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TOPOLOGY PRESERVING ACTIVE CONTOURS∗

HAYDEN SCHAEFFER† , NÓIRÍN DUGGAN‡ , CAROLE LE GUYADER§ , AND

LUMINITA VESE¶

Abstract. Active contours models are variational methods for segmenting complex scenes using
edge or regional information. Many of these models employ the level set method to numerically
minimize a given energy, which provides a simple representation for the resulting curve evolution
problem. During the evolution, the curve can merge or break, thus these methods tend to have
steady state solutions which are not homeomorphic to the initial condition. In many applications,
the topology of the edge set is known, and thus can be enforced. In this work, we combine a topology
preserving variational term with the region based active contour models in order to segment images
with known structure. The advantage of this method over current topology preserving methods is
its ability to locate boundaries of objects and not only edges. This is particularly useful for highly
textured or noisy data.
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1. Introduction

Active contour methods segment images by evolving a curve until it captures
either boundaries and/or edges. The curve dynamics are typically defined to descend
a specified energy towards the minimizer. In general, the energy contains information
on the desired structure of the curve as well as quantitative measures of edges and
boundaries. In many applications, the topological structure of the edge set is known
a priori and thus can be embedded in the initial curve. Therefore, we would want the
final solution to be homeomorphic to the initial data, although in the popular level set
based methods this cannot be guaranteed. Some works in the literature (for example,
[7, 10]) have incorporated forcing terms to prevent the change in topology that occurs
during the curve evolution process, but mainly focus on locating edges. In this way,
those methods are (in some sense) interpolating edge detector information under the
condition that some known structure must be preserved. In this work, we show that
by using regional information one is able to segment the image while constraining the
topology. Our main contribution is the combination of region based active contour
models with topological forces.

The first active contour model (Snakes) [8] used a variational method to find the
edges in an image f . Defining the domain as Ω⊂R

2 and the edge set as a curve

∗Received: August 15, 2013; accepted (in revised form): December 10, 2013. Communicated by
Richard Tsai.

†520 Portola Plaza, Math Sciences Building 6363, Los Angeles, CA 90095, USA (hschaeffer@
ucla.edu).

‡Electrical and Electronic Engineering Building, National University of Ireland, Galway, Ireland
(nduggan@math.ucla.edu).

§INSA Rouen, Laboratory of Mathematics, 685 Avenue de l’Université, 76801 Saint-Etienne-du-
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C : [0,1]→R
2, then the Snakes model is defined below:

ES(C(s))=

∫ 1

0

(

γ1|C
′|2+γ2|C

′′|2
)

ds−

∫ 1

0

|∇f(C)|2ds, (1.1)

where γ1,γ2>0 are smoothing parameters. The first two terms determine the smooth-
ness of the curve C, while the last term keeps the curve close to the edges. Essentially,
the last term in equation (1.1) is a variational edge detector that encourages the curve
to remain along pixels with sharp gradients. A general edge detector is defined as a
function g(|∇f |) which decays to 0 as |∇f | goes to infinity. Typically, g is small for
large arguments and nearly 1 for small arguments, thereby acting as a smoothed edge
indicator function.

The geodesic active contours (GAC) model [2, 9] determines the edge set by
finding the geodesics of the function g defined above. Using the function g, the
geodesic energy is defined as

EGAC(C)=

∫ 1

0

g (|∇f(C(s))|) |C′(s)|ds (1.2)

and represents the length functional with respect to the new edge metric. The curve
is drawn to pixels in which g (|∇f(C(s))|) is close to zero.

While both the Snakes and GAC models measure the edge set via sharp gradi-
ents, the Mumford and Shah (MS) model [11] segments the image based on regional
information as well as reconstructs a piecewise smooth approximation to the given
data. By minimizing

EMS(u,C)=µ

∫

Ω\C

|∇u|2dx+γ

∫

Ω

|u−f |2dx+H1(C), (1.3)

the MS model approximates f by u as well as finds the edge set C which leaves
u smooth. From the MS model perspective, the edge set is the set of boundaries
between the smooth regions in the image.

