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DECAY OF THE SOLUTION FOR THE BIPOLAR EULER-POISSON

SYSTEM WITH DAMPING IN DIMENSION THREE∗

ZHIGANG WU† AND WEIKE WANG‡

Abstract. The global solution to Cauchy’s problem of the bipolar Euler-Poisson equations with
damping in dimension three are constructed when the initial data in H

3 norm is small. Moreover, by
using a refined energy estimate together with the interpolation trick, we improve the decay estimate
in [Y.P. Li and X.F. Yang, J. Diff. Eqs., 252(1), 768–791, 2012], and we need not the smallness
assumption of the initial data in L

1 space in [Y.P. Li and X.F. Yang, J. Diff. Eqs., 252(1), 768–791,
2012].
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1. Introduction

The compressible bipolar Euler-Poisson equations with damping (BEP) takes the
following form:























∂tρ1+div(ρ1u1)=0,
∂t(ρ1u1)+div(ρ1u1⊗u1)+∇P (ρ1)=ρ1∇φ−ρ1u1,
∂tρ2+div(ρ2u2)=0,
∂t(ρ2u2)+div(ρ2u2⊗u2)+∇P (ρ2)=−ρ2∇φ−ρ2u2,
∆φ=ρ1−ρ2, x∈R

3, t≥0,

(1.1)

where the unknown functions ρi(x,t),ui(x,t) (i=1,2),φ(x,t) represent the charge den-
sities, current densities, velocities, and electrostatic potential, respectively, and the
pressure P =P (ρi) is a smooth function with P ′(ρi)>0 for ρi>0. The system (1.1)
usually describes charged particle fluids, for example, electrons and holes in semicon-
ductor devices, and positively and negatively charged ions in a plasma. We refer to
[5, 19] for the physical background of the system (1.1).

In this paper, we will study the global existence and large time behavior of the
smooth solutions for the system (1.1) with the following initial data:

ρi(x,0)=ρi0(x)>0, ui(x,0)=ui0(x), i=1,2. (1.2)

A lot of important work has been done on the system (1.1). For the one-
dimensional case, we refer to Zhou and Li [30] and Tsuge [24] for the unique ex-
istence of the stationary solutions, Natalini [18] and Hsiao and Zhang [8] for global
entropy weak solutions in the framework of compensated compactness on the whole
real line and bounded domain respectively, Natalini [18] and Hsiao and Zhang [9]
for the relaxation-time limit, Gasser and Marcati [3] for the combined limit, Huang
and Li [7] for the large-time behavior and quasi-neutral limit of L∞-solution, Zhu and
Hattori [31] for the stability of steady-state solutions to a recombined one-dimensional
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bipolar hydrodynamical model, and Gasser, Hsiao and Li [2] for large-time behavior
of smooth small solutions.

For the multi-dimensional case, Lattanzio [10] discussed the relaxation limit, and
Li [14] considered the diffusive relaxation. Ali and Jüngel [1] and Li and Zhang [13]
studied the global smooth solutions of the Cauchy problem in the Sobolev space and
Besov space, respectively. Later, Ju [6] investigated the global existence of smooth
solution to the IBVP for the 3D bipolar Euler-Poisson system (1.1).

Recently, Using the classical energy method together with the analysis of the
Green’s function, Li and Yang [15] investigated the optimal decay rate of the classical
solution of Cauchy’s problem of the system (1.1) when the initial data is small in the
space H3∩L1. They deduced that the electric field (a nonlocal term in hyperbolic-
parabolic system) slows down the decay rate of the velocity of the BEP system.
For more background, see the relevant works on the unipolar Navier-Stokes-Poisson
equations (NSP) and unipolar Euler-Poisson equations with damping [11, 12, 29, 25,
27, 28]. In fact, by the detailed analysis of the Green’s function, all of these works
show that the presence of the electric field field slows down the decay rate in L2-
norm of the velocity of the unipolar NSP system with the factor 1

2 comparing with
the Navier-Stokes system (NS) when the initial perturbation ρ0− ρ̄,u0∈Lp∩H3 with
p∈ [1,2].

However, Wang [26] gave a different treatment of the effect of the electric field
on the time decay rates of the solution of the unipolar NSP system. The key idea is
to make an instead assumption on the initial perturbation ρ0− ρ̄∈ Ḣ−1,u0∈L2. As a
result, the electric field does not slow down but rather enhances the time decay rate of
the density with the factor 1

2 . The method in [26] is initially established in Guo and
Wang [4] for the estimates in the negative Sobolev’s space. The proof in [4] is based
on a family of energy estimates with minimum derivative counts and interpolations
among them without linear decay analysis. Very recently, using this kind of energy
estimate, Tan and Wang [22] discussed the Euler equations with damping in R

3, where
they also gave the estimates in the negative Besov’s space.

The main purpose of this paper is to improve the L2-norm decay estimates of
the solutions in Li and Yang [15] by using this refined energy method together with
the interpolation trick in [4, 26, 22]. Comparing with [4, 26, 22], the main additional
difficulties are due to the presence of the electronic field and the coupling of two
carriers by the Poisson equation. First, as Wang [26] pointed out, for the bipolar NSP
system, there is one term niui∇φ which cannot be controlled by the dissipation terms
when using this refined energy method; see the introduction in [26]. However, after a
careful observation and an elaborate calculation, we can deal with this term for the
BEP system (1.1); see the estimates (2.26)-(2.28) and (2.38)-(2.39) in Lemma 2.9 and
Lemma 2.10. Second, the key point of this refined energy method to get the decay
result is to prove the boundedness of the solution in the Ḣ−s norm (0≤s<3/2) (or
the Ḃ−s

2,∞ norm (0<s≤3/2)). Wang [26] separated s into two parts: s∈ (0, 12 ] and

s∈ ( 12 ,
3
2 ). For the case s∈ ( 12 ,

3
2 ), in [26] it strongly depends on the derived decay

result of the case s= 1
2 and the fact that the electric field enhances the decay of the

density for the unipolar case: ‖ρ− ρ̄‖L2 =‖∇(∇φ)‖L2 . While, for the bipolar case
in the present paper, we know that the electric field does not enhance the decay of
each density ρ1,ρ2, since the Poisson equation only suffices to prove ‖∇k(ρ1−ρ2)‖L2 ≤
‖∇k+1∇φ‖L2 . So, we have to find some new skills to deal with the case s∈ ( 12 ,

3
2 ). In

fact, by separating the cases that s∈ [0, 12 ], s∈ ( 12 ,1), and s∈ [1, 32 ) for the space Ḣ−s

and s∈ [0, 12 ], s∈ ( 12 ,1), s∈ [1, 32 ), and s= 3
2 for the space Ḃ−s

2,∞, we obtain expected
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estimates (see Lemma 2.12, Lemma 2.13, and Subsection 3.2).
Our main results are stated in the following theorems.

