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DERIVATION OF A BGK MODEL FOR REACTING GAS MIXTURES∗

STÉPHANE BRULL† AND JACQUES SCHNEIDER‡

Abstract. In this paper we derive a new relaxation model for reacting gas mixtures. We
prove that this model satisfies the fundamental properties (equilibrium states, conservation laws,
H-theorem, ...). We also consider the slow reaction regime. In this case a rigorous Chapman-Enskog
procedure is performed and Navier-Stokes equations are derived.
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1. Introduction

The modeling of reacting gas mixtures is essentially based on the microscopic
phenomena that occur when particles are colliding. Part of those collisions are non
reactive while the others lead to different species and feature the chemical reactions.
The same distinction is done at the kinetic level by adding to the classical collision
operators for gas mixtures collision operators that only feature chemical reactions. A
quite general setting of those equations can be found in [23]. It is however interesting
to focus on the case where only one chemical reaction is considered. A simplified
model has been proposed by Rossani and Spiga [32] where each species has only one
degree of internal energy and where elastic collisions occur for the non reactive part of
the collision operators. A generalization of this model to different degrees of internal
energies was proposed in [25]. In particular they have considered a four species gas
mixture with a reversible chemical reaction

A1+A2↔A3+A4. (1.1)

(Here Ai stands for the species i).
The main motivation of this paper is the derivation of a relaxation model based

on the simplified model of Rossani and Spiga. Our concerns are to include as many
physical properties as possible (positivity, equilibrium states, conservation laws, H
theorem) as well as minimizing computational cost. Such a model is the well known
BGK model [4] for monoatomic gas. But its drawback is that it cannot lead to the
proper Prandtl number at the Navier-Stokes level. This problem has been overcome
by Holway [28] who introduced the so-called ES-BGK model. When inert gas mixtures
are considered, cross effects such as “mass” diffusion (Fick law) or thermo diffusion
(Soret law) occur. The derivation of BGK models giving the right transport coeffi-
cients at the hydrodynamic limit is much more complicated. For example Kosuge [29]
has derived a BGK operator that is able to approximate those coefficients but which
guarantees neither the non negativity of the distribution functions nor the entropy de-
cay. Andries et al. have successfully addressed the later problems [1] but their model
is valid only for Maxwellian molecules and thus does not respond to the above require-
ments. The authors of the present paper have introduced a new concept of relaxation
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coefficients on non-conserved moments which allows one to construct BGK type mod-
els. A first achievement was to recover the ES-BGK model in the monoatomic and
polyatomic cases [12, 13]. But this idea extends to more general cases and we have
derived in [14] a relaxation model allowing one to recover the correct Fick law at the
hydrodynamic and enjoying the required mathematical (and physical) properties.

Coming back to reactive gas mixtures, many BGK models were constructed by
Groppi, Spiga and co-authors (see for example [9] for a complete bibliography) basing
upon the “simplified” Boltzmann equation of Rossani and Spiga [32]. Those models
always feature only one relaxation operator per species that includes both mechanical
and chemical reactions. For the whole set of models the mechanical part is based on
[1] where Maxwellian molecules are considered. Hence the hydrodynamic limits in
the case of slow reactions lead to the Navier-Stokes equations with incorrect trans-
port coefficients. The chemical contributions depend on the approximation of the
chemical collision operators. There are essentially two types of models. The first ones
are constructed using estimations of the exchanges of mass, momentum, and (kinetic
plus internal energy) per species ([26] and [9]). So in some sense those models mimic
the one by Andries et al. [1]. However those values cannot be computed in general
even under the assumption of Maxwellian molecules and strong restrictions must be
made—distribution functions at mechanical equilibrium (Maxwellian distributions)—
to overcome this problem. This means that those models are essentially adapted to
the case of slow reactions where the chemical reactions occur when the distribution
of molecules are closed to mechanical equilibrium. The second model may be called
“the” BGK model for mechanical plus chemical reactions [24]. The macroscopic pa-
rameters of the Maxwellian attractors are given under the requirements of number
atoms conservation and conservation laws and bound together with some type of
mass action law. This model enjoys the classical H-theorem for chemically reacting
gas mixtures, unlike to the first class of models for which it is very unlikely that this
property holds.

We intend in this paper to take advantage on one side on the modeling for inert
gas mixtures and on the other side on the modeling for chemical reactions. Our
methodology is based on a splitting between a mechanical operator and a chemical
one as for the full Boltzmann equation. This procedure is particularly adapted to the
case of slow reaction regime. More precisely we simply add to the model derived in
[14] a chemical relaxation operator directly derived from [24]. However we remark that
while the chemical BGK operator seems to be more adapted to the case of fast chemical
reactions, our choice relies upon the possibility to prove an H-theorem. In doing so the
present paper must be considered more as an example of the splitting methodology
than an attempt to match the best approximation of the chemical contribution in the
case of slow reaction regime.

The paper is organized as follows. In Section 3 we make a short review of different
Boltzmann equations for reacting mixtures. In the next section we show that the
construction of the mechanical model can be achieved either by using experimental
values (Fick law) or by algorithms developed by Ern and Giovangigli [19]. Special
attention is given as to the definition of the relaxation coefficients for the chemical
model. Then we show that the whole relaxation model satisfies the H-theorem and
that equilibrium states are Maxwellian functions which densities and temperature are
bound together with the mass action law. Finally Section 5 is devoted to the derivation
of the Euler and the Navier-Stokes system in the slow reacting regime. The Chapman-
Enskog procedure yields a first formulation of the Navier-Stokes. We focus on the
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calculation of the chemical terms at the first order. The second formulation of those
equations (Section 5.3.2) is obtained by using the work of Kurochkin, Makarenko, and
Tirskii [30] on the transport coefficients and the Onsager relations. Thus the Navier-
Stokes equations are recast in the classical framework of polyatomic gases (see for
example [23]). This makes possible the comparison between the different coefficients
(species multicomponent diffusion, thermal diffusion, etc.) that are obtained on one
side with our model and on the other side with the usual theory. This also allows one
to entirely determine the definition of our model as already mentioned above.

2. Notations

Consider a gas mixture with p components. fi(t,x,v) (or for short fi,i∈ [1,p] with
f := (f1, · · · ,fp)) represents the distribution function of a given species i.

We denote with ni, ρi, ui, E i, and T i the macroscopic quantities representing
respectively the density and mass per unit volume, average velocity, internal energy
per unit volume, and finally temperature of a given species i. They are defined by
the following relations:

ni=

∫

R3

fidv, ρi=min
i, niui=

∫

R3

vfidv,

E i=ni
(
3

2
kBT

i+Ei

)
=

∫

R3

(mi

2

∥∥v−ui
∥∥2+Ei

)
fidv,

where kB is the Boltzmann constant and ‖‖ is the Euclidean norm in R3. Ei represents
the internal energy of species i due to chemical links. In the same way macroscopic
quantities for the mixture are defined by

n=

p∑

k=1

nk, ρ=

p∑

k=1

ρk, ρu=

p∑

k=1

ρkuk,

ρ

2
‖u‖2+E=

4∑

i=1

(
1

2
ρi
∥∥ui
∥∥2+niEi

)
, E=

4∑

i=1

ni
(
3

2
kBT +Ei

)
. (2.1)

3. The Boltzmann equation for reactive gas mixtures

In this section we recall some backgrounds about the Boltzmann equations for
reacting mixtures. In the first subsection we recall the Boltzmann equation for inert
gas mixtures which will be considered here. Next in Subsection 3.2 we review some
collision operators for reacting mixtures.