In many cases, the image is well-approximated by a piecewise constant function.
With this in mind, the Chan-Vese (CV) model [4] approximates f by a binary function,
which is equal to c1 in the interior of the region defined by curve C and c2 in the exterior
of the region defined by curve C. The associated energy is

ECV (c1,c2,C)=γ

∫

int(C)

|f−c1|
2dx+γ

∫

int(C)c
|f−c2|

2dx+νLength(C), (1.4)

and minimizers of this energy are binary functions whose discontinuity set is small.
The MS and CV models have many extensions, for example to vector valued images
in [3], to 4 or more regions [17], to multilayer images in [5], and to curves with free
endpoints [15, 16].

In practice, it is possible to get solutions of equation (1.4) to be homeomorphic to
the initial condition; for example see the Gestalt theoretical solutions in [4]. However,
these solutions are typically local minimizers of the functional above (due to the
non-convex structure of the energy). In order to guarantee preservation of the curve
topology during its evolution, an additional variational term must be included.

In [7], the authors proposed to use a topology-preserving level set method in
order to prevent the topological changes common to the framework. Their method
relies on the discrete representation of the curve on the pixel level. They proposed



H. SCHAEFFER, N. DUGGAN, C. LE GUYADER, AND L. VESE 1331

examining the sign changes of the level set function over each of the pixels near the
zero level curve to control the structural changes. By using the notation of simple
points (those that can be removed without affecting the topology of the set), they
build an algorithm which enforces fixed topology. Thus as the curve evolves, the
algorithm monitors sign changes and prevents structural changes.

For level set based shape optimization, [1] proposed using the following logarith-
mic barrier functional to enforce constant topology:

H(φ)=−

∫

C

log[φ(x+d∇φ(x))]ds−

∫

C

log[−φ(x− l∇φ(x))]ds, (1.5)

where d and l are small positive constants and φ is a signed distance function whose
zero level set is the curve C. Equation (1.5) prevents sign changes from occurring
near a band around the zero level curve defined by the normal directions and by the
parameters d and l.

In [10], an alternative variational formulation is given for preserving the topology
of level set based methods. The following energy was proposed:

T (φ) :=−

∫∫

Ω×Ω

∇φ(x) ·∇φ(y) G(‖x−y‖)Wl(φ(x))Wl(φ(y)) dx dy, (1.6)

where Wl(φ(x))=χ{x∈Ω | |φ(x)|≤l}. In this formulation, the topological term is ex-
tended over a region via the Wl functions, rather than a contour integral as in previ-
ous methods. Topological changes are measured via gradients and the assumption is
that opposite parallel gradients lead to structural changes (see Section 2.1 for more
detail).

For edge detection, in [10] the GAC model was augmented by equation (1.6) to
preserve structure during edge detection. The model is able to segment the image
while remaining homeomorphic to the initial data, but relies on the edge detector in
order to locate the proper edges. If the image contains noise, corruption, or texture,
edge detection can become unreliable. In particular, because edge detectors rely on
gradients to locate jumps, both noise and texture can make this task difficult. Also,
when boundaries are not represented by sharp jumps, edge detectors are ineffective.
To handle these more general cases, we use region based methods for robustness with
the addition of equation (1.6) to enforce structure.

2. Description of proposed model

Our model is expressed within the level set framework proposed in [12]. A curve
C is represented as the zero level set of a Lipschitz continuous function φ :Ω→R,
i.e. C={x∈Ω, φ(x)=0}. This implicit curve representation greatly simplifies the
theoretical and practical implementation of the curve evolution process (as it descends
towards the minimizer). For example, the length functional [6] can be written as

Length(C)=

∫

Ω

|∇H(φ)| =

∫

Ω

δ(φ)|∇φ|, (2.1)

where H is the Heaviside function defined to be 1 for positive arguments and 0 oth-
erwise and δ=H ′ is the Dirac delta measure. In order to differentiate equation (2.1)
with respect to φ we must take a continuous approximation of δ. For example, pa-
rameterizing the approximation by ε>0, a standard approximation is δε(x)=

1
π

ε
ε2+x2 .

Because ε must be taken at the grid resolution, for imaging problems it is commonly
set to ε=1. For the rest of this work, we will assume that the following properties
hold for the approximated Dirac delta function (dropping the subscript): 1. δ∈C∞,
2.