Theorem 1.1. Let P ′(ρi)>0 (i=1,2) for ρi>0, and ρ̄>0. Assume that (ρi−
ρ̄,ui0,∇φ0)∈H3(R3) for i=1,2, with ǫ0=:‖(ρi0− ρ̄,ui0,∇φ0)‖H3(R3) small. Then
there exists a unique, global, classical solution (ρ1− ρ̄,u1,ρ2− ρ̄,u2,φ) such that for
all t≥0,

‖(ρ1− ρ̄,u1,ρ2− ρ̄,u2,∇φ)‖2H3 +

∫ t

0

‖(u1,u2)‖
2
H3 +‖(∇ρ1,∇ρ2,∇(∇φ))‖2H2dτ

≤C‖(ρ10− ρ̄,u10,ρ20− ρ̄,u20,∇φ0)‖
2
H3 . (1.3)

Theorem 1.2. Under the assumptions of Theorem 1.1, if (ρi0− ρ̄,ui0,∇φ0)∈ Ḣ−s

(i=1,2) for some s∈ [0,3/2) or (ρi0− ρ̄,ui0,∇φ0)∈ Ḃ−s
2,∞ for some s∈ (0,3/2], then

for all t≥0 there exists a positive constant C0 such that

‖(ρi− ρ̄,ui,∇φ)(t)‖Ḣ−s ≤C0 (1.4)

or

‖(ρi− ρ̄,ui,∇φ)(t)‖Ḃ−s
2,∞

≤C0, (1.5)

and

‖∇l(ρi− ρ̄,ui,∇φ)(t)‖H3−l ≤C0(1+ t)−
l+s
2 for l=0,1,2, s∈

[

0,
3

2

]

; (1.6)

‖∇l(ρ1−ρ2)(t)‖L2 ≤C0(1+ t)−
l+s+1

2 for l=0,1, s∈
[

0,
3

2

]

. (1.7)

Remark 1.1. (1.7) is derived from (1.6) and the fact that

‖∇l(ρ1−ρ2)‖L2 =‖∇l∆φ‖L2 ≤‖∇l+1∇φ‖L2 , l≥0,

which shows the presence of the electric field enhances the time decay rate of disparity
between two species.

Note that Lemma 2.4 (the Hardy-Littlewood-Sobolev theorem) implies that for
p∈ (1,2], Lp⊂ Ḣ−s with s=3( 1p −

1
2 ) and Lemma 2.6 implies that for p∈ [1,2), Lp⊂

Ḃ−s
2,∞ with s=3( 1p −

1
2 ). Then Theorem 1.2 yields the following usual optimal decay

results of Lp−L2 type.

Corollary 1.1. Under the assumptions of Theorem 1.2 except that we replace
the Ḣ−s or Ḃ−s

2,∞ assumption by that (ρi0− ρ̄,ui0,∇φ0)∈Lp for some p∈ [1,2], the
following decay results hold:

‖∇l(ρi− ρ̄,ui,∇φ)(t)‖H3−l ≤C0(1+ t)−
3
2
( 1
p−

1
2
)− l

2 , for l=0,1,2; (1.8)

‖∇l(ρ1−ρ2)(t)‖L2 ≤C0(1+ t)−
3
2
( 1
p−

1
2
)− l+1

2 , for l=0,1. (1.9)
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Remark 1.2. From Corollary 1.1, we know the each order derivative of the density
ρi− ρ̄ and the velocity ui has the same decay rate in the L2 norm as the solution of
the Navier-Stokes equations, while the velocity ui in [15] decays at the rate (1+ t)−

1
4

in the L2 norm, which is slower than the rate (1+ t)−
3
4 for the compressible Navier-

Stokes equations. That is, we improve the decay result in [15], and what’s more, we
need not the smallness of the initial data in L1 space.

Remark 1.3. The energy method (close the energy estimates at each l-th level with
respect to the spatial derivatives of the solutions) in this paper cannot be applied to the
bipolar Navier-Stokes-Poisson equations. In fact, as Wang [26] pointed out, there is
one term niui∇φ cannot be controlled by the dissipation terms; see the introduction
in [26]. Hence, it is also interesting to consider the bipolar Navier-Stokes-Poisson
equations by using this new energy method with some big modifications or a new
method.

Notations. In this paper, ∇l with an integer l≥0 stands for the any spatial derivative
of order l. For 1≤p≤∞ and an integer m≥0, we use Lp and Wm,p to denote the
usual Lebesgue space Lp(Rn) and Sobolev spaces Wm,p(Rn) with norms ‖·‖Lp and
‖·‖Wm,p , respectively, and set Hm=Wm,2 with norm ‖·‖Hm when p=2. In addition,
for s∈R, we define a pseudo-differential operator Λs by

Λsg(x)=

∫

Rn

|ξ|sĝ(ξ)e2π
√
−1x·ξdξ,

where ĝ denotes the Fourier transform of g. We define the homogeneous Sobolev space
Ḣs of all g for which ‖g‖Ḣs is finite, where

‖g‖Ḣs :=‖Λsg‖L2 =‖|ξ|sĝ‖L2 .

Let η∈C∞
0 (R3

ξ) be such that η(ξ)=1 when |ξ|≤1 and η(ξ)=0 when ξ≥2. We

define the homogeneous Besov’s space Ḃ−s
p,∞(R3) with norm ‖·‖Ḃ−s

p,∞
defined by

‖f‖Ḃ−s
p,r

:= sup
j∈Z

2sj‖∆̇jf‖Lp ,

where ∆̇jf :=F−1(ϕj)∗f , ϕ(ξ)=η(ξ)−η(2ξ) and ϕj(ξ)=ϕ(2−jξ).
Throughout this paper, we will use a non-positive index s. For convenience, we

will change the index to be “−s” with s≥0. C or Ci denotes a positive generic
(generally large) constant that may vary at different places. For simplicity, we write
∫

f :=
∫

R3 fdx.
The rest of the paper is arranged as follows. In Section 2, we give some useful

Sobolev’s inequalities and Besov’s inequalities, then we give an energy estimate in the
H3 norm and some estimates in Ḣ−s and Ḃ−s

2,∞. The proof of global existence and
temporal decay results of the solutions will be derived in Section 3.

2. Nonlinear energy estimates

2.1. Preliminaries. In this subsection we give some Sobolev’s inequalities and
Besov’s inequalities, which will be used in the next sections.

Lemma 2.1. (Gagliardo-Nirenberg’s inequality). If 0≤m,k≤ l, then we have

‖∇kg‖Lp ≤C‖∇mg‖1−θ
Lq ‖∇lg‖θLr ,
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where k satisfies

1

p
−

k

n
=(1−θ)

(

1

q
−

m

n

)

+θ

(

1

r
−

l

n

)

.

Lemma 2.2. (Moser-type calculus) (i) Let k≥1 be an integer and define the commu-
tator

[∇k,g]h=∇k(gh)−g∇kh.

Then we have

‖[∇k,g]h‖L2 ≤Ck(‖∇g‖L∞‖∇k−1h‖L2 +‖∇kg‖L2‖h‖L∞).

(ii) If F (·) is a smooth function, f(x)∈Hk∩L∞, then we have

‖∇kF (f)‖L2 ≤C(k,F,‖f‖L∞)‖∇kf‖L2 .

Lemma 2.3. ([4], Lemma A.5) If s≥0 and l≥0, then we have

‖∇lg‖L2 ≤C‖∇l+1g‖1−θ
L2 ‖g‖θ

Ḣ−s , where θ=
1

l+s+1
.

Lemma 2.4. ([21], Chapter V, Theorem 1) If 0<s<n, 1<p<q<∞, and 1
q +

s
n = 1

p ,
then

‖Λ−sg‖Lq ≤C‖g‖Lp .

Next, we give some lemmas on Besov space Ḃ−s
2,∞.

Lemma 2.5. ([20], Lemma 4.5) If k≥0 and s>0, then we have

‖∇kf‖L2 ≤C‖∇k+1f‖1−θ
L2 ‖f‖θ

Ḃ−s
2,∞

, where θ=
1

l+1+s
.

Lemma 2.6. ([20], Lemma 4.6) Suppose that s>0 and 1≤p<2. We have the em-
bedding Lp⊂ Ḃ−s

q,∞ with 1/2+s/3=1/p. In particular we have the estimate

‖f‖Ḃ−s
2,∞

≤C‖f‖Lp .

