
COMMUN. MATH. SCI. c© 2014 International Press

Vol. 12, No. 7, pp. 1239–1256

A LAGRANGIAN APPROACH FOR MODELING ROAD
COLLISIONS USING SECOND–ORDER MODELS OF TRAFFIC

FLOW∗

SALISSOU MOUTARI† AND MICHAEL HERTY‡

Abstract. In [M. Herty, A. Klein, S. Moutari, V. Schleper, and G. Steinaur, IMA J. Appl.
Math., 78(5), 1087–1108, 2013] and [M. Herty and V. Schleper, ZAMM J. Appl. Math. Mech., 91,
763–776, 2011], a macroscopic approach, derived from fluid-dynamics models, has been introduced
to infer traffic conditions prone to road traffic collisions along highways’ sections. In these studies,
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coupling of the governing equations within the Lagrangian framework. Further, we illustrate some
features of the proposed approach through some numerical simulations.
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1. Introduction
One of the many challenges brought about by the ever increasing growth of road

traffic density is road safety. Road traffic safety is a very active research area, and
various studies generally based on statistical models have been dedicated to identifying
possible causes of road traffic collisions, in particular in the engineering literature; see
e.g. [23, 20, 41, 39, 8]. Albeit these methods enable one to identify “black spots”
such as road intersections, they are not capable of capturing traffic conditions prone
to road traffic collisions along highways sections, where the most deadly and severe
collisions usually occur.

A macroscopic approach, derived from fluid-dynamics models, to infer traffic con-
ditions prone to road traffic collisions along highways’ sections has been introduced in
[29, 31]. The governing equations, in the devised approach, are based on a coupling
of second–order models describing the dynamics of traffic density and traffic veloc-
ity along a road section [2, 5, 4, 37, 16, 17, 42]. Unlike classical first–order models
of traffic flow [9, 38, 36], second-order models enjoy an interpretation as follow–the–
leader microscopic models [1], which enables them to inherit microscopic features at
the macroscopic scale. Furthermore, second–order type models can also be derived
from high–phase space kinetic models [25].

In [31, 29], the models of interest have been coupled within Eulerian coordinates,
and this assumes fixed interfaces between the models. The major shortcoming of such
formulation is the stationarity of the location of the collision, i.e. the location of the
collision is assumed to be known a priori. The aim of the study in this paper is to
address this limitation by reformulating the problem in Lagrangian coordinates. Such
a formulation enables us not only to get rid of the problem of fixed interfaces as well
as the stationarity of the location of the collision, but also to capture in principle the
dynamics of the trailing vehicle likely to be the source of a rear end collision.
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The coupling of the models in Lagrangian coordinates is carried out using math-
ematical techniques analogous to those developed for problems of conservation laws
in networks [13, 32, 26, 21, 30, 22, 27, 28, 14, 15, 3, 19, 18, 24]. The central point,
in the discussion of the coupling conditions, is the design of suitable Riemann solvers
at the interfaces between the models, including the dynamics of the trailing vehicle
likely to be the source of the collision.

After a brief introduction to the second–order models of interest and their La-
grangian formulation, we present some known results on Riemann problems and in-
troduce some coupling conditions consistent with the modeling approach introduced
in [31] but now in the moving frame. Some analytical results as well as numerical
simulations are presented in the remaining part of the paper.

2. Preliminary discussion

In recent works, Herty et al. [31, 29] introduced a macroscopic approach to infer
traffic conditions prone to road collisions based on the coupling of the Aw–Rascle–
Zhang model (AR model in short) [2, 42] and (an approximation to) the pressureless
gas dynamics model (PGD in short) [35, 6, 7, 10]. In this study we revisit the modeling
approach within the Lagrangian framework. Note that the AR model does not allow
for concentrations whereas the PGD model may allow for concentrations. This will
be the key mechanism to model (and predict) possible road traffic collisions.

Mathematical properties of the AR and PGD models have been extensively dis-
cussed in the literature; see e.g. [2, 1, 42] and [35, 6, 7, 10], respectively. Therefore,
here we only briefly introduce the properties of the models of interest relevant to our
study.

In Eulerian coordinates, the conservative formulation of AR [2] writes

∂tρ+∂x(ρv)=0, (2.1)

∂t(ρw)+∂x(ρwv)=0, (2.2)

w=v+p(ρ), (2.3)

where ρ(x,t) and v(x,t) denote, respectively, the average local density and the average
local velocity of vehicles, both at the position x and the time t. The variable w denotes
the “preferred velocity” of drivers, whereas the function 0≤p(ρ)<∞ is the velocity
offset between the current velocity of drivers and their preferred velocity. A prototype
candidate for the function p(ρ) (see [4]) is

p(ρ)=

(

1

ρ
−

1

ρmax

)γ

, (2.4)

with ρmax the maximal density, i.e. when cars are parked bumper to bumper.