∫

δ(x)dx=1, and 3. δ(x)≥β>0 for all x.
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2.1. Topology preserving term. Let us recall the topological term from
Section 1 which we use in our model. The variational term was proposed in [10] and
is defined as

T (φ) :=−

∫∫

Ω×Ω

∇φ(x) ·∇φ(y) e−
‖x−y‖2

d2 Wl(φ(x))Wl(φ(y)) dx dy, (2.2)

where Wl(φ(x)) :=H(φ(x)+ l)H(l−φ(x))=
{

x∈Ω
∣

∣ |φ(x)|≤ l
}

and φ is a signed dis-
tance function. Because the gradient of the function φ is normal to its level sets, the
first term provides a measure of how close level sets are to intersecting each other. If
the gradients are nearly anti-parallel, this indicates that the points x and y are from
different neighborhoods of the curve and are likely to undergo a topological change.
The anti-parallel condition is also the reason for the negative sign in equation (2.2).
On the other hand, if the gradients are perpendicular to each other and the points are
close to each other in space, then the points x and y are from the same segment of the
curve. The exponential provides a reasonable definition of closeness of the points x
and y. And lastly, the functions Wl extend the computational domain from the zero
level set of φ to a neighborhood around the zero level set. In practice, this provides
a buffer region around the curve and defines a minimal distance between different
segments of the curve.

2.2. Our model. The proposed topology preserving active contours model is

min
φ,c1,c2

E(φ,c1,c2)

=

∫

Ω

δ(φ)|∇φ| +µ T (φ) +γ

∫

Ω

[

(f−c1)
2H(φ)+(f−c2)

2H(−φ)
]

dx. (2.3)

In order to minimize equation (2.3), we take the first variation with respect to each
variable. The second two variables cj for j=1,2 are the regional means and are
calculated as follows:

c1=

∫

Ω
fH(φ) dx

∫

Ω
H(φ) dx

, (2.4)

c2=

∫

Ω
fH(−φ) dx

∫

Ω
H(−φ) dx

. (2.5)

These expressions are the exact relationship given by the first variations. For the level
set function, the standard technique is to embed the first variation of equation (2.3),
with respect to φ, in an evolution equation. This yields the following:

∂tφ=δ(φ)div

(

∇φ

|∇φ|

)

+4
µ

d2
Wl(φ)

∫

Ω

(x−y) ·∇φ(y)e−
‖x−y‖2

d2 Wl(φ(y)) dy

+γδ(φ)
(

(f−c2)
2−(f−c1)

2
)

, (2.6)

with Neumann boundary conditions. In equation (2.6), the first and third terms are
concentrated along the curve, while the second term is acting nonlocally throughout
the domain. To extend the support of the terms to the entire domain, we further
rescale the PDE to

∂tφ=|∇φ|div

(

∇φ

|∇φ|

)

+4
µ

d2
Wl(φ)

∫

Ω

(x−y) ·∇φ(y)e−
‖x−y‖2

d2 Wl(φ(y)) dy
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+γ
(

(f−c2)
2−(f−c1)

2
)

. (2.7)

The first term is the mean curvature of the zero level line (a common rescaling in the
level set method), the second term is the topological force, and the last two terms
are the regional forces. Notice that at steady state and under the assumption that
|∇φ|=1, equation (2.7) corresponds to the first variation of equation (2.3) along the
zero level curve (i.e. the steady state of equation (2.6)). The motivation for this
rescaling is to correctly balance the nonlocality of the topological force with the other
terms in the evolution equation. The topological force plays two roles: it encourages
a particular structure on the curve (i.e. the topology) as well as influences movement
to different regions (i.e. a nonlinear force). Therefore, the topological term interacts
with both the mean curvature (structure term) and the regional forces. From [10], the
rescaling of the curvature term is well-behaved with the topology term. However, we
must spread the influence of the regional forces in order to balance with the topological
force. This is done by simply removing δ. Theorem 2.2 provides further justification
for the rescaled equation.

Remark 2.1. If µ is large relative to the other parameters (as well as larger than
1), then it is clear that the resulting evolution will not produce satisfactory results.
However, the growth that occurs resembles the fingering effect seen in Hele-Shaw
equations. This may be due to the self-repelling and competing dynamics of the
topological force.

The rescaled model will descend a new energy, although the minimizer should be
identical. The following theorem explains the rescaled equations descend behavior.

