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ON THE ASYMPTOTIC BEHAVIOR OF A BOLTZMANN-TYPE
PRICE FORMATION MODEL*
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Abstract. In this paper we study the asymptotic behavior of a Boltzmann-type price formation
model, which describes the trading dynamics in a financial market. In many of these markets trading
happens at high frequencies and low transaction costs. This observation motivates the study of the
limit as the number of transactions k tends to infinity, the transaction cost a to zero and ka = const.
Furthermore we illustrate the price dynamics with numerical simulations.
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1. Introduction

According to O’Hara [11] financial markets are characterized by two functions:
first by providing liquidity and second by facilitating the price. The evolution of the
price emerges from the microscopic trading strategies of the players and the trading
system considered. High frequency trading (HFT) is an automated trading strategy,
which is carried out by computers that place and withdraw orders within milli- or
even microseconds. In 2012 HFT accounted for approximately 52% of the overall US
equity trading volume.

This paper is concerned with the asymptotic behavior of

Jilt) = fealt) + = (T (1.1a)
90) = g .0) = < (9)e (1.10)

as 1 —0o. System (1.1) describes the distribution of buyers f = f(x,t) and vendors
g=g(z,t) trading a particular good at prices z €). The parameter é corresponds
to the total transaction costs given by ka= é, when considering markets with high
transactions rates k£ and negligible transaction costs a in the limit k£ — 0o, a — 0 with
ka= % =const.

System (1.1) can be derived from the following price formation process: Let us
consider a large number of vendors and a large number of buyers trading a specific
good. If a buyer and a vendor agree on a price p=p(t) a transaction takes place. The
price of this transaction is given by a positive constant a € R*. After the transaction,
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1354 BOLTZMANN-TYPE PRICE FORMATION MODEL

the buyer and vendor immediately switch places. Because the actual cost for the
buyer is p(t) 4+ a, he/she will sell the good for at least that price. The profit for the
vendor is p(t) — a, hence he/she will try to buy the good for a price lower than p(t) — a.

Based on the situation described above Lasry & Lions [8] proposed the following
parabolic free boundary price formation model:

fi(x,t)= %fm(m,t) +A(t)d(x—p(t)+a) for x <p(t) and f(x,t)=0 for z>p(t),
(1.2a)
gi(x,t)= %gm(ﬂc,t) +A()d(x—p(t)—a) for > p(t) and g(x,t) =0 for x <p(t).

(1.2b)

The functions f = f(x,t) and g=g(z,t) denote the density of buyers and vendors and
a €RT the transaction costs. The agreed price p=p(t) enters as a free boundary and
At)=—fo(p(t),t) =g.(p(t),t). Trading events take place only at the price p=p(t),
because the density of buyers and vendors is zero for prices smaller or larger than
p(t). The Lasry & Lions model was analyzed in a series of papers; see [10, 2, 3, 4, 6].

Lasry & Lions motivated their model using mean field game theory, but did
not discuss its microscopic origin. The lack of understanding system (1.2) on the
microscopic level motivated further research in this direction. In [1] we considered
a simple agent based model with standard stochastic price fluctuations and discrete
trading events. This Boltzmann-type price formation (BPF) model reads as

ft(xvt):%fmw(xvt)_kf(x7t)g(x’t)+kf(x+a7t)g(x+avt)a (1.3&)
gt(xvt) = %gwx(xat) —kf(x,t)g(x,t)—|—kf(m—a,t)g(x—a,t), (13b)

with initial data

f(@,0)=fr(z) =0, g(x,0)=gs(x) >0, (1.3¢)

independent of k. In system (1.3) the parameter k denotes the transaction rate and
o the diffusivity. The total number of transactions at a price x is given by

plwt) =kf(e,t)g(x,t). (1.4)

Kinetic models have been proposed for several applications in socio-economic sciences,
and we refer to [14, 12, 9] for more information.

One of the fundamental differences between (1.2) and (1.3) is the fact that trading
events in the first take place only at the price p=p(t). In BPF (1.3) a good can be
traded at any price, with a rate p given by (1.4). Then the mean, median, and
maximum of p gives an estimate for the price.

