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AN EFFICIENT ALGORITHM FOR A VISIBILITY-BASED
SURVEILLANCE-EVASION GAME∗
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Abstract. We present an algorithm which computes the value function and optimal paths for a
two-player static game, where the goal of one player is to maintain visibility of an adversarial player
for as long as possible, and that of the adversarial player is to minimize this time. In a static game
both players choose their controls at initial time and run in open-loop for t>0 until the end-game
condition is met. Closed-loop (feedback strategy) games typically require solving PDEs in high
dimensions and thus pose insurmountable computational challenges. We demonstrate that, at the
expense of a simpler information pattern that is more conservative towards one player, more memory
and computationally efficient static games can be solved iteratively in the state space by the proposed
PDE-based technique. In addition, we describe how this algorithm can be easily generalized to games
with multiple evaders. Applications to target tracking and an extension to a feedback control game
are also presented.
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1. Introduction
Consider the setting where a mobile agent is required to visually track a mobile

target in an environment containing obstacles that block the agent’s line of sight. For
the mobile agent to maximize the time interval in which it maintains visibility of the
target, a conservative, worst-case, strategy is to assume that the target actively seeks
occlusion behind the obstacles. Hence, the problem may be posed as a pursuit-evasion-
type game: the game terminates the first instance in time the pursuer loses sight of
the evader, the pursuer’s objective is to prolong the game as much as possible, and the
evader’s objective is to terminate the game as quickly as possible. We shall call this
type of game a visibility-based surveillance-evasion game, or simply a surveillance-
evasion game.

In this work, we investigate optimal motion strategies for two or more players
moving with inhomogeneous and/or anisotropic velocities in a domain containing
obstacles. The main contribution is a computationally and memory efficient algorithm
for constructing the players’ optimal paths for the static surveillance-evasion game.
In this game the pursuer initially chooses its control for the remaining time, assuming
that the evader would always counter with its best control. As we shall see, the
particular information pattern of the static game allows for a decomposition of the
problem into simpler optimal control problems in the underlying domain, which can
be implemented in parallel. Hence, the feedback strategy games which are completely
characterized by the Hamilton-Jacobi-Issacs (HJI) partial differential equations are
now decomposed into a series of optimal control problems, which are characterized
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by the Hamilton-Jacobi-Bellman (HJB) equations, at the expense of a simpler and
static information pattern. This decomposition can greatly save computational costs
because solving a feedback strategy game, which amounts to solving an HJI equation
in the joint configuration space, entails a computational complexity that increases
exponentially with the number of participating players, whereras solving an HJB
equation can be achieved in the configuration space in a single player.

The efficiency of the algorithm allows for various applications and extensions.
For example, the algorithm generalizes easily to the game involving multiple evaders
while maintaining a complexity which is linear in the number of players. Furthermore,
our algorithm may be applied iteratively in small time increments to provide efficient
solutions to a class of dynamic target tracking problems.

1.1. Previous work.

1.1.1. Related problems involving surveillance and visibility.
Surveillance-evasion games were studied geometrically in [24, 20, 15], where the game
terminates when the evader exits the pursuer’s local “detection circle”. It is unclear,
however, how these geometric formulations could be applied in the context of the
more general visibility-based surveillance-evasion game. Furthermore, the geometric
nature of the derivations makes generalizations to arbitrary players’ dynamics and
the presence of state constraints difficult to analyze.

In a domain with polygonal obstacles, the numerical methods for the visibility
based surveillance-evasion game with constant, isotropic velocities were studied in
[5]. There, the authors geometrically characterized sets called “decidable regions”
consisting of all possible pursuer initial states where the outcome of the game is
known, given the initial state of the evader. The same authors, in [6], also considered
computing optimal trajectories of the surveillance-evasion game backwards in time by
tracing particular characteristic curves from the terminal condition set.

1.1.2. Pursuit-evasion type game. One of the initial applications of the
pursuit-evasion games, formulated by R. Isaacs in the celebrated monograph [18], was
missile guidance systems. Other applications of this problem include security and
surveillance systems as well as search/rescue efforts. The proposed strategies could
be used by autonomous systems or by human searchers.

In Section 2.2, we outline how the connection between differential games and HJI
equations is established. The key idea is to introduce a value function of the game,
which formally satisfies a particular PDE, known as the Hamilton-Jacobi-Isaacs (HJI)
equation. The characteristic curves of the HJI equation correspond to the optimal
paths of the players. The first treatment of such equations appeared in the mono-
logue [18]. Subsequently, with the advent of the notion of viscosity solutions [8], rigor-
ous theories regarding the existence and uniqueness of solutions (the value functions)
to HJI equations were established; see [10] and the references therein. Numerical
methods have been developed to compute the value and optimal paths for various
games; see e.g. [4]. In practice, the high dimensionality of the HJI equation makes
this approach tractable only on a modestly sized grid with a small number of players
– usually two players in at most a two dimensional domain.

We also mention another class of problems, called visibility based pursuit-evasion,
which concerns the motion planning of an agent that seeks out an initially hidden mo-
bile target in a simply connected polygonal domain [33, 37, 13]. The simplified repre-
sentation of the environment using polygons is a major limitation of the algorithms
based on computational geometry and combinatorics. Furthermore, the extension of
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these algorithms to three dimensional problems may be extremely complicated.
Probabilistic methods using a sampling-based approach has also been studied [19]

in related but different contexts. There, they have considered a problem where an
evader intends to reach a target under an adversarial pursuer whose goal is to intercept
the evader. The aforementioned work is closer to the recent work [42] (involving two
authors of the present manuscript), where a deterministic algorithm based on the
modified fast marching methods is developed.

1.1.3. Target tracking. A related research area involving target tracking
consists of a combination of different challenging problems that have been separately
studied in robotics. Visibility and collision constraints must be satisfied in the pres-
ence of uncertainties in the positions of the observer and the target [21, 12, 25, 7, 40].
The observer would like to maintain visibility of the target while avoiding collisions
with the obstacles [21]. When the target is fully predictable, that is, its trajectory
is known, a dynamic programming approach [3] can be used to compute the shortest
path for the observer. If the target is only partially predictable, this approach fails.
Instead, the observer chooses the motion command which would maximize the likeli-
hood that the target will remain visible during some time in the future [21, 12, 25].
In [22], a more complicated problem of tracking unpredictable targets in unknown
environments is considered. The observer is able to reconstruct a local map of the
environment based on range data. Then, a new velocity is determined using a com-
binatorial algorithm to minimize the risk of target escaping the observer’s view by
crossing an occlusion ray created by the obstacle. The general problem of inferring
where the unpredictable moving targets could be as they pass out of view is presented
in [40]. The main idea behind [40] is to introduce information spaces that extract
and maintain combinatorial data obtained by robots that carry sensors. The pro-
posed strategy [40] can be easily generalized to two or three dimensional, known or
unknown, multiply connected domains, as long as the connected components of the
shadow region are maintained.

The problem of target tracking in an arbitrary domain using a variational model
was proposed in [9]. There, the pursuer’s control was determined by optimizing a
functional composed of a linear combination of the distance between the two players
and the visibility area. Gradient descent was employed to lead the pursuer to a local
minimizer of the functional.

1.1.4. Optimal control and visibility in the Hamilton-Jacobi-Bellman
framework. Our approach to the visibility based surveillance-evasion game is
based on decomposing the problem into optimal control problems. Thus, its efficiency
hinges on that of the solution for the corresponding optimal control problems. To this
end, we exploit recent developments in numerical Hamilton-Jacobi-Bellman equation
solvers to determine the minimum time-to-reach function associated with the optimal
control problem [35, 31, 1, 30, 38, 32, 14, 11]; optimal controls and paths can then be
extracted from the minimum time-to-reach function by means of solving an ordinary
differential equation along the characteristic curves; see the appendix of [1].