Theorem 2.2. Let φ(t,x)∈C1([0,T ];W 1,∞(Ω)) be the solution to equation (2.7) with
Neumann boundary conditions and |∇φ|=1 a.e. in Ω. Then for all t>0, the evolution
equation decreases an energy, i.e. ∂tĒ(φ)≤0, where the energy is defined below:

Ē(φ)=

∫

Ω

|∇φ| +µ T (φ) +γ

∫

Ω

((f−c1)
2−(f−c2)

2)φ dx, (2.8)

for fixed c1 and c2.

Proof. We can formally differentiate under the integral to find the energy’s time
derivative as follows (for simplicity, we drop the subscript on the integrals):

∂tĒ(φ(t,−))

=

∫

∇φ

|∇φ|
·∇φt dx−µ

∫∫

{

[∇φt(x) ·∇φ(y)+∇φ(x) ·∇φt(y)] e
−

‖x−y‖2

d2 Wl(φ(x))Wl(φ(y))

+∇φ(x) ·∇φ(y) e
−

‖x−y‖2

d2
[

W
′
l (φ(x))Wl(φ(y))φt(x)+Wl(φ(x))W

′
l (φ(y))φt(y)

]

}

dx dy

+γ

∫

((f−c1)
2−(f−c2)

2)φt dx

=Term1+Term2+Term3.

We will investigate this expression term by term. For the first term, integration
by parts yields

Term1=

∫

∇φ

|∇φ|
·∇φt dx=−

∫

div

(

∇φ

|∇φ|

)

φt dx,
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where boundary terms vanish because of the boundary conditions.
Lastly, the second term is made up of two subterms which we will handle sepa-

rately:

Term2=−µ

∫∫

[∇φt(x) ·∇φ(y)+∇φ(x) ·∇φt(y)] e
− ‖x−y‖2

d2 Wl(φ(x))Wl(φ(y))

+∇φ(x) ·∇φ(y) e−
‖x−y‖2

d2

[

W ′
l (φ(x))Wl(φ(y))φt(x)

+Wl(φ(x))W
′
l (φ(y))φt(y)

]

dx dy

=−µ(Term2a+Term2b).

The main task is to separate the variables x and y as done in [10]. This can be done
via Fubini’s theorem, by switching the order of integration and recombining terms to
get

Term2a=

∫∫

[∇φt(x) ·∇φ(y)+∇φ(x) ·∇φt(y)] e
− ‖x−y‖2

d2 Wl(φ(x))Wl(φ(y)) dx dy

=

∫∫

∇φt(x) ·∇φ(y)e
− ‖x−y‖2

d2 Wl(φ(x))Wl(φ(y)) dx dy

+

∫∫

∇φ(x) ·∇φt(y) e
− ‖x−y‖2

d2 Wl(φ(x))Wl(φ(y)) dx dy

=−

∫
(
∫

divx

(

∇φ(y)e−
‖x−y‖2

d2 Wl(φ(x))Wl(φ(y))

)

dy

)

φt(x) dx

−

∫
(
∫

divy

(

∇φ(x)e−
‖x−y‖2

d2 Wl(φ(x))Wl(φ(y))

)

dx

)

φt(y) dy

=−2

∫
(
∫

divx

(

∇φ(y)e−
‖x−y‖2

d2 Wl(φ(x))Wl(φ(y))

)

dy

)

φt(x) dx

=2

∫
(
∫

(

2(x−y)

d2
·∇φ(y)e−

‖x−y‖2

d2 Wl(φ(x))Wl(φ(y))

)

dy

)

φt(x) dx

−2

∫
(
∫

(

∇φ(y) ·∇φ(x)e−
‖x−y‖2

d2 W ′
l (φ(x))Wl(φ(y))

)

dy

)

φt(x) dx.

The second equality is simply integration by parts and the last equality is true by a
change of variables. For the second subterm, a similar trick yields

Term2b=

∫∫

∇φ(x) ·∇φ(y) e−
‖x−y‖2

d2

[W ′
l (φ(x))Wl(φ(y))φt(x)+Wl(φ(x))W

′
l (φ(y))φt(y)] dx dy

=

∫∫

∇φ(x) ·∇φ(y) e−
‖x−y‖2

d2 W ′
l (φ(x))Wl(φ(y))φt(x) dx dy

+

∫∫

∇φ(x) ·∇φ(y) e−
‖x−y‖2

d2 Wl(φ(x))W
′
l (φ(y))φt(y) dx dy

=2

∫
(
∫

∇φ(x) ·∇φ(y) e−
‖x−y‖2

d2 W ′
l (φ(x))Wl(φ(y)) dy

)

φt(x) dx.

