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ON THE STATIC SOLUTIONS OF THE SPHERICALLY

SYMMETRIC VLASOV-EINSTEIN-MAXWELL SYSTEM FOR LOW

CHARGE AND ANISOTROPIC PRESSURE∗

P. NOUNDJEU† AND G. CHENDJOU‡

Abstract. We consider the Vlasov-Einstein-Maxwell (VEM) system in the spherically symmetric
setting and we try to establish a global static solution with isotropic or anisotropic pressure that
approaches Minkowski spacetime at the spacial infinity and has a regular center. This work extends
the previous one recently done by the first author, in which only the isotropic case is concerned.
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1. Introduction

A spacetime is said to be stationary if there is a time-like Killing vector field
v=(vα). If in addition the equation v[α∇βvγ ]=0 holds then the spacetime is static.
On the one hand, from a physical point of view, static spacetimes are known to
describe some phenomena in our universe. For instance it is well known that in
the region r>2m where ∂

∂t is time-like, the Schwarzschild metric defined a Black
Hole whose mass is equal to the parameter m>0 [16]. On the other hand, from a
mathematical point of view, researching statics spacetimes may give rise to a new
interesting subject to be studied using an analytical argument.

In [10], the author looked for a static global solution of the spherically symmetric
VEM system for the particles with small charge q. We notice that in our context,
particles could be those inside a relativistic charged plasma. Using q as a parameter,
the author cited above established a global existence theorem by means of a pertur-
bation method. This work is concerned only with the isotropic pressure case. We
now consider the general situation where the pressure depends on direction and we
wish to extend the results obtained in [10] to the new context which could include the
politropic solutions of the Vlasov-Poisson (VP) system.

Next, with the assumption of spherical symmetry the electromagnetic field F

reduces to its electric part, Ei(x) := ε(r)x
i

r , with r being the Euclidean norm of the
spacial vector x, and the VEM yields

v√
1+v2

· ∂f
∂x

−(µ′
√

1+v2−qe2λε)
x

r
· ∂f
∂v

=0, (1.1)

e−2λ(2rλ′−1)+1=8πr2ρ, (1.2)

e−2λ(2rµ′+1)−1=8πr2p, (1.3)

d

dr
(r2eλε)= qr2eλM, (1.4)

∗Received: May 9, 2013; accepted (in revised form): September 3, 2013. Communicated by
Francois Bouchut.

†Department of Mathematics, Faculty of Science, University of Yaounde 1, PO Box 812, Yaounde,
Cameroun (pnoundjeu@ymail.com).

‡Department of Mathematics, Faculty of Science, University of Yaounde 1, PO Box 812, Yaounde,
Cameroun (gchendjou@gmail.com).

1225



1226 STATIC SOLUTIONS OF SELF GRAVITATING COLLISIONLESS PLASMA

where, x,v∈R
3, r=|x |, λ′= dλ

dr , and

ρ(x)=ρ(r)=

∫

R3

f(x,v)
√

1+v2dv+
1

2
e2λ(x)ε2(x),

p(x)=p(r)=

∫

R3

(x.v

r

)2

f(x,v)
dv√
1+v2

− 1

2
e2λ(x)ε2(x),

M(x)=M(r)=

∫

R3

f(x,v)dv.

In the above, (1.1) is the Vlasov equation, (1.2) and (1.3) are a part of the Einstein
equations, while (1.4) is a part of the Maxwell system. Notice that in the Vlasov

equation, v · ∂f∂x =
3
∑

i=1

vi ∂f
∂xi , q denotes the charge of particles, and λ and µ denote the

metric functions. Here f is spherically symmetric if f(Ax,Av)=f(x,v), for x,v∈R
3,

A∈SO(3). We also recall that ρ stands for the energy density of the system while p
represents the radial pressure. The spacetime we are looking for is R4, endowed with
the metric that is invariant under rotations:

ds2=−e2µdt2+e2λdr2+r2(dθ2+sin2θdϕ2),

in which t∈R, r≥0, θ∈ [0,π], and ϕ∈ [0,2π]. We are also looking for the asymp-
totically flat solutions with a regular center that allow us to prescribe the following
boundary conditions:

lim
r→+∞

λ(r)= lim
r→+∞

µ(r)=λ(0)=0.