Another useful tool, the level-set based continuous visibility function ϕ(·,·) [9, 34]
has the property that for any two points x,x0,

ϕ(x,x0)≤0 ⇔ x is occluded from x0,

when obstacles are suitably defined implicitly as a level set function; i.e. ϕ is zero on
the obstacle’s boundary, negative inside, and positive outside. This formulation allows
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for accurate description with subcell resolution of the the visibility information that
is convenient for Boolean operations of the described regions as well as for integration
and differentiation. Numerically, ϕ can be computed in O(N) complexity, on a grid
with N nodes, by solving a Hamilton-Jacobi-Bellman equation with special sweeping
techniques [34]. In the appendix, we extend the notion of a visibility function to that
of a shadow function:

ξ(x,x0)≤0 ⇔ x is occluded from x0 and x is not inside an obstacle.

1.2. Outline of article. The article will proceed as follows. In Section 2, we
lay out all necessary assumptions as well as give a precise definition of a static infor-
mation pattern for a two-player game. Next, in Section 3, we present the theory and
algorithm for the static surveillance-evasion game, as well as numerical results demon-
strating its performance. Applications and extensions of our algorithm to multiple
evaders, target tracking, and feedback control games are presented in Section 4.

2. Information patterns and game definitions

2.1. Preliminary definitions. We partition an open and bounded ambient
space Ω into the freespace and obstacles: Ω = Ωfree∪Ωobs, where Ωfree is open; Ωobs

serves as impenetrable obstacles to all players and blocks the line of sight between any
two players. For a vantage point x∈Ωfree, we denote Dx⊂Ωfree to be the relatively
closed1 subset in Ωfree of all points that are not visible from x.

We shall refer to the two competing players as E (for ‘Evader’) and P (for ‘Pur-
suer’), with fixed initial states x0

E ,x
0
P ∈Ωfree, respectively. Let A={σ̂ | ‖σ̂‖2 = 1 or σ̂=

0}⊂Rn be the compact set of control values and A={measurable σ : [0,∞)→A} be
the set of time-parametrized controls. Let xE : [0,∞)→Ωfree and xP : [0,∞)→Ωfree

represent the time-evolution of E and P’s states, respectively. We assume the players
move according to the following geometric dynamics:{

ẋE(t) =fE(xE(t),σE(t))σE(t),

ẋP (t) =fP (xP (t),σP (t))σP (t),
for t>0,

{
xE(0) =x0

E ,

xP (0) =x0
P ,

(2.1)

where fE : Ωfree×A→R, fP : Ωfree×A→R are speeds assumed to satisfy the follow-
ing:

(A1) fE , fP are Lipschitz continuous.

(A2) There exist constants F1,F2>0 such that F1<fE(x,σ̂),fP (x,σ̂)<F2 for all
x∈Ωfree and σ̂∈A.

(A3) For every xE ,xP ∈Ωfree the interior of the vectograms {fE(xE ,σ̂E)σ̂E | σ̂E ∈
A\{0}}, {fP (xP ,σ̂P )σ̂P | σ̂P ∈A\{0}} are convex.

Assumption (A1) implies a unique solution to (2.1) for a pair of controls σE ∈
A,σP ∈A up to some finite time; we refer to these solutions xE(·),xP (·) as paths for
E and P, respectively. To avoid cumbersome notation, we will not write the explicit
dependence of xE(·) on σE and x0

E , and similarly for xP (·) on σP and x0
P . Assumption

(A2) ensures that the minimum time-to-reach functions

uE(x) = inf
σE∈A

inf{t≥0 |xE(t) =x}, (2.2)

1two players are considered occluded if they lie on each other’s visibility horizon, i.e. the line
segment connecting the players that is tangent to an obstacle boundary.
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uP (x) = inf
σP∈A

inf{t≥0 |xP (t) =x}, (2.3)

for the single player optimal control problems, are continuous. Finally, the convexity
assumptions of the interior of the vectograms in (A3) guarantee the existence of
optimal controls in (2.2) and (2.3) and closedness of optimal paths (under uniform
convergence over bounded-time intervals) in an unrestricted state space; for a remark
on the existence of optimal controls for a restricted state space, see Remark 2.2. Note
that the zero control value 0∈A gives the players the option to stop. As we shall
see later, the existence of the zero control crucial is when characterizing the optimal
control for P.

Remark 2.1. It can be shown by a formal derivation that uE satisfies the Hamilton-
Jacobi-Bellman partial differential equation (PDE)

max
σ∈A
{∇uE(x) ·fE(x,σ)σ}= 1, (2.4)

in Ωfree\{x0
E}, and similarly for uP . It is known that in general, even under the

assumptions (A1)-(A3), Lipschitz continuous solutions of (2.4) with typical Dirichlet
boundary conditions are non-unique. However, it is possible to characterize a gener-
alized solution, called a viscosity solution [8]. It has been shown that the viscosity
solution to (2.4) with uE(x0

E) coincides with the minimum time-to-reach function uE
of the corresponding optimal control problem [23]. The advantage of characterizing
the minimum time-to-reach function as a HJB PDE is the availability of a plethora of
efficient numerical methods known to converge to the viscosity solution, including fast
sweeping-type [35, 30], fast marching-type [31, 38, 32], and semi-Lagrangian methods
[14, 11]. See also [27] for a publicly available Matlab toolbox for computing solutions
to a wide class of HJB equations.

Remark 2.2. In a restricted state space (i.e. Ωfree 6=Rn), the optimal controls in
(2.2) and (2.3) may not exist, even under the assumptions (A1)-(A3). However, from
the definition of the minimum time-to-reach function, there will always exist controls
that are ε-suboptimal, provided the minimum time-to-reach function is finite. For
instance, given ε>0, there exists σ∗∈A such that the corresponding path x∗E(·) for
E satisfies

uE(x)> inf{t≥0 |x∗E(t) =x}−ε.
To simplify the presentation, we will loosely refer to an “optimal path” as a path that
corresponds to an optimal control, if such a control exists, or an ε-suboptimal control,
if no optimal control exists. For detailed discussions on numerical computations of
optimal trajectories and empirical demonstrations of its computation in a restricted
state space, we refer the reader to Appendix A in [1].

2.2. Feedback strategies and the value function. E’s objective is to choose
an optimal σ∗E ∈A in order to minimize the payoff, while P’s objective is to choose an
optimal σ∗P ∈A to maximize the payoff. For instance, P’s strategy may be to move
in the direction that locally increases the visibility area from the vantage point xP (t)
[9].

A feedback strategy at a time t≥0 is a response rule of a player based on the system
states up to t. For notational simplicity, write x(·) := (xE(·),xP (·)) as the ordered pair
of E’s and P’s paths. Let P={x(·) : [0,∞)→Ω2

free |x(0) = (x0
E ,x

0
P )} denote the set of

paths for E and P from their respective initial states. Then, a feedback strategy for
P is a map ζ : P→A that satisfies



1308 VISIBILITY-BASED SURVEILLANCE-EVASION GAME

1. x(s) = x̃(s) for all s∈ [0,t] implies ζ[x](s) = ζ[x̃](s) for all s∈ [0,t],

2. for all σE ∈A and T >0, there exists a unique solution to (2.1) with σP (t) =
ζ[x](t) for t∈ (0,T ].

Let FP be the set of all feedback strategies of P, and let (xE(·),xP (·;σE ,ζ)) be
the solution to (2.1) corresponding to σE ∈A and σP = ζ(xE), where ζ ∈FP . We then
define the payoff function

Jfeedback(x0
E ,x

0
P ,σE ,ζ) = inf{t≥0 |xE(t)∈DxP (t;σE ,ζ)}.

In a feedback strategy game, at each time t≥0, one player chooses its control at t
knowing the opponent’s state from times 0 up to and including t. For the moment,
we assume the player choosing the control is P.

