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ANALYSIS AND SIMULATIONS OF THE CHEN-LUBENSKY
ENERGY FOR SMECTIC LIQUID CRYSTALS: ONSET OF

UNDULATIONS∗

CARLOS J. GARĆıA-CERVERA† AND SOOKYUNG JOO‡

Abstract. We study the Chen-Lubensky energy to investigate layer undulations in smectic
liquid crystals in response to an applied magnetic field. In earlier work [C.J. Garćıa-Cervera and
S. Joo, Arch. Rat. Mech. Anal., 203(1), 1–43, 2012], the authors obtained an asymptotic expression
of the unstable modes and a sharp estimate of the critical field using the Landau-de Gennes model
for smectic A liquid crystals. In this paper, we extend our theory to the Chen-Lubensky energy,
which includes a second order smectic order parameter gradient. Analysis based on Γ-convergence
theory and bifurcation theory provide the estimate of the critical field and frequency of the undu-
lations. Furthermore, we present a new numerical formulation of fourth order partial differential
equations. With this formulation, the fourth order system reduces to a second order equation with
a constraint, which resembles the incompressible Navier-Stokes equations from fluid dynamics. We
use this method to illustrate the presence of layer undulations near the critical field and to confirm
that the results from our analysis agree with these numerical simulations. We also use asymptotic
analysis to determine the structure of the domain wall at high fields under the assumption that the
layer density is constant.
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1. Introduction
We study the formation of undulations under an applied magnetic field in smectic

liquid crystals using the Chen-Lubensky energy functional. We consider a smectic
liquid crystal confined between two flat plates and uniformly aligned in a way that
the smectic layers are parallel to the bounding plates. The external magnetic field is
applied in the direction parallel to the smectic layers. If the field reaches the critical
threshold, the layers undulate. This phenomenon is called the Helfrich-Hurault effect
(see [18] and [20]). In our previous work [15], we studied this phenomenon analytically
by considering the minimizer of the second variation of the Landau-de Gennes free
energy ([7]) at the undeformed state and by carrying out a bifurcation analysis of
the nontrivial solution curve. In this paper we study undulation phenomena with
the modified Chen-Lubensky energy that includes the second order gradient term.
This energy can describe both smectic A and smectic C phases depending on the
temperature-dependent material parameter.

The classic Helfrich-Hurault theories assume that the layers are fixed at the cell
boundaries, i.e., that the undulations vanish at the boundaries and a specific form of an
ansatz is made. However, experimental studies of undulations ([21, 28]) showed a lower
critical field and larger layer displacement than the ones expected from the Helfrich-
Hurault theory. Furthermore, the displacement of the layer undulations immediately
adjacent to the bounding plates was not zero. In [15], we analyzed the de Gennes free
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energy with and without fixing the layers on the boundaries. In this paper, we extend
the analysis used in [15] to the Chen-Lubensky functional for smectic A liquid crystals
and find that the same critical fields and undulation descriptions are obtained with
both boundary conditions. Thus without the assumption that the layers are fixed at
the boundaries, a lower critical field and a description of the undulations consistent
with experiments are successfully achieved.

We apply Γ-convergence theory to a one dimensional energy that characterizes
the critical field, and consider both Dirichlet and Natural boundary conditions on the
layer variable. For this, we identify a small parameter while performing nondimen-
sionalization of the energy. The same Γ-limit in [15] is given with the Chen-Lubensky
energy. We also study the Euler-Lagrange equations of the Chen-Lubensky energy via
bifurcation theory. We prove that there is a pitchfork bifurcating curve of nontrivial
solutions above the critical magnetic field. The stability of the undeformed state is
lost at the bifurcation point. Furthermore, a sharp estimate of the critical field and a
description of the undulation phenomena are given analytically for smectic A liquid
crystals.

In sections 2 and 3, we present the modified Chen-Lubensky model and introduce
an efficient numerical method for the gradient flow of the Chen-Lubensky functional
and study the Helfrich-Hurault effect in smectic liquid crystals. The numerical method
is based on a new formulation of the resulting fourth order partial differential equa-
tions. With this formulation, the system reduces to second order equations with a
constraint, which resembles the Navier-Stokes equations from fluid dynamics.

To illustrate the new approach, consider a functional of the form

F (ψ) =

∫

Ω

f(∇ψ,∇2ψ) dx.

Its gradient flow results in a fourth order partial differential equation. Instead, we
define m = ∇ψ, and rewrite the energy in terms of m:

F (m) =

∫

Ω

f(m,∇m) dx.