Again for the regularity of ε, we will need the following additional boundary condi-
tions:

lim
r→+∞

ε(r)= ε(0)=0.

We encourage the reader to obtain more details on how to establish the above equa-
tions in [11].

Next, in the related literature, the initial value problem for the corresponding
time dependent is investigated in [11]. Again the Newtonian limit of the spheri-
cally symmetric VEM is discussed in [12] and this work extends the one of Rein in
[15]. Moreover, in [18] the authors prove the existence of a globally defined smooth
static solution for the Einstein-Yang-Mills equations with SU(2) gauge group. Also,
global static solutions are established in [1] for the VP system. We also notice that
cylindrically symmetric, static solutions have been found by J. Batt in [5] for the
Vlasov-Poisson (VP) System. A construction of global static solutions by numer-
ical means has been made by H. Andréasson in [3] for the spherically symmetric
VEM system and the same kind of solutions were found by Alan Parry in [2] for the
Einstein-Klein-Gordon system.

Now, why our problem is interesting? Firstly, as we said before the choice of the
ansatz for the distribution function f includes the polytropic case, and the sources
terms of our system seem to be more complicated than those obtained in the istropic
case. Also, the proof of the global existence theorem seems to be simpler than that
of the tropic case, because the boundary conditions on our solutions force the source
terms of the VEM system to be bounded and, using a generalized form of the Gronwall
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lemma, one extends a local solution to a global one. Secondly, to prove the asymptotic
flatness of our spacetime we need to prove Theorem 4.1, from which the finiteness of
the ADM mass is deduced. This fact is not important in the isotropic setting because
the exterior region can be covered by the Reissner-Norsdtöm solution.

The present work proceeds as follows: In Section 2, considering f as function
of the local energy E and the square of angular momentum L, we write down the
corresponding sources terms of the fields equations and then we obtain the reduced
system. In Section 3, we try to prove the existence of solutions while in Section 4,
we show the finiteness of the ADM mass that allows us to conclude the asymptotic
flatness of our spacetime. We summarize this work in Section 5.

2. Conserved quantities and reduction of the problem

We aim to express the full system as a nonlinear integrodifferential system for
λ, µ, and ε. Now, the characteristic system that corresponds to the Vlasov equation
yields

ẋ=
v

1+v2
,

v̇=−(µ′
√

1+v2−qe2λε)
x

r
·

We will use the following result when establishing our reduced system.

Lemma 2.1. If f is spherically symmetric, then for all (x,v)∈R
6, with x 6=0 and

|ω |<u, where ω= x.v
r , one can write f(x,v)=f(r,u,α), with u=|v | and cosα= x.v

ru ,
α∈ [0,π].

Next, a straightforward calculation shows that the quantities

E := eµ(r)
√

1+v2−q

∫ r

0

eµ+2λεds; L := r2v2−(x.v)2

are conserved along the characteristics. We recall that E is the particle energy [1] and√
L is modulus of the angular momentum. We now set f(x,v)=Φ(E,L), for a fixed

function Φ. Then, f satisfies the Vlasov equation and we can write, using the polar
coordinates r=|x |, u=|v |, v1=ucosϕsinα, v2=usinϕsinα, v3=ucosα, α∈ [0,π],
ϕ∈ [0,2π] with cosα= x.v

ru , and using Lemma 2.1,

ρ(r)=
2π

r2

∫ +∞

1

∫ r2(τ2−1)

0

τ2
√

τ2−1−L/r2
Φ(E,L)dLdτ+

1

2
e2λ(r)ε2(r),

p(r)=
2π

r2

∫ +∞

1

∫ r2(τ2−1)

0

Φ(E,L)
√

τ2−1−L/r2dLdτ− 1

2
e2λ(r)ε2(r),

M(r)=
2π

r2

∫ +∞

1

∫ r2(τ2−1)

0

τ
√

τ2−1−L/r2
Φ(E,L)dLdτ ·

We are looking for solutions with an anisotropic pressure, which allows us to require
Φ to satisfy the following.

Assumption on Φ.