3.1. Inert monoatomic gas mixtures. For the sake of simplicity we are
going to consider the mechanical Boltzmann equations for inert gas mixtures of p
components, that is when collision between molecules are elastic. It reads [3] as

∀i∈ [1,p] , ∂tfi+v ·∇xfi=

k=p∑

k=1

Qki(fk,fi) :=Qi (f,f) ,

where

Qki(fk,fi)=

∫

R3×S2

(fk (w
∗
ki)fi (v

∗
ki)−fk (w)fi (v))σik(ωωω.V,‖V‖)‖V‖dwdωωω.

Here Qki is the Boltzmann collision operator between molecules of species i and k and
σik=σki is the differential cross section which depends on the interaction potential
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between species i and k. FinallyV=w−v is the relative velocity. The post collisional
velocities are given by

v∗
ki=v−2

mk

mi+mk
((v−w) ·ωωω)ωωω, w∗

ki=w+2
mi

mi+mk
((v−w) ·ωωω)ωωω,

where mi represents the particle mass of species i. These equations satisfy the con-
servation of mass (per species) momentum and energy at microscopic level. The set
of collisional invariants K is spanned by the set of functions (φl)l∈{1;8} defined by




1
0
0
0


,




0
1
0
0


 ,




0
0
1
0


 ,




0
0
0
1


 ,




m1vα
m2vα
m3vα
m4vα


 ,




1
2
m1v

2+E1
1
2
m2v

2+E2
1
2
m3v

2+E3
1
2
m4v

2+E4


 , (3.1)

for α=x,y,z.
Collision equilibria are given by Maxwellian distributions

fi=Mi=ni

(
mi

2πkBT

) 3

2

exp

(
− mi

2kBT
(v−u)2

)
, (3.2)

for any densities ni≥0, mean velocity u∈R3, and positive temperature T . kB is the
Boltzmann constant.
Next we need to introduce the space L2 (M) equipped with its natural dot product:

〈Ψ,Φ〉=
i=p∑

i=1

∫

R3

ψiφiMidv. (3.3)

The ith component of the linearized Boltzmann operator reads [3] as

LBi
(g)=

1

Mi




p∑

j=1

Qji(Mj ,Migi)+Qji(Mjgj ,Mi)


 . (3.4)

Then Ker(LB)=K, LB is continuous, invertible, and self adjoint negative on K⊥.

3.2. Reacting gas mixtures. In this subsection we recall the three main
different approaches leading to collision operators for gas mixtures.

In [32] the authors consider a mixture of four gases undergoing a reversible bi-
molecular chemical reaction together with mechanical binary collisions. Then the
kinetic equation writes for the ith species as

∂fi
∂t

+v ·∇fi=Qi+Ji, i∈{1;4}, (3.5)

where Qi is the elastic collision operator and Ji represents the chemical collision term.
Let us describe briefly Ji. Let mi (resp. Ei) be the particle mass (resp. the energy
of chemical link) for a given species i. Then J1 is defined by

J1(f)=

∫

R3

∫

S2

U(V −ε12)V I3412 (V,Ω.Ω′)
((m12

m34

)3
f3(v

′)f4(w
′)−f1(v)f2(w)

)
dwdΩ′,

(3.6)
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where (v′,w′) are the post-collisional velocities and mij =
mimj

mi+mj is the reduced mass.
The quantity εij is defined by

εij =2
∆E

mij
with ∆E=E3+E4−E1−E2.

U denotes the unit step function and is a threshold for endothermic reactions. This
term is linked to the energy of activation which must be given to the system in order
that the endothermic reaction can happen.

I3412 (V,Ω.Ω
′) is the cross section where

V =‖w−v‖, Ω=(w−v)/V, Ω′=(w′−v′)/‖w′−v′‖.

The other chemical terms Ji for i∈{2;3;4} can be obtained after suitable permuta-
tions.

Densities are not conserved but only the total mass. However one must also con-
sider the conservation of atoms number during a reaction. In the case of bimolecular
interactions this may be expressed by the following equalities (see [32]):

∫
Ji(f)dv=−

∫
Jj(f)dv, (i,j)=(1,3), (1,4), (2,4), (3.7)

from which one also has
∫
J1(f)dv=

∫
J2(f)dv,

∫
J3(f)dv=

∫
J4(f)dv. (3.8)

Finally the conservation of momentum and total energy (φl)l∈{5;8} must be added to
this set of invariants.

A generalization of this operator for many levels of energy per particles ([25])
can be considered in the framework of Giovangigli and Ern ([20, 23]) and references
therein. Each distribution function reads fi(t,x,v,I) where I is the index of the
quantum internal energy states of the ith. Then the chemical operator for f1 reads

Ji(f)=
∑

J,K,L

∫ (
f3f4

β3Kβ4L
β1Iβ2J

−fifj
)
WIJKL

1234 dwdv′dw′. (3.9)

J, K, and L are all possible internal quantum energy states of species 2, 3, and 4. In
the case of [25] the ratio β3Kβ4L/(β1Iβ2J ) does not depend upon I, J, K, and L and
simply takes the value (m12/m34)

3, while in [23]

βiI =
~

aiIm3
i

.

~ is the Plank constant and aiI is the degeneracy of the internal energy state I for
species i. Within our framework we have on one side aiI =1 and βiI =~/m3

i . However
~ does not appear in (3.6) because we are considering bimolecular reaction. For the
sake of simplicity we will set βiI =1/m3

i .

Remark 3.1. The main difference between (3.6) and (3.9) is the interpretation
of the WIJKL

1234 , which are probabilities of transition [20, 23]. However those values
as well as the differential cross sections I3412 (V,Ω.Ω

′) are unknown in general. But
while angular deviation of the velocities are not accessible from experiments, quite
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accurate evaluations of cross sections (as functions of the translational energy) have
been carried out (see e.g. [5]). They allow one to compute the concentrations of the
different species at any quantum energy state (vibrational, rotational) as soon as those
quantum states can be evaluated for the molecules to be considered. This means that
even under strong deviation from equilibrium (except for the translational energies)
the chemical processes are quite well evaluated.

Remark 3.2. One may consider the problem of finding relevant differential cross
sections such as to obtain a correct hydrodynamical limit. In this vein one may
cite the work of Desvillettes & co-authors [18, 11] who proposed a model for both
mechanical and chemical reactions that allows to recover the energy law of polytropic
gases at the Euler limit.

4. The relaxation model

4.1. Definition of the model. The distribution function fi(t,x,v) (or for
short fi,i∈ [1,4] with f := (f1,f2,f3,f4)) of a given species i evolves according to the
kinetic equation:

∀i∈ [1,4] , ∂tfi+v ·∇xfi=RME
i (f)+RCE

i (f) :=Ri(f), (4.1)

where RME
i (f) (resp. RCE

i (f)) represents the mechanical (resp. chemical) part of the
relaxation operator.

