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CRITERION FOR THE DENSITY-DEPENDENT INCOMPRESSIBLE
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JISHAN FAN† AND FUCAI LI‡

Abstract. In this paper we first prove the uniform local well-posedness for the density-dependent
incompressible flow of liquid crystals in the whole space R3. Next, we provide a regularity criterion
for the strong solution when the initial density may contain vacuum.
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1. Introduction

In this paper, we consider the following density-dependent liquid crystals system
( [1, 6, 15,19,20]):

∂tρ+div(ρu)=0, (1.1)

∂t(ρu)+div(ρu⊗u)+∇π−µ∆u=−div(∇d⊙∇d), (1.2)

∂td+u ·∇d−∆d=d|∇d|2, |d|=1, (1.3)

divu=0, (1.4)

with the initial data

(ρ,u,d)(x,0)=(ρ0,u0,d0)(x), |d0|=1, x∈R
3. (1.5)

Here ρ denotes the density, u∈R
3 the velocity, and d∈S

2 (the unit spherical surface
in R

3) the macroscopic molecular orientations, respectively. The constant µ>0 is the
viscosity coefficient. The symbol ∇d⊙∇d denotes a matrix whose components are
defined as

(∇d⊙∇d)i,j :=

3∑

k=1

∂idk∂jdk, 1≤ i,j≤3.

The term

div(∇d⊙∇d)=
3∑

k=1

∆dk∇dk+
1

2

3∑

k=1

∇|∇dk|2 (1.6)

in (1.2) is a stress tensor which represents the anisotropic feature of the system.
When d is a constant vector in S

2, the system (1.1)–(1.4) is reduced to the well-
known density-dependent Navier-Stokes equations and there are many results on this
system; see [2–5] among others.

∗Received: May 3, 2013; accepted (in revised form): August 27, 2013. Communicated by Chun
Liu.

†Department of Applied Mathematics, Nanjing Forestry University, Nanjing 210037, P.R. China
(fanjishan@njfu.edu.cn).

‡Corresponding author. Department of Mathematics, Nanjing University, Nanjing 210093, P.R.
China (fli@nju.edu.cn).

1185



1186 DENSITY-DEPENDENT INCOMPRESSIBLE FLOW OF LIQUID CRYSTALS

When ρ≡1, the system (1.1)–(1.4) becomes the incompressible liquid crystals
system and many studies are available [16,18–22]. Recently, Li and Wang [17] studied
the system (1.1)–(1.4) in a bounded smooth domain of R3 where the existence and
uniqueness of local (global) strong solution were obtained with large (small) initial
data when the initial density is away from vacuum. Fan, Gao, and Guo [7] considered
the regularity criterion for the system (1.1)–(1.4) with an additional term d×∆d in
(1.3) in the whole space R3 when the initial density has a positive bound from below.

In this paper we first establish the uniform local-in-time well-posedness of the
problem (1.1)–(1.5), i.e., we obtain estimates which do not depend on µ>0. Our
result reads as follows.

Theorem 1.1. Let 0<µ≤1 and s>5/2 be two real numbers. Suppose that there

exist two positive constants m and M1 such that the initial data satisfy

{
m≤ρ0≤M1, ∇ρ0∈Hs−1(R3),
(u0,∇d0)∈Hs(R3), |d0|=1, divu0=0.

(1.7)

Then there exists a positive time T ∗>0 such that the problem (1.1)–(1.5) has a unique

solution (ρ,u,d) satisfying

0<m≤ρ≤M1, ‖∇ρ‖L∞(0,T∗;Hs−1(R3))≤C, ‖(u,∇d)‖L∞(0,T∗;Hs(R3))≤C. (1.8)

Here and in Section 3 below the positive constants T ∗ and C are independent of µ.

Remark 1.2. By our estimates (1.8), the limit µ→0 can be studied directly. Hence
we also obtain the local well-posedness of the problem (1.1)–(1.5) with µ=0. We omit
it here for conciseness, and the reader can refer [11] for the corresponding results on
the density-dependent incompressible Navier-Stokes equations.

Next, we study the regularity criterion for the system (1.1)–(1.4) in the whole
space R

3 when the initial density may vanish on an open subset of R3. We assume
that the initial data satisfy

{
0≤ρ0≤M2<∞, ∇ρ0∈L2(R3)∩Lq(R3), 3<q≤6,
u0∈H2(R3), divu0=0, ∇d0∈H2(R3), |d0|=1,

(1.9)

and the compatibility condition

∆u0−div(∇d0⊙∇d0)−∇π0=ρ
1/2
0 g for some g∈L2(R3). (1.10)

Under the conditions (1.9) and (1.10), it is easy to prove that there is a constant T0>0
such that the problem (1.1)–(1.5) has a unique strong solution (ρ,u,π,d) in (0,T0]; for
example, see Kim [14] on the density-dependent incompressible Navier-Stokes system.
However, the global-in-time regularity of the problem (1.1)–(1.5) is still open. Here
we provide a regularity criterion for the strong solutions when the initial density may
contain vacuum. Our result can be stated as follows.