Lemma 2.7. ([22], Lemma A.7) If 1≤ r1≤ r2≤∞, then

Ḃ−s
2,r1

⊂ Ḃ−s
2,r2

.

Lemma 2.8. ([22], Lemma A.8) If m>l≥k and 1≤p≤ q≤ r≤∞, then we have

‖g‖Ḃl
2,q

≤C‖g‖θ
Ḃk

2,r
‖g‖1−θ

Ḃm
2,p

,

where l=kθ+m(1−θ), 1
q =

θ
r +

1−θ
p .
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2.2. Energy estimates in H3-norm. We reformulate the nonlinear system
(1.1) for (ρ1,u1,ρ2,u2) around the equilibrium state (ρ̄,0, ρ̄,0). Without loss of gener-
ality, we can assume ρ̄=1 and P ′(ρ̄)=1. Denoting

ni=ρi−1, h(ni)=
P ′(ρi)

ρi
−1,

the Cauchy problem for (n1,u1,n2,u2,φ) is given by






























∂tn1+divu1=−u1 ·∇n1−n1divu1,
∂tu1+u1+∇n1−∇φ=−u1 ·∇u1−h(n1)∇n1,
∂tn2+divu2=−u2 ·∇n2−n2divu2,
∂tu2+u2+∇n2+∇φ=−u2 ·∇u2−h(n2)∇n2,
∆φ=n1−n2,
(n1,u1,n2,u2)(x,0)=(ρ10−1,u10,ρ20−1,u20)(x).

(2.1)

In this section, we will derive a priori nonlinear energy estimates for the equivalent
system (2.1). Hence we make the a priori assumption that for a sufficiently small
constant δ>0,

‖ni(t)‖H3 +‖ui(t)‖H3 +‖∇φ(t)‖H3 ≤ δ, i=1,2, (2.2)

which together with Sobolev’s inequality, yields

1/2≤ni≤2, |h(ni)|≤C|ni|, |h
(k)(ni)|≤C, i=1,2, for any k≥1. (2.3)

We first deduce the following energy estimates, which contain the dissipation
estimate for u1,u2.

Lemma 2.9. Assume that 0≤k≤2. Then we have

1

2

d

dt

∫

|∇k(n1,u1,n2,u2,∇φ)|2+‖∇k(u1,u2)‖
2
L2

≤ Cδ(‖∇k+1n1‖
2
L2+‖∇ku1‖

2
L2+‖∇k+1n2‖

2
L2+‖∇ku2‖

2
L2+‖∇k+1∇φ‖2L2). (2.4)

Proof. For 0≤k≤2, applying ∇k to (2.1)1,(2.1)2 and then multiplying the
resulting equations by ∇kn1,∇

ku1 respectively, and summing up and integrating over
R

3, one has

1

2

d

dt

∫

|∇k(n1,u1)|
2+‖∇ku1‖

2
L2 −

∫

∇ku1∇
k∇φ

=−

∫

∇kn1∇
k(u1 ·∇n1+n1divu1)+∇ku1∇

k(u1 ·∇u1+h(n1)∇n1)

=−

∫

∇k(u1·∇n1)∇
kn1−∇k(u1·∇u1)∇

ku1−∇k(n1divu1)∇
kn1−∇k(h(n1)∇n1)∇

ku1

:= I1+I2+I3+I4.
(2.5)

We shall first estimate each term in the right hand side of (2.5). By Hölder’s
inequalities and Lemma 2.1, we get

I1= −

∫

∑

0≤l≤k

Cl
k∇

k−lu1 ·∇∇ln1∇
kn1≤

∑

0≤l≤k

‖∇k−lu1∇∇ln1‖L6/5‖∇kn1‖L6

≤
∑

0≤l≤k

‖∇k−lu1∇∇ln1‖L6/5‖∇k+1n1‖L2 . (2.6)
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When 0≤ l≤ [k2 ], by Hölder’s inequality and Lemma 2.1, we have

‖∇k−lu1∇∇ln1‖L6/5 ≤ ‖∇k−lu1‖L2‖∇l+1n1‖L3

≤ ‖u1‖
l
k

L2‖∇
ku1‖

1− l
k

L2 ‖∇αn1‖
1− l

k ‖∇k+1n1‖
l
k

L2

≤ δ(‖∇k+1n1‖L2 +‖∇ku1‖L2), (2.7)

where α satisfies

l+
3

2
=α

(

1−
l

k

)

+(k+1)
l

k
,

which gives α= 3k−2l
2k−2l ∈ [ 32 ,3) since l≤ k

2 .

When [k2 ]+1≤ l≤k, by Hölder’s inequality and Lemma 2.1 again, we obtain

‖∇k−lu1∇∇ln1‖L6/5 ≤ ‖∇k−lu1‖L3‖∇l+1n1‖L2

≤ ‖n1‖
k−l
k+1

L2 ‖∇k+1n1‖
l+1
k+1

L2 ‖∇αu1‖
1− l+1

k+1 ‖∇k+1u1‖
l−1
k+1

L2

≤ δ(‖∇k+1n1‖L2 +‖∇ku1‖L2), (2.8)

where α satisfies

k− l+
1

2
=α

l+1

k+1
+k

k− l

k+1
,

which implies α= 3k−2l+1
2l+2 ∈ [ 12 ,3) since l≥ k+1

2 .
From (2.6), (2.7), and (2.8), one has

I1≤ δ(‖∇k+1n1‖L2 +‖∇ku1‖L2). (2.9)

For I2, using Lemma 2.1 and Hölder’s inequality, we get

I2= −

∫

([∇k,u1]∇u1+u1∇∇ku1)∇
ku1≤‖∇u1‖L∞‖∇ku1‖

2
L2 −

1

2

∫

u1∇(∇
ku1∇

ku1)

≤ ‖∇u1‖L∞‖∇ku1‖
2
L2 +

1

2

∫

divu1∇
ku1 ·∇

ku1≤ δ‖∇ku1‖
2
L2 .

(2.10)
For I3, we have

I3= −

∫

∇k(n1divu1)∇
kn1

= −

∫

∑

0≤l≤k−1

Cl
k∇

k−ln1∇
ldivu1∇

kn1−

∫

n1div∇
ku1∇

kn1

:= I31+I32. (2.11)

First, we estimate I31. By Hölder’s inequality, Lemma 2.1, and Cauchy’s inequal-
ity, we obtain

I31= −

∫

∑

0≤l≤k−1

Cl
k∇

k−ln1∇
ldivu1∇

kn1

≤ C
∑

0≤l≤k−1

‖∇k−ln1∇
ldivu1‖L6/5‖∇k+1n1‖L2 . (2.12)
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When 0≤ l≤ [k2 ], using Lemma 2.1 and Hölder’s inequality, we have

‖∇k−ln1∇
ldivu1‖L6/5 ≤ C‖∇k−ln1‖L2‖∇l+1u1‖L3

≤ C‖n1‖
l+1
k+1

L2 ‖∇k+1n1‖
k−l
k+1

L2 ‖∇αu1‖
k−l
k+1

L2 ‖∇ku1‖
l+1
k+1

L2

≤ Cδ(‖∇k+1n1‖L2 +‖∇ku1‖L2), (2.13)

where α satisfies l+ 3
2 =α k−l

k+1 +k l+1
k+1 , which yields α= k+2l+3

2k−2l ∈ ( 12 ,3) since l≤ k
2 .