4.1.1. The mechanical BGK operators. The mechanical part of the model
is the one constructed in [14]. For the sake of clarity we recall how it is derived. Let
us now consider the formalism of the thermodynamic of irreversible processes. Mass
flux for the ith species reads

Ji=

j=4∑

j=1

Lij∇
(
Gtr
i

)
+Li5∇

(
− 1

T

)
, (4.2)

where the specific Gibbs functions Gtr
i are defined by

Gtr
i =

kBT

mi
ln

(
ni

Qtr
i

)
, with Qtr

i =(2πmikBT )
3

2 . (4.3)

We may as well consider the full specific Gibbs functions by including partition func-
tions for internal energies. But the present definition is more suited to the derivation
of the hydrodynamic limit of our model. We will later on use the full specific Gibbs
functions to recast the Navier-Stokes equations in a classical way (Section 5.3.2).

We remark here that Lij and Li5 are of opposite sign of the traditional thermo-
dynamic coefficients. The reason is that they are directly derived from the Boltzmann
equation through a Chapman-Enskog expansion. Notice that the density fluxes are
generally rather expressed in terms of the phenomenological coefficients, in which case
the dependance of the above fluxes on gradients of the densities is called the Fick law.
Whatever is the expression the corresponding coefficients depend on temperature T
and also on the number densities and molecular masses of each component.

Then in order to recover the matrix (Lij)i,j=1,...,4 one performs the following
steps:
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1. Define the symmetric non positive matrix L∗ whose elements are

L∗
ij :=

Lij√
ρiρj T

. (4.4)

In the case where the exact Fick coefficients Fij can be measured from ex-
periments one sets

L∗
ij =

nj
kBT

Fij
(mimj)

3

2

√
ninj

. (4.5)

It is of course necessary that those coefficients are such that the matrix L∗

remains symmetric non positive. L∗ is also related to the diffusion matrix
(Dij)i,j=1,...,4 whose definition is recalled in Section 5.3.2. Then one also has

L∗
ij =−

√
ρiρj

nkBT
Dij , i,j=1, ...,4. (4.6)

This second formula makes possible the computation of L∗ by using the al-
gorithms developed by Ern and Giovangigli [19].

2. We remark that L∗ always diagonalizes in an orthonormal basis,

L∗=WTK∗W,

and that up to some permutation in W and K∗ the corresponding eigen-
values (k∗r )r are non null for r=1, . . . ,3, while k∗4 =0 and corresponds to the
conservation of the total mass ρ. Then set

λr=−k∗r−1 for r=1,2,3 and λ4=0.

3. Define the vector of velocities U=(u1, . . . ,u4)
T with the relation

U−U=N−1WT

(
I− 1

νM
∆

)
WN

(
U−U

)
, (4.7)

where U=(u,u,u,u)T , U=(u1, . . . ,up)T and N and ∆ are the diagonal ma-
trix which diagonal terms are respectively (

√
ρ1, . . . ,

√
ρ4) and (λ1, . . . ,λ4).

4. Set

T ⋆=T − 1

3nkB
‖WT

(
I− 1

νM
∆

)
WN

(
U−U

)
‖2. (4.8)

Definition 4.1. The ith component of the mechanical operator reads as

RME
i (f)=νM (Gi−fi) , i∈ [1,4] , (4.9)

with

∀i∈ [1,p] , Gi=
ni

(2πkBT ⋆/mi)
3/2

exp

(
−mi (v−ui)

2

2kBT ⋆

)
, (4.10)

where νM >0 represents the relaxation coefficient. This coefficient must be
chosen with the constraint νM ≥maxrλr/2 in order to ensure the positivity
of T ∗.
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5. Definition of νM : In our case νM must be considered as a mean frequency
of return to thermodynamic equilibria of the whole set of molecules. Assume
that the shear viscosity η is given by some formula or approximated by the
algorithms of Ern and Giovangigli. Then if η satisfies the condition

η≤ nkBT

maxrλr
(4.11)

we set

νM =nkBT/η. (4.12)

This definition allows us to recover the viscosity η at the hydrodynamic limit.
It is also classical for the BGK model with one component. However we also
have

λr=
nkBT

d∗r
, r=1,2,3, and λ4=0,

where (d∗r)r are the eigenvalues (up to some permutation) of the matrix
(
√
ρiρjDij)ij (4.6). Then the condition (4.11) also reads η≤minr=1,2,3d

∗
r

and the definition (4.12) is subjected to the relative speed between the shear
stress and diffusion phenomena. For want of anything better we set

νM =max

(
nkBT

η
,max

r
λr

)
, (4.13)

in such a way that the model is always well-posed.

4.1.2. The chemical BGK operators. RCE
i represents the chemical part

of the relaxation operator constructed in [24].

Definition 4.2. The ith component of the chemical operator reads

RCE
i (f)=νCi (M̃i−fi), (4.14)

where (νCi )i are the chemical collision frequencies and

M̃i= ñ
i

(
mi

2πkBT̃

) 3

2

exp

(
− mi

2kBT̃
(v− ũ)2

)
. (4.15)

It is clear that within the above framework the collision frequency of (e.g.) the first
species should read (see [26] or [24])

1

n1

∫

R3

∫

S2

U(V −ε12)V I3412 (V,Ω.Ω′)f1(v)f2(w)dwdΩ′, (4.16)

(if the chemical collision integral is (3.6)). However neither the differential cross
section nor the functions f are known. Recall that the characteristic time of mechanical
collisions is supposed to be much smaller than that of the chemical ones. In this case
a possible approximation of the chemical terms (Ji(f))i (3.6) consists in replacing f

with the set of functions at thermodynamical equilibrium M. Further simplification—
Maxwellian molecules [26]—allows one to evaluate the collision frequencies which then
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read

νC1 =ν3412
2√
2π

Γ

(
3

2
,
∆E

kBT

)
n2, (4.17)

νC3 =ν3412
2√
2π

Γ

(
3

2
,
∆E

kBT

)(
m12

m34

) 3

2

exp

(
∆E

kBT

)
n4. (4.18)

Here ν3412 is a physical constant depending on the species involved in the chemical re-
action but not on the specified internal energy states (Ei)i=1,...,4 which are considered
here. Γ(α,x) is the incomplete Gamma function defined by

Γ

(
3

2
,
∆E

kBT

)
=

∫ +∞

∆E
kBT

exp−t t
1

2 dt=

(
∆E

kBT

) 1

2

exp
− ∆E

kBT +erfc

(√
∆E

kBT

)
.

Thus N∆E is somehow the activation energy of the reaction (1.1) when only one
internal energy state per molecule is considered (N is the Avogadro number).

Notation 4.1. The set of functions M̃=(M̃1,M̃2,M̃3,M̃4) is denoted M̃(f) and
respectively M̃i(f) for each i. We will omit the dependance on f when it is self evident.