Theorem 1.3. Suppose that the conditions (1.9) and (1.10) hold. Let (ρ,u,d) be a

strong solution to the problem (1.1)–(1.5). If the following conditions hold:

u∈Lr(0,T ;Ls(R3)) with
2

r
+

3

s
=1, 3<s≤∞, (1.11)

∇d∈L2(0,T ;Ḃ0
∞,∞(R3)), (1.12)
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then the solution (ρ,u,π,d) can be extended beyond T , where the symbol Ḃ0
∞,∞ denotes

the homogeneous Besov space.

Remark 1.4. If (ρ,u,d) is a solution to the problem (1.1)–(1.5), then so does
(ρλ,uλ,dλ) :=(ρ,λu,d)(λx,λ2t). In this sense, our conditions (1.11) and (1.12) are
optimal.

Remark 1.5. It should be pointed out that a variant of the blow-up criterion
(1.11)–(1.12) for compressible liquid crystals flow was obtained recently by Huang,
Wang, and Wen [10].

We give some comments on the proofs of our results. Because the local-in-time
well-posedness has been proved in [17], to complete the proof of Theorem 1.1 we only
need to prove the a priori estimates (1.8). We shall employ an elaborate nonlin-
ear energy method to obtain these desired bounds. More precisely, we first derive
an energy estimate based on the L2 energy of the system. Next, we use Sobolev
imbedding, bilinear commutator estimates, and the Gagliardo-Nirenberg inequality
to obtain higher order estimates on the density ρ, the velocity u, and the unit vec-
tor field d, which satisfies a differential inequality. Then our results come from an
application of the well-known Osgood lemma. To prove Theorem 1.3, by the local
existence and uniqueness result, and bootstrapping arguments, we only need to estab-
lish sufficient regularity estimates on the solutions which can be obtained by Sobolev
imbedding, the Gagliardo-Nirenberg inequality, and the conditions (1.11)–(1.12).

This paper is organized as follows. In Section 2, we give some notations and recall
some basic inequalities. The proofs of Theorem 1.1 and Theorem 1.3 are presented in
sections 3 and 4, respectively.

2. Preliminaries

In this section, we give some notations and recall some basic inequalities which
will be used frequently. The symbol ‖·‖Lp standards for the norm in the Lebesgue
space Lp(R3) and ‖·‖Wk,p for the Sobolev space W k,p(R3) (here k is an integer).
When p=2, we use ‖·‖Hk for the Sobolev space W k,2(R3). We use C and Mi to
denote the positive constants which are independent of µ and may change from line
to line. We also omit the spatial domain R

3 in the integrals below for simplicity.
First, we introduce the following Osgood lemma [8].

Lemma 2.1 (Osgood lemma). Let y be a measurable, positive function, f a

positive, locally integrable function and g a continuous increasing function. Assume

that, for a positive real number a, the function y satisfies

y(t)≤a+

∫ t

t0

f(s)g(y(s))ds.

If a is zero and g(s) satisfies

∫ 1

0

dr

g(r)
=+∞,

then the function y is identically zero. If a is different from zero, then we have

−G(y(t))+G(a)≤
∫ t

t0

f(s)ds with G(s) :=

∫ 1

s

dr

g(r)
.
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Next, we recall the well-known Gagliardo-Nirenberg inequality [9, 25].

Lemma 2.2 (Gagliardo-Nirenberg inequality). Let v∈W k,r(R3)∩Lq(R3), 1≤
q,r≤∞. Then the following inequalities hold:

‖Div‖Lp ≤M0‖Dkv‖αLr‖v‖1−α
Lq , ∀ 0≤ i<k, (2.1)

where

1

p
=

i

3
+α

(1
r
− k

3

)
+(1−α)

1

q
,

for all α in the interval

i

k
≤α≤1.

The constant M0 depends only on d, m, j, q, r, and α, with the following exceptional

case:

1. If i=0, rk<3, and q=∞ then we make the additional assumption that either

v tends to zero at infinity or v∈Lq̃(RN ) for some finite q̃ >0.

2. If 1<r<∞, and k− i−N/r is a non negative integer then (2.1) holds only

for α satisfying i/k≤α<1.

By the Gagliardo-Nirenberg inequality (2.1) and Sobolev imbedding, we have the
following inequalities which will be used frequently:

‖∇v‖2L2p ≤C‖v‖L∞‖∆v‖Lp for 1<p<∞, (2.2)

‖v‖
L

2s
s−2

≤C‖v‖1−3/s
L2 ‖∇v‖3/sL2 for 3<s≤∞, (2.3)

‖∇v‖2L3 ≤C‖∇v‖L2‖∆v‖L2 , (2.4)

‖v‖2L∞ ≤C‖v‖L6‖∆v‖L2 ≤C‖∇v‖L2‖∆v‖L2 , (2.5)

‖∇d‖2L∞ ≤C‖∇d‖L6‖∇∆d‖L2 . (2.6)

Third, we define the operator Λ :=(−∆)1/2 via the Fourier transform

Λ̂f(ξ)= |ξ|f̂(ξ).