There is however a strong connection between the BPF model (1.3) and (1.2). We
showed that solutions of (1.3) converge to solutions of (1.2) as the transaction rate k
tends to infinity; see [1]. This finding motivated further research on different asymp-
totic limits, for example by considering high trading frequencies and little transaction
costs. This market behavior corresponds to the case k— 0o, a—0 with ka= % For
studying this limit rewrite system (1.3) as

l(fg)(x—i—a,t)—(fg)(m,t)
3

a

ft(xvt) =

+%2fm(x,t), (1.5a)
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l(fg)(x—a,t)—(fg)(x,t)_’_0729 (z,t) (1.5b)
- 0 2 xx\&Hb). :

gr(x,t)=

We showed that (1.5) converges to

2

Jolw,t)= 2 (7)) + 5 Foa(e,0), (1.6a)

~ 1
e

~ 0-2
gt(xat):_§<f§)m(xat)+?gmx(xvt)a (16b)

with solutions f:f(x,t) and §=g(z,t) as k— 00, a— 0 and ka:%.

In this note we analyze the behavior of (1.6) as é—> oo and illustrate the results
with numerical simulations. The note is organized as follows. In Section 2 we dis-
cuss the general structure of the BPF model. We identify the limiting solutions of
the Boltzmann price formation model (1.6) in Section 3. Finally we illustrate the
asymptotic behavior of solutions with numerical simulations in Section 4.

2. Structure of the model

We start by highlighting some structural aspects of (1.3), which also clarify certain
steps in the previous analysis in [1, 2, 3]. The general understanding of the structure
will serve as a basis for future generalizations and modifications and shall be used in
the analysis of the asymptotic case later on. Without loss of generality we set c=1
throughout this paper.

Let L denote the differential operator Ly = —,,, and S and T the shift-operators

(Sp)(x)=p(z+a),  (Te)(z)=p(z—a)

respectively. Then system (1.3) becomes

fi+ Lf=k(S—1)(f9), (2.1a)
gi+Lg=k(T—1I)(fg) (2.1b)

In the setting of kinetic equations S and T are to be interpreted as the gain terms in
the collision operators.

A key property, which allows one to derive heat equations for transformed vari-
ables, is that L commutes with the collision operators. Hence by defining the formal
Neumann series

Fi=(I-8)"'f=> §f and G:i=(I-T)"'g=) Tg, (2.2)
3=0 3=0
we find that
Fi+LF=-kfg, (2.3a)
G, +LG=—kfqg. (2.3b)

Then F — G solves the heat equation. Note that this transformation was already used
for the L&L model (1.2) in [2, 3] and serve as a key feature of the performed analysis.
There the authors motivated the transformation by the structure of the Dirac- terms
rather than by inverting the collision operator. Note also that the computations above
are purely formal. Because S and T have norm equal to one, the convergence of the
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Neumann series is not automatically guaranteed and needs to be verified, see [1].
Moreover, also

h=f—-I-9G, (2.4a)
p=g—(I-T)F (2.4b)

solve the heat equation. This transformation was used, again without the above
interpretation in [1].

In the special case of the operators above, we have T'=S~!, and in the L? scalar
product even T'=5*, i.e. S and T are unitary operators. Then

(I-8)(I-T)"* :(I—S)iS‘l =-8,

i.e. we simply have h= f+Sg. Note that this structure was exploited in case of the
Lasry & Lions model (1.2) in [2, 3] to derive a-priori estimates.

3. Asymptotic behavior when trading with high frequencies

In this section we study the limiting behavior of system (1.1) as % — 00. Through-
out this paper we make the following assumptions. Let the initial datum f; and g
satisfy the following assumption:

(A) fI7 gr 20 on Q and f[a gr GS(Q>7
where S(Q) is the Schwartz space. Next we reformulate (1.1) for the new variables
h=f+gand u=f—g, ie.

ho(2,8) — g (2,8) =0, (3.1a)
s (2,) — 1t () = 2%(}# ), (3.1b)