We recall how the parameters ñi, ũ, and T̃ are computed. The BGK models
must satisfy the same laws as the chemical operators (3.6). That is the conservation
of atoms number (3.7) together with the momentum and energy conservation:

∫
(RCE

i (f)+RCE
j (f))dv=0, (i,j)=(1,3), (1,4), (2,4),

4∑

i=1

∫
mivRCE

i (f)dv=0,

4∑

i=1

∫ (
1

2
miv

2+Ei

)
RCE

i (f)dv=0.

(4.19)

There are not enough equations to define all unknown densities (ñi)i, but it is conve-
nient to write them in the following form:

ñi=n
i+Λi ν

C
1

νCi
(ñ1−n1), i=2,3,4, (4.20)

where (Λi)i is the string of stoichiometric coefficients (1, 1,−1,−1). Thus if ñ1 is
known all other densities are defined as well. Then the conservation of the mean
velocity together with (4.20) allows one to express ũ in term of the macroscopic
fields:

ũ=

4∑

i=1

νCi min
iui
/ 4∑

i=1

νCi min
i. (4.21)

Finally the conservation of the total energy together with (4.20), (4.21) gives the
following equation for the temperature T̃ :

T̃ =

{
4∑

i=1

νCi n
i
[1
2
mi

(
(ui)2− ũ2

)
+

3

2
kBT

i
]
+νC1 ∆E(ñ1−n1)

}/(3
2
kB

4∑

i=1

νCi n
i
)
.

(4.22)
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Thus T̃ is also defined as soon as ñ1 is. This last quantity is obtained by solving the
implicit equation

νC3 ν
C
4 ñ1(ν

C
2 n

2+νC1 (ñ1−n1))
νC2 (νC3 n

3−νC1 (ñ1−n1))(νC4 n4−νC1 (ñ1−n1))
exp

(
− ∆E

kBT̃ (ñ1)

)
=

(
m12

m34

) 3

2

. (4.23)

As mentioned by the authors of [24], “the left hand side is a monotonically increasing
function of ñ1 ranging from 0 to +∞ when ñ1 varies on its domain defined by the
constraint of positivity of density and temperature fields. This guarantees existence
and uniqueness of the solution to this equation”.

4.2. Properties of the model. It is clear that those BGK models share
the same collision invariants as the reacting Boltzmann equation itself. Now we show
that the model satisfies an entropy dissipation property together with the H theorem.
Let H(f) be defined by

H(f)=
4∑

i=1

∫

R3

fi ln
fi
m3

i

dv. (4.24)

Proposition 4.3. The relaxation operators RME
i (f) and RCE

i (f) satisfy the following
dissipative properties:

p∑

i=1

∫

R3

RME
i (f) ln(fi/m

3
i )dv≤0,

p∑

i=1

∫

R3

RCE
i (f) ln(fi/m

3
i )dv≤0. (4.25)

As a consequence H defined in (4.24) is a Lyapunov function for the whole model.

Proof. On one side side we have
∫
RME

i (f)dv=0 for all i so that

4∑

i=1

∫

R3

RME
i (f) ln(fi/m

3
i )dv=

4∑

i=1

∫

R3

RME
i (f) lnfidv≤0

as proved in [14]. On the other side [24] it holds that

4∑

i=1

∫

R3

RCE
i (f) ln(fi/m

3
i )dv≤0.

So Proposition 4.3 follows.

Theorem 4.4. The following assertions are equivalent:
i) The entropy production rate is equal to 0, then

4∑

i=1

∫

R3

(RME
i (f)+RCE

i (f)) ln(fi/m
3
i )dv=0. (4.26)

ii) For all i,

RME
i (f)+RCE

i (f)=0. (4.27)

iii) The distribution functions fi are at mechanical and chemical equilibrium:

∀i∈ [1,4] ,fi=Mi=
ni

(2πkBT/mi)
3

2

exp

(
−mi (v−u)

2

2kBT

)
, (4.28)
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with the mass action law

n1n2

n3n4
=

(
m12

m34

)3/2

exp

(
∆E

KT

)
. (4.29)

Proof.
i) ⇒ iii) According to the above Proposition 4.3 i) implies that

4∑

i=1

∫

R3

RME
i (f) ln(fi/m

3
i )dv=0.

This holds [14] if and only if there exists macroscopic values n1, . . . ,n4,u,T such that

∀i∈{1,2,3,4}, fi=Mi=
ni

(2πkBT/mi)
3

2

exp

(
−mi (v−u)

2

2kBT

)
.

However this condition is necessary but not sufficient for the entropy production rate
to vanish. Plugging the above value of the distribution functions into the Definition
4.2 of RCE

i , we obtain

4∑

i=1

∫

R3

νCi

(
M̃i−Mi

)
ln(Mi/m

3
i )dv=0.

A direct computation (see [24]) together with (4.23) gives

4∑

i=1

∫

R3

νCi

(
M̃i−fi

)
ln(M̃i/m

3
i )dv

=ν1(ñ1−n1)
[
ln

(
ñ1ñ2
ñ3ñ4

(
m3m4

m1m2

)
3

2

)
− ∆E

kB T̃

]
=0, ∀f ≥0. (4.30)

Subtracting the two previous equations with fi=Mi gives

4∑

i=1

∫

R3

νCi

(
M̃i−Mi

)
ln

M̃i

Mi
dv=0.

The convexity of the function x→x lnx yields fi=Mi=M̃i for all i ∈ {1;4} which
satisfy the mass action law (4.23).

ii) ⇒ i) is trivial.
iii) ⇒ ii). Assume that (fi)i=(Mi)i such that density and temperature fields satisfy
the mass action law

n1n2

n3n4
exp

(
− ∆E

kBT

)
=

(
m12

m34

)3/2

. (4.31)

One has firstly Gi=Mi from (4.7) and (4.8) so that RME
i (M)=0, ∀i (see Definition

4.1). Secondly equations (4.21) and (4.22) give ũ=u and

T̃ =T +νC1 ∆E(ñ1−n1)
/(3

2
kB

4∑

i=1

νCi n
i
)
. (4.32)

One obtains the same equation as (4.31) by setting ñ1=n1 into (4.23). Thus n1 is
the unique solution of (4.23) and ñi=ni, ∀i according to (4.20). One also has T̃ =T
from (4.32) so that M̃i=Mi, ∀i and RCE

i (f)=0.
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5. Hydrodynamic limit for slow reactions

The slow reactions regime corresponds to the situation where the chemistry char-
acteristic time is much smaller than the mechanical ones. This regime has been
studied in ([19]) by estimating the ratio between the characteristic time of mechanical
collisions and the chemistry characteristic time. This ratio is shown to be less than
0.16 for temperatures varying between 300 and 1000 K. The hydrodynamic limit of
our model is then obtained by studying the equations obtained from

∀i∈ [1,4] , ∂tf
ε
i +v ·∇xf

ε
i =

1

ε
RME

i (f)+RCE
i (f) (5.1)

as ε→0.