Generally, we define Λsf for s∈R as

Λ̂sf(ξ)= |ξ|sf̂(ξ).

For s∈R, we define

‖f‖Ḣs :=‖Λsf‖L2 =
(∫

R3

|ξ|2s|f̂(ξ)|2dx
)1/2

and the homogeneous Sobolev space Ḣs(R3) :={f ∈S ′(R3) :‖f‖Ḣs <∞}. Similarly,
the Sobolev space Hs,p(R3) is equipped with the norm

‖f‖Ḣs,p :=‖Λsf‖Lp .

Now we introduce the following bilinear commutator and the product estimates
due to Kato-Ponce [12] and Kenig-Ponce-Vega [13].
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Lemma 2.3. Let s>0 and 1<p<∞. If f,g∈ Ḣs,p(R3), then there exists a constant

C, independent of f and g, such that

‖Λs(fg)−fΛsg‖Lp ≤C(‖∇f‖Lp1 ‖Λs−1g‖Lq1 +‖Λsf‖Lp2 ‖g‖Lq2 ), (2.7)

‖Λs(fg)‖Lp ≤C(‖f‖Lp1 ‖Λsg‖Lq1 +‖Λsf‖Lp2 ‖g‖Lq2 ), (2.8)

where p1,p2∈ (1,∞] satisfy

1

p
=

1

p1
+

1

q1
=

1

p2
+

1

q2
.

To end this section, we finally define the homogeneous Besov space Ḃs
p,∞.

Definition 2.4 ( [26]). Let ϕ∈C∞(R3) be supported in some annulus C ⊂
R

3 centered at 0, say {ξ∈R
3,3/4≤|ξ|≤8/3}, such that

∑
q∈Z

ϕ(2−qξ)=1 for ξ 6=0.

Denoting h=F−1ϕ, we then define the dyadic blocks as

∆q :=ϕ(2−qD)v=23q
∫

R3

h(2qy)v(x−y)dy.

For s∈R, p∈ [1,+∞], the homogeneous Besov space Ḃs
p,∞ is defined as

Ḃs
p,∞ :=

{
v∈S ′(R3),‖v‖Bs

p,∞
:= sup

q∈Z

2sq‖∆qv‖Lp <∞ and v=
∑

q∈Z

∆qv

}
.

3. Proof of Theorem 1.1

As mentioned before, the local-in-time well-posedness has been established in [17].
Although the functional setting in [17] are somewhat different from the statements in
Theorem 1.1, we can modify the arguments in [17] slightly to obtain our desired local
results, and we omit the arguments here. Thus, to complete the proof of Theorem
1.1, it is sufficient to prove the a priori estimates (1.8).

First, by the maximum principle, it follows from (1.1), (1.4), and (1.7) that

m≤ρ≤M1<∞. (3.1)

Multiplying (1.2) by u, integrating the result over R3, and using (1.1) and (1.4),
we have

1

2

d

dt

∫
ρ|u|2dx+

∫
µ|∇u|2dx+

∫
(u ·∇)d ·∆ddx=0. (3.2)

Multiplying (1.3) by −∆d, integrating the result over R
3, and using the fact that

|d|=1 implies |∇d|2=−d∆d, we obtain that

1

2

d

dt

∫
|∇d|2dx+

∫
|∆d|2dx−

∫
(u ·∇)d ·∆ddx

=−
∫

|∇d|2d ·∆ddx=

∫
|d ·∆d|2dx≤

∫
|∆d|2dx. (3.3)

Summing up (3.2) and (3.3) we infer that

1

2

d

dt

∫
{ρ|u|2+ |∇d|2}dx+

∫
µ|∇u|2dx≤0. (3.4)
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Applying the operator Λ to (1.1), multiplying the result by Λρ, integrating over
R

3, and using (1.4) and (2.7), we infer that

1

2

d

dt

∫
|Λρ|2dx=−

∫
[Λ(u∇ρ)−u∇Λρ]Λρdx

≤‖Λ(u∇ρ)−u∇Λρ‖L2‖Λρ‖L2

≤C‖∇u‖L∞‖∇ρ‖2L2

≤C‖u‖Hs‖∇ρ‖2L2

≤C{‖u‖3Hs +‖∇ρ‖3L2}. (3.5)

Now, let

θ :=2max

{
s−1,

s−1

s− 5
2

,
3

2

}
,

Φ(t) :=

∫ t

0

(1+‖∇ρ‖2Hs−1 +‖u‖2Hs +‖∇d‖2Hs)
3θ
2 dτ. (3.6)