Φ(E,L)=Φ(E)Ll, E >0, L>0,

with l>−1/2, and Φ∈L∞(]0,+∞[) is nonnegative and compactly supported.
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Remark 2.2. We notice that the form of Φ(E,L) depends on the physical models
that are studied. For example if one wishes to study the Wooley-Dickens models or
the Truncated Maxwell-Boltzmann models then it will be convenient to set Φ(E,L)=
eE0−E for E<E0 and zero otherwise. For the polytropic solutions of the Vlasov-
Poisson system one usually takes Φ(E,L)=(E0−E)kLl for E<E0 and zero otherwise.
The reader can refer to J. Binney in [7], S.L. Shapiro in [17], and J. Batt in [6] to
obtain more details on the static spherically symmetric models.

Once again, f(x,v)=Φ(E)Ll defines a solution of the Vlasov equation and we
obtain, by the change of variables L′= L

r2(τ2−1) ,

ρ(r)=gΦ(r,µ(r),λ(r),ε(r)); p(r)=hΦ(r,µ(r),λ(r),ε(r)); M(r)= lΦ(r,µ(r),λ(r),ε(r)),
where

gΦ(r,u,v,w) :=2πCl,−1/2r
2l

∫ +∞

1

τ2Φ(E)(τ2−1)l+1/2dτ+
1

2
e2vw2, (2.1)

hΦ(r,u,v,w) :=2πCl,1/2r
2l

∫ +∞

1

Φ(E)(τ2−1)l+3/2dτ− 1

2
e2vw2, (2.2)

lΦ(r,u,v,w) :=2πCl,−1/2r
2l

∫ +∞

1

τΦ(E)(τ2−1)l+1/2dτ, (2.3)

where in the above equations we set Ca,b=
∫ 1

0
sa(1−s)bds, a>−1, b>−1. Before

continuing our investigation, we give details on how to establish for instance the
expression given by (2.1). Once this is done the reader could apply the same method
to establish (2.2) and (2.3). We will focus on the first term on the right hand side of
ρ(r), that is denoted by A. So in this expression we take Φ(E,L)=Φ(E)Ll and we
can write

A=
2π

r2

∫ +∞

1

τ2Φ(E)dτ

∫ r2(τ2−1)

0

LldL
√

τ2−1−L/r2

=2πCl,−1/2r
2l

∫ +∞

1

τ2Φ(E)(τ2−1)l+1/2dτ,

where we made the change of the variable L′= L
r2(τ2−1) , and (2.1) is deduced. We

also set E= τeµ(r)+j(µ(r),λ(r),ε(r)) with

j(µ(r),λ(r),ε(r)) :=−q

∫ r

0

eµ+2λεds. (2.3’)

So, the VEM system reduces to the following equations:

e−2λ(2rλ′−1)+1=8πr2gΦ(r,µ,λ,ε), (2.4)

e−2λ(2rµ′+1)−1=8πr2hΦ(r,µ,λ,ε), (2.5)

d

dr
(r2eλε)= qr2eλlΦ(r,µ,λ,ε). (2.6)
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The integration of (2.4) on [0,r] with λ(0)=0 yields

e−2λ=1− 8π

r

∫ r

0

s2gΦ(s,µ(s),λ(s),ε(s))ds, (2.7)

and, inserting this in (2.5), one has

µ′(r)=
4πrhΦ(r,µ(r),λ(r),ε(r))

1− 8π
r

∫ r

0
s2gΦ(s,µ(s),λ(s),ε(s))ds

+
4π

∫ r

0
s2gΦ(s,µ(s),λ(s),ε(s))ds

r2
(

1− 8π
r

∫ r

0
s2gΦ(s,µ(s),λ(s),ε(s))ds

) ·
(2.8)

Next (2.6) yields, by the integration on [0,r],

ε(r)=
q

r2
e−λ

∫ r

0

eλ(s)s2lΦ(s,µ(s),λ(s),ε(s))ds. (2.9)

In the sequel, we try to solve the reduced system (2.7)-(2.9) globally on [0,+∞[.

3. Existence of solutions

First of all we show that for functions Φ that satisfy the above assumption, the
functions gΦ, hΦ, and lΦ are C1. This will allow us to conclude that a solution of our
reduced system will be a regular one.

Lemma 3.1. Let Φ∈L∞(]0,+∞[) be a compactly supported function. Then the func-
tions defined by (2.1)-(2.3) belong to C1(R4).