In variables (ρ,v) the AR model (2.1)-(2.3) writes:

∂tU+A(U)∂xU =0, U =

(

ρ
v

)

, A(U)=

(

v ρ
0 v−ρp′(ρ)

)

. (2.5)

The eigenvalues of the Jacobian matrix A(U) are λ1=v−ρp′(ρ) and λ2=v and the
respective corresponding right eigenvectors are

r1=

(

1
−p′(ρ)

)

and r2=

(

1
0

)

. (2.6)
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Therefore, the system (2.1)-(2.3) is strictly hyperbolic away from the vacuum (i.e. for
ρ>0). Furthermore, the first eigenvalue of the Jacobian matrix A(U) is genuinely
nonlinear whereas the second one is linearly degenerate.

Let us consider the following initial data:

(ρ,v)(x,0)=

{

(ρl,vl), if x<0,
(ρr,vr), if x>0.

(2.7)

Then a self-similar solution to the Riemann problem associated to the AR model (2.1)-
(2.3) with initial data (2.7) consists of the juxtaposition of a wave of the first family
(1-shock or 1-rarefaction) associated with the eigenvalue λ1 and a wave of the second
family (2-contact discontinuity) associated with the eigenvalue λ2. Moreover, shock
curves and rarefaction curves coincide for the AR model, and the Riemann invariants
associated with the eigenvalues λ1 and λ2 are w(U)=v+p(ρ) and z(U)=v.

Along waves of the first family w is conserved. Hence, any state on the left
Ul=(ρl,vl) can be connected to a state on the right Ur=(ρr,vr) by a wave of the first
family if and only if

vr+p(ρr)=vl+p(ρl). (2.8)

Then,

• if vr<vl, the wave of the first family is a 1-shock traveling with the speed
s= ρrvr−ρlvl

ρr−ρl

;

• if vr>vl, the wave of the first family is a 1-rarefaction wave.

Any state on the left Ul=(ρl,vl) can be connected to a state on the right Ur=
(ρr,vr) by a wave of the second family if and only if vl=vr, in which case the wave
of the second family is a 2-contact discontinuity traveling with speed s=vl=vr.

For more details about the solution to the Aw-Rascle model, including regularity
requirements, we refer the reader to [2, 1].

The pressureless gas dynamics (PGD) model e.g. [35, 6, 7, 10], is defined by the
following equations:

∂tρ+∂x(ρv)=0, (2.9)

∂t(ρv)+∂x(ρv
2)=0, (2.10)

where ρ(x,t)(≥0) and v(x,t)(≥0) denote respectively the local density and the ve-
locity, both at the position x and the time t. In [29] a coupling of the AR model
and the PGD model has been discussed, and in [31] the coupling of the AR model
and an approximation to the PGD model has been investigated. We follow the latter
approach in our analysis in the Lagrangian setting below.

3. Macroscopic modeling of road traffic collisions in Lagrangian coor-
dinates

Among the various reasons leading to road traffic collisions, here we are partic-
ularly interested in collisions related to drivers who do not properly anticipate the
traffic situation ahead. Our main objective, in this study, is to infer traffic conditions
prone to such high-risk situations using macroscopic variables. To achieve this goal,
we consider the following setting: on a road section, the collective behaviour of some
drivers may change; the traffic dynamics of those drivers who are fully aware and
are acting responsibly, i.e. “careful drivers”, is governed by the AR model whereas
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the dynamics of those drivers who are unaware of the traffic conditions ahead and
are acting carelessly, i.e.“careless drivers”, is described using an approximation of the
PGD model. In this section, we will justify the motivations of such approach and
discuss the well-posedness of the coupling of the AR model with an approximation
of the PGD model in Lagrangian coordinates to infer high-risk traffic conditions on
highways’ sections. For this aim, let us consider the following rescaled formulation of
the AR model (2.1)-(2.3):

∂tρ
ε+∂x(ρ

εvε)=0, (3.1)

∂t(ρ
εwε)+∂x(ρ

εwεvε)=0, (3.2)

wε=vε+εp(ρε), ε>0. (3.3)

Formally, the limit of the rescaled AR model (3.1)-(3.3) when ε−→0 yields the PGD
model (2.9)-(2.10). Rigorous results on existence of solutions to the Riemann problem
associated with the PGD model exist and they have been investigated extensively; see
e.g. [35, 7, 33, 10, 6, 11, 12, 31].

Let τε=1/ρε denote the specific volume. Then τεmin=1/ρεmax. Moreover, when
the density is normalized then we have τεmin=ρεmax=1. Because ρmax corresponds to
the density where cars are parked bumper to bumper, then τεmin could be viewed here
as the minimal space that could be occupied by a car. Using the specific volume τ , for
ρ>0, we change the Eulerian coordinates (x,t) into Lagrangian “mass” coordinates
(X,T ) with

∂xX=ρε, ∂tX=−ρεvε, T = t, (3.4)

or equivalently

∂Xx=1/ρε= τε, ∂Xt=0, ∂Tx=vε, ∂T t=1. (3.5)

Note that the independent variables in this transformation are X and T . The trans-
formation (x,t)→ (X,T ) is well–defined except for vacuum states where τ ǫ contains a
δ−function. As in gas dynamics [40] and as discussed in [1] solutions to the AR–model
in Eulerian and Lagrangian coordinates are equivalent. This equivalence holds not
only for strong solutions but also for weak (L∞) solutions.