Definition 2.3. The (lower) value function u : Ω2
free→R for the feedback strategy

game is

u(x0
E ,x

0
P ) := sup

ζ∈FP
inf
σE∈A

Jfeedback(x0
E ,x

0
P ,σE ,ζ). (2.5)

Here, for any of P’s feedback strategies, E chooses an optimizing control, and P
then picks out one strategy that has the best payoff. It can be shown that under
certain conditions the value for such games is equal regardless of which player, E or
P, chooses the control and which reacts by choosing feedbacks. Furthermore, u is a
viscosity solution to the Hamilton-Jacobi-Issacs (HJI) equation [1, 8, 10]

1 = max
σ̂P∈A

min
σ̂E∈A

{−fE(xE ,σ̂E)σ̂E ·∇xEu−fP (xP ,σ̂P )σ̂P ·∇xP u} on Ω2
free\T , (2.6)

where u= 0 in T ={(x,y)∈Ω2
free |x∈Dy} and ∇xu is the gradient of u with respect

to the variable x∈Ωfree.
In contrast to the feedback strategy game, a game where the feedback strategy

is invoked only at t= 0 is called a static game. That is, at the start of the game, one
player chooses its control for all t≥0 by countering the control chosen by the other
player for all t≥0, and the other player optimizes knowing this response. Indeed, in
such games, the optimal occlusion time may differ depending on which player (E or P)
plays in response to the other. In this article, we focus on the case where P optimizes
assuming that E will always optimally counter P’s strategies. For initial states x0

E ,
x0
P and controls σE , σP , consider the payoff function

J (x0
E ,x

0
P ,σE ,σP ) = inf{t≥0 |xE(t)∈DxP (t)}. (2.7)

Here and throughout this article, we adopt the convention that the infimum of the
empty set is infinity.

Definition 2.4. Define the (lower) value function vs : Ω2
free→R for the static game

as

vs(x
0
E ,x

0
P ) := sup

σP∈A
inf
σE∈A

J (x0
E ,x

0
P ,σE ,σP ). (2.8)

In general, it can be shown that vs≤u [2]. Our central result, presented in Section
3, is an efficient algorithm which computes vs(x

0
E ,x

0
P ) and the paths corresponding

to the optimal controls (or ε-suboptimal controls, see Remark 2.2), formally written
as

σ∗P ∈arg sup
σP∈A

inf
σE∈A

J (x0
E ,x

0
P ,σE ,σP ), (2.9)
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σ∗E ∈arg inf
σE∈A

J (x0
E ,x

0
P ,σE ,σ

∗
P ), (2.10)

provided the game ends in finite time. For brevity, we shall refer to the static visibility-
based surveillance-evasion game simply as the static game and the corresponding value
(2.8) as the static value.

Remark 2.5. Note that the value function can be analogously defined for a “dual”
static game where E optimizes by assuming that P will always optimally counter, by
swapping the “infσE∈A” and “supσP∈A” in (2.8); this will yield a(n) (upper) value
function which will be greater than or equal to vs and u [2].

In the differential game theory literature, a pursuit-evasion type game typically
refers to (2.6), i.e. the boundary value PDE problem whose solution corresponds to
the feedback strategy value function. The HJI equation (2.6) immediately suggests a
numerical algorithm to solve the feedback strategy value function. However, because
(2.6) is solved on the joint configuration space Ω2

free, even the simplest (non-trivial)
setting of two players in a two dimensional ambient space leads to a problem in at
least four dimensions. For problems with additional players, the dimension of the
problem scales exponentially in the number of players. The high-dimensionality of
the problem is attributed to the information contained in a single value function: the
optimal control can be extracted from u for every pair of initial starting positions on
the domain.

We emphasize that the objective of this article is not to solve u, but to solve the
static game value function vs (and the associated optimal paths), which is not known
to be a solution to a PDE. For a problem of finding optimal controls for a single
prescribed initial pair of positions (x0

E ,x
0
P ), solving (2.6) involves excessive amounts

of computational time and data memory.

We now give a condition such that the static value function (2.8) is finite.

Proposition 2.6. Assume that Ωfree is not a star domain, and supx∈Ωfree
uE(x)<

∞. Then vs(x
0
E ,x

0
P )<∞.

Proof. For ε>0 small, let tmax = supx∈Ωfree
uE(x)+ε. By the existence of ε-

suboptimal controls, for any y∈Ωfree, there is a path xE(·) such that xE(0) =x0
E and

xE(tmax) =y.

Choose any σ∗P ∈A, and let x∗P (·) be the corresponding path for P. Because
the domain is not star shaped, there exists y∈Ωfree such that x∗P (tmax)∈Dy. If
in response, E chooses σ∗E ∈A corresponding to a path x∗E(·) such that x∗E(tmax) =y
(which exists by the earlier argument), then J (x0

E ,x
0
P ,σ

∗
E ,σ

∗
P )≤ tmax. Because E has

a response control such that J ≤ tmax for any control choice of P, we conclude that
vs(x

0
E ,x

0
P )≤ tmax<∞.

This proposition says that the static game will terminate in finite time, for ex-
ample, if E travels with positive speed on a bounded, path connected Ωfree that is
not a star domain. This rather strong statement results from the fact that the entire
future control values σP (t) and σE(t) for both players are chosen only once at initial
time, and no future revision is allowed. Looking ahead, the last proposition is useful
in justifying the use of our algorithm in the numerical examples discussed in Section
3. In Section 4.2, we present a scenario in which optimal controls for both players are
allowed to be revised at discrete time increments as the game progresses.

We close this section by proving a simple observation, to be used later.
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Proposition 2.7. For a stationary P, i.e. xP (t) =x0
P ,∀t≥0, the optimal control

for E for the static game is the time optimal control from x0
E to the set Dx0

P
.

Proof. Fix P’s control σ0
P to have zero control value 0∈A for all t≥0. Then,

vs(x
0
E ,x

0
P ) = inf

σE∈A
J (x0

E ,x
0
P ,σE ,σ

0
P )

= inf
σE∈A

inf{t≥0 |xE(t)∈Dx0
P
},

which precisely characterizes the optimal control of E as desired.

2.3. Notations and game assumptions. Because we will consider “op-
timal paths/controls” in the context of both the differential game and the re-
lated optimal control problems, we choose to call optimal paths/controls (or ε-
suboptimal paths/controls) those which correspond to the static game, and time op-
timal paths/controls (or ε-time suboptimal paths/controls) those which correspond to
minimum arrival time optimal control problems, such as in (2.2) and (2.3).

Throughout this article, we use the following notations:

• Ω⊂Rn is an open and bounded ambient space; we focus particularly with
n= 2, but the theory applies naturally to higher dimensions.

• Ωfree∪Ωobs = Ω partitions the ambient space into the freespace and obstacles.
We assume that Ωfree is open.

• E and P are the two competing players, representing the evader and the
pursuer, respectively.

• x,y are generic points in Ω.

• Dx⊂Ωfree is the set of occluded points from the vantage point x∈Ωfree.

• σE ,σP : t∈ [0,∞)→A are the controls of E and P at time t≥0, respectively.

• xE ,xP : t∈ [0,∞)→Ωfree are E and P’s respective positions at time t≥0; we
suppress their dependence on the initial states x0

E , x0
P and controls σE , σP .