5.1. Asymptotic expansion. The classical Chapman-Enskog expansion
consists in setting

∀i∈ [1,4] , fεi =f
0
i +εf

1
i +εf

2
i . . . . (5.2)

and plugging those expressions in (5.1). Then we get, at order −1 in ε, RM
i (f)=0 for

all i. So f0i =Mi (see [14]).
Setting f1i =Migi the equation (5.1) at order 0 read

∂tMi+v ·∇xMi=MiLME
i (g)+RCE

i (M), ∀i, (5.3)

where LME
i is the ith component of the linearized operator of RME around the

Maxwellian distributions M. Its ith component is defined as usual by the formula

DRME
i (M).Mg=MiLME

i (g)= lim
τ→0

RME
i (M(1+τg))−RME

i (M)

τ
, (5.4)

where DRME(M).Mg represents the differential of RME at M in the direction Mg.
After computing ∂tMi from the Euler system (5.9, 5.10, 5.11) in function of the space
derivatives, the equation (5.3) will in turn be particularly easy to solve thanks to the
exact formulation of the (pseudo-)inverse of LME .

In order to obtain an asymptotic expansion of (5.1) up to order 1 in ε, the term
RME

i (f) must be expanded up to order 2. Setting f2i =Mihi, then the equation (5.1)
up to the order 1 is derived from

∂t(Mi(1+εgi))+v ·∇x(Mi(1+εgi))

=
1

ε
RME

i

(
M(1+εg+ε2h)

)
+RCE

i (M(1+εg)) . (5.5)

The Taylor expansion of RME
i

(
M(1+εg+ε2h)

)
gives

RME
i

(
M(1+εg+ε2h)

)

=RME
i (M)+εLME

i (g)+ε2
(
LME
i (h)+

1

2
D2RME

i (M).(Mg,Mg)

)
+O(ε3). (5.6)

Next one must expand RCE
i (M(1+εg)) as well. The linearized operator LCE(g)

around M is defined with

DRCE
i (M).Mg=LCE

i (g)= lim
τ→0

1

τ

(
RCE

i (M(1+τg))−RCE
i (M)

)

= lim
τ→0

1

τ

(
M̃i(M(1+τg)−M̃i(M)−τgiMi

)
.

(5.7)
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We remark that we have not factorized Mi in front of LCE
i in this definition. The

reason is that such a factor should not appear, as suggested by the last line of the
above expression. Hence the expansion up to order 1 in ε of (5.5) gives

∂t(Mi(1+εgi))+v ·∇x(Mi(1+εgi))

=LME
i (g)+RCE

i (M)+ε(LCE
i (g)+LME

i (h)+
1

2
D2RME

i (M).(Mg,Mg))+O(ε2).

(5.8)

Remark 5.1. According to their definition, the second order terms in ε of (5.6)
conserve mass, total momentum, and energy. Therefore they will neither contribute
to the Euler system nor to the Navier-Stokes system.

5.2. The Euler system. The Euler equations are classically obtained by
integration of the 8 first moments of (5.3). They read

∂tρ
i+∇x ·(ρiu)=miΛiν

C
1 (ñ1−n1), (5.9)

∂t(ρu)+∇x ·(ρu⊗u+pI)=0, (5.10)

∂tEtot+∇·(Etotu+Pu)=0, (5.11)

where the total energy and the pressure are

Etot=
1

2
ρu2+E , P=nkBT I,

and I is the identity matrix.

5.3. The Navier-Stokes system.

5.3.1. Setting of the problem. In order to obtain the Navier-Stokes system
we have to perform the following steps:

1. Compute g solution to the equation (5.3) by using the Euler system.

2. Compute the linearized operator LCE by using formula (5.7).

3. Integrate (5.8) with respect to the elements of K (3.1) and keep all terms up
to the order 1 in ε.

Those steps are performed in the following sections and the final result is given in
Proposition 5.1.

Proposition 5.1. The Navier-Stokes system for slow chemical reactions of (5.1)
reads

∂tρ
i+∇·(ρiu)+ε∇·Ji=miΛiν

C
1 (ñ1−n1)+εω1

i , (5.12)

∂t(ρu)+∇·(ρu⊗u+P)+ε∇·(Ju)=0, (5.13)

∂tEtot+∇·(Etotu+Pu)+ε∇·(Ju [u])+ε∇·Jq=0, (5.14)

where the fluxes are defined by

Ji=

j=4∑

j=1

Lij∇
(Gtr

i

T

)
, Ju=−nkBT

νM
D(u) , Jq=−κ∇T +

∑

i

EiJi, (5.15)

and the partial thermal conductivity for monoatomic gases is

κ=
5k2BT

2νM

4∑

i=1

ni

mi
. (5.16)
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The matrix Lij is defined in (4.2) and the Specific Gibbs functions (Gtr
i )i in (4.3).

D(u) is the traceless part of the deformation tensor

D(u)=
1

2

[
∇u+(∇u)

T
]
− 1

3
(∇·u) I.

(miΛiν
C
1 (ñ1−n1))i are the zero order chemical terms where ñ1 is the unique

solution to the equation (4.23). Finally the first order perturbation of the chemical
term reads

ω1
i =miΛiν

C
1 τ(ñ1)h(g),

τ(ñ1)=

(
m12

m34

) 3

2 ∆E

kBT̃ 2
/
(
ξ′(ñ1)+ξ(ñ1)

ν1(∆E)2

3
2
k2BT̃

2
∑4

i=1ν
C
i n

i

)
, (5.17)

h(g)=
1

νM
∆E(ñ1−n1)

∑4

i=1(ν
C
i )2ρi∑4

i=1ν
C
i n

i

( νC1∑
νCi n

i
− 1

n

)
. (5.18)

Remark 5.2. When all chemical relaxation frequencies are equal the first order
chemical perturbation ω1

i vanishes. Moreover for fixed (t,x) the densities (ñi)i are
solutions to the local mass action law

ñ1ñ2
ñ3ñ4

exp
(
− ∆E

kBT̃ (ñ1)

)
=

(
m12

m34

) 3

2

together with the relations

ñi−ni=Λi(ñ1−n1), i=2,3,4,

T̃ =T +∆E(ñ1−n1)
/(3

2
kBn

)
.

In a thermodynamic framework–which considers the space homogeneous problem re-
lated to (5.12) and (5.14) with initial conditions ni(0)=ni, ∀i and T (0)=T—those
solutions correspond to the “true” chemical equilibrium states (when t→+∞) of the
chemical reaction (1.1).

Remark 5.3. According to the expression of the fluxes given in Proposition 5.1,
the shear viscosity η and partial thermal conductivity for monoatomic species κ are
equal to

η=
nkBT

νM
, κ=

5k2BT

2νM

4∑

i=1

ni

mi
.

Define the mean molar mass of the mixture m̄ as

m̄=
Nρ

∑4

i=1
ρi

mi

=
Nρ

n
.