Proof. Let Φ be as above. Using the compactness of Φ, these functions are well
defined. Besides, with the help of the change of variables E= τeµ+j(r), where the
function j is given by (2.3’), one obtains

gΦ(r,u,v,w)=2πCl,−1/2r
2le−(2l+4)ug̃(u,eu+j(u,v,w))+

1

2
e2vw2,

hΦ(r,u,v,w)=2πCl,1/2r
2le−(2l+4)uh̃(u,eu+j(u,v,w))− 1

2
e2vw2,

lΦ(r,u,v,w)=2πCl,−1/2r
2le−(2l+3)u l̃(u,eu+j(u,v,w)),

where

g̃(u,t)=

∫ +∞

t

Φ(E)(E+eu− t)2[(E+eu− t)2−e2u]l+1/2dE,

h̃(u,t)=

∫ +∞

t

Φ(E)[(E+eu− t)2−e2u]l+3/2dE,

l̃(u,t)=

∫ +∞

t

Φ(E)(E+eu− t)[(E+eu− t)2−e2u]l+1/2dE,

with t>0 and j∈C1(R3) (deduced from (2.3’)), replacing µ, λ and ε by u, v, and w
respectively. We now prove that the function g̃, h̃, and l̃ are C1 on R

2 and with this
we can conclude that the same property holds for gΦ, hΦ, and lΦ on R

4. Next for
t>0, ∆t>0 such that t−∆t>0, one has, for

A :=
1

∆t
(h̃(u,t−∆t)− h̃(u,t)),
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A=
1

∆t

∫ t

t−∆t

Φ(E)[(E+eu− t+∆t)2−e2u]l+3/2dE

+

∫ +∞

t

Φ(E)

∆t
{[(E+eu− t+∆t)2−e2u]l+3/2− [(E+eu− t)2−e2u]l+3/2}dE

:=I1+I2.

Using the mean value theorem, one observes that lim
∆t→0+

I1=0. On the one hand,

using Lebesgue’s dominated convergence theorem, one concludes that lim
∆t→0+

I2 exists

and the left derivative function of h̃u is in the form

∂h̃

∂t
(u,t)=(2l+3)

∫ +∞

t

Φ(E)(E+eu− t)[(E+eu− t)2−e2u]l+1/2dE

=(2l+3)l̃(u,t).

(3.1)

Thus h̃ has a partial derivative with respect to t on R+ and, using once again the
Lebesgue dominated convergence theorem, this partial derivative is continuous. Be-
sides, using again the compactness of Φ and the Lebesgue’s theorem, one deduces that
h̃ has a partial derivative with respect to u which is continuous, that is

∂h̃

∂u
(u,t)=(2l+3)eu l̃(u,t)−(2l+3)e2ug(u,t), (3.2)

where

g(u,t) :=

∫ +∞

t

Φ(E)[(E+eu− t)2−e2u]l+1/2dE,

and because g is C1, so is the function h̃ and one can proceed as above to obtain the
same result for both functions g̃ and l̃.

Next we state the local existence and uniqueness of λ, µ, and ε, whose proof is
the same as the one of Theorem 3.2 in [10].

Theorem 3.2 (Local existence). Let Φ be as described in the general assumption
and let gΦ, hΦ, and lΦ be defined by (2.1)-(2.3). Take the charge q of particles small
so that the local energy E is nonnegative. Then for every r0≥0 and λ0,µ0,ε0∈R

with λ0= ε0=0 if r0=0, there exists a unique maximal solution λ,µ∈C2([r0,R[),
ε∈C1([r0,R[) of system (2.4)-(2.6) with λ(r0)=λ0, µ(r0)=µ0, and ε(r0)= ε0.

In order to show that the solutions above extend to a global one we will use the
following generalization of the Gronwall inequality, whose proof can be found in [9].

Lemma 3.3. Let F =F (t,u) be a real-valued function on R
2 such that F and ∂F

∂u
are continuous. Let U and V be a real-valued functions that satisfy

U ′(t)=F (t,U(t)), U(0)=A,

V (t)≤A+

∫ t

0

F (s,V (s))ds.

Then, for all t≥0, V (t)≤U(t), provided ∂F
∂u ≥0.

We now state the global existence theorem for our system.
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Theorem 3.4 (Global existence). Let Φ be as stated in the general assumption.
Let gΦ, hΦ, and lΦ be defined by (2.1), (2.2), and (2.3). Take r0≥0, λ0≥0, ε0≥0,
µ0≤0 with λ0= ε(0)=0 if r0=0. Then for q small enough, there exists a unique so-
lution µ,λ∈C2([r0,+∞[) and ε∈C1([r0,+∞[) of the system (2.4)-(2.6) that satisfies
µ(r0)=µ0, λ(r0)=λ0, and ε(r0)= ε0.