The corresponding gradient flow equation becomes

∂m

∂t
= ∇ · ∂f

∂∇m
− ∂f

∂m
−∇⊥p,

where the last term ∇⊥p = (−∂yp, ∂xp) appears as a Lagrange multiplier for the
constraint ∇×m = 0, in a similar way as the pressure plays the role of a Lagrange
multiplier for the incompressibility constraint in the Navier-Stokes equations. In fact,
if we define u = m⊥ = (−m2,m1), then the same argument leads to the equation

∂u

∂t
= ∇ · ∂f

∂∇u
− ∂f

∂u
−∇p,

which shows more clearly the resemblance with the Navier-Stokes equations of fluid
dynamics. A large number of numerical methodologies have been developed for this
equation, and we adapt here the Gauge method, introduced in [9] to solve the Navier-
Stokes equations, which allows for an efficient treatment of the pressure term.

We illustrate the layer undulation patterns numerically by solving the gradient
flow of smectic A liquid crystals. We find good agreement with the estimate of the
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critical field and the frequencies of layer undulation obtained in sections 5 and 6.
Numerical simulations and analysis for undulations in smectic A liquid crystals are
presented in [15] when D = 0 in the Chen-Lubenksy energy. The influence of an
applied magnetic field in smectic C liquid crystals in a two dimensional domain is
illustrated as well. When the directors at the cell boundaries are tilted with a fixed
angle α, the director tends to align with the magnetic field as expected. However,
the simulation shows that the layers are not disturbed regardless of the strength of
the magnetic field. When the director is arranged with a tilt angle α at the top and
−α at the bottom of the cell, the layers are uniformly aligned at a moderate field and
start to undulate at a higher field.

In Section 4, we study the stability of the undeformed state of smectic A liquid
crystals. We use a simplified model of constant layer density. The case of variable layer
density was considered for the de Gennes energy in [15]. We define the critical field
Hc above which the undeformed state is unstable and below which the undeformed
state is stable. In order to study the limiting problem with the help of Γ-convergence
theory, we reformulate the problem by taking the small parameter ε = h−1, where h
is the ratio of the layer thickness to the cell thickness.

In sections 5 and 6, we extend our study in [15] to the Chen-Lubensky functional
and obtain the same results in terms of the critical field and undulation pattern. For
the case where the layers are fixed at the boundary, we prove that if 2d is the cell
thickness, then the critical field Hc is estimated by

Hc ≈
(
πK

χadλ

) 1
2

. (1.1)

where K, χa, and λ are material constants which will be discussed in the Section
2. This estimate is consistent with the result found in the classical Helfrich-Hurault
theory (see [8, p. 363] and [20]) and numerical simulation in figure 3.1 of Section 3.
Furthermore, we prove that the maximum undulation occurs in the middle of the cell
and the displacement amplitude decreases near the boundary. These are consistent
with the result found in classic Helfrich-Hurault theory in an infinite sample. The
theory also provides the period of the oscillation in the x axis. The frequency of the
oscillation is proportional to d−1/2.

For the general case where the Dirichlet boundary condition for the layer function
is eliminated, the critical threshold is lower than Hc in (1.1) by a factor of 1/

√
π.

Instead of the periodic profile as in the Dirichlet case, the director has boundary
layers at both endpoints (y = ±d). The frequency of the oscillation is no longer
proportional to d−1/2; in fact, the frequency is of the order of d−1.

In Section 6, we find a first eigenvalue and corresponding eigenfunctions in order
to study the discrete spectrum of the linearized operator. We show that the kernel of
the linearized operator at the first eigenvalue is one-dimensional for both Dirichlet and
natural boundary conditions. This allows us to analyze the undulation phenomena as
a bifurcation from the uniform solution. We prove that for κ > κc, the undeformed
state loses its stability and bifurcation occurs, generating a nontrivial solution curve
which is stable.

Formal asymptotic analysis is used in Section 7 to study the limiting profile of
the transition wall as κ → ∞, which gives a result consistent with the numerical
simulations presented in Section 3. Well above the critical field, experiment shows
that the layer density is no longer uniform, and therefore a more complex model with
variable layer density needs to be used, which will be the subject of future publications.
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2. Model
The total free energy density for liquid crystals consists of a nematic fn and a

smectic fs part. The Oseen-Frank energy density for a nematic is given by

fn =
K1

2
(∇ · n)2 + K2

2
(n · ∇ × n)2 +

K3

2
|n× (∇× n)|2,

where K1, K2, and K3 are the splay, twist, and bend elastic constants, respectively.
We consider the energy with one constant approximation case, K1 = K2 = K3 =
K
2 > 0 and K4 = 0. Then the nematic energy density becomes

fn =
K

2
|∇n|2.

The smectic energy density can be expressed in terms of the nematic director n and
the smectic order parameter

Ψ(x) = ρ(x)eiqψ(x),

where the molecular mass density is given by

δ(x) = ρ0(x) +
1

2
(Ψ(x) + Ψ∗(x)) = ρ0(x) + ρ(x) cos qψ(x)

and ρ0 is a locally uniform mass density, ρ(x) is the mass density of the smectic layers,
and ψ parametrizes the layers so that ∇ψ is the direction of the layer normal. Now
the smectic energy density is given by

fs =
D

2
|D2

n
Ψ|2 + C⊥

2
|DnΨ|2 + C‖

2
|n ·DnΨ|2,

where Dn = ∇ − iqn, D2
n
= Dn · Dn, and D, C⊥, and C‖ are positive constants.