Then (3.5) gives

‖∇ρ(t)‖2L2 ≤C{1+Φ(t)}. (3.7)

Similarly, applying the operator Λs to (1.1), multiplying the result by Λsρ, inte-
grating over R3, and using (1.4) and (2.7), we deduce that

1

2

d

dt

∫
|Λsρ|2dx=−

∫
[Λs(u∇ρ)−u∇Λsρ]Λsρdx

≤‖Λs(u∇ρ)−u∇Λsρ‖L2‖Λsρ‖L2

≤C(‖∇u‖L∞‖Λsρ‖L2 +‖∇ρ‖L∞‖Λsu‖L2)‖Λsρ‖L2

≤C(‖∇u‖L∞ +‖∇ρ‖L∞)(‖Λsρ‖2L2 +‖Λsu‖2L2)

≤C{‖∇ρ‖3Hs−1 +‖u‖3Hs}.

Integrating the above inequality over R3, and using the estimates (3.6) and (3.7) gives

‖∇ρ(t)‖2Hs−1 ≤C(1+Φ(t)). (3.8)

Multiplying (1.2) by ut, integrating the result over R3, and using (1.4), (3.1), and
(3.4), we get

µ

2

d

dt

∫
|∇u|2dx+

∫
ρ|ut|2dx

=−
∫
(∇·(∇d⊙∇d)+ρu ·∇u)utdx

≤ (‖∇d‖L2‖∆d‖L∞ +‖ρ‖L∞‖u‖L2‖∇u‖L∞)‖ut‖L2

≤C{‖∆d‖L∞ +‖∇u‖L∞}‖ut‖L2

≤C{‖u‖2Hs +‖∇d‖2Hs}+ 1

2

∫
ρ|ut|2dx,

which yields

∫ t

0

‖ut(τ)‖2L2 dτ ≤C(1+Φ(t)). (3.9)
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Applying the operator Λs−1 to (1.2), multiplying the result by Λs−1ut, integrating
over R3, and using (1.4), we infer that

µ

2

d

dt

∫
|∇Λs−1u|2dx+

∫
ρ|Λs−1ut|2dx

=−
∫

Λs−1div(∇d⊙∇d) ·Λs−1utdx−
∫

Λs−1(ρu ·∇u) ·Λs−1utdx

−
∫

[Λs−1(ρut)−ρΛs−1ut]Λ
s−1utdx

≤
{
‖Λs−1div(∇d⊙∇d)‖L2 +‖Λs−1(ρu∇u)‖L2

+‖Λs−1(ρut)−ρΛs−1ut‖L2

}
‖Λs−1ut‖L2

:={I1+I2+I3}‖Λs−1ut‖L2 . (3.10)

By using (2.8), the term I1 can be bounded by

I1≤C‖∇d‖L∞‖∇d‖Hs ≤C‖∇d‖2Hs .

Similarly, the term I2 can be controlled by

I2≤C
{
‖ρu‖L∞‖Λsu‖L2 +‖Λs−1(ρu)‖L2‖∇u‖L∞

}

≤C
{
‖u‖2Hs +(‖ρ‖L∞‖Λs−1u‖L2 +‖u‖L∞‖Λs−1ρ‖L2)‖∇u‖L∞

}

≤C
{
‖u‖2Hs +‖u‖2Hs‖∇ρ‖Hs−1

}

≤C
{
1+‖u‖3Hs +‖∇ρ‖3Hs−1

}
.

Using (2.7) and the Gagliardo-Nirenberg inequality (2.1), the term I3 can be bounded
as follows:

I3≤C‖∇ρ‖L∞‖Λs−2ut‖L2 +C‖Λs−1ρ‖L2‖ut‖L∞

≤C‖∇ρ‖Hs−1(‖Λs−2ut‖L2 +‖ut‖L∞)

≤C‖∇ρ‖Hs−1

{
‖ut‖

1
s−1

L2 ‖Λs−1ut‖
s−2
s−1

L2 +‖ut‖
s−5/2
s−1

L2 ‖Λs−1ut‖
3/2
s−1

L2

}

≤ m

8
‖Λs−1ut‖L2 +C

{
‖∇ρ‖s−1

Hs−1 +‖∇ρ‖
s−1

s−5/2

Hs−1

}
‖ut‖L2 .

Recall that the constant m is the lower bound of the density. Inserting the above
estimates for I1, I2, and I3 into (3.10), we obtain

µ

2

d

dt

∫
|∇Λs−1u|2dx+m

∫
|Λs−1ut|2dx

≤C+C

{
‖∇d‖4Hs +‖u‖6Hs +‖∇ρ‖6Hs−1 +

(
‖∇ρ‖2(s−1)

Hs−1 +‖∇ρ‖
2(s−1)
s−5/2

Hs−1

)
‖ut‖2L2

}
.