From the previous equations we obtain, within this framework, X=X(x,t)=
∫ x

ρε(y,t)dy. Hence, the variable X(x,t) denotes the total mass of vehicles up to

point x at time t. If X(x,t0)=X(x,t), ∀ t> t0, then, from the microscopic point of
view, this means that the vehicle initially at position x0=x(t0) cannot be overtaken
∀ t> t0. When changing to Lagrangian mass coordinates there is no transformation
in time, i.e., T = t.

Using the above framework, the rescaled AR (ARε) model (3.1)-(3.3) writes

∂T τ
ε−∂X(wε−εp(1/τε))=0, (3.6)

∂Tw
ε=0. (3.7)

Let us rewrite the system (3.6)-(3.7) in the following form:

∂TU
ε+A(Uε)∂XUε=0, (3.8)

where Uε=

(

τε

wε

)

and A(Uε)=

(

εp′(1/τε)
(τε)2 −1

0 0

)

. (3.9)
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Then, the eigenvalues of the Jacobian matrix A(Uε) are

λε
1=−

εp′(1/τε)

(τε)2
and λε

2=0,

and their corresponding right eigenvectors are, respectively,

rε1=

(

1
0

)

and rε2=

(

1

−εp′(1/τε)
(τε)2

)

.

Therefore, for ε>0 and ρε= 1
τε 6=0 the system (3.6)-(3.7) is strictly hyperbolic.

Furthermore, because ∇λ1(U
ε) ·r1 6=0, ∀Uε and ∇λ2(U

ε) ·r2=0, ∀Uε, for ε>0 and
ρε= 1

τε 6=0, the first eigenvalue λε
1 is genuinely nonlinear whereas the second one, λε

2,
is linearly degenerate. Hence, the waves associated with λε

1 are rarefactions or shocks,
while those associated with λε

2 are contact discontinuities. The ith Riemann invariant,
in the sense of Lax [34], associated with the eigenvalues λε

1 and λε
2 is given by the

function φi(U
ε), i=1,2 such that

∇φi(U
ε) ·rεi (U

ε)=0.

Hence,

φ1(U
ε)=wε and φ2(U

ε)=wε−εp(1/τε).

3.1. The Riemann problem associated with the system (3.6)-(3.7).
The Riemann problem associated with the ARε system (3.6)-(3.7) in Lagrangian co-
ordinates is given by



















∂T

(

τε

wε

)

−∂X

(

wε−εp(1/τε)
0

)

=

(

0
0

)

,

(τε,wε)(x,0)=

{

(τεl ,w
ε
l ), for x≤0,

(τεr ,w
ε
r), for x>0.

(3.10)

Definition 3.1. Assume we are given the Riemann problem (3.10) and constants
(τεk ,w

ε
k)∈R

2 and k∈{ℓ,r}. A simple wave is a self–similar, weak solution to (3.6)-
(3.7) consisting of either a single wave of the first family or a single wave of the second
family.

The solution to the Riemann problem (3.10) is a self–similar, weak solution to
equations (3.6)-(3.7).

The simple (or elementary) waves associated with (3.10) are characterized as
follows. We assume, in the following, that all initial data does not contain the vacuum
state ρ=0.

1-Rarefaction waves: Let Uε
l (x,t)=(τεl ,w

ε
l ) be a given state. Then, the set

of states Uε
r (x,t)=(τεr ,w

ε
r), which can be connected to Uε

l through a 1-rarefaction
wave, is constructed as follows. Let Uε(ξ) be a parametrization (for ξ= x

t ∈R) of the
integral curve of the first family (i.e. associated with λε

1). Then we have

dUε(ξ)

dξ
=

1

∇λε
1(U

ε(ξ))rε1(U
ε(ξ))

rε1(U
ε(ξ)), ξl≤ ξ≤ ξr,

with initial data Uε(ξl)=Uε
l , and where ξl=λε

1(U
ε
l ) and ξr=λε

1(U
ε
r ).
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Therefore,







τε(ξ)′ =
(τε)4

εp′′(1/τε)+2ετεp′(1/τε)
, τε(ξl)= τεl ,

wε(ξ)′ = 0, wε(ξl)=wε
l .

(3.11)

Because wε(ξ)=wε
l , w

ε is constant along waves of the first family. Hence, any given
state Uε

l , on the left, can be connected to any other state on the right, Uε
r , through a

1-rarefaction wave if and only if

wε(Uε
l )=wε(Uε

r ) and λ1(U
ε
l )<λε

1(U
ε
r ). (3.12)

1-Shock waves: Let Uε
l =(τεl ,w

ε
l ) be a given state. Then, the set of states

Uε
r =(τεr ,w

ε
r), to be determined, which can be connected to Uε

l through a discontinuity
traveling with speed sε needs to satisfy the Rankine-Hugoniot condition, i.e.

sε
[

τεr −τεl
wε

r−wε
l

]

=

[

εp(1/τεr )−wε
r−εp(1/τεl )+wε

l

0

]

. (3.13)

The case sε=0 corresponds to a contact discontinuity and this will be discussed in
the next section.