When [k2 ]+1≤ l≤k−1, using Lemma 2.1 and Hölder’s inequality, we have

‖∇k−ln1∇
ldivu1‖L6/5 ≤ C‖∇k−ln1‖L3‖∇l+1u1‖L2

≤ C‖∇αn1‖
l+1
k

L2 ‖∇l+1n1‖
k−1−l

k

L2 ‖u1‖
k−1−l

k

L2 ‖∇ku1‖
l+1
k

L2

≤ Cδ(‖∇k+1n1‖L2 +‖∇ku1‖L2), (2.14)

where α satisfies

k− l+
1

2
=α

l+ l

k
+(k+1)

k− l−1

k
,

which yields α=1+ k
2l+2 ∈ ( 32 ,3) since l≥ k+1

2 .
From (2.12), (2.13), and (2.14), we get

I31≤Cδ(‖∇k+1n1‖
2
L2 +‖∇ku1‖

2
L2). (2.15)

For I32, by Hölder’s inequality, Lemma 2.1, and Cauchy’s inequality, we obtain

I32= −

∫

n1div∇
ku1∇

kn1=−

∫

n1div(∇
ku1∇

kn1)+

∫

n1∇
k+1n1∇

ku1

≤ C‖∇n1‖L3‖∇ku1‖L2‖∇kn1‖L6 +‖n1‖L∞‖∇k+1n1‖L2‖∇ku1‖L2

≤ Cδ(‖∇k+1n1‖
2
L2 +‖∇ku1‖

2
L2). (2.16)

Thus, (2.11), (2.15), and (2.16) imply

I3≤Cδ(‖∇k+1n1‖
2
L2 +‖∇ku1‖

2
L2). (2.17)

Next, we will estimate I4.

I4=−

∫

∇k(h(n1)∇n1)∇
ku1=−

∫

∑

0≤l≤k−1

Cl
k∇

k−lh(n1)∇
l+1n1∇

ku1+h(n1)∇
k+1n1·∇

ku1

:= I41+I42.
(2.18)

For I41, by Hölder’s inequality and Lemma 2.1, we obtain

I41=−

∫

∑

0≤l≤k−1

Cl
k∇

k−lh(n1)∇
l+1n1∇

ku1≤C‖∇k−ln1∇
l+1n1‖L2‖∇ku1‖L2 . (2.19)

When 0≤ l≤ [k2 ], by using Hölder’s inequality and Lemma 2.1, we get

‖∇k−lh(n1)∇
l+1n1‖L2 ≤‖∇k−lh(n1)‖L6‖∇l+1n1‖L3

≤ C‖∇k−lh(n1)‖
l

k+1

L2 ‖∇k+1h(n1)‖
1− l

k+1

L2 ‖∇αn1‖
1− l

k+1

L2 ‖∇k+1n1‖
l

k+1

L2

≤ C‖∇k−ln1‖
l

k+1

L2 ‖∇k+1n1‖
1− l

k+1

L2 ‖∇αn1‖
1− l

k+1

L2 ‖∇k+1n1‖
l

k+1

L2

≤ Cδ‖∇k+1n1‖L2 , (2.20)
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where α satisfies l+ 3
2 =α(1− l

k+1 )+ l, which implies α= 3k+3
2k−2l+2 ∈ [ 32 ,3), since l≤ k

2 .

When [k2 ]+1≤ l≤k−1, by Hölder’s inequality and Lemma 2.1, we get

‖∇k−lh(n1)∇
l+1n1‖L2 ≤‖∇k−lh(n1)‖L3‖∇l+1n1‖L6

≤ C‖∇αh(n1)‖
l

k−1

L2 ‖∇k+1h(n1)‖
1− l

k−1

L2 ‖∇2n1‖
1− l

k−1

L2 ‖∇k+1n1‖
l

k−1

L2

≤ C‖∇αn1‖
l

k−1

L2 ‖∇k+1n1‖
1− l

k−1

L2 ‖∇2n1‖
1− l

k−1

L2 ‖∇k+1n1‖
l

k−1

L2

≤ Cδ‖∇k+1n1‖L2 , (2.21)

where α satisfies

k− l+
1

2
=α

l

k−1
+(k+1)

(

1−
l

k−1

)

,

which implies α=2+ −k+1
2l ∈ [ 32 ,3) since l≥ k+1

2 .

Thus, from (2.18), (2.19), (2.20), and (2.21), we deduce that

I4≤Cδ(‖∇k+1n1‖
2
L2 +‖∇ku1‖

2
L2). (2.22)

Hence, for n1 and u1, we have

1

2

d

dt

∫

|∇k(n1,u1)|
2+‖∇ku1‖

2
L2−

∫

∇ku1∇
k∇φ≤Cδ‖∇k+1n1‖

2
L2 . (2.23)

In the same way, we can get the following estimates for n2 and u2, that is,

1

2

d

dt

∫

|∇k(n2,u2)|
2+‖∇ku2‖

2
L2 +

∫

∇ku2∇
k∇φ≤Cδ‖∇k+1n2‖

2
L2 . (2.24)

Lastly, we will estimate the last term in left hand side of (2.23) and (2.24). By
using the Poisson equation, we estimate them simultaneously as follows:

−

∫

∇k∇φ ·∇ku1+

∫

∇k∇φ ·∇ku2=

∫

∇k(divu1)∇
kφ−

∫

∇k(divu2)∇
kφ

= −

∫

∇k[∂tn1+div(n1u1)]∇
kφ+

∫

∇k[∂tn2+div(n2u2)]∇
kφ

= −

∫

∇k∂t(n1−n2)∇
kφ−

∫

∇k(div(n1u1))∇
kφ+

∫

∇k(div(n2u2))∇
kφ

= −

∫

∇k∂t∆φ∇kφ−

∫

∇k(div(n1u1))∇
kφ+

∫

∇k(div(n2u2))∇
kφ

=
1

2

d

dt
‖∇k∇φ‖2L2 +

∫

∇k(n1u1)∇
k∇φ−

∫

∇k(n2u2)∇
k∇φ

:=
1

2

d

dt
‖∇k∇φ‖2L2 +I51+I52. (2.25)

For I51, when k=0, by Hölder’s inequality, Sobolev’s inequality, and Cauchy’s
inequality, we have

∫

n1u1∇φ≤C‖∇φ‖L6‖u1‖L2‖n1‖L3 ≤Cδ(‖∇∇φ‖L2 +‖u1‖
2
L2). (2.26)

Similarly, for k=1 and k=2, we get
∫

∇(n1u1)∇(∇φ)=−

∫

(n1u1)∇
2∇φ≤C‖∇2∇φ‖L2‖u1‖L6‖n‖L3

≤ C‖∇2∇φ‖L2‖∇u1‖L2‖n‖L3 ≤Cδ(‖∇2∇φ‖L2 +‖∇u1‖
2
L2); (2.27)
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∫

∇2(n1u1)∇
2∇φ=−

∫

∇(n1u1)∇
3∇φ≤‖∇3∇φ‖L2‖

∑

0≤l≤1

∇1−ln1∇
lu1‖L2

≤ C‖∇3∇φ‖L2‖∇αn1‖
l+1
2

L2 ‖∇3n1‖
1− l+1

2

L2 ‖u1‖
1− l+1

2

L2 ‖∇2u1‖
l+1
2

L2

≤ Cδ(‖∇3∇φ‖2L2 +‖∇3n1‖
2
L2 +‖∇2u1‖

2
L2), (2.28)

where α= l
l+1 , l=0,1.