Integrating the above inequality over [0,t] and using (3.8) and (3.9), we have

∫ t

0

‖Λs−1ut(τ)‖2L2 dτ ≤C
(
1+Φ(t)+Φ2(t)

)
. (3.11)

Applying the operator Λs on (1.2), multiplying the result by Λsu, and integrating
over R3, we derive that

1

2

d

dt

∫
ρ|Λsu|2dx+µ

∫
|Λs+1u|2dx
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=−
∫

Λsdiv(∇d⊙∇d)Λsudx−
∫
[Λs(ρut)−ρΛsut]Λ

sudx

−
∫

[Λs(ρu∇u)−ρuΛs∇u]Λsudx

:= I4+I5+I6. (3.12)

Using (2.8), the term I4 can be bounded as

I4≤C‖∇d‖L∞‖Λs+2d‖L2‖Λsu‖L2

≤ 1

8
‖Λs+2d‖2L2 +C

{
‖Λsu‖4L2 +‖∇d‖4Hs

}
.

Similarly, the terms I5 and I6 can be bounded by

I5≤C(‖∇ρ‖L∞‖Λs−1ut‖L2 +‖Λsρ‖L2‖ut‖L∞)‖Λsu‖L2

≤C
{
‖ut‖2Hs−1 +‖∇ρ‖4Hs−1 +‖u‖4Hs

}
,

I6≤C(‖∇(ρu)‖L∞‖Λsu‖L2 +‖Λs(ρu)‖L2‖∇u‖L∞)‖Λsu‖L2

≤C‖∇ρ‖Hs−1‖u‖3Hs

≤C
{
‖∇ρ‖4Hs−1 +‖u‖4Hs

}
.

Inserting the above estimates into (3.12), we have

1

2

d

dt

∫
ρ|Λsu|2dx+µ

∫
|Λs+1u|2dx

≤ 1

8
‖Λs+2d‖2L2 +C

{
‖u‖4Hs +‖∇ρ‖4Hs−1 +‖∇d‖4Hs +‖ut‖2Hs−1

}
. (3.13)

Applying the operator Λs to (1.3), multiplying the result by Λs+2d, integrating
over R3, and using (2.8), we have

1

2

d

dt

∫
|Λs+1d|2dx+

∫
|Λs+2d|2dx

=−
∫

Λs(u ·∇d) ·Λs+2ddx+

∫
Λs(d|∇d|2) ·Λs+2ddx

≤C
{
‖∇d‖Hs‖u‖Hs‖Λs+2d‖L2 +‖∇d‖3Hs‖Λs+2d‖L2

}

≤ 1

8
‖Λs+2d‖2L2 +C

{
‖∇d‖6Hs +‖u‖3Hs

}
. (3.14)

Combining (3.13) with (3.14), integrating the result over R3, and using (3.9) and
(3.11), we have

∫
|Λsu(t)|2+ |Λs+1d(t)|2dx≤C

{
1+Φ(t)+Φ2(t)

}
. (3.15)

Due to (3.4), (3.7), (3.8), and (3.15), we conclude that

d

dt

(
1+Φ(t)

)
=

d

dt
Φ(t)=(1+‖∇ρ‖2Hs−1 +‖u‖2Hs +‖∇d‖2Hs)

3θ
2

≤C
(
1+Φ(t)+Φ2(t)

) 3
2 θ

≤C
(
1+Φ(t)

)3θ
, (3.16)

which yields (by the Osgood Lemma) that there exists a T ∗>0 independent of µ such
that Φ(T ∗)≤C, and thus (1.8) holds. This completes the proof of Theorem 1.1.
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4. Proof of Theorem 1.3

Because the local existence of strong solutions can be obtained in a standard way,
we only need to prove a priori estimates. By arguments similar to those in Theorem
1.1, we have

0≤ρ≤M2<∞ (4.1)

and

sup
0≤t≤T

∫
{ρ|u|2+ |∇d|2}dx+

∫ T

0

∫
µ|∇u|2dxdt≤C. (4.2)

Multiplying (1.2) by ∂tu, integrating the result over R3, using (1.1) and (1.4), we
derive that

µ

2

d

dt

∫
|∇u|2dx+

∫
ρ|∂tu|2dx

=−
∫

ρu ·∇u ·∂tudx+
∫

∇∂tu : (∇d⊙∇d)dx

:= II1+II2. (4.3)

Using (4.1), Hölder’s inequality, Young’s inequality, and the Gagliardo-Nirenberg
inequality (2.3), the term II1 can be bounded as

II1≤C‖√ρ∂tu‖L2‖u‖Ls‖∇u‖
L

2s
s−2

≤ ǫ‖√ρ∂tu‖2L2 +C‖u‖2Ls‖∇u‖2
L

2s
s−2

≤ ǫ
{
‖√ρ∂tu‖2L2 +‖∆u‖2L2

}
+C‖u‖

2s
s−3

Ls ‖∇u‖2L2 ,

where 0<ǫ<1 is a sufficient small constant.
On the other hand, because (u,π) is a solution of the Stokes system,