• x0
E ,x

0
P ∈Ωfree are the fixed initial positions of E and P, respectively.

• xfE ,xfP ∈Ωfree are the final positions of E and P, respectively, to be computed.
• vs : Ω2

free→R+∪{0} is the value of the static game; see (2.8).
Furthermore, we shall make the following assumptions on the games introduced hence-
forth:

(B1) x0
E 6∈Dx0

P
, i.e. the players are initially visible to each other.

(B2) both players are aware of their opponent’s dynamics,

(B3) both players know their opponent’s positions, if and only if they are visible
to each other.

Remark 2.8. Given a vantage point x∈Ωfree, a level set function ξ(·;x) : Ω→R
representing Dx⊂Ω, where {

ξ(y;x)≤0, if y∈Dx,
ξ(y;x)>0, if y∈Ω\Dx,

can be computed in O(N) time on a grid with N nodes, using the level set visibility
function [34]. The details are described in Appendix A.



R. TAKEI, R. TSAI, Z. ZHOU, AND Y. LANDA 1311

3. An algorithm for the static value function
In this section, we present an algorithm which computes the value function and

optimal paths corresponding to the optimal controls (2.9) and (2.10). Our algo-
rithm depends crucially on a maximal set R∗⊂Ωfree and two functions t∗(·;x0

E) and
wR∗(·;x0

P ) which, in some sense, decouple the analysis of the dynamics of E and P.

Definition 3.1. Given x∈Ωfree,

t∗(x;x0
E) := inf

σE∈A
inf{t≥0 |xE(t)∈Dx,xE(0) =x0

E}. (3.1)

That is, t∗(x;x0
E) is the shortest time for E, starting from x0

E , to become occluded
from a stationary vantage point x∈Ωfree. Note that the two players must be initially
visible to each other by assumption (B1), so t∗(x0

P ;x0
E)>0.

Definition 3.2. For any subset R⊂Ωfree containing x0
P , let

wR(x;x0
P ) = inf

σP∈A
inf{t≥0 |xP (0) =x0

P ,xP (t) =x,xP (s)∈R,∀s∈ [0,t]}. (∆R)

That is, wR(x;x0
P ) is the minimum time for P to reach x from x0

P by traveling along
a path that is contained in R. By the small-time controllability assumption (A2),
the function wR(·;x0

P ) is finite and continuous in any pathwise connected subset of R
containing x0

P . Next, we relate t∗ and wR by an inequality over a maximal set R∗.

Definition 3.3. Let R∗⊂Ωfree be the maximal set containing x0
P such that

wR∗(y;x0
P )<t∗(y;x0

E), for all y∈R∗. (3.2)

In other words, for any R)R∗ and y∈R\R∗, we have wR(y;x0
P )≥ t∗(y;x0

E).

We remark that the maximality of R∗ implies its uniqueness. The existence
follows from the fact that property (3.2) holds trivially for the subset {x0

P }⊂Ωfree.
Roughly speaking, The functions t∗ and wR∗ defined above quantify the reacha-

bility of the two players by time under optimal choice of controls; this allows us to
characterize P’s possible controls (or paths) that maintain visibility of E under worst
case scenarios; see figure 3.1.

3.1. τ-admissible pursuit paths. By Proposition 2.7, assuming a stationary
P, an optimal strategy for E is to move towards the occlusion set Dx0

P
via a time-

optimal path, provided it exists. In this case, it will take t∗(x0
P ;x0

E) time for an
optimally moving E to become occluded from P. This also implies that xE(τ) 6∈Dx0

P

for 0≤ τ <t∗(x0
P ;x0

E) and σE ∈A. To consider the case of a non-stationary P, we
introduce the following notion.

Definition 3.4 (τ -admissible pursuit path). For a τ >0, we say that a path
xP (·) of P is a τ -admissible pursuit path if

t<t∗(xP (t);x0
E) for all t∈ [0,τ). (3.3)

Set T :=vs(x
0
E ,x

0
P ), where vs is defined in (2.8). Then, an optimal path xP (·) for P

is a T -admissible pursuit path. If not, s≥ t∗(xP (s);x0
E) at some s<T ; this implies

that there exists a control σE ∈A such that xE(s)∈DxP (s), thereby prematurely ter-
minating the game no later than s. Based on this observation, P’s optimal path is
a τ -admissible pursuit path with the largest τ ; this corresponds to reaching a final
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d1

x0
E

t⇤ < d1

t⇤ = 0

x0
P

t⇤ > d1

wR⇤ = t⇤

wR⇤ < d1

t⇤ < d1

t⇤ > d1

|y � x0
E | = d1 + � wR⇤ = t⇤ = d1 + �

Fig. 3.1. An illustration of the relations between t∗(y;x0E) and wR∗ (y;x0P ). Both players are
assumed to have unit speeds. The shaded circle represents the obstacle, d1 is the distance between
x0E and the obstacle, and δ is some small positive constant. The precise shape of the curve that
corresponds to wR∗ = t∗ is not drawn accurately in this illustration. In this scenario, the game will
last until t>d1 because E will not be able to reach the shadow boundary before P pushes the shadow
boundary further away.

point xfP which maximizes t∗(·;x0
E). As we shall show later (Lemma 3.6), the set R∗

coincides with the set of points reachable by τ -admissible pursuit paths. Therefore,
the static value can be related to R∗ and t∗(·;x0

E) as follows.

Theorem 3.5. vs(x
0
E ,x

0
P ) = supx∈R∗ t

∗(x;x0
E), provided both sides are finite.

We note that it is possible for t∗(·;x0
E) to be infinite, for example, if Ωfree is star

shaped (see Proposition 2.6). While the equality in Theorem 3.5 may still be valid in
such cases, we shall not pursue them further. We give the proof of Theorem 3.5 at
the end of this subsection. First, as claimed earlier, we show that all points in R∗ are
precisely the points “reachable” by τ -admissible pursuit paths that start from x0

P .

Lemma 3.6.
1. For any arbitrary point y∈R∗, there exists a τ -admissible pursuit path xP (·)

such that xP (t) =y for some t∈ [0,τ), if there exists a time-optimal path in
R∗ from x0

P to y.

2. For any y∈Ωfree\R∗, there does not exist a τ -admissible pursuit path xP (·)
such that xP (t) =y for some t∈ [0,τ).

Proof. 1. We construct a τ -admissible pursuit path from a time optimal path for
the minimum arrival time problem corresponding to (∆R∗). Choose a point y∈R∗,
and define T,τ >0 as

T :=wR∗(y;x0
P )<t∗(y;x0

E) =: τ. (3.4)

Let xP (·) be the time optimal path from x0
P =xP (0) to y=xP (T ) such that {xP (t) |
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t∈ [0,T ]}⊆R∗. Then

t=wR∗(xP (t);x0
P )<t∗(xP (t);x0

E), for t∈ [0,T ]. (3.5)

The first equality follows from a property of time-optimal paths; cf. Corollary 2.3 in
[39]. For t>T , set xP (t) =y, i.e. P is stationary at y. Then, from Definition (3.1),

t<t∗(y;x0
E) = t∗(xP (t);x0

E), for t∈ [T,τ).

Thus, xP (·) is a τ -admissible pursuit path such that xP (T ) =y for T ∈ [0,τ).

2. If such a τ -admissible pursuit path existed, then wR∗(y;x0
P )<t∗(y;x0

E); this
contradicts the maximality of R∗.

Remark 3.7. Suppose part 1 of Lemma 3.6 did not assume the existence of a
time-optimal path from x0

P to y in R∗. In the spirit of Remark 2.2, we can modify
Definition 3.3 and the proof in Lemma 3.6 to characterize a sequence of paths in
R∗ satisfying (3.5) in the limit. Namely, for fixed δ>0 define R∗δ ⊂Ωfree to be the
maximal set containing x0

P such that

wδR∗δ (x;x0
P )<t∗(x;x0

E)−δ, for all x∈R∗δ . (3.6)

It can be verified that
⋃
δ>0R

∗
δ =R∗. Then, consider xε,δP (·), an ε-time suboptimal

path in R∗δ . It can be shown that

t<t∗(xε,δP (t);x0
E)−δ/2, for t∈ [0,T ].