Then the Prandtl number Pr in the monoatomic setting can be computed as

Pr=
5

2

R

m̄

η

κ
=

n2

ρ
∑4

i=1
ni

mi

,

where R=NkB is the constant of perfect gases. Hence in the situation of
indifferentiability—when all molecules are the same—the Prandtl number is equal to
1, which is a drawback of the classical BGK model for a single monoatomic species.
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5.3.2. Other formulation of the Navier-Stokes equations. It is clear
that the present model does not pretend to reproduce all phenomena that occur for
polyatomic gas mixtures. However it is possible to recast the above equations in a
more familiar and useful framework such as that of the book of Giovangigli [23]. We
first introduce the specific enthalpy and specific Gibbs free energy for each species.
They are defined by

hi=
5

2

kBT

mi
+
Ei

mi
, Gi=

kBT

mi
ln

(
ni

Qi

)
, Qi=(2πmikBT )

3

2 exp

(
− Ei

kBT

)
,

where we have introduced the partition function for internal energy

Qint
i =exp(−Ei/kBT )

of the species i. Those definitions are similar to those introduced in [23] when the
molecules have multiple internal energy states. From this the mass fluxes can be
conveniently rewritten in the form

Ji=
4∑

j=1

L̃ij∇
(Gj

T

)
+ L̃i5∇

(
− 1

T

)
, (5.19)

where Ji is defined in (4.2) and

L̃ij =Lij , i,j=1, . . . ,4, L̃i5=

4∑

j=1

Lij
Ej

mj
, i=1, . . . ,4. (5.20)

Then the heat flux Jq (5.15) may be written in a “symmetric” form

Jq=
4∑

i=1

L̃5i∇
(Gj

T

)
+ L̃55∇

(
− 1

T

)
, (5.21)

where L̃5i= L̃i5 and

L̃55=
4∑

i,j=1

Ei

mi
Lij

Ej

mj
−κT 2<0 (5.22)

(κ is given in (5.16)). The null space of L̃ is R(1,1,1,1,0)T and L̃ is symmetric non
positive as shows the decomposition L̃=P tLP +M with

M =




0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

0 0 0 0 L̃55



, P =




1 0 0 0 E1

m1

0 1 0 0 E1

m2

0 0 1 0 E3

m3

0 0 0 1 E4

m4

0 0 0 0 1



, L=




L̃11 L̃12 L̃13 L̃14 0

L̃21 L̃22 L̃23 L̃24 0

L̃31 L̃32 L̃33 L̃34 0

L̃41 L̃42 L̃43 L̃44 0
0 0 0 0 1



.

We are now going to use the work of Kurochkin et al. [30] that bridges the TIP
formulations of the fluxes with more classical and practical ones. This comparison
is still possible in our case because the thermodynamic functions are clearly defined.
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Denote with A∈R5×5 the matrix

A=




1 0 0 0 −h1
0 1 0 0 −h2
0 0 1 0 −h3
0 0 0 1 −h4
0 0 0 0 1



.

Next we define L̂=AT L̃A. Then it is easily checked that the mass and heat fluxes
read

Ji=−
p∑

j=1

ρiDij
∇pj
p

−ρiθi
∇T
T
, ∀i∈{1;4}, (5.23)

Jq=−λ̂∇T −p
4∑

i=1

θi
∇pi
p

+
4∑

i=1

hiJi. (5.24)

Here (pi=n
ikBT )i are the partial pressures and the diffusion matrix (Dij)i,j=1,...,4,

thermal diffusion coefficients (θi)i=1,...,4, and partial thermal conductivity λ̂ are re-
spectively found to be

Dij =−nkBLij

ρiρj
, θi=

L̂i5

ρiT
, λ̂=

L̂55

T 2
. (5.25)

Hence we recover the structural form of the fluxes in terms of phenomenological coef-
ficients. We remark that the relation between the diffusion matrix and (Lij)i,j=1,...,4

allows us to approximate the latter by using the algorithm developed by Ern and
Giovangigli ([19]). As a consequence the mechanical model RME (Section 4.1.1) is
made explicit once the shear viscosity η is known. This is also given by the above
approximation.

Nevertheless the thermal diffusion coefficients and partial thermal conductivity
are incorrect as can be seen from the formulae (5.20) and (5.22). Indeed the values
of (L̃i5)i and (L̃55)i are not the “real” values coming from the thermodynamics of
irreversible processes because our mechanical model just allows us to recover the
matrix (Lij)i,j=1,...,4 at the hydrodynamic limit.

Let us now compare Ju in (5.15) with the general form that holds for a mixture
of polyatomic gases with chemical reactions, which writes as

Ju=p
reac

I−α∇·uI−ηD(u),

where preac is the chemical pressure, α is the volume viscosity, and η is the shear
viscosity. In our case, because α=0 we are only considering elastic collisions. But it
is possible to recover the exact shear viscosity under suitable conditions (see Section
4.1.1). Finally there is no chemical pressure in our case. This is due to the (extremely)
limited number of possible quantum energy states per molecules.

Finally the zero-order molecular production rate of the ith species (5.12) is quite
different from the Maxwellian production rate of the chemical operators (3.6). That
is,

νCi (ñi−ni) 6=Λi

∫

R3

J1(M)dv.

Only the negative parts can be compared if the frequencies are chosen such as in (5.2).



S. BRULL AND J. SCHNEIDER 1215

5.3.3. Computation of g. Before we set the first result we need to introduce
some notations.

Definition 5.2. Ci is the vector whose ith component is v−u and others are 0. PK

is the orthogonal projection on K with respect to the scalar product (3.3) and I is the
identity operator.

Lemma 5.3. The perturbation g reads

g=(LME)−1(ΨME)− 1

νM
ΨCE =gME+gCE , (5.26)

where

ΨME
i =




j=p∑

j=1

k−1
B (I−PK)Cj ·∇

(
µj

kBT

)
+A :D(u)+B ·∇

(
1

kBT

)


i

, (5.27)

ΨCE
i =−νCi

M̃i−Mi

Mi
+νCi

ñi−ni
ni

+
2

3nk2BT
2

(1
2
mi(v−u)2− 3

2
kBT

)
νC1 (ñ1−n1)∆E. (5.28)

A and B are the list of tensors defined by

(A)i=
mi

kBT

[
(v−u)⊗(v−u)− 1

3
(v−u)

2
I

]
, (B)i=(v−u)

[
5

2
kBT − 1

2
mi (v−u)

2

]
.

I is the identity and PK is the operator of projection on K with respect to the scalar
product (3.3). Finally Ci is the vector in R3×4 whose ith line is v−u and the others
are 0.

Proof. Using the Euler equations (5.9, 5.10, 5.11) the time derivatives of the
macroscopic fields in (5.3) can be expressed in terms of spatial derivatives. Then we
use the formalism of [14] which can be easily extended to the case of slow chemical
reactions. This reads

LME(g)=

j=p∑

j=1

k−1
B (I−PK)mi (Cj) ·∇

(
Gtr
j

)
+A :D(u)+B ·∇

(
1

kBT

)

−(I−PK)RCE(M). (5.29)

Let us first give more details of

RCE
i (M)=νCi (M̃i−Mi),

which corresponds to the chemical contribution. ñi, ũ, and T̃ are defined by the
relations (4.20, 4.21, 4.22) corresponding to the fields of M̃. Hence we have

ñi=ni+Λi ν
C
1

νCi
(ñ1−n1), i=2,3,4, (5.30)

ũ=u, T̃ =T +νC1 ∆E(ñ1−n1)
/(3

2
kB

4∑

i=1

νCi ni

)
, (5.31)



1216 BKG MODEL FOR REACTING GAS MIXTURES

where ñ1 is the unique solution of the implicit equation (4.23). It is then an easy task
to compute the ith line of (I−PK)RCE(M) by using the definition of K⊥ and the
result reads

ΨCE
i

=−νCi
M̃i−Mi

Mi
+νCi

ñi−ni
ni

+
2

3nk2BT
2

(1
2
mi(v−u)2− 3

2
kBT

)
×νC1 (ñ1−n1)∆E.