−µ∆u+∇π=f :=−∇·(∇d⊙∇d)−ρ∂tu−ρu ·∇u. (4.4)

It follows from the H2-theory of the Stokes system (for example, see [27]) that

‖∇2u‖L2 ≤C‖f‖L2

≤C
{
‖∇d‖L4‖∆d‖L4 +‖√ρ∂tu‖L2 +‖u‖Ls‖∇u‖

L
2s

s−2

}

≤C‖∆d‖1/2L2 ‖∇d‖1/2
Ḃ0

∞,∞

‖∇∆d‖1/2L2 +C‖√ρ∂tu‖L2

+C‖u‖Ls‖∇u‖1−3/s
L2 ‖∆u‖3/sL2 ,

where (4.1), Hölder’s inequality, the Gagliardo-Nirenberg inequality (2.2), and the
elegant Machihara-Ozawa inequality [23] (also see Meyer [24])

‖∇u‖2L4 ≤C‖u‖Ḃ0
∞,∞

‖∆u‖L2 (4.5)

are used. Hence

‖∇2u‖L2 ≤C‖∆d‖1/2L2 ‖∇d‖1/2
Ḃ0

∞,∞

‖∇∆d‖1/2L2
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+C‖√ρ∂tu‖L2 +C‖u‖
s

s−3

Ls ‖∇u‖L2 . (4.6)

By integration by parts, the term II2 can be rewritten as

II2=
d

dt

∫
∇u :∇d⊙∇ddx−2

∫
∇u :∇d⊙∂t∇ddx

=
d

dt

∫
∇u :∇d⊙∇ddx−2

3∑

i,j=1

∫
∂iuj∂id∂j∂tddx

=
d

dt

∫
∇u :∇d⊙∇ddx+2

3∑

i,j=1

∫
∂iuj∂i∂jd∂tddx

:=
d

dt

∫
∇u :∇d⊙∇ddx+2II3. (4.7)

Applying the equation (1.3), Hölder’s inequality, the Gagliardo-Nirenberg inequalities
(2.2) and (2.3), and (4.5), we obtain that

II3=

3∑

i,j=1

∫
∂iuj∂i∂jd(∆d+d|∇d|2−u ·∇d)dx

≤C
{
‖∇u‖L2(‖∆d‖2L4 +‖∇d‖2L8)+‖∇u‖

L
2s

s−2
‖u‖Ls‖∆d‖L4‖∇d‖L4

}

≤C
{
‖∇u‖L2‖∆d‖2L4 +C‖∇u‖2

L
2s

s−2
‖u‖2Ls +C‖∆d‖L2‖∇d‖Ḃ0

∞,∞
‖∇∆d‖L2

}

≤C
{
‖∇u‖L2‖∇d‖Ḃ0

∞,∞
‖∇∆d‖L2 +‖u‖2Ls‖∇u‖2(1−

3
s )

L2 ‖∆u‖3/sL2

+‖∆d‖L2‖∇d‖Ḃ0
∞,∞

‖∇∆d‖L2

}

≤ ǫ
{
‖∇∆d‖2L2 +‖∆u‖2L2

}
+C‖∇d‖2

Ḃ0
∞,∞

(‖∇u‖2L2 +‖∆d‖2L2)

+C‖u‖
2s

s−3

Ls ‖∇u‖2L2 , (4.8)

where 0<ǫ<1 is a sufficient small constant.
Applying the operator ∆ to (1.3), multiplying the result by ∆d, and integrating

over R3, we get

1

2

d

dt

∫
|∆d|2dx+

∫
|∇∆d|2dx

≤
∣∣∣∣
∫

∆(u ·∇d) ·∆ddx

∣∣∣∣+
3∑

k=1

∣∣∣∣
∫

∂k(d|∇d|2)∂k∆ddx

∣∣∣∣

:=J1+J2. (4.9)

Using Hölder’s inequality, Young’s inequality, the Gagliardo-Nirenberg inequali-
ties (2.2) and (2.3), and (4.5), the terms J1 and J2 can be estimated as follows:

J1≤
∣∣∣∣
∫

∆u ·∇d ·∆ddx

∣∣∣∣+2

∣∣∣∣
3∑

k=1

∫
∂ku ·∂k∇d ·∆ddx

∣∣∣∣

≤‖∆u‖L2‖∇d‖L4‖∆d‖L4 +C‖∇u‖L2‖∆d‖2L4

≤ ǫ‖∆u‖2L2 +C
{
‖∆d‖L2‖∇d‖Ḃ0

∞,∞
‖∇∆d‖L2
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+‖∇u‖L2‖∇d‖Ḃ0
∞,∞

‖∇∆d‖L2

}

≤ ǫ‖∆u‖2L2 +ǫ‖∇∆d‖2L2 +C‖∇d‖2
Ḃ0

∞,∞
(‖∇u‖2L2 +‖∆d‖2L2), (4.10)