Thus, the limiting path as ε→0 followed by δ→0 satisfies the conditions in (3.5).
The rest of the proof follows with the same argument as in the earlier proof.

We close this subsection with the proof of Theorem 3.5.

Proof. [Proof of Theorem 3.5.] By Lemma 3.6 and Remark 3.7, all [0,τ) time
portions of τ -admissible pursuit paths lie inside R∗. Hence, P’s static value is bounded
above by supx∈R∗ t

∗(x;x0
E), i.e. vs(x

0
E ,x

0
P )≤ supx∈R∗ t

∗(x;x0
E).

We claim that vs(x
0
E ,x

0
P )≥ supx∈R∗ t

∗(x;x0
E). Consider a sequence {yi}∞i=0 in R∗

converging to y∈R∗ so that τi := t∗(yi;x0
E)→ supx∈R∗ t

∗(x;x0
E) as i→∞. By Lemma

3.6, there is a τi-admissible pursuit path for each i= 0,1,2,. ... This implies that
vs(x

0
E ,x

0
P )≥ τi for all i. Taking i→∞, we have the desired inequality.

3.2. Optimal paths. In this section, we discuss a characterization of optimal
paths of P and E for the static game.

From the proof of Theorem 3.5, each of P’s optimal paths will reach an optimal
final point xfP ∈R∗ such that there exists a sequence {yi}∞i=0 in R∗ converging to

xfP , and t∗(yi;x0
E)→ supx∈R∗ t

∗(x;x0
E) as i→∞. We denote all possible optimal final

points as “argsupx∈R∗ t
∗(x;x0

E)”.
As for E’s optimal paths, we first recall that the optimal control value function

uE is defined in (2.2). Because E has a strategy to become occluded from P at time

vs(x
0
E ,x

0
P ) (see Theorem 3.5), the final state xfE would be any point that is reachable

from x0
E within time vs(x

0
E ,x

0
P ) and is occluded from the point xfP , i.e.

xfE ∈DxfP ∩{x |uE(x)≤vs(x0
E ,x

0
P )}.

The set on the right hand side is non-empty: t∗(xfP ;x0
E) =vs(x

0
E ,x

0
P ) implies that

there exists a σE ∈A for E to occlude from the vantage point xfP at time vs(x
0
E ,x

0
P ).

The optimal path for E is therefore its time-optimal path from x0
E to xfE in Ωfree.



1314 VISIBILITY-BASED SURVEILLANCE-EVASION GAME

3.3. Construction of R∗. Recall that R∗ is the maximal set such that
the function wR∗ satisfies the inequality (3.2). This characterization, however, is not
constructive. To this end, consider a sequence of sets {Ri}∞i=0 defined as follows:

R0 :={x∈Ωfree |uP (x)<t∗(x;x0
E)},

Ri+1 :={x∈Ωfree |wRi(x;x0
P )<t∗(x;x0

E)},
(3.7)

where uP (x) is the minimum time for P to arrive at x from the starting location x0
P ,

defined as per (2.3).

Lemma 3.8. R0⊇R∗.
Proof. We prove by a contrapositive argument. Suppose we have uP (x;x0

P )≥
t∗(x;x0

E), i.e. x∈Ωfree\R0. Then, no path for P can reach x before t∗(x;x0
E), the time

necessary for E to become occluded from x. This implies that no point on the [0,τ)
portion of any τ -admissible pursuit path would coincide with x. Thus, by Lemma 3.6,
x∈Ωfree\R∗.

The following theorem proves that Ri converges monotonically to a set that is
contained in R∗ and that contains R∗:

Theorem 3.9. The sequence {Ri}∞i=0 satisfies
1. Ri+1⊆Ri for all i= 0,1,2,. .., and

2. R∗⊆⋂∞
i=1Ri⊆R∗.

Remark 3.10. For numerical purposes, when the set R∞ :=
⋂∞
i=1Ri is approxi-

mated by discrete points on a finite grid, R∗ and R∗ are indistinguishable. Therefore,
when applying Theorem 3.5 in the forthcoming algorithm (see Algorithm 1), we are
justified in treating R∞ to be R∗.

Proof. [Proof of Theorem 3.9]
1. By Lemma 3.8, the initial set R0 is a superset of R∗. Then we note that

Ri+1 ={x∈Ωfree |wRi(x;x0
P )<t∗(x;x0

E)}⊆{x∈Ωfree |wRi(x;x0
P )<∞}

⊆Ri,i= 0,1,2,. ... (3.8)

The last inclusion follows from the fact that if x /∈Ri, then wRi(x;x0
P ) is infinite.

Define R∞ :=
⋂∞
i=0Ri.

2. To see that R∞⊇R∗, we show by induction that Ri⊇R∗ for all i= 0,1,2,. ...
The base case i= 0 was proved in Lemma 3.8. Assume Ri⊇R∗. Then, wRi(x;x0

P )≤
wR∗(x;x0

P ) for all x∈R∗. From Definition 3.3, wR∗(y;x0
P )<t∗(y;x0

E) for all y∈R∗⊆
Ri. The last two facts imply wRi(y;x0

P )<t∗(y;x0
E), so y∈Ri+1. Therefore, Ri+1⊇R∗.

Next, we show R∞⊆R∗. Fix a δ>0 small and define the sequence of sets {Rδi }∞i=0

as follows:

Rδ0 :={x∈Ωfree |uP (x;x0
P )<t∗(x;x0

E)−δ},
Rδi+1 :={x∈Ωfree |wRδi (x;x0

P )<t∗(x;x0
E)−δ}, i= 0,1,2,. ...

(3.9)

We define Rδ∞ :=
⋂∞
i=0R

δ
i . The inclusions Rδi+1⊆Rδi can be shown via an argument

similar to that in (3.8). We claim that

Rδ∞={x∈Ωfree |wRδ∞(x;x0
P )<t∗(x;x0

E)}. (3.10)
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Thus, by the maximality of R∗, we have Rδ∞⊆R∗. Because R∞⊆
⋃
δ>0R

δ∞ and⋃
δ>0R

δ
∞⊆R∗, we conclude that

R∞⊆
⋃
δ>0

Rδ∞⊆R∗,

as desired. To show (3.10), first note that

Rδ∞=

∞⋂
i=0

{x∈Ωfree |wRδi (x;x0
P )<t∗(x;x0

E)−δ}

⊆{x∈Ωfree |wRδ∞(x;x0
P )≤ t∗(x;x0

E)−δ}
⊆{x∈Ωfree |wRδ∞(x;x0

P )<t∗(x;x0
E)}.

Next, to show Rδ∞⊇{x∈Ωfree |wRδ∞(x;x0
P )<t∗(x;x0

E)}, take any y∈Ωfree such that

wRδ∞(y;x0
P )<t∗(y;x0

E); clearly wRδ∞(y;x0
P ) is finite, and therefore y∈Rδ∞. This proves

(3.10).

We note that empirically the convergence rate is quite fast. For all simulation
examples (with varying domain complexities) in this paper, it takes fewer than 10
iterations for Ri to numerically converge to R∗.

3.4. Algorithm and examples. We summarize the steps described in the
previous sections in Algorithm 1. Note that we have omitted details on computing
optimal control value functions and time-optimal paths within the algorithm; this is
in the spirit of both simplifying the presentation and emphasizing the independence
of the algorithm to particular computational methods.