The original model for smectic C energy was proposed by Chen and Lubensky in [2].
However, because their model has an anisotropic second order gradient term, we use
the modified model, introduced by Luk’yanchuk [27] and analyzed in [22]. The energy
F is designed to describe nematic to smectic C transitions if C⊥ < 0 and to smectic
A if C⊥ > 0. With this modified model, when C⊥ < 0, the same tilt angle and layer
thickness are obtained from the original Chen-Lubensky model [22],

tan2 α =
−C⊥

2Dq2
,

(
2π

d

)2

= q2 +
−C⊥

2D
, (2.1)

where α is the tilt angle between the director and the layer normal and d is the layer
thickness. Because we investigate the smectic structure far from the nematic–smectic
transition, we may assume that the magnitude of the smectic order parameter is a
constant, i.e., ρ is a constant. Then fs becomes

fs =
Dρ2q4

2
|∇ψ−n|4+Dρ2q2

2
(∆ψ−∇·n)2+C⊥q

2ρ2

2
|∇ψ−n|2+C‖q

2ρ2

2
(n·∇ψ−1)2.

We consider a smectic liquid crystal confined between two flat plates (y = −d and
y = d) and a magnetic field applied in the x direction.

The magnetic energy is given by ([8, 29])

fm = −χa
2
(n ·H)2 = −χa

2
σ2(h · n)2,
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where χa is the magnetic anisotropy, H = σh, h = (1, 0), and σ = |H|. We assume
that χa > 0. Then the director prefers to be parallel to the direction of the applied
magnetic field. Collecting all contributions to the free energy, the free energy density
is

f = fn + fs + fm.

We consider a rectangular domain

Ω = (−L,L)× (−d, d),

where L = rd for some constant r > 0. We also assume that h = (1, 0) so that the
magnetic field tends to make the director orient along the x direction. We impose
periodic boundary conditions for φ and n in the x direction, while we assume strong
anchoring conditions for n on the boundary plates:

n(x,±d) = (0, 1) for all x ∈ [−L,L]. (2.2)

We make the problem dimensionless by introducing new variables

(x̃, ỹ) =
(x
λ
,
y

λ

)
and ϕ =

ψ

λ
,

where λ =
√

K
B is of the order of the smectic layer thickness and B = C‖ρ

2q2 is

the de Gennes compressibility constant. Then we have a non-dimensionalized energy,
dropping the tilde notation,

F =
Bλ2

2

∫

Ω̃

(
|∇n|2 +D1(∆ϕ−∇ · n)2 + D2

2
|∇ϕ− n|4 + c|∇ϕ− n|2

(2.3)
+(n · ∇ϕ− 1)2 − κ2(n · h)2

)
dx,

where

Ω̃ = (−L̃, L̃)× (−h, h), h =
d

λ
, L̃ =

L

λ
.

The dimensionless parameters used are given by

D1 =
Dρ2q2

K
, D2 =

2Dq2

C‖
, c =

C⊥

C‖
, κ2 =

χaσ
2

B
.

For smectic C liquid crystals (C⊥ < 0), we use the following set of parameters:

D1 =
Dρ2q2

K
=

3.8× 9

4π2 × 100
, D2 =

2Dq2

C‖
= 0.76, c =

C⊥

C‖
= −0.1.

Then the tilt angle equation (2.1) becomes tan2 α = −c/D2. This set of model pa-
rameters was used in [32] and this choice was made so that α = 20◦ in the tilt angle
equation. The first term of the second line in (2.3) often can be omitted in the de-
scription of smectic A liquid crystals where C⊥ > 0. Nondimensionalization in this
case leads to the dimensionless parameters

D1 =
Dρ2q2

K
≈ 0.01, D2 =

2Dq2

C⊥
= 7.6, c = 1,

(2.4)

κ2 =
χaσ

2

B
, B = C⊥ρ

2q2, α = 0◦.
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3. Description of numerical scheme
One can see that the Chen-Lubensky free energy gives rise to a fourth order

partial differential equation. In fact, the gradient flow equations associated with the
energy (2.3) are given by

∂n

∂τ
=− n× n×

(
∆n−D1∇(∆ϕ−∇ · n) +D2|∇ϕ− n|2(∇ϕ− n)

+ c(∇ϕ− n)− (n · ∇ϕ− 1)∇ϕ+ κ2(n · h)h
)
,

∂ϕ

∂τ
=−D1∆(∆ϕ−∇ · n) + 2D2(∂jϕ− nj)(∂ijϕ− ∂inj)(∂iϕ− ni)

+ (D2|∇ϕ− n|2 + c)(∆ϕ−∇ · n) +∇ · [(n · ∇ϕ− 1)n].