I52 can be estimated in the same way. Hence, from (2.25) to (2.28), we have

I51+I52≥−Cδ(‖∇k+1n1‖
2
L2+‖∇ku1‖

2
L2+‖∇k+1n2‖

2
L2+‖∇ku2‖

2
L2+‖∇k+1∇φ‖2L2).

(2.29)
Combining (2.23), (2.24), (2.25), and (2.29), we deduce that

1

2

d

dt

∫

|∇k(n1,u1,n2,u2,∇φ)|2+‖∇k(u1,u2)‖
2
L2

≤ Cδ(‖∇k+1n1‖
2
L2 +‖∇ku1‖

2
L2 +‖∇k+1n2‖

2
L2 +‖∇ku2‖

2
L2 +‖∇k+1∇φ‖2L2). (2.30)

This proves Lemma 2.9.

Next, we derive the second type of energy estimates excluding n1,u1 and n2,u2

themselves.

Lemma 2.10. If 0≤k≤2, then we have

1

2

d

dt

∫

|∇k+1(n1,u1,n2,u2,∇φ)|2+‖∇k+1(u1,u2)‖
2
L2

≤ Cδ(‖∇k+1n1‖
2
L2 +‖∇k+1u1‖

2
L2+‖∇k+1n2‖

2
L2+‖∇k+1u2‖

2
L2+‖∇k+1∇φ‖2L2). (2.31)

Proof. Applying ∇k+1 to (2.1)1,(2.1)2 and then multiplying the resulting equa-
tions by ∇k+1n1,∇

k+1u1 respectively, summing up, and integrating over R3, one has

1

2

d

dt

∫

|∇k+1(n1,u1)|
2+‖∇k+1u1‖

2
L2 −

∫

∇k+1u1 ·∇
k+1∇φ

= −

∫

∇k+1n1∇
k+1(u1·∇n1+n1divu1)+∇k+1u1∇

k+1(u1·∇u1+h(n1)∇n1)

=−

∫

[∇k+1(u1·∇n1)∇
k+1n1+∇k+1(u1 ·∇u1)∇

k+1u1]

−

∫

[∇k+1(n1divu1)∇
k+1n1+∇k+1(h(n1)∇n1)∇

k+1u1]

:= J1+J2, 0≤k≤2. (2.32)

Now we shall estimate J1 and J2. By Lemma 2.2, Hölder’s inequality, and
Cauchy’s inequality, we get

J1=−

∫

∇k+1(u1 ·∇n1)∇
k+1n1+∇k+1(u1 ·∇u1)∇

k+1u1

=−

∫

[∇k+1,u1] ·∇n1∇
k+1n1+([∇k+1,u1],∇u1) ·∇

k+1u1

−

∫

u1 ·∇∇k+1n1∇
k+1n1+(u1 ·∇∇k+1u1) ·∇

k+1u1

≤C(‖∇u1‖L∞‖∇k+1n1‖L2 +‖∇k+1u1‖L2‖∇n1‖L∞)‖∇k+1n1‖L2
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+‖∇u1‖L∞‖∇k+1u1‖L2 −
1

2

∫

u1 ·∇(∇k+1n1∇
k+1n1+∇k+1u1 ·∇

k+1u1)

≤C‖∇(n1,u1)‖L∞‖∇k+1(n1,u1)‖
2
L2+

1

2
divu1∇

k+1n1∇
k+1n1+divu1∇

k+1u1·∇
k+1u1

≤Cδ(‖∇k+1n1‖
2
L2 +‖∇k+1u1‖

2
L2). (2.33)

In the same way, one can deduce that

J2≤Cδ(‖∇k+1n1‖
2
L2 +‖∇k+1u1‖

2
L2). (2.34)

Thus we have

1

2

d

dt

∫

|∇k+1(n1,u1)|
2+‖∇k+1u1‖

2
L2 −

∫

∇k+1u1∇
k+1∇φ

≤ Cδ(‖∇k+1n1‖
2
L2 +‖∇k+1u1‖

2
L2). (2.35)

The similar estimate of n2,u2 is

1

2

d

dt

∫

|∇k+1(n2,u2)|
2+‖∇k+1u2‖

2
L2 +

∫

∇k+1u2∇
k+1∇φ

≤ Cδ(‖∇k+1n2‖
2
L2 +‖∇k+1u2‖

2
L2). (2.36)

Finally, we give the estimates of the last terms in the left hand side of (2.35) and
(2.36) as follows:

−

∫

∇k+1∇φ ·∇k+1u1+

∫

∇k+1∇φ ·∇k+1u2

=

∫

∇k+1(divu1)∇
k+1φ−

∫

∇k+1(divu2)∇
k+1φ

= −

∫

∇k+1[∂tn1+div(n1u1)]∇
k+1φ+

∫

∇k+1[∂tn2+div(n2u2)]∇
k+1φ

=−

∫

∇k+1∂t(n1−n2)∇
k+1φ−

∫

∇k+1(div(n1u1))∇
k+1φ+

∫

∇k+1(div(n2u2))∇
k+1φ

= −

∫

∇k+1∂t∆φ∇k+1φ−

∫

∇k+1(div(n1u1))∇
k+1φ+

∫

∇k+1(div(n2u2))∇
k+1φ

=
1

2

d

dt
‖∇k+1∇φ‖2L2 +

∫

∇k+1(n1u1)∇
k+1∇φ−

∫

∇k+1(n2u2)∇
k+1∇φ

=:
1

2

d

dt
‖∇k+1∇φ‖2L2 +J3+J4.

(2.37)
Using Hölder’s inequality, Lemma 2.2, and Cauchy’s inequality, we obtain

J3=

∫

∇k+1(n1u1) ·∇
k+1∇φ≤C‖∇k+1∇φ‖L2‖∇k+1(n1u1)‖L2

≤ C‖∇k+1∇φ‖L2(‖n1‖L∞‖∇k+1u1‖L2 +‖u1‖L∞‖∇k+1n1‖L2)

≤ Cδ(‖∇k+1u1‖
2
L2 +‖∇k+1n1‖

2
L2 +‖∇k+1∇φ‖2L2). (2.38)

Similarly, we have

J4=

∫

∇k+1(n2u2) ·∇
k+1∇φ≤C‖∇k+1∇φ‖L2‖∇k+1(n2u2)‖L2

≤ Cδ(‖∇k+1u2‖
2
L2 +‖∇k+1n2‖

2
L2 +‖∇k+1∇φ‖2L2). (2.39)

Hence, plugging (2.33), (2.34), (2.37), (2.38), and (2.39) into (2.32), we deduce
(2.31). This proves Lemma 2.10.
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Now, we shall recover the dissipation estimate for n1,n2.

Lemma 2.11. Assume that 0≤k≤2, then we have

d

dt

{
∫

∇ku1 ·∇∇kn1+∇ku2 ·∇∇kn2

}

+C‖∇k+1(n1,n2,∇φ)‖2L2

≤ C(‖∇ku1‖
2
L2 +‖∇k+1u1‖

2
L2 +‖∇ku2‖

2
L2 +‖∇k+1u2‖

2
L2). (2.40)

Proof. Let 0≤k≤2. Applying ∇k to (2.1)2 and then multiplying the resulting
equality by ∇∇kn1, we have

‖∇k+1n1‖
2
L2 −

∫

∇∇kn1∇
k∇φ≤ −

∫

∇k∂tu1 ·∇∇kn1+C‖∇ku1‖L2‖∇k+1n1‖L2

+‖∇k(u1 ·∇u1+h(n1)∇n1)‖L2‖∇k+1n1‖L2 .
(2.41)

First, we estimate the first term in the right hand side of (2.39):

−

∫

∇ku1∂tu1 ·∇∇kn1=−
d

dt

∫

∇ku1 ·∇∇kn1−

∫

∇kdivu1∇
k∂tn1

= −
d

dt

∫

∇ku1 ·∇∇kn1+‖∇kdivu1‖
2
L2 +

∫

∇kdivu1∇
k(u1 ·∇n1+n1divu1). (2.42)