If state-of-the-art numerical HJB solvers are employed in Step 1 to solve uE(·),
uP (·), and t∗(·;x0

E), then the bulk of the computation would be spent in the latter
function; it involves the computation of Dx and the minimum arrival time function
to Dx from y for each x,y∈Ωfree. If Ωfree⊂R2 is discretized on a N×N grid, this
would involve at least O(N4) operations: O(N2) for computing the level set function
representation for Dx (see Appendix A) and at least O(N2) for solving the minimum
arrival time to Dx; cf. [35, 17, 26, 28]. While the worst-case computational complexity
is comparable to solving the feedback strategy game via a Hamilton-Jacobi-Isaacs
equation, we mention a few advantages of solving the static game using Algorithm 1:

1. The most costly part of the algorithm is easily parallelizable: t∗(x;x0
E) can be

evaluated independently for each discrete node x in Ωfree.

2. Small memory footprint: the memory complexity is only O(N2) because for
each node x, the level-set representations of Dx and the corresponding min-
imum arrival time function need not be stored once t∗(x;x0

E) is evaluated.

3. Exact solutions: for domains with simple geometry (e.g. circles, polygonal
obstacle boundaries) and constant speeds, it may be possible to derive an
analytical formula for t∗(x;x0

E) for x∈Ωfree; see examples 1 and 2 below.

Next, we present three examples demonstrating our algorithm. In all test cases,
Ω = [−1,1]2. Computations were performed on a desktop running on a 3.33 GHz dual-
core CPU with 4 GB of RAM memory. For examples 1 and 2, computations took less
than a second because an exact formula for t∗(·;x0

E) was employed. For Example 3,
the complete computation took approximately 5 minutes.
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Algorithm 1: Algorithm for the static visibility-based surveillance-evasion
game.

Input : Domain information Ω = Ωfree∪Ωobs.
Initial states x0

E , x0
P and dynamics fE , fP .

Output: Optimal occlusion time T =vs(x
0
E ,x

0
P ).

Optimal paths x∗E ,x
∗
P : [0,T ]→Ωfree.

Step 1
Compute functions uE(x),uP (x),t∗(x;x0

E) on x∈Ωfree;

Step 2 (construct R∗)
R0 :={x |uP (x)≤ t∗(x;x0

E)}
foreach i= 0,1,2,. .. until Ri stop changing do

Compute wRi on Ri;
Ri+1 :={x |wRi(x)<t∗(x;x0

E)};
R∗ :=Ri+1;

Step 3 (extract static value and optimal paths)
Return T := supx∈R∗ t

∗(x;x0
E);

Find xfP ∈argsupx∈R∗ t
∗(x;x0

E);

Return x∗P (·), the time-optimal path from x0
P to xfP in R∗;

Choose xfE ∈DxfP ∩{x |uE(x)≤T};
Return x∗E(·), the time-optimal path from x0

E to xfP in Ωfree;

3.4.1. Example 1: Circular obstacle. The first example concerns a single
circular obstacle, with E and P placed as shown in figure 3.2 (a).

Due to the simple geometry, it is possible to analytically derive a formula for
t∗(x;x0

E) for x∈Ωfree. All other functions, uE , uP , and wRi (i= 0,1,. ..) were approx-
imated on a uniform Cartesian grid of size 4002. The function t∗(·;x0

E) is shown in
figure 3.3 (a). In figure 3.3 (b), the computed R∗ using the algorithm 3.7 is plotted,
as well as the optimal paths of E and P.

 

 

−1 −0.5 0 0.5 1−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
Obstacle bdry
xE

0

xP
0

 

 

−1 −0.5 0 0.5 1−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
Obstacle bdry
xE

0

xP
0

(a) (b)

Fig. 3.2. Obstacle (shaded) and initial states for (a) Example 1 and (b) Example 2.
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(a) (b)

Fig. 3.3. Example 1. (a) Surface plot of t∗(·;x0E), where x0E = (0.8,0.6). (b) A plot illustrating

R∗ (blue curve), t∗(·;x0E) (background), xfE (red square), xfP (blue circle), and the optimal paths of
P (blue dotted curve) and E (red dotted curve), where the isotropic speeds are fE = 1,fP = 1.2. The

purple curve represents the visibility region from the vantage point xfP .

3.4.2. Example 2: Two corridors. Next we consider a case where x0
E , x0

P ,
and Ωfree are shown in figure 3.2 (b). Again, due to the simplicity of the geometry of
the domain, we derived an analytical formula for t∗(x,x0

E) for x∈Ωfree.

For the sake of analyzing the solution, we set S to be the square (x,y)∈ [−0.25,0]×
[0,0.25] (the north-east, south-west, and south-east vertices of S coincide with the
vertices near the origin of the three obstacles). Also, we call C1 the set of points
(x,y)∈ [0,1]× [0,0.25] in the “horizontal corridor” between the upper right and bottom
right rectangular obstacles. Likewise, we call C2 the set of points (x,y)∈ [−0.25,0]×
[−1,0] in the “vertical corridor” between the lower left and bottom right rectangular
obstacles. Note that the set of states where P has the greatest visibility of domain
is S; this is reflected by the peak in t∗(x;x0

E) for x∈S, shown in figure 3.4 (a) and
(b). This prompts a conservative P to move towards S via a time-optimal path, and
remain stationary until the game terminates. Indeed, if P “commits” to entering C1

then E would counter by moving into C2, thereby ending the game prematurely; a
similar argument follows if P commits to entering C2. Consequently, E’s final state
xfE to become occluded from a P in S would either be the south-west or north-east
vertex of the bottom right obstacle, whichever is closer to x0

E ; in the present example,

xfE is the former.

3.4.3. Example 3: inhomogeneous speeds. In figure 3.5, we illustrate
how inhomogenous speed functions fE and fP can be handled using the proposed
algorithm. The following isotropic velocity functions were used: for all σ̂E ∈A and
σ̂P ∈A,

fE(x,σ̂E) =fP (x,σ̂P ) =f(x) = 1−0.8sin(4πx1)sin(4πx2), where x= (x1,x2).

Because an analytical formula for t∗(·;x0
E) is too complicated to derive, it was con-

structed numerically via Definition 3.1. All computations were performed on a 2002
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(a) (b)

Fig. 3.4. Example 3. (a) Surface plot of t∗(·;x0E), where x0E = (−0.6,0.15). (b) A plot illustrat-

ing R∗ (blue curve), t∗(·;x0E) (background), xfE (red square), xfP (blue circle), and optimal paths of
P (blue dotted curve) and E (red dotted curve), where the isotropic speeds are fE = 1,fP = 1.2. The

purple curves represent the visibility region from the vantage point xfP .

(a) (b)

Fig. 3.5. Example 2. (a) A plot illustrating R∗ (blue curve), t∗(·;x0E) (background), xfE (red

square), xfP (blue circle), and optimal paths of P (blue dotted curve) and E (red dotted curve), with
an intensity plot of t∗(·;x0E) in the background, with the speed function f(x). (b) Same plot as (a),
except with the speed function f(x) in the background.

domain. Note that, by observing figure 3.5 (b), both players travel where their speeds
are the greatest (yellow regions).

4. Applications and extensions

In this section, we present several immediate applications and extensions of the
static game algorithm. In Section 4.1, we show that for a generalized version of the
visibility pursuit-evasion game with multiple evaders, the computation scales linearly
with the number of players. In Section 4.2, we present a feedback control strategy by
invoking the static game algorithm iteratively over short time intervals.
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4.1. Multiple evaders. A natural extension of the present algorithm is to
the visibility based single-pursuer, multiple-evader (static) game. Suppose there are
k evaders, E1,E2,. ..,Ek, where Ei’s motion satisfies the initial value problem

ẋEi(t) =fEi(xEi(t),σEi(t))σEi(t), xEi(0) =x0
Ei ∈Ωfree for each i= 1,2,. ..,k.