Proof. Let µ, λ, and ε be a regular solution of the system (2.4)-(2.6) on the
right maximal interval [r0,R[. The existence of this solution is ensured by Theorem
3.2. Next, one has the equations (1.2), (1.3), and (1.4) on [r0,R[. We now assume
that R<+∞. Then for r0>0, (1.2) yields by integration on [r0,r],

λ(r)=λ0+
1

2

∫ r

r0

ds

s
+

1

2

∫ r

r0

e2λ(s)(−1+8πs2ρ(s))

s
ds, (3.3)

and using the fact that λ≥0, one obtains by the Hölder inequality and having in mind
that the boundary conditions force the fixed functions gΦ, hΦ, and lΦ to have finite
L∞ norm,

λ(r)≤C+C(‖gΦ ‖L∞)

∫ r

r0

e2λ(s)ds,

and applying Lemma 3.3, for F (r,u)=Ce2u, V (r)=λ(r), and

U(r)=
−1

2
Log

(

e−2U(r0)−2C(r−r0)
)

,

one obtains that, because U is increasing,

λ(r)≤U(r)≤U(R)≤C, r∈ [r0,R[.

Besides, using the fact that λ is bounded on [r0,R[, equation (1.3) shows that the
same property holds for µ. Again, because λ≥0, one also deduces from equation
(1.4) that ε is bounded on [r0,R[. Moreover we deduce from (2.4) and (2.5) that λ′

and µ′ are bounded on [r0,R[. So our solution (µ,λ,ε) lies on a compact set K of
R

3 and applying Theorem 3, Section 2.4 of [8], we conclude that R=+∞, which is a
contradiction. Thus the proof of Theorem 3.4 is complete.

Remark 3.5. In the anisotropic case (i.e f(x,v)=Φ(E)Ll), the regularity of f de-
pends on that of Φ. So, for instance if Φ is a C1 function, then f will be a C1 one
too. Thus, (Φ(E),λ,µ,ǫ) is a regular solution of the full EVM system. We also notice
that the proof of the global existence theorem in this paper is simpler than the one
of [10].

4. Singularity-free solutions with finite mass and finite radius

We are interested in smooth, singularity-free solutions with a regular center and
finite mass. These properties hold for solutions of the VP system. So, we will conclude
the same for our case if the Newtonian limit of the VEM system is the VP system.
To do so, the metric defined over the space-like hypersurface {t= t0} is rescaling by
γ= 1

c2 , where c denotes the speed of light and one has to prove, as in the uncharged
case, that the corresponding VEMγ converges to the VP system as γ goes to 0. Let
ν := 1

γµ · We deduce from [12] that the VEMγ yields

v
√

1+γv2
· ∂f
∂x

−(ν′
√

1+γv2−qe2λε)
x

r
· ∂f
∂v

=0, (4.1)
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e−2λ(2rλ′−1)+1=8πγr2ρ, (4.2)

e−2λ

(

2rν′+
1

γ

)

− 1

γ
=8πγr2p, (4.3)

d

dr
(r2eλε)= qr2eλM, (4.4)

where

ρ(x)=

∫

R3

√

1+γv2f(x,v)dv+
γ

2
e2λ(x)ε2(x), (4.5)

p(x)=

∫

R3

(x.v

r

)2

f(x,v)
dv

√

1+γv2
− 1

2
e2λ(x)ε2(x), (4.6)

and M is the same as in Section 1. To obtain the right limit we take the local energy
of particles in the form

E=
1

γ
(eγν

√

1+γv2−1)−q

∫ r

0

eγν+2λεds, (4.7)

and L remains unchanged. As in Section 2, we consider the same ansatz for the
distribution function f , that is f(x,v)=Φ(E)Ll, with Φ∈L∞(]0,+∞[) compactly
supported. Then the corresponding EVMγ yields

e−2λ(2rλ′−1)+1=8πγr2gΦ,γ(r,ν(r),λ(r),ε(r)), (4.8)

e−2λ

(

2rν′+
1

γ

)