For sε 6=0, we have

wε(Uε
r )=wε(Uε

l ) and sε= ε
p(1/τεr )−p(1/τεl )

τεr −τεl
. (3.14)

Using the parametrization τ εr = τεl +ξ, we have

Uε
r (ξ,U

ε
l )=Uε

l +ξ

(

1
0

)

and sε(ξ,Uε
l )= ε

p(1/(τ εl +ξ))−p(1/τ εl )

(τεl +ξ)−τ εl
. (3.15)

Furthermore, it is easy to check that

Uε
r (0,U

ε
l )=Uε

l and sε(0,Uε
l )=−ε

p′(1/τεl )

(τεl )
2

=λε
1(U

ε
l ).

For waves of the first family, shock and rarefaction curves coincide, thus the system
(3.6)-(3.7) forms a Temple system. Any given state Uε

l , on the left, can be connected
to any other state on the right Uε

r through a 1-shock wave of speed sε if and only if

wε(Uε
r )=wε(Uε

l ) and −ε
p′(1/τεr )

(τεr )
2

=λε
1(U

ε
r )≤sε≤λε

1(U
ε
l )=−ε

p′(1/τεl )

(τεl )
2

. (3.16)

2-Contact discontinuities: This case consists of solutions to equation (3.13)
with sε=0. Hence, any given state Uε

l , on the left, can be connected to any other
state on the right, Uε

r , through a 2-contact discontinuity (with speed sε=λε
2(U

ε)=0)
if and only if

wε
r =wε

l −εp(1/τεl )+εp(1/τεr ), (3.17)

i.e. wε
r = εp(1/τεr )+constant.

Following the above discussion on the structure of the waves associated to the
Riemann problem (3.10), we have the following results.
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1-wave

τ ε

wε

·U
ε
l·U

ε (1-shock)
r ·U

ε (1-rarefaction)
r

0

Fig. 3.1. The 1-shock and 1-rarefaction curves for the ARε model in the Lagrangian phase
plane (τε,wε).

2-wave

τ ε

wε

·Uε
l

·U
ε
r

0

Fig. 3.2. The 2-contact discontinuity curve for the rescaled ARε model in the Lagrangian phase
plane (τε,wε).

Waves of the first family: We obtain the wave of the first family when a state,
on the left, Uε

l =(τεl ,w
ε
l ) is connected with a state, on the right, Uε

r =(τεr ,w
ε
r) through

the curve

wε
r =wε

l . (3.18)

We can distinguish two cases:

1. If p(1/τεr )>p(1/τεl ), then the wave of the first family is a 1-shock, i.e. a jump
discontinuity, traveling with the speed

sε= ε
p(1/τεr )−p(1/τ εl )

τεr −τεl
. (3.19)

2. On the other hand, if p(1/τεr )<p(1/τεl ), then the wave of the first family is a
1-rarefaction i.e. a continuous solution of the form Uε(ξ)=(τε,wε)(ξ) (with
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ξ= x
t ) given by

(

(τε)′(ξ)
(wε)′(ξ)

)

=
r1(U

ε(ξ))

∇λε
1(U

ε(ξ)) ·rε1(U
ε(ξ))

, λε
1(U

ε
l )≤ ξ≤λε

1(U
ε
r ), (3.20)

(τε,wε)(ξ)=

{

(τεl ,w
ε
l ), for ξ <λε

1(U
ε
l ),

(τεr ,w
ε
r), for ξ >λε

2(U
ε
r ).

(3.21)

Waves of the second family: We obtain a wave of the second family, i.e. a
2-contact discontinuity, when

wε
r =wε

l −εp(1/τεl )+εp(1/τεr ), (3.22)

Proposition 3.2. Let Uε
l =(τεl ,w

ε
l ) and Uε

r =(τεr ,w
ε
r) be two given states with

τεl,r 6=0. Provided that either wε
l >wε

r−εp(1/τεr ) or wε
l −εp(1/τεl )<wε

r−εp(1/τεr )<
wε

l holds, a solution to the Riemann problem exists. The solution to the Riemann
problem (3.10) is a juxtaposition of two simple waves separated by an intermediate
state Ūε=(τ̄ε,w̄ε).

Note that the intermediate state is the intersection point between the 1-wave
curve through Uε

l and the 2-contact discontinuity through Uε
r .

Proof. The solution is constructed as follows: First, the state on the left, Uε
l ,

is connected to the intermediate state Ūε through either a 1-shock or a 1-rarefaction
wave, and then Ūε is connected to the state on the right, Uε

r , through a 2-contact
discontinuity. Thus, we have

w̄ε=wε
l and w̄ε−εp(1/τ̄ε)=wε

r−εp(1/τεr ). (3.23)

Hence, the intermediate state is given by Ūε=(τ̄ε,w̄ε), where w̄ε=wε
l and

τ̄ε=
1

p−1 (ε−1(wε
l −wε

r)+p(1/τ εr ))
. (3.24)

Because the function p(·) is defined on R
+, equation (3.24) admits a finite solution

(i.e. non vacuum solution) if and only if wε
l >wε

r−εp(1/τεr ). Therefore, the solution
to the Riemann problem (3.10) consists of one of the following cases:

• Case 1: wε
l ≥wε

l −εp(1/τεl )>wε
r−εp(1/τεr ).

