to the stochastic multicloud model of Khouider et al. [17]. The lattice system takes
values 0, 1, 2, and 3 at each single site according to whether the given site is clear sky
or occupied by congestus, deep, or stratiform cloud types.

The coarse grained strategy employed here follows the framework of Katsoulakis
et al. [49, 50], developed in the context of the one-type particle interacting system
best known as the Ising model. The main methodology consists in overlying a coarse
lattice on top of the fine-microscopic lattice and define a new order parameter that
counts the number of lattice sites that are occupied by each type of clouds within each
coarse cell. This results in a multidimensional birth-death process with immigration
whose transition rates are given by the conditional expectations of the sums of the mi-
croscopic transition rates over each coarse cell. When the effect of interactions across
coarse cells on the redistribution of particles with the coarse cells are ignored, the as-
sociated conditional probability mass function is simply the multinomial distribution
which permits in principle an easy integration of these expectation given the micro-
scopic interaction potentials. While under such an assumption the exact expectations
can be obtained in closed form, here a mean value approximation is adopted in order
to obtain approximate coarse rates that are in semi-detailed balance with respect to
a coarse grained Gibbs canonical measure and a coarse grained Hamiltonian, which
is used as a design principle. This is different from the Taylor approximation method
used in [49] which relies on the assumption of a long range interaction potential or the
approximation used in [54] which requires multi-body interactions. Nearest neighbour
interactions are more relevant for the tropical convection application mainly because
all the physical mechanisms through which cloud types can interact locally, besides
the large scale conditions, such as gravity waves, turbulent mixing, density currents,
etc., have a finite speed of propagation.

Numerical tests performed in Section 5 demonstrate that despite this crude ap-
proximation the coarse grained model captures the main stochastic variability of the
original microscopic model in terms of the total area coverage, i.e, the cloud fractions.
Moreover, the coarse grained process shows consistently a tendency to converge to
the mean field equations when both the number of coarse cell and the number of
microscopic sites are large.

The nearest neighbour interactions are represented by an interaction matrix whose
entries can be set arbitrarily according to the application and thus the model can be
easily adopted to other situations even if the number of particle types is augmented or
reduced. To augment the portability, both the situations of 4 and 8 nearest neighbours
are considered. However, for the case of tropical convection considered here, for
example, these entries are very uncertain. Nevertheless, they could be inferred from
detailed numerical simulations or from in situ measurements of clouds using well
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known statistical techniques such as Bayesian inference of parameters and the like.
Such methodologies are being developed by the author and various collaborators for
the background time scales τkl in (2.15). They can be easily extended to include
the interaction matrix coefficients into the picture, although this will considerably
increase the dimensionality of the parameter system, from 7 to 16. However, in
theory, physical intuition can be used to set up values for this matrix (as we did in
Section 5) in order to gain some understanding about the effect of local interactions
on the behaviour of the stochastic multicloud parameterization when coupled to a
climate model [17, 45, 46].
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Appendix A. Exact coarse grained rates. As stated above, the exact an-
alytical expression of the coarse-grained rates (3.7) can be easily obtained through
simple algebraic manipulations. This is illustrated here for the case of the birth rates
R̄i

0k, k=1,2. According to (3.7)

R̄i
0k=

∑

j∈Di

E[Rj
0k1{Xj=0}/X̄

i].

We have

Ri
0k=R̃0ke

−∆kH(X,j)= R̃0k exp





3
∑

l=1

N
∑

r=1,r 6=j

Jkl(|r−j|)1{Xr=l}





=R̃0k

3
∏

l=1

N
∏

r=1, 6=j

exp
[

Jkl(|r−j|)1{Xr=l}

]

. (A.1)

For j∈Di, let

mj
k=E



1{Xj=0}

3
∏

l=1

N
∏

r=1, 6=j

exp
[

Jkl(|r−j|)1{Xr=l}

]



 .

We assume that once the coarse variables are set, the particles are uniformly
distributed within each coarse cell. This amounts to ignoring the effect of the inter-
actions across coarse cells on the local redistribution of particles (see text). Then,
with the nearest neighbour potential assumption and when all the neighbouring cells
are within Di, the probability mass function related to this conditional expectation
is that of choosing sb blue, sy yellow, sr red, and nb+1−sb−sy−sr white balls,
0≤sb+sy+sr≤nb, from an urn containing containing N1 blue, N2 yellow, N3 red
and N0=Q−N1−N2−N3 white balls (a multivariate hyper-geometric random vari-
able). Thus for j∈ D̊i we have

mj
k := m̊j

k=
∑

0≤sb+sy+sr≤nb

P i
sb,sy,sr

exp
[

sbJ
0
k1+syJ

0
k2+srJ

0
k3

]

,
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where

P i
sb,sy,sr

=

(

N i
1

sb

)(

N i
2

sy

)(

N i
3

sr

)(

N i
0

nb+1−sb−sy−sr

)

/

(

Q

nb+1

)

.

(There are (q−2)2 such interior points j∈Di.) Similar formulae can be derived for
lattice sites near the boundary and a closed form for the expectations in (A.1) can be
obtained. The remaining details are a simple exercise of probability theory.

The errors associated with the mean value approximation can also, in principle, be
estimated in terms of the conditional variance of the microscopic potentials ∆kH(X,j)
given X̄, which can also be easily expressed in terms of the coarse-grained process.
We have for the birth rates, for example,

E
[

∣

∣R̄0k−R̄mv
0k

∣

∣

2
/X̄

]

=
(

N0R̃0k

)2

E
[

(

exp
(

−∆kH(X,j)
)

−exp
(

−∆kH̄(X̄)
))2

/X̄
]

≈
(

N0R̃0k

)2

Var
[

∆kH(X,j)/X̄
]

,

where the superscript mv refers to the mean value approximation.
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