System (3.1) can be considered either on the whole line Q=R or a bounded domain
Q=(-1,1). Note that the bounded interval Q corresponds to the shifted and scaled
interval (0,pmax), where ppax denotes the maximum price consumers are willing to
pay. In the later case system (3.1) is supplemented with no flux boundary conditions
of the form

hy =0 and —uz:%g(hQ—uz) at z==1, (3.1c)
which are equivalent to no-flux boundary conditions for (1.1). Throughout this note
we consider system (1.1) on the bounded domain with no-flux boundary conditions
(3.1c) only. The assumption of a bounded price domain is motivated by the fact that
the price of a good has to be greater than zero and that there is a maximum price
consumers are willing to pay within the finite time range considered. Note that the
total mass of buyers m; and vendors mg is conserved in time for no flux boundary
conditions (3.1c), i.e.

mf::/ﬂfj(x)dx:/ﬂf(mj)dx and mg::Ag[(x)dx:Ag(x,t)dx for all ¢>0.

ProrosiTION 3.1. Let e>0 and fr and gr satisfy (A) and Q=(—1,1). Then
system (3.1) has a unique smooth solution (h,u)€ L*(0,T;L>(Q))2?. Furthermore
u(z,t)? < h(x,t)? for all (z,t) €Qx[0,T].
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Proof. System (3.1) admits a smooth and bounded solution (h,u); see [5].
Furthermore the functions f and g solve transport diffusion equations, which preserve
non-negativity. Trivially

—(f+9)<f-g9<[f+y,
and therefore the inequality u?(z,t) <h(z,t)? holds. |

REMARK 3.2. Note that the function h=h(z,t) satisfies the heat equation (3.1a)
with Neumann boundary conditions. Its equilibrated solution corresponds to heq(z) =
const, for all x € Q. Let heq(x) =1. Then system (3.1) reduces to the viscous Burgers’
equation

ut(:v,t):um(mj)—%u(mi)um(x,t), (3.2a)

u(z,0)=ur(z):= fr(z) —gr(x). (3.2b)

The analytic behavior of the classical viscous Burgers’ equation (with viscosity u) for
small viscosity in the long-time limit was studied in [13, 7]. The authors showed that
a reversal of the limiting passages ¢t —oco and pu— 0 gives different limiting profiles.
Note however that the time scaling of (3.2) is different.

The following a-priori estimates will be used to identify the limiting solutions of
(3.1).
LEMMA 3.1. Lete>0, Q=(-1,1), Qr=(—1,1)x(0,T), and let the initial datum
uy(x) satisfy Assumption (A). Then

T
lu| <|h|=h and / /(h2—u2) dxdt§45(1+T)ma€l<h(x,t).
0o Ja

zTE

Proof. The first estimate holds because of Proposition 3.1. The second one can
be deduced from the following estimate of the first order moment:

d . L o o
7 Qu(:mt):v dm—/ﬁx(um(ﬂc,t)-&-%(h u®(z,t)),) dx

__ [/ﬂ(ux(x,t)—k ;?(h‘l —u¥(z,1))) da:] .

Therefore we conclude

// —u? (z,t)) dacdt—%[/uj )z dx — /umedx+/ /uzxt dxdt}
Q

<2 [2maxh(x )+ T (—u(l,t)+u(—1,t))]

z€QT
<4e(14T) max h(z,t),
z€QT
using that |u(z,t)| <h(z,t). |

Lemma 3.1 gives

u? —h% in LY (Qx (0,T)). (3.3)
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Next we show that the function u, can not have a jump up from —Ah to h. To do so
we consider the function v =wu,, which satisfies

L (0(0.)— (0.0
1 1 (3.4)
=~ (A e ()0 — 2 (,8)] = () .8).

ve(x,t) — Vg (x,t) =

Then the standard maximum principle implies that v?(z,t) > sup,cq (h(2,t)hs (2,1)),
and

Uy (x,t) < I;leas))( (itelg(uT (z,0)), \/glea%(O,sup((hhm)m))) .

Therefore u=u(x,t) cannot have a jump upward and we deduce that the limiting
function can be written as

_ Jh(x,1), for z <p(t),
ut) = {—h(x,t), for = > p(t), (3:5)

where p=p(t) denotes the position of the jump, i.e. the price of the traded good. It
is uniquely determined for all ¢ >0 by

p(t) 1
mf:/ 1 h(z,t) dz or, equivalently mg:/(t)h(m,t) dx. (3.6)
- P

The previous calculations lead to the following theorem.