We now need to compute LME−1
(ΨME

i +ΨCE
i ). Recall that

∀φ∈K
⊥, (LME)−1(φ)=

1

νM
((R−IC)−1 ◦PC+(PC−IC))(φ), (5.32)

(Lemma 8 in [14]) where C is the space spanned by the vectors

(I−PK)(Ci), i=1, . . . ,4,

and R is a linear operator acting on C. Then one has gME =(LME)−1(ΨME
i ), from

which one can compute the “elastic” part of the fluxes (see [14]). Next recall that

(I−PK)Ci=
∑

j

aijCi, (aij)i,j ∈R
4×R

4,

and one can easily check that ΨCE ∈C⊥. So Lemma 5.3 follows.

Remark 5.4. The decomposition of the perturbation g into a mechanical and a
chemical part corresponds to the usual decomposition that is valid for the reactive
Boltzmann equation given in [23].

5.4. Computation of LCE. In order to compute LCE(g) from formula (5.7)
we need a preliminary result.

Lemma 5.4. Let M̃g
i be the “attractors” of the chemical term RCE

i (M(1+εg)). Then

M̃g
i (v)= ñ

g
i

(
mi

2πkBT̃g

) 3

2

exp

(
−mi

(v− ũg)
2

2kBT̃g

)
, (5.33)

with

ñgi = ñi+εΛi
νC1
νCi

τ(ñ1)h(g)+O(ε2), (5.34)

ũg =u+ε

4∑

i=1

νCi miniu
g
i

4∑

i=1

νCi mini

, niu
g
i =

∫

R3

Migivdv, ug =(ug1,u
g
2,u

g
3,u

g
4), (5.35)

T̃g = T̃ +εh(g)
( νC1 ∆Eτ(ñ1)

3
2
kB
∑4

i=1ν
C
i ni

+1
)
+O(ε2), (5.36)

where

T̃ =T +νC1 ∆E(ñ1−n1)
/(3

2
kB

4∑

i=1

νCi n
i
)
, (5.37)
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and

h(g)=
1

νM
∆E(ñ1−n1)

∑4

i=1(ν
C
i )2ρi∑4

i=1ν
C
i ni

( νC1∑
νCi ni

− 1

n

)
.

This tedious and lengthy proof is left to appendix. Then expanding M̃g
i around ε

and using formula (5.7) we obtain

LCE
i (g)=νCi M̃i

(
Λi
νC1
νCi

τ(ñ1)

ñi
h(g)− h(g)

2πkBT̃
+

mi

2πkBT̃

(
2〈v−u,ug〉

+
(v−u)2

2kBT̃
h(g)

))
−νCi Migi. (5.38)

Remark 5.5. h(g)=0 (5.18) when the collision frequencies (νCi ) are equal. Hence
in this case there are no contributions of order ε to the chemical term in the Navier-
Stokes equations for the evolution of densities.

Remark 5.6. The expression (5.38) of LCE
i (g) does not depend on the mechanical

perturbation gME (5.26). Then in contrast to [23] there are no derivatives of the
macroscopic fields in the first order production chemical terms.

5.5. Computation of the right-hand side of Navier Stokes system.

This subsection is devoted to the end of the proof of Proposition 5.1.

Proof. (Proposition 5.1). In order to obtain a Navier-Stokes system we have to
consider for any i∈{1,2,3} the moments of Mi(1+εgi). Writing gi=g

ME
i +gCE

i we
remark that fluxes of order ε depend as expected only on gME

i . Hence we can directly
infer that the left hand sides of the Navier-Stokes equations are those obtained in
([14]). Denote that one important point is the computation of matrix (Lij) appearing
in the definition of the mass flux Ji. More precisely, using (5.32) we obtain Lij through
the expression of the Onsager matrix from the Chapmann-Enskog expansion.

Next one has to compute the chemical terms up to order ε. As concerns the
equations for densities those terms read

∫

R3

(RCE
i (M)+εLCE

i (g))dv=Λiν
C
1 (ñ1−n1)+εΛiν

C
1 τ(ñ1)h(g).

Recall that

RCE
i (M(1+εg))=RCE

i (M)+εLCE
i (g)+O(ε2)

and that RCE(f) satisfies equation (4.19) for any function f =(f1,f2,f3,f4). Then we
have on one side

∑

i

mi

∫

R3

(
RCE

i (M)+εLCE
i (g)

)
vdv=O(ε2),

and on the other side

∑

i

∫

R3

(
1

2
miv

2+Ei)(RCE
i (M)+εLCE

i (g))dv=O(ε2),

which finishes the proof.
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6. Discussion and conclusion

The BGK model which is proposed here features the same structure as the sim-
plified Boltzmann equation for a reacting gas mixture proposed by Rossani and Spiga
[32] or of the more general Boltzmann equation with different levels of internal ener-
gies [23]. That is, a sum of two different terms for the nonreactive and the reactive
“collisions”. Let us recall that our model is designed here to satisfy good math-
ematical properties (H-theorem, . . .) and to present a splitting method that seems
naturally adapted to the case of slow chemical reactions. The Chapman-Enskog ex-
pansion clearly outlines the respective contributions of the first order mechanical and
chemical perturbations (5.26). As expected all transport coefficients (thermal diffu-
sion, viscosity, Fourier law, . . .) depend only on the modeling of the mechanical part
of the BGK model. Its construction is based on the knowledge of the Fick law (4.5)
or of the diffusion matrix (4.6) together with the shearn viscosity. In some cases the
Fick law may be obtained from experiments but the corresponding matrix of coeffi-
cients must be symmetrical non positive. This property is satisfied if the diffusion
matrix is approximated by algorithms developed by Ern and Giovangigli [19]. The
hydrodynamic limit of the model features good structural agreement (Section 5.3.2)
with the usual Navier-Stokes for polyatomic gases [23] (Section 5.3.2). The correct
diffusion matrix is recovered by construction. This holds also for the shear viscosity
under the suitable condition (4.11). But the thermal diffusion coefficients and partial
thermal conductivity are incorrect. There is no volume viscosity as expected because
we are only dealing with elastic collisions and molecules with only one fixed internal
energy state. As a consequence there is also no chemical pressure.

The zero order chemistry source terms (5.12) are not equal to the Maxwellian
production rates of the real chemical operators, in contrast to what is obtained from
the theoretical BGK model of Bisi and Spiga [9] and for the Grad approximation in
[8]. But positivity of temperature of the attractors and the H-theorem are guaranteed
at the kinetic level unlike the model in [9]. Remark that perturbations of order ε are
free from any derivatives of the spatial gradients as in [8]. One should also point out
that those perturbations vanish when the chemical frequencies are equal.