(3.1)

The expression −n × n × () on the right hand side of the first equation results from
the constraint |n| = 1. In fact, accounting for this constraint we may introduce the
Lagrange multiplier λ so that the gradient flow equation for n is

nt = −δF
δn

+ λn. (3.2)

Taking the inner product with n in both sides gives, and by using |n| = 1 and
λ = (n, δFδn ), (3.2) becomes

nt = Πn

(
−δF
δn

)
, (3.3)

where Πn(v) = v − (n,v)n is the projection of v onto the tangent plane to the unit
sphere at n. Equation (3.3) can be seen equivalent to the first equation of (3.1) as a
consequence of the vector identity u × (v ×w) = (u,w)v − (u,v)w. Note also that
the first equation of (3.1) resembles the Landau-Lifshitz equation of micromagnetics
in the high damping limit [10], and the heat-flow of harmonic maps [30].

In this section, we introduce the new formulation for the numerical simulations
of Helfrich-Hurault effect for smectic liquid crystals using the Chen-Lubensky func-
tional.Setting u = ∇ϕ, the energy becomes

F =
B

2

∫

Ω

(
|∇n|2 +D1(∇ · u−∇ · n)2 + D2

2
|u− n|4 + c|u− n|2

(3.4)
+(n · u− 1)2 − κ2(n · h)2

)
dx,

with the constraint ∇× u = 0.
Now the energy has only first derivatives and hence the corresponding Ginzburg-

Landau equations are second order partial differential equations. We consider the
gradient flow of the energy

γn
∂n

∂t
=− n× n×

(
∆n−D1∇(∇ · u−∇ · n) + (D2|u− n|2 + c)(u− n)

− (n · u− 1)u+ κ2(n · h)h
)
,

γu
∂u

∂t
=D1∇(∇ · u−∇ · n)− (D2|u− n|2 + c)(u− n)− (n · u− 1)n−∇⊥p,

(3.5)

where γn and γu are appropriate constants. The last term ∇⊥p from the second
equation arises from the constraint ∇ × u = 0, and plays a similar role to the one
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played by the pressure in the Navier-Stokes equations. From the identity

∇(∇ · u) = ∆u+∇×∇× u,

and the constraint ∇×u = 0, we can see that ∇(∇·u) = ∆u. This gives a system of
parabolic equations, which resembles the Navier-Stokes equations from fluid dynamics,
for which a large number of numerical techniques are available [1, 3, 9, 16, 17, 26].
The layer structure can be recovered by solving

∆ϕ = ∇ · u,

with appropriate boundary conditions, and plays a role similar to the stream function
in fluid dynamics. The contour map of ϕ describes the layer undulation patterns.

This approach can have broad applicability, and can be very efficient for any
functional of the form

∫

Ω

f(∇ψ,∇2ψ) dx,

where Ω ⊂ R
2, and f is smooth. Moreover, this formulation also can be used for any

functional of the form
∫

Ω

f(ψ,∇ψ,∇2ψ) dx.

In this case, the term ψ can be obtained from u by solving ∆ψ = ∇·u with appropriate
boundary conditions, where u = ∇ψ. A similar situation occurs in the context of the
Landau-Lifshitz equation for micromagnetics [23, 19, 13], where the stray field can be
computed by solving a Poisson equation.

This approach can be extended to three dimensions also, where the Lagrange
multiplier p in (3.5) is replaced by a term of the form ∇ ×A. The equation can be
solved using the projection method [3, 16], for example, via a Hodge decomposition
[31].

We use periodic boundary conditions on each end of the cell for n and u, and
we assume strong surface anchoring on the plate for the director n and Dirichlet
boundary condition for u, assuming that the layers on the boundary are fixed:

n|y=±h = (sinα, cosα),

u|y=±h = (0, 1),
(3.6)

where h = d
λ , λ =

√
K
B is the characteristic length of the material, and d is the

thickness of the sample. With this boundary condition, the energy is minimized when
the layers are parallel to the plates if κ = 0.

We use the Gauge method [9] to solve the system (3.5) with boundary condition
(3.6). Introducing two auxiliary variables, a vector field a and a gauge variable φ
which satisfy a = u−∇⊥φ, (3.5) becomes

∂n

∂t
= −n× n×

(
∆n+D1∇(∇ · n)−D1∆u

+(D2|u− n|2 + c)(u− n) + κ2n · e1
)
, (3.7)

∂a

∂t
= D1∆a−D1∇(∇ · n) + (D2|u− n|2 + c)(n− u), (3.8)
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∆φ = ∇× a, (3.9)

u = a−∇⊥φ, (3.10)

with boundary conditions

n|y=±h = (sinα, cosα),

a|y=±h = (sinα, cosα) + (0, φx), (3.11)

∂φ

∂y
|y=±h = 0.

A general form for this boundary condition is

∂φ

∂ν
= 0, a · τ = u · τ, a · ν = u · ν + ∂φ

∂τ
.