In this form we can combine both of the subterms together to get (with some cancel-
lation)

Term2= −
4µ

d2

∫
(
∫

(

(x−y) ·∇φ(y)e−
‖x−y‖2

d2 Wl(φ(x))Wl(φ(y))

)

dy

)

φt(x) dx.
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Each of the terms above separate the time derivative of φ from the main part of the
integrand. Factoring out φt and combining all the computed terms yields

∂tĒ(φ(t,−))

=−

∫

[

div

(

∇φ

|∇φ|

)

+γ
(

(f−c2)
2−(f−c1)

2
)

+
4µ

d2
Wl(φ)

∫

(x−y) ·∇φ(y)e−
‖x−y‖2

d2 Wl(φ(y)) dy
]

φt(x) dx

=−

∫

φ2t dx

≤0,

because φ satisfies equation (2.7) and |∇φ|=1 a.e.

The argument above holds (with some additional work) for the original evolution
equation (equation (2.6)) and the model (equation (2.3)). For clarity, we state it
below.

Theorem 2.3. Let φ(t,x)∈C1([0,T ];W 1,∞(Ω)) be the solution to equation (2.6) with
Neumann boundary conditions. Then, for all t>0, we have ∂tE(φ,c1,c2)≤0.

In the case of the original PDE, the energy is minimized by the evolution of φ
and the variables c1 and c2.

2.3. Parameters. Altogether this model has several (positive) parameters,
γ, µ, d, and l. Parameter d determines the region of nonlocality for the topology
preserving term, specifically, the neighborhood defined in the topological term grows
with d. Because the function φ remains close to a signed distance function, parameter
l determines the characteristic distance (in terms of pixel size) between any two points
on the curve. For our experiments, the parameters were set to d=4 and l=1. The
energy balancing parameters γ and µ determine the curve structure. If µ is small rel-
ative to γ, then the resulting evolution will undergo topological changes. In practice,
keeping µ close to 1 produces appropriate results. The parameter can be weakened in
order to encourage a particular genus with some flexibility (allowing small amounts of
deviation of topology from the initial curve). Without tuning of the parameters, the
model will encourage the topology of the curve to remain close to the initial structure.

There is an additional parameter k which is used to accelerate the evolution and
avoid local minima. This is not always necessary, but may be more practical in
applications. In the general level set framework, it is common to add a balloon term
k|∇φ|, for constant k, which helps to shrink or grow the curve (depending on the sign
of k). For our dynamics, the additional term would force equation (2.7) out of the
true steady state, for non-zero k. In order to avoid this effect, the parameter can be
made time-dependent k(t), with the condition that k(t)=0 for all t>T . This is done
in some numerical experiments to accelerate the curve towards the edge set.

3. Numerical method

We set the time step to dt and the space step dx=1 (in the equations below,
we drop dx). To solve equation (2.7) to steady state, we use an additive operator
splitting scheme as in [10]. The discretized equation is below:

φn+1=
1

2

∑

p

(I−2dtAp(φ
n))

−1
(

φn+dt γ
(

(f−c2)
2−(f−c1)

2
)
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+4
dt µ

d2
Wl(φ

n)

∫

Ω

(x−y) ·∇φn(y)e−
‖x−y‖2

d2 Wl(φ
n(y)) dy

)

, (3.1)

where p is the direction (x and y) and a vectorial representation of φn is used via
concatenation of rows, for instance. The operator Ap := (aij) is defined pixel-wise as
follows:

aij(φ)=















|∇φ|i
(

2
|∇φ|i+|∇φ|j

)

, if j∈N (i),

−|∇φ|i
∑

k∈N (i)

(

2
|∇φ|i+|∇φ|k

)

, if j= i,

0, otherwise,

(3.2)

where N (i) is the neighborhood around i (adjacent pixels). For each p, the system
can be solved via the Thomas algorithm, because it is a strictly diagonally dominant
tridiagonal linear system. The resulting method has linear complexity at each time
step. If one considers the method without the topological force, then it can be shown
that the discretization is unconditionally stable.