J2≤
3∑

k=1

∣∣∣∣
∫

∂kd|∇d|2∂k∆ddx

∣∣∣∣+
3∑

k=1

∣∣∣∣
∫

d∂k|∇d|2∂k∆ddx

∣∣∣∣

≤
3∑

k=1

∣∣∣∣
∫

∂k(∂kd|∇d|2) ·∆ddx

∣∣∣∣+
3∑

k=1

∣∣∣∣
∫

d∂k|∇d|2∂k∆ddx

∣∣∣∣

≤C

{∫
|∇d|2|∇2d|2dx+

∫
|∇d| · |∆d| · |∇∆d|dx

}

≤C
{
‖∇d‖2L4‖∆d‖2L4 +‖∇d‖L4‖∆d‖L4‖∇∆d‖L2

}

≤ ǫ‖∇∆d‖2L2 +C‖∆d‖L2‖∇d‖Ḃ0
∞,∞

‖∇∆d‖L2

≤2ǫ‖∇∆d‖2L2 +C‖∇d‖2
Ḃ0

∞,∞
‖∆d‖2L2 , (4.11)

where 0<ǫ<1 is a sufficient small constant.

Combining (4.3), (4.6), (4.7), (4.8), (4.9), (4.10), and (4.11), taking ǫ small
enough, noting that

∣∣∣∣
∫

∇u :∇d⊗∇ddx

∣∣∣∣≤‖∇u‖L2‖∇d‖2L4 ≤C‖∇u‖L2‖∆d‖L2 ,

and using the Gronwall inequality, we get that

‖∇u‖L∞(0,T ;L2)≤C, ‖∇u‖L2(0,T ;H1)≤C, ‖√ρ∂tu‖L2(0,T ;L2)≤C, (4.12)

‖∇d‖L∞(0,T ;H1)+‖∇d‖L2(0,T ;H2)≤C. (4.13)

It follows from (1.3), (4.12), and (4.13) that

‖∂td‖L∞(0,T ;L2)≤C, ‖∂td‖L2(0,T ;H1)≤C. (4.14)

Applying the operator ∂t to (1.2), integrating the result over R3, and using (1.1),
(1.4), (4.12), and (4.13), we obtain that

1

2

d

dt

∫
ρ|∂tu|2dx+µ

∫
|∇∂tu|2dx

≤C

∫
|∇d||∂t∇d||∇∂tu|dx+

∣∣∣∣
∫

ρu ·∇[(∂tu+u ·∇u)∂tu]dx

∣∣∣∣

+C

∣∣∣∣
∫

ρ∂tu ·∇u ·∂tudx
∣∣∣∣

≤C
{
‖∇d‖L∞‖∂t∇d‖L2‖∇∂tu‖L2 +‖√ρ∂tu‖L2‖u‖L∞‖∇∂tu‖L2

+‖u‖2L6‖∇u‖L6‖∇∂tu‖L2 +‖√ρ∂tu‖L2‖u‖L6‖∇u‖2L6

+‖u‖2L6‖∆u‖L2‖∂tu‖L6 +‖√ρ∂tu‖L2‖∇u‖L3‖∂tu‖L6

}

≤ 1

8
‖∇∂tu‖2L2 +C

{
‖∇d‖L∞‖∂t∇d‖2L2 +‖u‖2L∞‖√ρ∂tu‖2L2

+‖∆u‖2L2 +‖∆u‖2L2‖√ρ∂tu‖L2 +‖∇u‖2L3‖√ρ∂tu‖2L2

}
. (4.15)
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Applying the operator ∂t to (1.3), multiplying the result by ∂t∆d, integrating
over R3, and using (4.12) and (4.13), we have

1

2

d

dt

∫
|∇∂td|2dx+

∫
|∆∂td|2dx

≤
∣∣∣∣
∫
(∂tu ·∇d+u ·∇∂td)∆∂tddx

∣∣∣∣+
∫

(∂td|∇d|2+d∂t|∇d|2)∆∂tddx

≤C
{
(‖∂tu‖L6‖∇d‖L3 +‖u‖L6‖∇∂td‖L3)‖∆∂td‖L2

+(‖∂td‖L6‖∇d‖2L6 +‖d‖L∞‖∇d‖L6‖∂t∇d‖L3)‖∆∂td‖L2

}

≤C(‖∇∂tu‖L2 +‖∇∂td‖L2 +‖∇∂td‖L3)‖∆∂td‖L2

≤ 1

8
‖∆∂td‖2L2 +C

{
‖∇∂tu‖2L2 ++‖∇∂td‖2L2

}
, (4.16)

where the Hölder inequality and the Gagliardo-Nirenberg inequalities (2.4) and (2.5)
are used.