3.1. Smectic A liquid crystals. For smectic A liquid crystals, we set α = 0
in (3.11) and c = 1. As described in Section 2, we impose strong anchoring conditions
for the director field, and Dirichlet boundary condition on ϕ at the top and the bottom
plates, (3.11). Periodic boundary conditions are imposed for both n and ϕ on each
side of the domain. For the time discretization of (3.7) we use a projection method,
similar to the one introduced for micromagnetics in [10]. We write n = (n1, n2)
and u = (u1, u2). To update the solution, we use a fractional step approach. First,
assuming that (nk−1,uk−1, φk−1) and (nk,uk, φk) are known, we solve for n∗:

n∗ − nk

∆t
= ∆n∗ +D1

(
(n∗1)xx + (nk2)xy
(n∗1)xy + (n∗2)yy

)
−D1∆uk

(3.12)
+(D2|uk − nk|2 + 1)(uk − nk) + κ2 n∗ · e1,

where ∆t is the time step size, with the boundary condition

n∗|y=±h = (0, 1).

Then we project n∗ onto S
2 to obtain nk+1,

nk+1 =
1

|n∗|n
∗. (3.13)

For equation (3.8), we write

ak+1 − ak

∆t
= D1∆ak+1 −D1

(
(nk+1

1 )xx + (nk+1
2 )xy

(nk+1
1 )xy + (nk+1

2 )yy

)

(3.14)
+(D2|uk − nk+1|2 + 1)(nk+1 − uk)

with boundary condition

ak+1|y=±h = (0, 1 + φkx)|y=±h.

Then we obtain the gauge field (3.9) by solving

∆φk+1 = ∇× ak+1 (3.15)
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with homogeneous Neumann boundary condition φk+1
y |y=±h = 0 and then update u,

uk+1 = ak+1 −∇⊥φk+1 = ak+1 +

(
φk+1
y

−φk+1
x

)
. (3.16)

Periodic boundary conditions are imposed for both n and ϕ on each side of the
domain. We use a Fourier spectral discretization in the x direction, and second order
finite differences in the y direction. The fast Fourier transform is computed using the
FFTW libraries [11].

The method (3.12)-(3.16) is second order accurate in space, and first order accu-
rate in time due to the first order accuracy of the projection method (3.12)-(3.13). One
can improve this to second order accuracy by employing the method also introduced
in [10], however, this is not pursued in this paper. The consistency and convergence of
the projection and gauge methods are given in [10] and [33], respectively. Our system
contains additional nonlinear terms, but they are only lower order terms, and they
are treated explicitly. Hence the consistency of our scheme can be shown in exactly
the same way as in [10] and [33].

We try to find the maximum ∆t corresponding to the various ∆x by reducing ∆x
from ∆x = 0.625 to ∆ = 0.02. In all cases, the table 3.1 shows that the maximum ∆t
is 0.4, which gives unconditional stability for the scheme (3.12)-(3.16). For the table
below, we use a domain size 20× 5 and ∆y = 0.5 ·∆x.

∆x 0.02 0.039 0.078 0.156 0.3125 0.625

Max ∆t 0.4 0.4 0.4 0.4 0.4 0.4

Table 3.1. Stability constraint of ∆t with various ∆x.

For the initial condition, we consider a small perturbation from the undeformed
state. More precisely, for all (x, y) ∈ Ω,

n(x, y, 0) =
(ǫn1, 1 + ǫn2)

|(ǫn1, 1 + ǫn2)|
,

ϕ(x, y, 0) = y + ǫϕ0,

where a small number ǫ = 0.01 and n1, n2, and ϕ0 are arbitrarily chosen.
We take the domain size L = 50 and h = 12.5. A more physically related value

for h in smectic A liquid crystals is 5 × 105. However, the layer undulations can be
observed if h ≫ 1. In fact, the undulations in cholesteric liquid crystals occur with
h ≈ 5 ([28]). The numbers of grid points in the x and y directions are both 1024 and
512, respectively.

In figure 3.1 we show the layer structures obtained in response to the various
magnetic field strengths κ. The figures are contour maps of ϕ because the level sets
of ϕ represent the layer. One can see that the undeformed state is stable before
the magnetic field κ reaches the threshold κc (figure 3.1 (a)). If κ increases and
reaches κc, the layer undulations occur (figure 3.1 (b)). As κ increases beyond κc,
the displacement amplitude increases as in the figure 3.1. The maximum undulation
occurs in the middle of the cell (y = 0) and the displacement amplitude decreases
when approaching the boundary (y = ±h).



1164 LAYER UNDULATIONS IN SMECTIC LIQUID CRYSTALS

κ = 0.25

0 10 20 30 40 50 60 70 80 90
0

5

10

15

20

25

κ2=0.26

0 10 20 30 40 50 60 70 80 90
0

5

10

15

20

25

κ2=0.3

0 10 20 30 40 50 60 70 80 90
0

5

10

15

20

25
κ2 =1

0 10 20 30 40 50 60 70 80 90
0

5

10

15

20

25

κ2 = 7

0 10 20 30 40 50 60 70 80 90
0

5

10

15

20

25
κ2 =150

0 10 20 30 40 50 60 70 80 90
0

5

10

15

20

25

Fig. 3.1. Smectic A undulations: Contour plots of ϕ, the solution of the system (3.5).