For each i, the control σEi ∈A is chosen as with the two player game. We assume,
for each i, that the velocity fEi satisfies the conditions (A1)-(A3).

Given x0
P , {x0

Ei
}ki=1 and σP ∈A, {σEi ∈A}ki=1, consider the payoff function

Jk(x0
E1
,. ..,x0

Ek
,x0
P ,σE1

,. ..,σEk ,σP ) = min
i=1,...,k

J (x0
Ei ,x

0
P ,σEi ,σP ), (4.1)

where J is the payoff function for the two-player game (2.7). Here, the game termi-
nates the first instance that at least one evader becomes occluded from the pursuer.
The key property is that each Ei plays independently against P, thus solving this game
amounts to k instances (for each Ei) of the two-player game. As with the two-player
game, all players choose their complete controls at the start of the game.

Let t∗(·;x0
Ei

) be the function defined as per (3.1) with initial state x0
Ei

. Then,
analogous to (3.3), the τ -admissible pursuit path xP (·) for P among the Ei’s must
satisfy t<t∗(xP (t);x0

Ei
) for all t∈ [0,τ) and i= 1,. ..,k, or equivalently,

t< min
i=1,...,k

t∗(xP (t);x0
Ei) for all t∈ [0,τ).

The rest of the algorithm follows the same procedure as with the two-player game,
where t∗(x;x0

E) is replaced by mini=1,...,k t
∗(x;x0

Ei
); the definitions of R∗, wR∗ , etc.

can be defined accordingly. For example, the static value function for k evaders
becomes

vk(xE1
,. ..,xEk ,x

0
P ) = sup

x∈R∗
min

i=1,...,k
t∗(x;x0

Ei),

and the final state of P is xfP = argsupx∈R∗mini=1,...,k t
∗(x;x0

Ei
). Furthermore, there

exists i∈{1,. ..,k} and (a final state) xfEi ∈Ωfree such that xfEi is reachable by Ei (via

a time-optimal path) in time vk(xE1 ,. ..,xEk ,x
0
P ) and occluded from xfP .

Remark 4.1. Because each t∗(·;x0
Ei

) can be computed independently on the under-
lying domain, the computational complexity for multiple evaders scales linearly with
the number of players.

4.2. Applications to a feedback control game and target tracking. Let
us return to the two-player game setting, E versus P. In realistic settings, controls of
one or more players are chosen using feedback controls, rather than open loop controls.
To model a feedback control strategy, we adopt an iterative open loop approach in the
spirit of Model Predictive Control (MPC) [29]: one advances the players over short
time intervals according to the optimal controls computed by Algorithm 1, starting
at the current states.

Suppose the player states are sampled at discrete times ∆ = (0 = t0,t1,t2,. ..,tn),
where ti<ti+1 for all i= 0,1,2,. ..,n. The aforementioned feedback control strategy
can be stated as follows. Suppose E and P initially start at states x0

E and x0
P , respec-

tively. We write the player states in each time interval as{
xE(t) =x

(i)
E (t− ti),

xP (t) =x
(i)
P (t− ti),

t∈ [ti,ti+1].
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Fig. 4.1. The solution to a visibility single-pursuer, three-evader static game.

In the time interval [ti,ti+1], the states satisfy the dynamics{
ẋ

(i)
E (t) =fE(x

(i)
E (t),Φ(t))Φ(t),

ẋ
(i)
P (t) =fP (x

(i)
P (t),Ψ(t))Ψ(t),

t∈ [0,ti+1− ti], (4.2)

with initial conditions defined recursively as

(x
(i)
E (0),x

(i)
P (0)) =

{
(x

(i−1)
E (ti− ti−1),x

(i−1)
P (ti− ti−1)), if i≥1,

(x0
E ,x

0
P ), if i= 0.

(4.3)

For fixed states xE ,xP ∈Ωfree, the feedback controls Φ(t) = Φ(xE ,xP ; ·)∈A and Ψ(t) =
Ψ(xE ,xP ;·)∈A are the static game controls computed from the joint state configu-
ration at the discrete time sets:

Ψ(xE ,xP ; ·)∈arg sup
σP∈A

inf
σE∈A

J (xE ,xP ,σE ,σP ),

Φ(xE ,xP ; ·)∈arg inf
σE∈A

J (xE ,xP ,σE ,Ψ(xE ,xP ; ·)).
(4.4)

In figure 4.2, we show a comparison of the static and feedback control games on
a simple example. The players both have unit speeds in a square domain [−1,1]2

with a single circular obstacle. Here, we sampled and recomputed the controls at
equal intervals ∆ = (0,∆t,2∆t,3∆t,...), where ∆t= 0.025; the iterative procedure was
performed until E became occluded from P. Notice how the feedback strategy game
prolonged the game duration compared to the static game. This makes intuitive
sense: because the static value (2.8) corresponds to the most conservative strategy for
P, the iterative procedure relaxes this conservatism and thus yields a more favorable
outcome for P.

Remark 4.2. In general, the static game in each interval does not have a unique
optimal control. Take for instance Example 2 (the two-corridor example): all time-

optimal controls for P that reach a (final) point xfP ∈S are optimal controls for the
static game. While the static values are all equal for all such optimal controls, some
choices may be more advantageous because they will directly affect the feedback
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Fig. 4.2. A comparison between the static and feedback control games. From left to right: the
initial states and obstacles, the optimal static game paths, and the optimal feedback control game
paths. In the feedback control game, we have plotted the sequence of positions of the players as well
as the R∗ at each iteration.
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Fig. 4.3. Snapshots of the iterative static game algorithm.

control in subsequent iterations. As a sensible strategy to uniquely choose among the
optimal state game controls, at each step i, we implement P to choose the control
corresponding to the final point xfP such that ‖xfP −xE(ti)‖2 is minimized, i.e. choose
the control to move to the point closest to the current state of E.
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Fig. 4.4. A target tracking example. Both players start at the bottom right entrance to the
“cave”. The target’s path (in red) is predefined, heading towards to the cave exit at the top right
corner. the tracker’s path (in blue) is computed using a sequence of controls computed by Algorithm
1 from the current states at fixed time intervals. The black line segment connects the target and
tracker states at the same discrete time instances ti.

As another illustration, in figure 4.3 we show snapshots of the optimal paths
computed using the iterative static information pattern described above. The state
constraints, dynamics, and initial conditions are the same as in figure 3.4 (the two-
corridor example). Notice that between i= 16 and i= 25, P is forced to stay within S,
owing to P’s conservative nature in the static game; indeed, if P commits down the
vertical corridor C2 at i= 16, then E would counter by reversing course and occlude
behind the corner at (0,0). It is only after E has passed the midway point of C2 at
i= 25, that P deems his commitment down C2 to be worthwhile.

4.2.1. Target tracking. In a realistic setting, one of P or E may move
sub-optimally. In the case where E is sub-optimal, the problem can be seen as a
target-tracking problem, where E is the (moving) target and P is the observer. This
can be modeled by modifying the formulation (4.2)-(4.4) so that Φ = Φ(t)∈A is some
arbitrary prescribed control for E (the oblivious target). That is, at each discrete
time ti, only P chooses its optimal static game control based on the current states of
the system. An numerical result of this approach is shown in figure 4.4.

5. Conclusions and future work

In this article, we have presented an efficient algorithm to compute the value
and optimal controls for a class of pursuit-evasion games, called the visibility-based
surveillance-evasion game. The novelty of the algorithm is the decomposition of a
game into optimal control problems, which can be solved on a lower dimensional
domain. This decomposition is made possible by the decoupled player dynamics and
the so called static information pattern. Generalizations to inhomogenous speeds
and multiple evaders were presented, as well as applications to target tracking and
feedback control games.