In this case, the state Uε
l is connected to the intermediate state Ūε=(τ̄ε,wε

l )
(with τ̄ε given by (3.24)) through a 1-shock wave, and then Ūε is connected
to Uε

r through a 2-contact discontinuity.

• Case 2: wε
l −εp(1/τεl )<wε

r−εp(1/τεr )<wε
l .

In this case, the state Uε
l is connected to the intermediate state Ūε=(τ̄ε,wε

l )
(with τ̄ε given by (3.24)) through a 1-rarefaction wave, and then Ūε is con-
nected to Uε

r through a 2-contact discontinuity.

Concerning the assumption on the initial data we have the following remark.
Assume wε

l −εp(1/τεl )<wε
l <wε

r−εp(1/τεr ). In this case, the state Uε
l needs to be

connected to the intermediate state Ūε=(∞,wε
l ) through a 1-rarefaction wave, and

then connected to Uε
r through a 2-contact discontinuity. Note that Uε is not a well–

defined state in the Lagrangian coordinate system, because τ∗→∞. However, in the
Eulerian coordinates this state exists and corresponds to the vacuum ρ=0.



S. MOUTARI AND M. HERTY 1247

2-wave

1-wave

τ ε

wε

·U
ε
l

·U
ε
r

·Ū
ε

0

Fig. 3.3. A non vacuum solution to the Riemann problem (3.10) in the Lagrangian phase plane
(τε,wε).

2-wave

1-wave

τ ε

wε

·U
ε
l

·U
ε
r

0

Fig. 3.4. A vacuum solution to the Riemann problem (3.10) in the Lagrangian phase plane
(τε,wε).

3.2. Derivation of a macroscopic model for road traffic collisions in
Lagrangian coordinates. As in [31], we now couple the ARε model (3.1)-(3.3)
and the AR model (2.1)-(2.3). However, unlike in [31], here we proceed in Lagrangian
coordinates, which enables us to track the dynamics of the trailing vehicle likely to be
the source of a rear end collision. Instead of simply prescribing coupling conditions as
in [31, 29], here we start with the following formulation having two traffic pressures
on either side of the car likely to be the source of the collision (see figure 3.5):

∂tρ+∂x(ρv)=0, (3.25)

∂t(ρw)+∂x(ρwv)=0, (3.26)

w=v+εp(ρ)+H(x−x∗)(1−ε)p(ρ), ε>0, (3.27)

where H(·) denotes the Heaviside function.
The model (3.25)-(3.27) couples the AR model (2.1)-(2.3) and the ARε model

(3.1)-(3.3). More precisely, for x>x∗ the traffic dynamics is governed by the AR
model whereas for x<x∗ the dynamics is driven by the ARε model. The position
x∗=x∗(t) is the trajectory of the car likely to be the source of the collision. Thus, in
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Lagrangian coordinates, the system (3.25)-(3.27) is equivalent to

∂T τ−∂X(w−p(1/τ))=0,

∂Tw=0,

w=v+p(1/τ),

forx(t)>x∗(t); (3.28)

∂T τ
ε−∂X(wε−εp(1/τε))=0,

∂Tw
ε=0,

wε=vε+εp(1/τε),

forx(t)≤x∗(t). (3.29)

AR modelARε model

w = v + p(1/τ )wε = vε + εp(1/τ ε)

ε small

x

t

x∗(0)

x∗(t)

0

Fig. 3.5. Traffic dynamics of the coupled ARε and AR models in Eulerian coordinates.

The coupled model (3.28)–(3.29) assumes that cars cannot overtake each other,
and this can be formulated as follows. Given the initial condition and an assigned po-

sition x∗
0=x∗(0) (i.e. a car), then the value of X(x∗,t)=X(x∗

0)=

∫ x∗

0

ρ0(y)dy remains

unchanged; therefore X(x∗,t)= constant can be viewed as the index of the car which
was initially at the location x∗

0=x∗(0). If we assume that we know a priori which car,
i.e. x0, is likely to be the source of the collision and ρ0(y), then the dynamics of the
cars in front of x0 is governed by equation (3.28) whereas the dynamics of the cars
behind x0 is described by equation (3.29). In other words, for any time t≥0, cars at
a position less than or equal to x∗(t) are driven carelessly while those at a position
greater than x∗(t) are driven carefully. Instead of fixing the position x∗(t) of the
collision (as in [31]), here we only fix the index of the car X(x∗(t),t)=X(x∗

0) which
is likely to be the source of the collision. The rationale behind the use of Lagrangian
coordinates to investigate occurrence of road traffic collision can be summarized as
follows: within the Lagrangian framework, the car index remains fixed and this en-
ables us to separate domains where the actual trajectories of the cars likely to be
involving in the collision are still varying in time. Note that as in [29] the occurrence
of a collision then still depends on the local traffic state.

Next, we investigate whether the Riemann problem associated with (3.25)-(3.27)
admits a solution. Throughout the following discussion the quantities τ , v, and w=
v+p(1/τ) will be associated with the traffic dynamics governed by the AR model
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whereas τε, vε, and wε=vε+εp(1/τε) will be used to describe the traffic regime
governed by the ARε model, as indicated in figure 3.5.