Figure 3.1 (b) shows that κ2c is between 0.25 and 0.26. In fact, κ2c ∼ π/h will
be proved in the sections 5 and 6. This estimate from our analysis predicts the
undulations at κ2c ∼ π/12.5 ∼ 0.2513, which is a good agreement with our simulations.

In [15], the simulation using de Gennes energy shows that the undulation period
decreases as the applied field increases. However, the period increases when we use
the Chen-Lubensky functional as in figure 3.1. This is expected because the Chen-
Lubensky functional includes the second order derivative term, which penalizes the
changes of the gradients.

Physically relevant undulation patterns at a higher field can also be observed
with this model without the assumption that the layer density is constant. This will
appear in a future publication.

3.2. Smectic C liquid crystals. We consider a two dimensional domain for
undulations in smectic C liquid crystals by taking c = −0.1. The undeformed state is
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Fig. 3.2. No smectic C undulations: Contour plots of ϕ, the solution of the system (3.5) with
the same boundary condition at the top and the bottom of the cell. The first and the second column
depict the layer and director, respectively.

given by

ϕ0 = my, and θ0 = α,

where m =
√

1 + c
D2

is the layer thickness and α is the tilt angle given by the

equation tan2 α = −c/D2. We find that the layer undulation does not occur when we
perform the numerical simulations with the same boundary condition at the top and
the bottom of the cell (3.2). Up to κ2 = 5, one can see that the director is horizontal
in most of the cell except at the boundary, but the layer is in the unperturbed state.
Instead, we proceed with the skew boundary condition,

n(x,−h) = (sinα, cosα) and n(x, h) = (− sinα, cosα). (3.17)

This means that the c director is in the positive x direction at the top and is in the
negative x direction at the bottom of the sample cells. The numerical result obtained
when κ2 = 0 is applied was used as an initial state for numerical simulations with
other values of κ2. The initial state is illustrated in the first row of figure 3.3. The
director changes its direction gradually to satisfy the boundary values of the top and
the bottom plates. Between κ2 = 0.1 and κ2 = 0.3, the simulations for layers illustrate
the undeformed state. As κ increases further, one can see periodic layer oscillations
as in the last row of figure 3.3.
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Fig. 3.3. Smectic C undulations: Contour plots of ϕ, the solution of the system (3.5) with
the boundary condition (3.17). The first and the second column depict the layer and director,
respectively.
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4. Critical field for smectic a liquid crystals
We derive here a one-dimensional energy that characterizes the critical field, in a

similar way to the procedure described in Section 3 of [15]. For sections 4-6, we only
consider smectic A liquid crystals. From |n| = 1, we can introduce the scalar variable
θ, with 0 ≤ θ < 2π, such that

n = (sin θ, cos θ).

Then the free energy (2.3) becomes, omitting the first term of the second line in (2.3),
using (2.4), and writing simply κ for κ2,

F(θ, ϕ) =

∫

Ω

(
D1(∆ϕ− cos θθx + sin θθy)

2

+
D2

2

(
(ϕx − sin θ)2 + (ϕy − cos θ)2

)2
+ (ϕx − sin θ)2 (4.1)

+(ϕy − cos θ)2 + |∇θ|2 − κ sin2 θ
)
dy dx,

and the corresponding boundary condition on θ is the homogeneous Dirichlet bound-
ary condition on the top and the bottom of the plate. This energy (4.1) has a trivial
critical point, θ = 0, φ = y, which describes the undeformed state where the layers are
parallel to the boundary plates, the directors are aligned in the y direction, and the
magnetic filed is applied in the direction perpendicular to the director. The second
variation of the energy at the undeformed state, φ0 = y, and θ0 = 0, gives

1

2
D2F(θ0 + tθ, ϕ0 + tϕ) :=

1

2

d2

dt2

∣∣∣
t=0

F(θ0 + tθ, ϕ0 + tϕ)
(4.2)

=

∫

Ω

(D1(∆ϕ− θx)
2 + (ϕx − θ)2 + ϕ2

y + |∇θ|2 − κ|θ|2) dxdy.

The undeformed state, (θ0, φ0), is stable if the second variation is nonnegative at
(θ0, φ0). We set

G(θ, ϕ) :=
∫

Ω

(D1(∆ϕ− θx)
2 + (ϕx − θ)2 + ϕ2

y + |∇θ|2) dxdy (4.3)

and consider two admissible sets, A, and A0, defined by

A = {(θ, ϕ) ∈ H1(U)×H2(U) : ‖θ‖2 = 1, θ(x,±h) = 0 for all x}.

and

A0 = {(θ, ϕ) ∈ A : ϕ(x,±h) = 0 for all x},

respectively, where U = R/(−L̃ + 2L̃Z) × (−h, h). Note that because ϕ is the layer
perturbation, when D1 = D2 = 0, the set A0 corresponds to the setting in the classic
Helfrich-Hurault theory, where the layers are fixed at the cell boundaries.