The dimensional generalizations are direct, for example, the 3D discretized equa-
tion is below:

φn+1=
1

3

∑

p

(I−3dtAp(φ
n))

−1
(

φn+dt γ
(

(f−c2)
2−(f−c1)

2
)

+4
dt µ

d2
Wl(φ

n)

∫

Ω

(x−y) ·∇φn(y)e−
‖x−y‖2

d2 Wl(φ
n(y)) dy

)

. (3.3)

One example of segmentation using our algorithm in 3 dimensions is provided.
Because the topological term must have the level set function close to a signed

distance function, re-initialization is required. Following the method in [14], we iterate
the following systems to convergence:

ψ0 :=φn, (3.4)

ψk+1
ij =

{

ψk
ij−dt

(

sign(ψ0
ij)|ψ

k
ij |−Dij

)

, if (i,j)∈Λ,

ψk
ij−dt sign(ψ0

ij)G(ψ)ij , otherwise,
(3.5)

where the set Λ contains all (i,j) such that

φnij φ
n
i+1,j<0, φnij φ

n
i,j+1<0, φnij φ

n
i−1,j<0, or φnij φ

n
i,j−1<0.

In equation (3.5), Dij is the numerical distance to C and can be calculated to be

Dij =
ψ0
ij

√

(D0
xψ

0
ij)

2+(D0
yψ

0
ij)

2
, (3.6)

where D0 is the central difference operator. The upwind discretized re-initialization
equation is given by

G(ψ)ij :=







√

max
(

(D−
x ψij)2+,(D

+
x ψij)2−

)

+max
(

(D−
y ψij)2+,(D

+
y ψij)2−

)

−1, if ψij>0,
√

max
(

(D−
x ψij)2−,(D

+
x ψij)2+

)

+max
(

(D−
y ψij)2−,(D

+
y ψij)2+

)

−1, if ψij<0,

where D+ and D− are the forward and backward differences, f+ :=max(f,0), and
f− :=min(f,0). Once this iterative process converges we assign φn :=ψ∞ and continue
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the evolution. The re-initialization is only done for a few iterations, for example, when
n is a multiple of 50.

It should be noted that from [14], we know that this method’s error is independent
of the number of iterations, therefore the re-initialization process does not change the
location of the curve. This is particularly important for the topology preservation,
because the drifting caused by some re-initialization algorithms could change the
results.

4. Results

The method is tested on several synthetic and real images containing various
features. We provide a three dimensional result using the current algorithm as well
as a possible extension for textured images. For the noisy images presented here, the
noise variance is reported as the percent of the maximum intensity value of the given
image.

4.1. Two dimensional examples. In figure 4.1 the algorithm is tested on a
synthetic image containing two black discs on a white background. Noise is added in
order to test the algorithms ability to preserve topology with highly corrupted images.
As the curve evolves, it first captures part of the boundary of the discs then shrinks
inward along the edges. The steady state solution resembles a bent dumbbell and is
homeomorphic to the initial curve.

(a) Initial (b) Iteration= 200 (c) Iteration= 600 (d) Final (steady
state), Iteration= 900

Fig. 4.1. Our algorithm applied to the two discs example with 70% noise. The model parameters
are set to γ=0.195 and µ=0.4.

For comparison to existing methods, we test our algorithm on the Hand image
in figure 4.2. As the curve grows outward along each digit, each segment evolves
separately. The steady state solution contains one continuous curve. Similar results
can be found in [7] and in [10] for the noise-free case only. The addition of the
large amount of noise further connects the digits, making the segmentation more
complicated than in the noise-free case.

In figure 4.3, the algorithm is tested on a photograph of a bear. The image is
highly textured, which can cause issues with gradient-based edge detectors. The curve
locates the boundary of the bear without capturing the nose or grass (whose mean is
closer to the background).

For the next few examples, the algorithm is tested on MRI scans of a human
brain with Gaussian noise. In the first image (figure 4.4), the curve quickly locates
the boundary of the brain (within 90 iterations), and continues to grow inward to
refine the detection. In the other two images (figure 4.5 and 4.6), with the choice
of initialization, the curve grows along the boundary of the object as well as shrinks
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(a) Initial (b) Iteration= 100 (c) Iteration=200

(d) Iteration=300 (e) Final (steady state),
Iteration=400

Fig. 4.2. Our algorithm applied to the Hand image with 15% noise. The model parameters are
set to γ=2.2 and µ=0.5.