Next, we shall estimate the last two terms in (2.40) by

∫

∇kdivu1 ·∇
k(u1 ·∇n1)=

∫

∑

0≤l≤k

Cl
k∇

lu1 ·∇∇k−ln1 ·∇
kdivu1

≤ C
∑

0≤l≤k

‖∇lu1 ·∇∇k−ln1‖L2‖∇k+1u1‖L2 . (2.43)

If l=0, then

‖u1 ·∇∇kn1‖L2‖∇k+1u1‖L2 ≤ C‖u1‖L∞‖∇k+1n1‖L2‖∇k+1u1‖L2

≤ Cδ(‖∇k+1n1‖
2
L2 +‖∇k+1u1‖

2
L2). (2.44)

If 1≤ l≤ [k/2], using Hölder’s inequality and Lemma 2.1, we get

‖∇lu1 ·∇∇k−ln1‖L2 ≤ C‖∇k+1−l‖L6‖∇lu1‖L3

≤ C‖n1‖
l−1
k+1

L2 ‖∇k+1n1‖
k−l+2
k+1

L2 ‖∇αu1‖
k−l+2
k+1

L2 ‖∇k+1u1‖
l−1
k+1

L2

≤ Cδ(‖∇k+1n1‖L2 +‖∇k+1u1‖L2), (2.45)

where α= 3k+3
2k−2l+4 ∈ [3/2,3), since l≤k/2.

If [k/2]+1≤ l≤k, using Hölder’s inequality and Lemma 2.1 again, we obtain

‖∇lu1 ·∇∇k−ln1‖L2 ≤ C‖∇k+1−l‖L3‖∇lu1‖L63

≤ C‖∇αn1‖
l+1
k+1

L2 ‖∇k+1n1‖
k−l
k+1

L2 ‖u1‖
k−l
k+1

L2 ‖∇k+1u1‖
l+1
k+1

L2

≤ Cδ(‖∇k+1n1‖L2 +‖∇k+1u1‖L2), (2.46)

where α= 3k+3
2l+2 ∈ [3/2,3), since l≥ k+1

2 .
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Thus, from (2.44), (2.45), and (2.46), we obtain

∫

∇kdivu1 ·∇
k(u1 ·∇n1)≤Cδ(‖∇k+1n1‖L2 +‖∇k+1u1‖L2). (2.47)

Similarly, we also get
∫

∇kdivu1 ·∇
k(n1divu1)≤Cδ(‖∇k+1n1‖L2 +‖∇k+1u1‖L2), (2.48)

and

‖∇k(u1 ·∇u1+h(n1)∇n1)‖L2 ≤Cδ(‖∇k+1n1‖L2 +‖∇k+1u1‖L2). (2.49)

Hence, by (2.40)-(2.49), we have

d

dt

∫

∇ku1 ·∇∇kn1+C‖∇k+1n1‖L2 −

∫

∇∇kn1∇
k∇φ

≤ C(‖∇ku1‖
2
L2 +‖∇k+1u1‖

2
L2). (2.50)

On the other hand, by a method similar to the above, we have

d

dt

∫

∇ku2 ·∇∇kn2+C‖∇k+1n2‖L2 +

∫

∇∇kn2∇
k∇φ

≤ C(‖∇ku2‖
2
L2 +‖∇k+1u2‖

2
L2). (2.51)

Finally, using the Poisson equation in (2.1), the second term on the left hand side
of (2.50) and (2.51) can be estimated as

−

∫

∇∇kn1∇
k∇φ+

∫

∇∇kn2∇
k∇φ=

1

2
‖∇k+1∇φ‖2L2 . (2.52)

Summing (2.50) and (2.51), and using (2.52), one has

d

dt

{
∫

∇ku2 ·∇∇kn2+∇ku1 ·∇∇kn1

}

+C‖∇k+1(n1,n2,∇φ)‖L2

≤ C(‖∇ku1‖
2
L2 +‖∇k+1u1‖

2
L2 +‖∇ku2‖

2
L2 +‖∇k+1u2‖

2
L2). (2.53)

This proves (2.40).

2.3. Estimates in Ḣ−s(R3). The following lemma plays a key role in the proof
of Theorem 1.2. It shows an energy estimate of the solutions in the negative Sobolev
space Ḣ−s(R3).

Lemma 2.12. If ‖ni0,ui0,∇φ0‖H3 ≪1 with i=1,2, for s∈ (0, 12 ], we have

d

dt
‖(ni,ui,∇φ)‖2

Ḣ−s ≤C(‖∇ni‖
2
H1 +‖ui‖

2
H2)‖(ni,ui,∇φ)‖Ḣ−s , i=1,2, (2.54)

and for s∈ ( 12 ,
3
2 ) we have, for i=1,2,

d

dt
‖(ni,ui,∇φ)‖2

Ḣ−s

≤ C
{

‖(ni,ui)|
s−1

2

L2 ‖∇(ni,ui)‖
5
2
−s

H1 +‖ui‖L2‖ni‖
s−1

2

L2 ‖∇ni‖
3
2
−s

L2

}

‖(ni,ui,∇φ)‖Ḣ−s .

(2.55)
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Proof. Applying Λ−s to (2.2)1, (2.2)2 and multiplying the resulting identity by
Λ−sn1, Λ

−su1, respectively, and integrating over R3 by parts, we get

d

dt

∫

(

|Λ−sni|
2+ |Λ−sui|

2
)

+

∫

|∇Λ−sui|
2+(−1)i

∫

Λ−s∇φ ·Λ−sui

=

∫

Λ−s(−nidivui−ui ·∇ni)Λ
−sni−Λ−s(ui ·∇ui+h(ni)∇ni) ·Λ

−sui

≤ C‖nidivui+ui ·∇ni‖Ḣ−s‖ni‖Ḣ−s +‖ui ·∇ui+h(ni)∇ni‖Ḣ−s‖ui‖Ḣ−s . (2.56)

If s∈ (0,1/2], then by Lemma 2.1, Lemma 2.3, and Young’s inequality, the right
hand side of (2.56) can be estimated as follows:

‖nidivui‖Ḣ−s ≤ C‖nidivui‖
L

1
1/2+s/3

≤C‖ni‖L3/s‖∇ui‖L2

≤ C‖∇ni‖
1/2+s
L2 ‖∇2ni‖

1/2−s
L2 ‖∇ui‖L2

≤ C(‖∇ni‖
2
H1 +‖∇ui‖

2
L2), (2.57)

where we have used the facts 1
2 +

s
3 <1 and 3

s ≥6.
Similarly, it holds that

‖ui ·∇ni‖Ḣ−s ≤C(‖∇ui‖
2
H1 +‖∇ni‖

2
L2), (2.58)

‖ui ·∇ui‖Ḣ−s ≤C(‖∇ui‖
2
H1 +‖∇ui‖

2
L2), (2.59)

‖h(ni) ·∇ni‖Ḣ−s ≤C(‖∇ni‖
2
H1 +‖∇ni‖

2
L2). (2.60)

Now if s∈ (1/2,3/2), then 1/2+s/3<1 and 2<3/s<6. We shall estimate the
right hand side of (2.55) in a different way. Using Sobolev’s inequality, we have

‖nidivui‖Ḣ−s ≤ C‖nidivui‖
L

1
1/2+s/3

≤C‖ni‖L3/s‖∇ui‖L2

≤ C‖ni‖
s−1/2
L2 ‖∇ni‖

3/2−s
L2 ‖∇ui‖L2 , (2.61)

where we have used the facts 1
2 +

s
3 <1 and 3

s ≥6.
Similarly, it holds for s∈ (1/2,3/2) that

‖ui ·∇ni‖Ḣ−s ≤C‖ui‖
s−1/2
L2 ‖∇ui‖

3/2−s
L2 ‖∇ni‖L2 , (2.62)