One can see from (4.2) that the critical field in the Neumann and Dirichlet case,
κc and κ

0
c , is defined by, respectively,

κc = inf
(θ,ϕ)∈A

G(θ, ϕ) and κ0c = inf
(θ,ϕ)∈A0

G(θ, ϕ). (4.4)
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Thus, the undeformed state, (θ0, ϕ0), is stable if κ < κ
(0)
c and unstable if κ > κ

(0)
c . In

addition, we show that when κ = κ
(0)
c , a stable bifurcation is possible.

The periodic boundary conditions allow us to use the Fourier series representation,

θ(x, y) =

∞∑

n=−∞

θn(y)e
iµnx and ϕ(x, y) =

∞∑

n=−∞

ϕn(y)e
iµnx,

where µn = πn/L̃. Then (4.3) becomes

G(θ, ϕ) = 2L̃

∫ h

−h

( ∞∑

n=−∞

(|θ′n|2 + µ2
n|θn|2 +D1|ϕ

′′

n − µ2
nϕ− iµnθn|2

(4.5)
+|θn − iµnϕn|2 + |ϕ′

n|2)
)
dy,

and the critical field can be obtained by

κ(0)c = inf
µn

inf
(θ,φ)∈B(0)

∫ h

−h

(|θ′|2 + µ2|θ|2 +D1|ϕ
′′

n − µ2
nϕ− iµnθn|2

+|θ − iµϕ|2 + |ϕ′|2) dy (4.6)

:= inf
µ

inf
(θ,φ)∈B(0)

F(θ, ϕ, µ),

where

B = {(θ, ϕ) ∈W 1,2
0 (−h, h)×W 2,2(−h, h) :

∫ h

−h

|θ(y)|2 dy = 1},
(4.7)

B0 = {(θ, ϕ) ∈ B : ϕ(±h) = 0},

and here we let µ = µn for simplicity.
In the case of D1 = D2 = 0, we showed in [14] that if L ≥ h ≥ 1 then there exist

universal constants c1 and c2 such that

c1
h

≤ κ(0)c ≤ c2
h
. (4.8)

For the general case with arbitrary material constants, the lower bound can follow
exactly from the Lemma 3.2 from [14]. Also, the test functions for the upper bound
in [14] can be applied for the general setting as well. Thus we have the same estimate
(4.8) on the critical field.

Introducing the transformations, x = x̃/h, y = ỹ/h, and u = ϕ/h, the energy in
(4.1) becomes

εF(θ, u) =

∫

D

(
D1ε(∆u− cos θθx + sin θθy)

2

+
D2

2ε

(
(ux − sin θ)2 + (uy − cos θ)2

)2

(4.9)

+
1

ε
(ux − sin θ)2 +

1

ε
(uy − cos θ)2 + ε|∇θ|2 − σ sin2 θ

)
dx dy

where D = (−r, r)× (−1, 1), r = L̃/h, and σ = hκ. As in (4.2), one can see that the
critical field σc is defined by

σc = inf
(θ,u)∈Ã

J (θ, u), (4.10)
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where

J (θ, u) :=

∫

D

(
D1ε(∆u− θx)

2 +
1

ε
(ux − θ)2 +

1

ε
u2y + ε|∇θ|2

)
dx dy (4.11)

and Ã is a corresponding admissible set after the transformation. It follows from (4.8)
that there exist universal constants c1 and c2 such that

c1 ≤ σc ≤ c2. (4.12)

Using notations

δ = δ(ε) = εµ2, µ = µn =
πn

r
, ϕ = iµu, and I = (−1, 1), (4.13)

we define

σ(0)
c = inf

n
inf

(θ,ϕ)∈B̃(0)

∫

I

(ε|θ′|2 + δ|θ|2 +D1δ|
ε

δ
ϕ

′′ − ϕ+ θ|2

+
1

ε
|θ − ϕ|2 + 1

δ
|ϕ′|2) dy (4.14)

:= inf
n

inf
(θ,ϕ)∈B̃(0)

Fε(θ, ϕ, δ),

where

B̃ = {(θ, ϕ) ∈W 1,2
0 (I)×W 2,2(I) :

∫ 1

−1

|θ(y)|2 dy = 1},

B̃0 = {(θ, ϕ) ∈ B̃ : ϕ(±1) = 0}.

From (4.12), we can see that the infimum of Fε is of order 1 in ε.

5. Γ-convergence
In this section, we look for a minimizer of Fε in two function spaces, B̃ and B̃0,

with the constraint
∫

I

|θ(z)|2 dz = 1, (5.1)

via Γ-convergence theory [6]. We recall the definition of Γ-limit of a family of func-
tionals.