(a) Initial (b) Iteration= 100 (c) Iteration= 200

(d) Iteration= 400 (e) Final, iteration= 800

Fig. 4.3. Our algorithm applied to the highly textured Bear photograph. The model parameters
are set to γ=3 and µ=0.8.

within the small regions. The steady state solutions are all homeomorphic to the
initial condition as well as contain the fine details of the detected object.

In figure 4.7, we apply the algorithm from [10] to two noisy images to compare the
results. In both cases, the curve is initialized the same way as in our corresponding
examples, and the parameters are optimized manually. In figure 4.7(a), the curve is
stuck in a local minimum and does not locate many of the edges. In figure 4.7(b), the
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(a) Initial (b) Iteration=60 (c) Iteration=90

(d) Iteration=180 (e) Final, Iteration=270

Fig. 4.4. Our algorithm applied to an MRI scan of a brain. The model parameters are set to
γ=1.45 and µ=0.5.

(a) Initial (b) Iteration= 20 (c) Iteration=40

(d) Iteration=80 (e) Final, Iteration=110

Fig. 4.5. Our algorithm applied to an MRI scan of a brain. The model parameters are set to
γ=2 and µ=1.2.

curve finds the correct outer edge, but because of the high level of noise, is unable to
locate the interior structures.

4.2. Three dimensional examples. As a proof of concept, we provide a 3D
example using an MRI brain scan in figure 4.8. By monitoring the Euler characteristic
of the zero level set function, we can numerically verify that the structure is preserved.
From the two different perspectives of the steady state solution displayed in figure 4.8,
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(a) Initial (b) Second, iteration= 10 (c) Third, iteration= 20

(d) Final, iteration= 60 (e) Final, iteration= 120

Fig. 4.6. Our algorithm applied to an MRI scan of a brain. The model parameters are set to
γ=2 and µ=2.

(a) Hand image (b) MRI scan of a brain

Fig. 4.7. Results of the method in [10] applied to the hand and MRI scan of a brain. The
resulting curve on the hand image is stuck in a local minimum. The curve in the brain image is
able to locate the outer edges, but cannot locate the interior ones.

the finer boundary structures can be seen as well as the crevasses. In the 3D case, to
accelerate the convergence to steady state, we add the term k(t)|∇φ| to the evolution
equation and set k(t)=0.05 for t<400 and k(t)=0 otherwise.

4.3. Extensions. The regional terms used in equation (2.3) fit the data to
the means in each region; however, it is possible to fit the data to any probabilistic
model. For textured images, the authors of [13] proposed modeling the regional
intensity values as samples from a Gaussian distribution. Using the regional term
from [13], our model can be extended to the following:

min
φ,c1,c2,σ1,σ2

EG(φ,c1,c2,σ1,σ2)

=

∫

Ω

δ(φ)|∇φ| +µ T (φ)+γ

∫

Ω

(

log(σ1)+
(f−c1)

2

σ1

)

H(φ)
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(a) First View (b) Second View

Fig. 4.8. Our algorithm applied to a 3D MRI scan of a brain. The model parameters are set
to γ=1×10−6 and µ=0.2.

(a) Initial (b) Second, iteration=
450

(c) Third, iteration=700

(d) Final, iteration= 5000

Fig. 4.9. Our algorithm applied to a 3D MRI scan of a brain. The model parameters are set
to γ=2.8×10−5 and µ=0.3.

+

(

log(σ2)+
(f−c2)2

σ2

)

H(−φ) dx. (4.1)

As a proof of concept, we test this extension on an image of a squirrel in figure
4.9. In order to avoid local minima, we include a balloon forcing term with coefficient
equal to 0.12. Because the foreground and background texture are seemingly random,
modeling their intensity values as Gaussian with different parameters seems to capture
the correct boundary.

5. Conclusion

We have proposed a region based topology preserving active contours model.
Unlike previous work on topology preserving segmentation, our method is not depen-
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dent on an edge detector for pre-segmenting the image. Also, as demonstrated in
the results, our method handles noisy and highly textured images well. For further
applications, the model can easily be extended by either including a geodesic length
term in place of the standard length or by changing the regional forces.
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