THEOREM 3.2.  Let Assumption (A) be satisfied. Then there exist unique limiting
functions (u,h) of system (3.1) as € — 0, which are given by

w(,t) = h(z,t), for x<p(t),
7 —h(.’E,t), forx>p(t),

where p=p(t) is determined by (3.6) and h="h(x,t) is the solution of the heat equation
(3.1a) with homogeneous Neumann boundary conditions.

REMARK 3.3. The behavior of the price p=p(t) is determined by the conservation of
mass. This implies that

p(t) 1
mf—mgz/ﬂu(x,t) dxz/l h(z,t) dx—/( )h(m,t) dx.

Differentiation with respect to time yields 0=2h(p(t),t)p’ (t) + 2h,(p(t),t)) and there-
fore

1(p) he (p(t),t)
PO= =300

The function h=h(z,t) solves the heat equation and converges exponentially fast to
its steady state, given by

1
h(z,t)—>/ hi(z) dv=my+mg as t — occ.
~1
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Boltzmann-type model ] k=00 Lasry & LlOIlS

k— o0, a—0
6———)0

L1m1t1ng equatlons

Fic. 3.1. Asymptotic limits of the Lasry-Lions model (1.2), the Boltzmann-type model (1.3)
and the limiting system studied in the paper (1.1).

This implies exponential convergence of the price p=p(t), because p'(t)=

REMARK 3.4. Note that the limit of the Lasry-Lions model (1.2) as the parameter
a— 0 is the same as € —0 in the Boltzmann-type model (1.3); see also Figure 3.1 for
an illustration.

4. Numerical simulations

In this last section we illustrate the behavior of the limiting system with nu-
merical experiments. All simulations are performed on the interval Q=[—1,1] with
no-flux boundary conditions (3.1c). We split the interval into N =4000 equidistant
intervals for size Ax=5x1073. System (3.1) is discretized using a finite difference
discretization, i.e.

. 1

hi= N (hiy1—2hi+hi_1), (4.1a)

. 1 1

u; = @(Uiﬂ —2u; tui—1)+ m(hzzﬂ —ufyy —hi uiy). (4.1b)
(a) t=0 (b) t=0.5 () t=1

cccccccccccccccccc

Fic. 4.1. Ewvolution of the buyer and vendor density in the case of not-well prepared initial data.

The resulting system of ODEs is solved using an explicit 4th-order Runge-Kutta
method (implemented within the GSL library).
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We illustrate the behavior of system (3.1) for an initial data f; and g; which is
not well prepared in the sense of Lasry and Lions. In (1.2) the initial data has to
satisfy the following conditions:

fr(z)>0 for all z<p(t) and fr(z)=0 for all z>p(t).
gr(xz)>0 for all x> p(t) and g;(z) =0 for all z <p(t).

Hence the function u; = f; — gy has a unique zero. An assumption that is not sat-
isfied for the initial guess depicted in figure 4.1(a). We choose the following set of
parameters:

e=5x10"2 and 0 =0.1.

The evolution of both function is illustrated in figure 4.1.

We observe the fast separation of f and g and the formation of a unique interface,
which corresponds to the price p=p(t) in time. This behavior is not unexpected be-
cause system (1.1) has a similar structure as classical separation or reaction-diffusion
models. Furthermore we observe a fast equilibration of the price p=p(t) in time, as
discussed in Remark 3.3.

5. Conclusion

In this paper we study the asymptotic behavior of a Boltzmann type price for-
mation model, which describes the trading dynamics in a financial market with high
trading frequencies and low transaction costs. We identify the limiting solutions as the
number of transactions tends to infinity and observe an exponentially fast equilibra-
tion of the price in time. Numerical simulations illustrate that uneconomic situations,
like trading at different prices, are 'corrected’ quickly. Hence we conclude that small
fluctuations in the trading frequency or the transaction costs influence the price on a
very short time scale only.
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