Proposition 3.3. Let Uε=(τε,wε) and U =(τ,w) be two given states in the road
sections governed by the ARε model and the AR model, respectively, as depicted in
figure 3.5. We assume that τε 6=0, τ 6=0, and wε>w−p(1/τ). Then, the solution
to the Riemann problem associated with the model (3.28)-(3.29) is given by a juxta-
position of two simple waves separated by an intermediate state U∗=(τ∗,w∗). The
intermediate state U∗ corresponds to the intersection point between a 1ε-wave curve
emerging from Uε and the 2-wave curve emerging from U .

Proof. The solution is to connect the state, on the left, Uε, to the intermediate
state U∗ through either a 1ε-shock or a 1ε-rarefaction, and then connect U∗ to the
state on the right, U , through a 2-contact discontinuity. Under the assumption wε>
w−p(1/τ) we obtain the following:

1. Case 1: If wε−εp(1/τε)<w−p(1/τ)<wε, then the solution is to connect the
state on the left, Uε, to the intermediate state U∗ through a 1ε-rarefaction
wave, and then connect U∗ to the state on the right, U , through a 2-contact
discontinuity.

2. Case 2: If wε−εp(1/τε)>w−p(1/τ), then the solution is to connect the
state on the left, Uε, to the intermediate state U∗ through a 1ε-shock wave,
and then connect U∗ to the state on the right, U , through a 2-contact dis-
continuity.

Thus, in both sub-cases, we have U∗=(τ∗,w∗), where w∗=wε and

τ∗=
1

p−1 (ε−1[(wε−w)+p(1/τ ε)])
. (3.30)

2-wave

1ε-wave

τ

w

·U
ε

·U

·U
∗

0

Fig. 3.6. The non-vacuum solution to the Riemann problem associated with the model (3.28)-
(3.29), in the Lagrangian phase plane (τ,w).

If the assumption on the initial data is violated, i.e., if wε≤w−p(1/τ), then
we obtain the following result. A 1-rarefaction wave connects the state Uε to the
state U∗=(∞,wε), and then U∗ is connected to U through a 2-contact discontinuity.
Again, in Eulerian coordinates this corresponds to the vacuum state ρ∗=0.

In [29] it has been argued that the existence of δ−shocks in the density will be
interpreted as the occurrence of a collision at the position x∗(t). For ε>0, there are
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2-wave

1ε-wave

τ

w

·U·U
ε

0

Fig. 3.7. The vacuum solution to the Riemann problem associated with the model (3.28)-(3.29),
in the Lagrangian phase plane (τ,w).

no δ−shock solutions in the model (3.28)-(3.29). However, the variable τ = 1
ρ can be

interpreted as the spacing between consecutive cars. Hence, if the spacing tends to
zero the car density tends to infinity and this is viewed as an occurrence of a collision
in the coupled model (3.28)-(3.29). The mathematical discussion of the situation can
be carried out as follows. Let U∗=(τ∗,w∗) be the intermediate state of a non-vacuum
solution to the Riemann problem associated with the model (3.28)-(3.29), and let τmin

denote the minimal spatial occupancy of a single car. Then, we have the following:

1. If τ∗>τmin, the solution consists of a 1-rarefaction wave connecting the state
Uε to an intermediate state U∗=(τ∗,wε), followed by a 2-contact disconti-
nuity connecting U∗ to U .

2. If τ∗<τmin, the solution consists of a 1-shock wave connecting the state Uε

to an intermediate state U∗=(τ∗,wε), followed by a 2-contact discontinuity
connecting U∗ to U .

2-wave

1ε-wave

τ

w

·U
ε

·U

·U
∗

0 τmin

Fig. 3.8. The non-vacuum solution, to the Riemann problem associated with the model (3.28)-
(3.29), in the case of collision, in the Lagrangian phase plane (τ,w).

Finally, we turn to special initial data in order to investigate if there is a possibility
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to fulfill τ∗<τmin. Assume a family of initial data (U ǫ)ǫ such that

lim
ε−→0

(

ε−1[(wε−w)+p(1/τ ε)]
)

−→∞. (3.31)

Then, there exists an ε sufficiently small such that τ∗<τmin. Because p(·) is a mono-
tone function, we have

lim
ε−→0

p−1
(

ε−1[(wε−w)+p(1/τ ε)]
)

−→∞. (3.32)

Hence, from (3.30) we have τ∗−→0. Therefore, for ε sufficiently small, there exists
τmin>0 such that τ∗<τmin. The previous assumption (3.31) is fulfilled for example
for all initial data Uε of the type (τ ε,wε) constant and independent of ε.

The above results can be summarized as follows.

Proposition 3.4. Let τmin>0 denote the minimal spatial occupancy allowed for a
single car, and let Uε=(τε,wε) and U =(τ,w) be two given constant states on the
road sections governed by the ARε model and the AR model, respectively. Assume
wε>w−p(1/τ).

Then, the solution to the Riemann problem associated with the model (3.28)-(3.29)
consists of one of the following:

1. If wε=w−p(1/τ), then the solution is a contact discontinuity with speed
w−p(1/τ) separating the states Uε and U .

2. If wε>w−p(1/τ), then the solution is given by a 1ε–shock connected to an
intermediate state U∗=(τ∗,wε) followed by a 2–contact discontinuity.