− 1

γ
=8πγr2hΦ,γ(r,ν(r),λ(r),ε(r)), (4.9)

d

dr
(r2eλε)= qr2eλlΦ,γ(r,ν(r),λ(r),ε(r)), (4.10)

with

gΦ,γ(r,ν(r),λ(r),ε(r)) :=2πr2lCl,−1/2e
−γ(2l+4)ν(r)g̃Φ,γ(ν(r),1/γe

γν(r)−1/γ+j(r))

+
γ

2
e2λ(r)ε2(r),

hΦ,γ(r,ν(r),λ(r),ε(r)) :=2πr2lCl,1/2e
−γ(2l+4)ν(r)h̃Φ,γ(ν(r),1/γe

γν(r)−1/γ+j(r))

− 1

2
e2λ(r)ε2(r),

lΦ,γ(r,ν(r),λ(r),ε(r)) :=2πr2lCl,−1/2e
−γ(2l+3)ν(r) l̃Φ,γ(ν(r),1/γe

γν(r)−1/γ+j(r)).

We notice that in the above,

j(r)=−q

∫ r

0

eγν+2λεds, (4.11)



P. NOUNDJEU AND G. CHENDJOU 1233

g̃Φ,γ(u,t) :=

∫ +∞

t

Φ(E)(γE−γt+eγu)2
[

1

γ
(γE−γt+eγu)2− 1

γ
e2γu

]l+1/2

dE,

h̃Φ,γ(u,t) :=

∫ +∞

t

Φ(E)

[

1

γ
(γE−γt+eγu)2− 1

γ
e2γu

]l+3/2

dE,

l̃Φ,γ(u,t) :=

∫ +∞

t

Φ(E)(γE−γt+eγu)

[

1

γ
(γE−γt+eγu)2− 1

γ
e2γu

]l+1/2

dE.

Besides, in the Newtonian case, the corresponding ansatz for f is

f(x,v)=Φ(v2/2+U(r)+jN (r))Ll,

with

(r2εN )′(r)= qr2M, (4.12)

U ′(r)=
4π

r2

∫ r

0

s2M(s)ds, (4.13)

and

M(r)=M(x)=

∫

R3

f(x,v)dv=2πr2lCl,−1/2g0(U(r)+jN (r)),

where

jN (r) :=−q

∫ r

0

εN (s)ds, (4.14)

g0(t) :=

∫ +∞

t

Φ(E)(2E−2t)l+1/2dE.

We now state the important result of this section.

Theorem 4.1. For every R>0, there exists constants C>0 and γ0>0 such that
for every γ∈ [0,γ0], the solution (νγ ,λγ ,εγ) of the system (4.8)-(4.10) with νγ(0)=ν0,
λγ(0)=0, and εγ(0)=0 satisfies the estimate

|λγ(r) |, |νγ(r)−U(r) |, |εγ(r)−εN (r) |≤Cγmin{l+1/2,1}, r∈ [0,R],

where (U,εN ) is the global solution of system (4.12)-(4.13) that takes (ν0,0) at r=0.

Proof. We are going to follow the techniques used in proving Theorem 4.1 of
[14]. Consider the global solution (µ,λ,ε) of the (EVM)γ system that takes (ν0,0,0)
at r=0. We also fix a global solution (U,εN ) of the VP system that passes by (ν0,0)
at r=0. Using equation (4.2), one has by integration

e−2λ=1− 8πγ

r

∫ r

0

s2gΦ,γ(s,ν(s),λ(s),ε(s))ds, (4.15)
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and inserting (4.15) in (4.3), we obtain the following equation:

ν′(r)=
4πγr2l+1hΦ,γ(r,ν(r),λ(r),ε(r))

1− 8πγ
r

∫ r

0
s2gΦ,γ(s,ν(s),λ(s),ε(s))ds

+
4π

1− 8πγ
r

∫ r

0
s2gΦ,γ(s,ν(s),λ(s),ε(s))ds

1

r2

∫ r

0

s2l+1gΦ,γ(s,ν(s),λ(s),ε(s))ds.