The present technique of solving the static game using optimal control was re-
cently applied to another problem in [36]. There, the upper static value for the game
known as capture-the-flag [16] was considered. We are currently investigating a more
general class of pursuit-evasion type games that can be solved via a similar decompo-
sition technique [41].
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We are also investigating a more efficient method for computing t∗(·;x0
E), which

is the bottleneck to our algorithm in terms of computation time. Preliminary tests
have shown that for cases with relatively small R∗, the computation time can be
significantly reduced. For instance, the test case shown in figure 4.4 can be produced
at, on average, approximately 3 seconds per iteration (i.e. for each ti) using the more
efficient approach. Another useful result, in the spirit of Example 2, would be an
algorithm that computes the exact formula for t∗(·;x0

E) in a polygonal domain for an
E with a constant, isotropic speed.
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Appendix A. The level set visibility and shadow functions. In this ap-
pendix, we describe a fast sweeping type method for constructing an implicit represen-
tation for Dx0 for an arbitrary vantage point x0∈Ωfree. This implicit representation
uses a continuous level set function, which we write as ξ(·;x0) : Ω→R, holding the
property

ξ(x;x0)≤0⇔x∈Dx0 . (A.1)

We shall call ξ(·;x0) the shadow function from the vantage point x0∈Ωfree. The min-
imum arrival time function to Dx={x∈Ωfree | ξ(x;x0)≤0}, denoted by t∗, can then
be conveniently computed as per the definition (3.1) by solving an eikonal equation
with the boundary conditions defined by ξ.

We begin by assuming that the obstacles are represented as a level set function
ψ : Ω→R,

ψ(x)≤0⇔x∈Ωobs. (A.2)

We shall refer to such a function as an occluder function. Let Γ ={x |ψ(x) = 0} be
the boundary of the obstacles. For what follows, we assume that Γ is smooth, and
∇ψ(x) 6= 0 on Γ. Consequently, ∇ψ(x)/‖∇ψ(x)‖=n defines the unit outer normal of
Ωobs on Γ.

Next, we adopt the framework of [34] by defining the visibility function associated
with the occluder function ψ and the vantage point x0∈Ω:

ϕ(x;x0) = min
y∈L(x,x0)

ψ(y), (A.3)

where, we take L(x,x0) as the line segment2 between x and x0. Note that, by def-
inition, ϕ(x,y) =ϕ(y,x). Using this function, we define the visibility of x from the
vantage point x0:

ϕ(x;x0)>0⇔x is visible from x0. (A.4)

A graphical illustration of the zero sub-level set of ϕ(·,x0) is shown in figure A.2 (b).

2In general, L(x,x0) is the curve representing the path of a ray of light connecting x and x0
influenced by refraction and/or reflection.
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Remark A.1. We point out that, while it may appear that f(x;x0) =
max{ϕ(x;x0),−ψ(x)} is a candidate definition for the shadow function, it does not sat-
isfy (A.1). Observe that f(x;x0) = 0 for all x∈Γ and in general, Γ 6⊂Dx0

∪∂Dx0
; con-

sider the points x∈Γ that are “visible” from the vantage point, i.e. (x0−x) ·∇ψ(x)>
0; see also Case V below.

We now describe a method for constructing the shadow function ξ(·;x0) by per-
forming a few Boolean operations on sets defined by some auxiliary level set functions.
Fix a vantage point x0∈Ωfree. Define the auxiliary function g(·;x0) : Ω→R as

g(x;x0) = max{ψ(x),(x0−x) ·∇ψ(x)}.

Thus g describes the portions of ∂Ωobs that cannot be visible from x0. Let
g̃(·;x0) : Ω→R be the visibility function associated with the occluder function ψ̃(x) =
g(x;x0). Then, a candidate shadow function is given by

ξ(x;x0) = max{−ψ(x), g̃(x;x0)}. (A.5)

We illustrate the auxiliary function g and the shadow function ξ in figure A.2 (c) and
(d). Note that this construction of ξ involves solving the visibility function twice and
a pointwise maximum operation twice. Thus, the calculation is O(N) for a mesh with
N grid points.

Ωobs

γ(s1)

γ(s2)

Γ

x0 = γ(0)

x = γ(s̄)

Wednesday, November 9, 2011

Fig. A.1. An example illustrating L(x,x0) ={γ(s) | s∈ [0, s̄]} where γ(x0) =x0 is the vantage point.

Now, we show that (A.1) is satisfied by considering all possible cases for x∈Ω.
For the purpose of justifying the construction of ξ above, we define a line γ : [0, s̄]→Ω,
parametrized by arc length, where

L(x,x0) ={γ(s) |s∈ [0, s̄]}, γ(0) =x0,γ(s̄) =x.

If x∈Dx0
, we also define s1,s2∈ [0, s̄] such that γ(s1) is the first entry point into Ωobs

and γ(s2) is the first exit point from Ωobs:

s1 = arg min
s∈[0,s̄]

{γ(s)∈Ωobs}, s2 = arg min
s∈[s1,s̄]

{γ(s)∈Γ}≥s1.

See figure A.1 depicting γ on a simple example. Note that, if s1 =s2, then L(x,x0) is
tangent to Ωobs at γ(s1).



R. TAKEI, R. TSAI, Z. ZHOU, AND Y. LANDA 1325
obstacle function visibility function

(a) Obstacle function (b) Visibility function
auxiliary function shadow function

(c) Auxiliary function (d) Shadow function

Fig. A.2. Illustration of the construction of the shadow function in R2. The shaded area is
where each function is negative; the small square on the top left of each plot is the vantage point
x0. The boundary of the obstacles Γ are shown as black contours. (a) The obstacle function ψ, (b)
visibility function ϕ(·,x0), (c) the auxiliary function g(·,x0), and (d) the shadow function ξ(·,x0).

Thus, the consistency of (A.5) with (A.1) can be justified by considering the
following five cases for x∈Ω:

Case I. x∈ int(Ωobs). Because ψ(x)<0 we have ξ(x;x0)>0, as desired.

Case II. x 6∈Dx0
. In this case, we have L(x,x0)⊂Ωfree, so g(y;x0)≥ψ(y)>0 for all

y∈L(x,x0). Thus, g̃(x;x0)>0. By (A.5), we conclude that ξ(x;x0)>0, as
desired.

Case III. x∈Dx0 . Note that at y=γ(s2)∈Γ, we have (x0−y) ·∇ψ(y)≤0 and ψ(y) =
0. Therefore, g(y;x0) = 0 and

g̃(x;x0) = min
s∈[0,s̄]

g(γ(s);x0)≤g(y;x0) = 0.

Furthermore, because −ψ(y)<0, we have that ξ(x;x0)≤0 as desired.

Case IV. x∈Γ∩∂Dx0
. Here, we necessarily have x=γ(s2). Then, by the same

argument as Case III, we have g(x;x0) = g̃(x;x0) =ψ(x) = 0. Thus, ξ(x;x0) = 0
as desired.



1326 VISIBILITY-BASED SURVEILLANCE-EVASION GAME

Case V. x∈Γ\∂Dx0
. In this case, x=γ(s1) and s1<s2. Then, (x0−x) ·∇ψ(x)>0,

so g(x;x0)>0. Furthermore, note that g(γ(s);x0)≥ψ(γ(s))>0 for s∈ [0,s1).
Therefore, g̃(x;x0)>0, and we conclude that ξ(x;x0)>0.
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[21] S.M. LaValle, H.H. González-Baños, C. Becker, and J.C. Latombe, Motion strategies for main-
taining visibility of a moving target, in Proceedings IEEE International Conference on
Robotics and Automation, 731–736, 1997.
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