‖ui ·∇ui‖Ḣ−s ≤C‖ui‖
s−1/2
L2 ‖∇ui‖

3/2−s
L2 ‖∇ui‖L2 , (2.63)

‖h(ni) ·∇ni‖Ḣ−s ≤C‖ni‖
s−1/2
L2 ‖∇ni‖

3/2−s
L2 ‖∇ni‖L2 . (2.64)

Finally, we turn to the last term in the left hand side of (2.56) with i=1,2. We
have

−

∫

Λ−s∇φ ·Λ−su1+

∫

Λ−s∇φ ·Λ−su2

=

∫

Λ−sφΛ−sdivu1−

∫

Λ−sφΛ−sdivu2

= −

∫

Λ−sφΛ−s∂t(n1−n2)+

∫

Λ−sφΛ−sdiv(n1u1−n2u2)

=
1

2

d

dt

∫

|Λ−s∇φ|2−

∫

Λ−s∇φ ·Λ−s(n1u1−n2u2). (2.65)
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If s∈ (0,1/2], we use Lemma 2.1 and Lemma 2.4 to obtain

‖Λ−s(niui)‖L2 ≤ C‖ui‖L2‖ni‖L3/s ≤C‖ui‖L2‖∇ni‖
1/2−s
L2 ‖∇2ni‖

1/2+s
L2

≤ C(‖ui‖
2
L2 +‖∇ni‖

2
H1), (2.66)

and if s∈ (1/2,3/2), we have

‖Λ−s(niui)‖L2 ≤C‖ui‖L2‖ni‖L3/s ≤C‖ui‖L2‖∇ni‖
s−1/2
L2 ‖∇2ni‖

3/2−s
L2 . (2.67)

Consequently, in light of (2.56)-(2.67), and using Young’s inequality, we deduce
(2.54) and (2.55).

2.4. Estimates in Ḃ−s
2,∞(R3). In this subsection, we will derive the evolution

of the negative Besov norms of the solutions. The argument is similar to the previous
subsection.

Lemma 2.13. If ‖ni0,ui0,∇φ0‖H3 ≪1 with i=1,2, for s∈ (0, 12 ], we have

d

dt
‖(ni,ui,∇φ)‖2

Ḃ−s
2,∞

≤C(‖∇ni‖
2
H1 +‖ui‖

2
H2)‖(ni,ui,∇φ)‖Ḃ−s

2,∞
, i=1,2, (2.68)

and for s∈ ( 12 ,
3
2 ] we have, for i=1,2,

d

dt
‖(ni,ui,∇φ)‖2

Ḃ−s
2,∞

≤ C
{

‖(ni,ui)|
s−1

2

L2 ‖∇(ni,ui)‖
5
2
−s

H1 +‖ui‖L2‖ni‖
s−1

2

L2 ‖∇ni‖
3
2
−s

L2

}

‖(ni,ui,∇φ)‖Ḃ−s
2,∞

.

(2.69)

Proof. Applying ∆̇j to (2.2)1, (2.2)2 and multiplying the resulting identity by

∆̇jn1, ∆̇ju1, respectively, and integrating over R3 by parts, we get

d

dt

∫

(|∆̇jn1|
2+ |∆̇ju1|

2)+

∫

|∇∆̇ju|
2−

∫

∆̇j∇φ ·∆̇ju1

=

∫

∆̇j(−n1divu1−u1 ·∇n1)∆̇jn1−∆̇j(u1 ·∇u1+h(n1)∇n1) ·∆̇ju1

≤C‖n1divu1+u1·∇n1‖Ḃ−s
2,∞

‖n1‖Ḃ−s
2,∞

+‖u1·∇u1+h(n1)∇n1‖Ḃ−s
2,∞

‖u1‖Ḃ−s
2,∞

. (2.70)

Then, as the proof of Lemma 2.12, applying Lemma 2.6 instead to estimate the
Ḃ−s

2,∞ norm, we complete the proof of Lemma 2.13.

3. Proof of theorems

3.1. Proof of Theorem 1.1. In this subsection, we shall use the energy
estimates in Subsection 2.2 to prove the global existence in the H3 norm.

We first close the energy estimates at each l-th level to prove (1.3). Let 0≤ l≤2.
Summing up the estimates (2.4) from k= l to k=2, and then adding the resulting
estimates to (2.31) for k=2, by changing the index and since δ≪1, we have

d

dt

∑

l≤k≤3

‖∇k(n1,u1,n2,u2,∇φ)‖2L2 +C1

∑

l≤k≤3

‖∇k(u1,u2)‖
2
L2

≤ C2δ
∑

l+1≤k≤3

‖∇k(n1,n2,∇φ)‖2L2 . (3.1)
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Summing up (2.40) of Lemma 2.11 from k= l to 2, we have

d

dt

∑

l≤k≤2

∫

(∇ku1 ·∇∇kn1+∇ku2 ·∇∇kn2)+C3

∑

l+1≤k≤3

‖∇k(n1,n2,∇φ)‖2L2

≤ C4

∑

l≤k≤3

‖∇k(u1,u2)‖
2
L2 . (3.2)

Computing 2C2δ/C3×(3.2)+(3.1), and by using the fact δ≪1, we can conclude
that there exists a constant C5>0 such that for 0≤ l≤2,

d

dt







∑

l≤k≤3

‖∇k(n1,u1,n2,u2,∇φ)‖
2
L2+

2C2δ

C3

∑

l≤k≤2

∫

(∇ku1·∇∇
kn1+∇ku2v ·∇∇

kn2)







+C5







∑

l≤k≤3

‖∇k(u1,u2)‖
2
L2 +

∑

l+1≤k≤3

‖∇k(n1,n2,∇φ)‖2L2







≤0.

(3.3)
By the smallness of δ and using Cauchy’s inequality, we deduce that

C−1
6 ‖∇l(n1,u1,n2,u2,∇φ)‖2H3−l

≤
∑

l≤k≤3

‖∇k(n1,u1,n2,u2,∇φ)‖2L2 +
2C2δ

C3

∑

l≤k≤2

∫

(∇ku1 ·∇∇kn1+∇ku2 ·∇∇kn2)

≤ C6‖∇
l(n1,u1,n2,u2,∇φ)‖2H3−l , 0≤ l≤2.

(3.4)
As a result, we have the following estimate in Sobolev’s space for 0≤ l≤2:

d

dt
‖∇l(n1,u1,n2,u2,∇φ)‖2H3−l +

{

‖∇l(u1,u2)‖
2
H3−l +‖∇l+1(n1,n2,∇φ)‖2H2−l

}

≤0.

(3.5)
Taking l=0 in (3.5), and integrating directly in time, we have

‖(n1,u1,n2,u2,∇φ)‖2H3 ≤C2
6‖(n10,u10,n20,u20,∇φ0)‖

2
H3 . (3.6)

By a standard continuity argument, since ‖(n10,u10,n20,u20,∇φ0)‖H3 is suffi-
ciently small, this closes the a priori estimates (2.2). Thus we obtain the global
existence in Theorem 1.1.

3.2. Proof of Theorem 1.2. In this subsection, we will prove the optimal
time decay rates of the unique global solution to system (2.1) in Theorem 1.2.