(4.16)
Next, using (4.13) and (4.16), one has

|ν′(r)−U ′(r) |≤ I1+I2+I3+I4,

where

I1=
4πγr2l+1hΦ,γ(r,ν(r),λ(r),ε(r))

1− 8πγ
r

∫ r

0
s2gΦ,γ(s,ν(s),λ(s),ε(s))ds

,

I2=
4π

r2

∣

∣

∣

∣

∣

1

1− 8πγ
r

∫ r

0
s2gΦ,γ(s,ν(s),λ(s),ε(s))ds

−1

∣

∣

∣

∣

∣

∫ r

0

s2l+2gΦ,γ(s,ν(s),λ(s),ε(s))ds,

I3=
4π

r2

∫ r

0

s2l+2 |gΦ,γ(s,ν(s),λ(s),ε(s))−g0(U(s)+j(s)) |ds,

I4=
4π

r2

∫ r

0

s2l+2 |g0(ν(s)+j(s))−g0(U(s)+jN (s)) |ds.

Because Φ is compactly supported, there is a number E0>0 such that Φ(E)=0 for
E>E0. So, we use this to obtain

g̃Φ,γ(r,ν(r),λ(r),ε(r)),h̃Φ,γ(r,ν(r),λ(r),ε(r)), l̃Φ,γ(r,ν(r),λ(r),ε(r))≤C.

Besides, (4.15) yields, by derivation,

λ′(r)=− 8π2γ

r2
e2λ

∫ r

0

s2l+2e−γ(2l+4)ν g̃Φ,γ(s,ν(s),λ(s),ε(s))ds

− 4πγ2

r2
e2λ

∫ r

0

s2e2λ(s)ε2(s)ds

+4πγr2l+1e2λCl,−1/2e
−γ(2l+4)ν g̃Φ,γ(r,ν(r),λ(r),ε(r))+4πγ2re4λε2,

and using equation (4.10), the Hölder inequality, and the fact that λ(0)=0, one
obtains the following estimate:

λ(r)≤Cγ+Cγ2

∫ r

0

e4λ(s)ds, γ∈ [0,γ0],

for some γ0 small enough. So, we can use Lemma 3.3 in which V (r)=λ(r) and
U(r)=− 1

4Log(−4Cγ2r+e−4Cγ) to get, because U is increasing,

λ(r)≤U(r)≤U(R)≤Cγ, (4.17)

where the last inequality above is obtained from the fact that U(R)/γ goes to C 6=0
as γ goes to 0. Because λ≥0, we can obtain the same inequality for ε, using once
again (4.10). Next, we now establish an estimate for I1. In order to do so, we set

B :=
8πγ

r

∫ r

0

s2l+2gΦ,γ(s,ν(s),λ(s),ε(s))ds.
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Then we have the following inequality:

B≤Cγ0R
4l+2+Cγ4

0R
2l+2,

and we choose γ0 sufficiently small to obtain

1−B≥1−Cγ0R
4l+2−Cγ4

0R
2l+2>0.

Thus, we deduce the estimate for I1 and I2:

I1,I2≤Cγ, γ∈ [0,γ0].

We now investigate an estimate for I3. To do so, an estimate for the difference
|gΦ,γ(r,ν(r),λ(r),ε(r))−g0(U(r)+j(r)) | is necessary. In what follows we are going
to assume for simplicity that ν <0. Thus

eγν(r)−1

γ
≥ν(r),

and then

t :=
eγν(r)−1

γ
+j(r)≥ν(r)+j(r),

and this allows us to write

|gΦ,γ(r,ν(r),λ(r),ε(r))−g0(U(r)+j(r)) |≤C(J1+J2+J3)+Cγe2λ(r)ε2(r),

where

J1 :=|e−γ(2l+4)ν(r)−1 |

∫ +∞

t

Φ(E)(γE−γt+e
γν)2

[

1

γ
(γE−γt+e

γν)2−
1

γ
e
2γν

]l+1/2

dE,

J2 :=

∫ t

ν(r)+j(r)

Φ(E)(2E−2t)l+1/2
dE,

J3 :=

∫ +∞

t

Φ(E)

∣

∣

∣

∣

∣

(γE−γt+e
γν)2

[

1

γ
(γE−γt+e

γν)2−
1

γ
e
2γν

]l+1/2

−(2E−2t)l+1/2

∣

∣

∣

∣

∣

dE.

Next using the compactness of support of Φ, one deduces that

J1,J2≤Cγ.