If wε<w−p(1/τ), then the solution consists of two contact discontinuities (with
speed wε and w−p(1/τ), respectively). The intermediate state is only well-defined in
Eulerian coordinates and it corresponds to the vacuum in ρ, i.e. ρ=0.
Note that Case 2 in Proposition 3.4 corresponds to a situation where a collision
occurs at x∗(t). Therefore, the condition of occurrence of such a collision within the
model (3.28)-(3.29) is given by

wε>w−p

(

1

τ

)

and τ∗>τmin. (3.33)

Note that if

vε>w−p

(

1

τ

)

, (3.34)

then we will always be in Case 2, and therefore due to equation (3.30) there is a
collision for any value τmin>0 provided ε is sufficiently small. Condition (3.34) shows
the interplay of the “carelessness” of the drivers (characterized by ε) and the initial
velocity and density of the surrounding cars. In [29] only the case ε=0 has been con-
sidered and this is related to completely “careless” drivers and the presented condition
coincides with (3.34). Also, in this case the total mass is not conserved. In Eulerian
coordinates a δ−shock is observed which is not a solution in sense of Definition 3.1.

Remark 3.5. In real-word scenarios, at the instant of a rear end collision the driver
in front would ideally stop. However, this also depends on the dynamics of the car in
the rear. Our model captures this fact as follows. Because the model does not allow
cars to overtake each other, then when a collision occurs we have τ∗−→0; hence in
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that situation, the 1ε-shock wave in Case 2 of Proposition 3.4, which connects the
state Uε=(τε,wε) to the intermediate state U∗=(τ∗,wε) is such that v∗=min(0,w−
p(1/τ)). Eventually the speed of the leading careless driver vanishes, and because U∗

is connected to U =(τ,w) through a contact discontinuity i.e. v=v∗, then so does
the speed of the last driver within the AR regime. Furthermore, because the wave of
the second family is a contact discontinuity then both cars involved in the collision
remain parked.

4. Numerical experiments
This section is dedicated to some numerical simulations to illustrate traffic dynam-

ics in the coupled model (3.28)-(3.29), using some sample initial traffic conditions. The
AR model (3.28) is solved using a classical Godunov scheme where the Riemann solver
is derived from analytical results presented above. Let us introduce some grid points
in space (Xj = j∆X, j∈Z) and in time (Tn=n∆T, n∈N), with (∆X,∆T )−→ (0,0)
and ∆T

∆X = constant such that the CFL condition is satisfied. The space step ∆X can
be viewed, at the microscopic level, as the average length of a car. Then, the Godunov
discretization of the AR model in Lagrangian coordinates writes

τ(Xi,Tn+1)= τ(Xi,Tn)+
∆T

∆X
[v(Xi+1,Tn)−v(Xi,Tn)],

w(Xi,Tn+1)=w(Xi,Tn),
(4.1)

where v(Xk,Tn)=w(Xk,Tn)−p

(

1

τ(Xk,Tn)

)

.

Using the relationships ∂Tx=∂tx=v and T = t from (3.5), the location of the ith

vehicle, in Eulerian coordinates, is given by

xi(tn+1)=xi(tn)+∆t v(Xi,tn). (4.2)

Similarly, the Godunov discretization of the ARε model in Lagrangian coordinates
(3.29) writes

τε(Xi,Tn+1)= τε(Xi,Tn)+
∆T

∆X
[vε(Xi+1,Tn)−vε(Xi,Tn)],

wε(Xi,Tn+1)=wε(Xi,Tn),
(4.3)

where vε(Xk,Tn)=wε(Xk,Tn)−εp

(

1

τε(Xk,Tn)

)

, with ε−→0.

Thanks to (3.5), the location of the ith vehicle, in Eulerian coordinates, is given by

xi(tn+1)=xi(tn)+∆t vε(Xi,tn). (4.4)

For the numerical simulations, we consider a road section with two platoons of
vehicles, as depicted in figure 3.5. The first platoon consists of twenty vehicles (on
the right part of the road section), for which the traffic dynamics are governed by
the AR system (3.28), whereas the second platoon consists of five vehicles (on the
left-end of the road section), for which the traffic regime is described by the ARε

model for a parameter ε=O((∆X)4). The choice of ε implies that numerically we
are close to the regime of the PGD model (2.9)-(2.10). Initially the vehicles’ positions
are randomly prescribed in both regimes. For both AR and ARε models, we consider
normalized values for the variable τ , i.e. τmin=1/ρmax=1, where ρmax is the maximal
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density i.e. when vehicles are parked bumper–to–bumper, and we set p(ρ)=ργ , with
γ=1. Therefore, in the simulations, a collision is characterized by the occurrence of
a δ−solution (i.e., τ <τmin) in the ARε model. This is equivalent to a situation where
the leader in the platoon governed by the ARε model collides with the last vehicle
in the platoon governed by the AR model, i.e. the distance between the rear ends of
these two vehicles is less than the average length of a vehicle, ∆X.
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Fig. 4.1. (a) The initial setting in the ARε regime is wε(Xj ,0)=0.5, ∀ j=1,...5, with wε<

w(X20,t)−p(τ(X20,t)), ∀ t. (b) The initial setting in the ARε regime is wε(Xj ,0)=0.8, ∀ j=1,...5,
with wε<w(X20,t)−p(τ(X20,t)), ∀ t.
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Fig. 4.2. (a) The initial setting in the ARε regime is wε(Xj ,0)=1, ∀ j=1,...5, with wε=
w(X20,t)−p(τ(X20,t)), ∀ t. (b) The initial setting in the ARε regime is wε(Xj ,0)=1, ∀ j=1,...5,
with wε>w(X20,t)−p(τ(X20,t)).