Finally a generalization of the mechanical operator as well as a construction of
a chemical operator allowing one to recover the Maxwellian production rates in the
general case of polyatomic gases are in progress.

Appendix A. Proof of Lemma 5.4.

Proof. As g ∈ K⊥,

∫

R3

Mi(1+εgi)dv=ni.

We first want to establish a transcendental equation as ([24]) for which ñg1 is a solution.
By using the mass conservation for i∈{2;3;4},

ñgi =n
i+Λi

νC1
νCi

(ñg1−n1). (A.1)

Next the conservation of the impulsion for the chemical operator gives

4∑

i=1

miν
C
i

∫

R3

(
M̃g

i −Mi(1+εgi)
)
vdv=0.
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So defining ugi by

niugi =

∫

R3

Migivdv,

it holds that

ũg =u+ε

4∑

i=1

νCi min
iugi

4∑

i=1

νCi min
i

=u+εf(ug), (A.2)

where

f(ug)=

4∑

i=1

νCi min
iugi

4∑

i=1

νCi min
i

.

Hence by setting

T g
i =

mi

3kBni

∫

R3

(v−u−εug
i )

2Mi(1+εgi)dv, (A.3)

we finally obtain the following expression for T̃g:

T̃g =

(
4∑

i=1

1

2
νCi min

i
(
(u+εugi )

2−(u+εf(ug))
2
)
+

4∑

i=1

νCi
3

2
kBT

g
i +νC1 ∆E(ñg1−n1)

)

3
2
kB
∑4

i=1ν
C
i n

i
.

(A.4)

In order to simplify (A.4) we note that

4∑

i=1

1

2
νCi min

i
(
(u+εugi )

2−(u+εf(ug))
2
)

=

4∑

i=1

νCi min
i
(
2εu.ugi −2εu.f(ug)+ε

2ugi
2−ε2f(ug)2

)

=2εu.

(
4∑

i=1

νCi min
iugi −f(ug)

4∑

i=1

νCi min
i

)
+ε2

4∑

i=1

νCi min
i
(
ugi

2−f(ug)2
)

= ε2
4∑

i=1

νCi min
i
(
ugi

2−f(ug)2
)

according to the definition of f(ug) (A.2). The relation (A.3) leads to

T g
i =

mi

3kBni

(∫

R3

(v−u)2Mi(1+εgi)dv−2εugi .

∫

R3

(v−u)Mi(1+εgi)dv

+ε2(ugi )
2

∫

R3

Mi(1+εgi)dv
)
.
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Hence by setting

hgi =
mi

3kBni

∫

R3

(v−u)2Migidv, (A.5)

we see that

T g
i =T +εhgi −

ε2

2kB
(ugi )

2.

So

3

2
kB

4∑

i=1

νCi n
iT g

i =
3

2
kBT

(
4∑

i=1

νCi n
i+ε

4∑

i=1

νCi n
ihgi −

ε2

3kB

4∑

i=1

νCi n
i(ugi )

2

)
.

Finally, (A.4) leads to

T̃g =T +νC1

(
∆E (ñg1−n1)

3
2
kB
∑4

i=1ν
C
i n

i

)
+εh(g)+ε2l(g), (A.6)

with

h(g)=

∑4

i=1ν
C
i n

ihgi∑4

i=1ν
C
i n

i
,

l(g)=

∑4

i=1ν
C
i n

imi

(
(ugi )

2−(f(ug))
2
)
− 1

2

∑4

i=1ν
C
i n

imiu
g
i∑4

i=1ν
C
i n

i
.

Next we aim to compute ñg1. Let us write the implicit equation (4.23) in the following
way:

F (ε,ñg1)= ξ(ñ
g
1)exp

(
− ∆E

kB(T̃M (ñg1)+εh(g)+ε
2l(g))

)
−
(
m12

m34

) 3

2

=0, (A.7)

where

ξ(ñg1)=
νC3 ν

C
4 ñ

g
1(ν

C
2 n

2+νC1 (ñg1−n1))
νC2 (νC3 n

3+νC1 (ñg1−n1))(νC4 n4+νC1 (ñg1−n1))

and

T̃M (ñg1)=T +νC1
∆E (ñg1−n1)

3
2
kB
∑4

i=1ν
C
i n

i
.

The computation of ñg1 is performed through the implicit function theorem at ε=0.
If ε=0, ñg1= ñ1 and

F (0,ñ1)= ξ(ñ1)exp
(
− ∆E

T̃kB

)
−
(
m12

m34

) 3

2

=0. (A.8)

So from (A.8) ξ(ñ1) reads

ξ(ñ1)=

(
m34

m12

) 3

2

exp
( ∆E

T̃kB

)
.
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Then by using the implicit function theorem ñg1 can be expanded in ε:

ñg1= ñ1+ε
∂
∂xF (0,ñ1)
∂
∂yF (0,ñ1)

+O(ε2).

From (A.7) it comes that

∂

∂x
F (0,ñ1)= ξ(ñ1)

∆Eh(g)

kBT̃
exp

(
− ∆E

kBT̃

)

=

(
m12

m34

) 3

2 ∆Eh(g)

kBT̃ 2
exp

(
− ∆E

kBT̃

)

and

∂

∂y
F (0,ñ1)=

(
ξ′(ñ1)+ξ(ñ1)

ν1(∆E)2

3
2
k2BT̃

2
∑4

i=1ν
C
i n

i

)
exp

(
− ∆E

kBT̃

)
.

Next by introducing τ(ñ1) defined in (5.17), ñg1 writes as ñ
g
1= ñ1+ετ(ñ1)h(g)+O(ε2).

Hence according to (A.1) ñgi satisfies the relation (5.30) for all i∈{2;3;4}. Moreover,
by plugging the expression of ñg1 into (A.6), it holds that T̃g can be defined from
relation (5.36).

Computation of h(g).
Firstly as

∫

R3

(v−u)(v−u)2Midv=0,

∫

R3

Ai(v−u)(v−u)2Midv=0,

∫

R3

Bi(v−u)(v−u)2Midv=0,

the mechanical part gME
i of gi can be removed in (A.5) and hgi reduces to

hgi =
mi

2kBni

∫

R3

Mi(v−u)2gCE
i dv.

That is,

hgi =
mi

2νMkBni

∫

R3

(v−u)2
(
νCi (M̃i−Mi)−νCi Mi(ñi−ni)

−ν
CE
1 ∆E

3nk2BT
2
(ñ1−n1)

(1
2
mi(v−u)2− 3

2
kBT

))
Midv

=
3νCi mi

2νMni
ñi(T̃M (ñ1)−T )−

νCi
νMnkB

∆E (ñ1−n1)

=
νCi

νMkB
∆E (ñ1−n1)

( νC1∑
νCi n

i
− 1

n

)
,

where we have used (5.37) in the last equation. Finally we obtain

h(g)=∆E(ñ1−n1)
∑4

i=1(ν
C
i )2ρi

νM
∑4

i=1ν
C
i n

i

( νC1∑
νCi n

i
− 1

n

)
.
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