In order to obtain an estimate for J3, one has

D :=

∣

∣

∣

∣

∣

(γE−γt+eγν)2
[

1

γ
(γE−γt+eγν)2− 1

γ
e2γν

]l+1/2

−(2E−2t)l+1/2

∣

∣

∣

∣

∣

≤C | (γE−γt+eγν)2−1 |+
∣

∣

∣

∣

∣

(

1

γ
(γE−γt+eγν)2− 1

γ
e2γν

)l+1/2

−(2E−2t)l+1/2

∣

∣

∣

∣

∣

≤Cγ+C

∣

∣

∣

∣

1

γ
(γE−γt+eγν)2− 1

γ
e2γν−(2E−2t)

∣

∣

∣

∣

l+1/2

≤Cγ+C

∣

∣

∣

∣

1

γ
(γE−γt+eγν)2− 1

γ
e2γν

∣

∣

∣

∣

min(l+1/2,1)

≤Cγ+Cγmin(l+1/2,1).
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Besides, we observe that as in Lemma 3.1, g0∈C1(R), and for all t≥ν0, |g′0(t) |≤C.
Thus

I4≤
C

r2

∫ r

0

s2l+2 | (ν(s)−U(s))+(j(s)−jN (s)) |ds,

and we can combine all the above estimates to obtain

|ν′(r)−U ′(r) |≤Cγmin(l+1/2,1)+
C

r2

∫ r

0

s2l+2(|ν(s)−U(s) |+ | j(s)−jN (s) |)ds.
(4.18)

So, (4.18) shows that an estimate for j(r)−jN (r) is needed. Using (4.11), (4.14), and
(4.17), we have, because ν <0,

| j′(r)−j′N (r) |=| q || (eγν+λ−1)eλε+(eλε−εN ) |
≤Cγ+ |eλε−εN | .

(4.19)

To get an estimate for eλε−εN , let us integrate (4.10) and (4.12) over [0,r] and use
the same method when estimating I3 to obtain finally that

| j′(r)−j′N (r) |≤Cγmin(l+1/2,1)+
C

r2

∫ r

0

s2l+2(|ν(s)−U(s) |+ | j(s)−jN (s) |)ds.
(4.20)

Thus, adding (4.18) and (4.20) yields

|ν′(r)−U ′(r) |+ | j′(r)−j′N (r) |≤Cγmin(l+1/2,1)

+
C

r2

∫ r

0

s2l+2 |ν(s)−U(s) |+ | j(s)−jN (s) |ds,

for γ∈ [0,γ0] and r∈ [0,R]. So, using the Gronwall lemma, one obtains the following
estimates:

|ν(r)−U(r) |, | j(r)−jN (r) |, |eλ−1 |, | (eλε−εN )(r) |≤Cγmin(l+1/2,1),

and because

ε−εN =(eλε−εN )−(eλ−1)ε, (4.21)

one deduces the same estimate for the left hand side of (4.21), completing the proof
of Theorem 4.1.

We now make a comment on how to deduce from Theorem 4.1 that our solution
is with finite radius and finite total mass, so that the corresponding spacetime is
asymptotically flat. First of all, it is well known that a solution of the VP system
has a finite radius and a finite total mass once one considers as in [14] the following
ansatz for the distribution function f :

Φ(E,L) :=(−E)k+L
l, E∈R, L>0,

where k≤0, l>−1/2, k<3l+7/2, and (.)+ is the positive part. In this context there
exists R>0 such that the Newtonian potential U satisfies U(R)>0. Besides, for γ
small, Theorem 4.1 tells us that ν(R)>0 and in addition if ν0<0, we can use Theorem
4.2 of [14] to conclude that our solution (ν,λ,ε) makes the ADM mass

M∞ := lim
r→+∞

m(r), m(r)=4π

∫ r

0

s2ρ(s)ds

be finite and then our obtained spacetime is asymptotically flat as announced before.
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5. Conclusion

In this work we planned to look for a global asymptotically flat static solution
for the spherically symmetric EVM system, in the isotropic or anisotropic case. To
achieve this, a first step consisted of extending the local solution obtained in Theorem
3.2 to a global one, using one generalized form of Gronwall’s lemma. As a second step,
Theorem 4.1 is crucial to obtain the finiteness of ADM mass and, having this in hand,
one can deduce that our obtained spacetime is asymptotically Minkowskian in space
as announced. One can also prove that this spacetime is geodesically complete.
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