The results of the numerical simulations are presented in terms of trajectories
of vehicles in space and time (in Eulerian coordinates) in figures 4.1, 4.2, and 4.3.
In all the figures, the solid lines correspond to the trajectories of vehicles within
the AR regime whereas the dashed lines correspond to trajectories of vehicles in the
ARε regime. Throughout the simulations, the following setting has been adopted for
the AR regime: we set w(Xi,0)=1, ∀ i=1, . . . ,20, i.e. the maximal speed allowed in
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Fig. 4.3. (a) The initial setting in the ARε regime is wε(Xj ,0)=1.5, ∀ j=1,...5, i.e. wε>

w(X20,t)−p(τ(X20,t)), ∀ t. (b) The initial setting in the ARε regime is wε(Xj ,0)=1.8, ∀ j=1,...5,
i.e. wε>w(X20,t)−p(τ(X20,t)), ∀ t.

the regime is 1, and the initial positions of vehicles are prescribed randomly such
that the initial velocity for each vehicle, deduced uniquely using the relationship
v=w−p(ρ) with ρ=∆X/(xi+1−xi), is less than or equal to 1. For the leading
vehicle in the AR regime, we consider a constant speed of 0.8. Then, we illustrate the
scenarios summarized in Proposition 3.4 by varying the settings in the ARε regime
while ε=10−5.

The results portrayed in figure 4.1 (a) and (b) are obtained using the following
settings in the ARε regime. In figure 4.1 (a), we set wε(Xi,0)=0.5 ∀ i, i.e. the
maximal speed allowed in the regime is 0.5, and the initial positions of vehicles are
prescribed randomly such that the initial velocity for each vehicle, deduced uniquely
using the relation v=w−p(ρ) with ρ=∆X/(xi+1−xi), is less than or equal to 0.5. In
figure 4.1 (b), we set wε(Xi,0)=0.8 ∀ i, i.e. the maximal speed allowed in the regime
is 0.8, and the initial positions of vehicles are prescribed randomly such that the
initial velocity for each vehicle, deduced uniquely using the relationship v=w−p(ρ)
with ρ=∆X/(xi+1−xi), is less than or equal to 0.8. The results in figure 4.1 (a) and
(b) correspond to the case wε<w−p(1/τ) (Case 2 in Proposition 3.4), and as shown
in the graphs, the solution consists of two contact discontinuities (with speeds wε and
w−p(1/τ) respectively) separated by a vacuum state.

In figure 4.2 (a) and (b), the following settings were considered for the ARε regime:
wε(Xi,0)=1 ∀ i, i.e. the maximal speed allowed in the regime is 1, and the initial
positions of vehicles are prescribed randomly such that the initial velocity for each
vehicle, deduced uniquely using the relationship v=w−p(ρ) with ρ=∆X/(xi+1−xi),
is less than or equal to 1. Figure 4.2 (a) corresponds to the situation where wε=
w−p(1/τ) (Case 1 in Proposition 3.4), and as shown by the graph, the solution
consists of a contact discontinuity traveling with speed w−p(1/τ). Figure 4.2 (b)
corresponds to the high-risk situation where wε>w−p(1/τ) (Case 3 in Proposition
3.4), and as illustrated in the graph a collision occurs at t=480 between the last
vehicle in the AR regime and the leading vehicle in the ARε regime.

The results depicted in figure 4.3 (a) and (b) are obtained using the following
settings in the ARε regime. In figure 4.3 (a) we set wε(Xi,0)=1.5 ∀ i, i.e. the maximal
speed allowed in the regime is 1.5, and the initial positions of vehicles are prescribed
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randomly such that the initial velocity for each vehicle, deduced uniquely using the
relation v=w−p(ρ) with ρ=∆X/(xi+1−xi), is less than or equal to 1.5. In figure
4.3 (b) we set wε(Xi,0)=1.8 ∀ i, i.e. the maximal speed allowed in the regime is
1.8, and the initial positions of vehicles are prescribed randomly such that the initial
velocity for each vehicle, deduced uniquely using the relationship v=w−p(ρ) with
ρ=∆X/(xi+1−xi), is less than or equal to 1.8. In both cases we have wε>w≥
w−p(1/τ) (Case 3 in Proposition 3.4), and therefore both cases correspond to the
high-risk situation where a collision is likely to occur. As shown in the graph, in figure
4.3 (a) a collision between the last vehicle in the AR regime and the leading vehicle
in the ARε regime occurs at t=270, whereas in figure 4.3 (b) the collision occurs at
t=60.
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