First, from Lemma 2.12, we must use different arguments for different values of
s. For s∈ [0,1/2], integrating (2.54) in time, and by using the energy estimate (1.3),
we have

‖(ni,ui,∇φ)‖2
Ḣ−s ≤ ‖(ni0,ui0,∇φ0)‖

2
Ḣ−s +C

∫ t

0

‖∇(ni,ui)‖
2
H1‖(ni,ui,∇φ)‖Ḣ−sdτ

≤ C0(1+ sup
0≤τ≤t

{‖(ni,ui,∇φ)‖Ḣ−s}).

(3.7)
This yields

‖(n1,u1,n2,u2,∇φ)‖Ḣ−s ≤C0 for s∈ [0,1/2]. (3.8)
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Using Lemma 2.13, we similarly have

‖(n1,u1,n2,u2,∇φ)‖Ḃ−s
2,∞

≤C0 for s∈ [0,1/2]. (3.9)

If 0≤ l≤2, we may use Lemma 2.3 to have

‖∇l+1f‖L2 ≥C‖f‖
− 1

l+s

Ḣs
‖∇lf‖

1+ 1
l+s

L2 . (3.10)

By this fact and (3.9), we find

‖∇l+1(n1,n2,∇φ)‖2L2 ≥C0(‖∇
l(n1,n2,∇φ)‖2L2)

1+ 1
l+s . (3.11)

This together with (1.3) yields for l=0,1,2,

‖∇l(u1,u2),∇
l+1(n1,n2,∇φ)‖2H3−l ≥C0(‖∇

l(u1,u2,n1,n2,∇φ)‖2H3−l)
1+ 1

l+s . (3.12)

Hence, from (3.5), we have the following time differential inequality for l=0,1,2:

d

dt
‖∇l(u1,u2,n1,n2,∇φ)‖2H3−l +C0(‖∇

l(u1,u2,n1,n2,∇φ)‖2H3−l)
1+ 1

l+s ≤0, (3.13)

which gives

‖∇l(u1,u2,n1,n2,∇φ)‖2H3−l ≤C0(1+ t)−(l+s), l=0,1,2; s∈
[

0,
1

2

]

. (3.14)

We now consider s∈ (1/2,3/2). Notice that the arguments for the case s∈
[0,1/2] cannot be applied to this case (see Lemma 2.12). Observing that we have
n10,u10,n20,u20,∇φ0∈ Ḣ−1/2 since Ḣ−s∩L2⊂ Ḣ−s′ for any s′∈ [0,s], we then de-
duce from what we have proved for (1.6) with s=1/2 that the following decay result
holds:

‖∇l(n1,u1,n2,u2,∇φ)‖H3−l ≤C0(1+ t)−
l+1

2
2 for l=0,1,2. (3.15)

Integrating (2.55) in time, for s∈ (1/2,3/2) we have

‖(ni,ui,∇φ)‖Ḣ−s ≤‖(ni0,ui0,u20,∇φ0)‖Ḣ−s

+C

∫ t

0

{

‖(ni,ui)‖
s−1

2

L2 ‖∇(ni,ui)‖
5
2
−s

H1 +‖ui‖L2‖ni‖
s−1

2

L2 ‖∇ni‖
3
2
−s

L2

}

‖(ni,ui,∇φ)‖Ḣ−sdτ

≤ ‖(ni0,ui0,u20,∇φ0)‖Ḣ−s +C sup
0≤τ≤t

{‖(ni,ui,∇φ)‖Ḣ−s}

×

∫ t

0

{

‖(ni,ui)‖
s− 1

2

L2 ‖∇(ni,ui)‖
5
2
−s

H1 +‖ui‖L2‖ni‖
s− 1

2

L2 ‖∇ni‖
3
2
−s

L2

}

dτ

:= ‖(ni0,ui0,u20,∇φ0)‖Ḣ−s +C sup
0≤τ≤t

{‖(ni,ui,∇φ)‖Ḣ−s}·(K1+K2).

(3.16)
For K1, by using (3.15), we deduce that for the case s∈ ( 12 ,

3
2 ),

K1= C

∫ t

0

{‖(ni,ui)‖
s− 1

2

L2 ‖∇(ni,ui)‖
5
2
−s

H1 }‖(ni,ui,∇φ)‖Ḣ−sdτ

≤ C0+C0

∫ t

0

(1+τ)−7/4−s/2dτ sup
0≤τ≤t

{‖(ni,ui,∇φ)‖Ḣ−s}

≤ C0

{

1+ sup
0≤τ≤t

{‖(ni,ui,∇φ)‖Ḣ−s})

}

, i=1,2; s∈
(1

2
,
3

2

)

. (3.17)
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For K2, we must vary the arguments for s∈ ( 12 ,1) and s∈ [1, 32 ). When s∈ ( 12 ,1),

K2= C

∫ t

0

{‖ui‖L2‖ni‖
s− 1

2

L2 ‖∇ni‖
3
2
−s

L2 }‖(ni,ui,∇φ)‖Ḣ−sdτ

≤ C

{
∫ t

0

‖ui‖
2
L2dτ+

∫ t

0

‖ni‖
2s−1
L2 ‖∇ni‖

3−2s
L2 dτ

}

≤ CC0+CC0

∫ t

0

(1+τ)−
1
4
(2s−1)(1+τ)−

3
4
(3−2s)dτ

≤ CC0+CC0

∫ t

0

(1+τ)−
1
4
(8−4s)dτ ≤CC0, s∈

(1

2
,1
)

. (3.18)

Thus, (3.16)-(3.18) imply that

‖(ni,ui,∇φ)‖Ḣ−s ≤CC0, s∈ [0,1). (3.19)

Combining (3.19) together with a similar argument as for the case s∈ [0, 12 ], we
know that the decay result (1.6) is established for any s∈ [0,1):

‖∇l(u1,u2,n1,n2,∇φ)‖2H3−l ≤C0(1+ t)−(l+s), l=0,1,2, s∈ [0,1). (3.20)

Choosing a constant s1=
5
8 +

s
4 with s∈ [1, 32 ), then s1<1. Then, (3.20) gives

‖∇l(u1,u2,n1,n2,∇φ)‖2H3−l ≤C0(1+ t)−(l+s1), l=0,1,2, s1∈ [0,1). (3.21)

By (3.21), we can prove the decay result for s∈ [1, 32 ). In fact,

K2= C

∫ t

0

{‖ui‖L2‖ni‖
s− 1

2

L2 ‖∇ni‖
3
2
−s

L2 }‖(ni,ui,∇φ)‖Ḣ−sdτ

≤ CC0

∫ t

0

(1+τ)−
s1
2 (1+τ)−

s1
2
(s− 1

2
)(1+τ)−

1+s1
2

( 3
2
−s)dτ

= CC0

∫ t

0

(1+τ)s1+
3
4
− s

2 dτ =CC0

∫ t

0

(1+τ)
11
8
− s

4 dτ ≤CC0, s∈
[

1,
3

2

)

. (3.22)

Hence, (3.16), (3.17), and (3.22) suffice to show that

‖(ni,ui,∇φ)‖Ḣ−s ≤CC0, s∈
[

0,
3

2

)

. (3.23)

With (3.23) in hand, we repeat the arguments leading to (1.6) for s∈ [0,1/2] to
prove that it hold also for s∈ (1/2,3/2).

Lastly, by using Lemma 2.5, Lemma 2.6, Lemma 2.7, Lemma 2.8, and Lemma
2.13, a similar argument as that leading to the estimate (3.23) for the negative Sobolev
space can immediately yield that in the negative Besov’s space,

‖(ni,ui,∇φ)‖Ḃ−s
2,∞

≤CC0, s∈
(

0,
3

2

]

. (3.24)
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