Combining (4.15) with (4.16), and using the Gronwall inequality, we have

‖√ρ∂tu‖L∞(0,T ;L2)+‖∇∂tu‖L2(0,T ;L2)≤C, (4.17)

‖∂td‖L∞(0,T ;H1)+‖∂td‖L2(0,T ;H2)≤C. (4.18)

It follows from (1.3), (4.12), (4.13), (4.18), and the Gagliardo-Nirenberg inequality
(2.6) that

‖∇∆d‖L2 ≤C‖∇∂td+∇u ·∇d+u ·∇2d−∇(d|∇d|2)‖L2

≤C+C
{
‖∇u‖L2‖∇d‖L∞ +‖u‖L6‖∆d‖L3

+‖∇d‖L∞‖∆d‖L2 +‖∇d‖3L6

}

≤C+C{‖∇d‖L∞ +‖∆d‖L3}
≤C+C

{
‖∇d‖1/2L6 ‖∇∆d‖1/2L2 +‖∆d‖1/2L2 ‖∇∆d‖1/2L2

}
,

which gives

‖∇d‖L∞(0,T ;H2)≤C. (4.19)

Similarly, we can prove that

‖∇u‖L∞(0,T ;H1)+‖∇u‖L2(0,T ;W 1,6)≤C. (4.20)

Applying the operator ∂i to (1.1), multiplying the result by |∂iρ|q−2∂iρ, integrat-
ing over R3, summing over i, and using (1.4) and (4.20), we conclude that

d

dt

∫
|∇ρ|qdx≤C‖∇u‖L∞

∫
|∇ρ|qdx≤C‖∇u‖W 1,6‖∇ρ‖qLq ,

which implies

‖∇ρ‖L∞(0,T ;L2∩Lq)≤C.

This completes the proof of Theorem 1.3.
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102–137, 1958.
[10] T. Huang, C.Y. Wang, and H.Y. Wen, Blow up criterion for compressible nematic liquid crystal

flows in dimension three, Arch. Rat. Mech. Anal., 204, 285–311, 2012.
[11] S. Itoh, On the vanishing viscosity in the Cauchy problem for the equations of a nonhomoge-

neous incompressible fluid, Glasgow Math. J., 36, 123–129, 1994.
[12] T. Kato and G. Ponce, Commutator estimates and the Euler and Navier-Stokes equations,

Commun. Pure Appl. Math., 41, 891–907, 1988.
[13] C. Kenig, G. Ponce, and L. Vega, Well-posedness of the initial value problem for the Korteweg-

de Vries equation, J. Amer. Math. Soc., 4, 323–347, 1991.
[14] H. Kim, A blow-up criterion for the nonhomogeneous incompressible Navier-Stokes equations,

SIAM J. Math. Anal., 37, 1417–1434, 2006.
[15] F.M. Leslie, Some constitute equations for liquid crystals, Arch. Rat. Mech. Anal., 28, 265–283,

1968.
[16] X. Li and D. Wang, Global solution to the incompressible flow of liquid crystals, J. Diff. Eqs.,

252, 745–767, 2012.
[17] X. Li and D. Wang, Global strong solution to the density-dependent incompressible flow of liquid

crystals, Trans. Amer. Math. Soc., accepted. Available at arXiv: 1202.1011v1 [math.AP].
[18] F.-H. Lin, Nonlinear theory of defects in nematic liquid crystals: Phase transition and flow

phenomena, Commun. Pure. Appl. Math., 42, 789–814, 1989.
[19] F.-H. Lin and C. Liu, Nonparabolic dissipative systems modeling the flow of liquid crystals,

Commun. Pure Appl. Math., 48, 501–537, 1995.
[20] F.-H. Lin and C. Liu, Static and dynamic theories of liquid crystals, J. Part. Diff. Eqs., 14,

289–330, 2001.
[21] F.-H. Lin and C. Liu, Partial regularity of the dynamic system modeling the flow of liquid

crystals, Disc. Cont. Dyn. Syst., 2, 1–22, 1996.
[22] F.-H. Lin and C. Liu, Existence of solutions for the Ericksen-Leslie system, Arch. Rat. Mech.

Anal., 154, 135–156, 2000.
[23] S. Machihara and T. Ozawa, Interpolation inequalities in Besov spaces, Proc. Amer. Math.

Soc., 131(5), 1553–1556, 2002.
[24] Y. Meyer, Oscillating patterns in some nonlinear evolution equations, in Mathematical Foun-

dation of Turbulent Viscous Flows, M. Cannone and T. Miyakawa (eds.), Lecture Notes in
Math., Springer-Verlag, Berlin, 1871, 101–187, 2006.

[25] L. Nirenberg, On elliptic partial differential equations, Ann. Scuola Norm. Sup. Pisa (3), 13,
115–162, 1959.

[26] J. Peetre, New Thoughts on Besov Spaces, Duke University Mathematical Series, Durham N.
C, 1, 1976.

[27] R. Temam, Navier-Stokes Equations, Theory and numerical analysis, Third Edition, North
Holland Publishing Co., Amsterdam-New York, 1984.