Definition 5.1. Let (X, T ) be a topological space, and let Fh a family of functionals
parametrized by h. A functional F0 is the Γ-limit of Fh as h→ 0 in T if and only if
the two following conditions are satisfied:

(i) If uh → u0 in T , then lim infh→0 Fh(uh) ≥ F0(u0).

(ii) For all u0 ∈ X, there exists a sequence uh ∈ X such that uh → u0 in T , and
limh→0 Fh(uh) = F0(u0).

Condition (i) is related to lower-semicontinuity, while for Condition (ii) a specific
construction for the converging sequence is typically required.

Notice that if (θ, ϕ) is a minimizer of Fε, then so is (−θ,−ϕ). Thus we consider
the following spaces to identify these minimizers. We let

Xn = B̃/ ∼ and Xd = B̃0/ ∼,
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where (θ1, ϕ1) ∼ (θ2, ϕ2) if and only if (θ2, ϕ2) = (−θ1,−ϕ1). We also define the
following function spaces for the Γ-limit with each boundary condition,

X0
n = {(θ, ϕ) ∈W 1,2(I)×W 2,2(I) : ‖θ‖L2(I) = 1}/ ∼,

X0
d = {(θ, ϕ) ∈W 1,2

0 (I)×W 2,2
0 (I) : ‖θ‖L2(I) = 1}/ ∼ .

First we consider the minimizing sequences with the Dirichlet boundary condition.
Let

Fε(θ, ϕ, δ) :=





∫
I
(ε|θ′|2 + δ|θ|2 +D1δ| εδϕ

′′ − ϕ+ θ|2 + 1
ε |θ − ϕ|2 + 1

δ |ϕ′|2) dy,
if (θ, ϕ, δ) ∈ Xd × R

+,

+∞, else.

(5.2)

In [15], the Γ-convergence method was used to understand the minimizer of the
linearized functional, Fε, when D1 = 0. For Dirichlet boundary condition case, the
Γ-limit obtained in [15] is

F d0 (θ, ϕ, δ) :=

{∫
I
(δθ2 + 1

δ θ
′2) dz, if θ = ϕ ∈W 1,2

0 (I),

+∞, else.
(5.3)

One can find that this is also the Γ-limit of Fε for arbitrary D1. Because the com-
pactness property and lower bound inequality follow from the case D1 = 0 in [15], we
only need to establish the construction of a minimizing sequence.

Lemma 5.2. (Construction). For any (θ, ϕ, δ) ∈ X0
d × R

+ with θ = ϕ and∫
I
|θ|2 dz = 1, there exists a sequence (θj , ϕj , δj) ∈ Xd × R

+ with
∫
I
|θj |2 dz = 1,

converging in [L2(I)]2 × R as j → ∞, to (θ, ϕ, δ), and such that

lim sup
j→∞

Fεj (θj , ϕj , δj) = F d0 (θ, ϕ, δ).

Proof. For simplicity, we will prove lim supj→∞ Fεj (θj , ϕj , δj) ≤ F0(θ, ϕ, δ).
First we suppose that ϕ ∈ C∞

c (I). We take θj = θ, δj = δ for all j ≥ 1 and let
ϕj = ϕhj

= ϕ ∗ρh be a regularization of ϕ where ρ is a mollifier. We can take h small
such that ϕj(±1) = 0. Note that

‖ϕ− ϕh‖2 ≤ Ch‖ϕ′‖2 and ‖ϕ′′

h‖ ≤ C

h
‖ϕ′‖2 (5.4)

for some constant C. To see this, we find

|ϕh(x)− ϕ(x)| =
∣∣∣∣∣

∫

|z|≤1

ρ(z)(ϕ(x)− ϕ(x− hz))dz

∣∣∣∣∣

≤ h

∫

|z|≤1

ρ(z)

∫ 1

0

|Dϕ(x− thz)|dtdz,

and hence we find ‖ϕh − ϕ‖p ≤ h‖Dϕ‖p. Also,

‖ϕ′′

h‖2 = ‖ϕ′‖2‖ρ′h‖1 ≤ C

h
‖ϕ′‖2.
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Using these estimates with hj = ε
2/3
j , we have

Fεj (θj , ϕj , δj) ≤
∫

I

(2D1ε
2
j

δ
|ϕ′′

j |2 +
( 1

εj
+ 2D1δ

)
(ϕ− ϕj)

2 + εjθ
′2 + δθ2 +

1

δ
ϕ′2
j

)

≤ C(ε
2/3
j + Cε

1/3
j )‖ϕ′‖22 + δ‖θ‖22 + εj‖θ′‖22 +

1

δ
ϕ′2
j

and we arrive at the conclusion. For ϕ ∈W 1,2
0 (I), we use a density argument.

Proposition 5.3. The variational problem in (θ, ϕ, δ) ∈ Xd × R
+ of minimiz-

ing Fε(θ, ϕ, δ) Γ-converges in [L2(I)]2 × R as ε → 0, to the variational problem in
(θ, ϕ, δ) ∈ X0

d × R
+ of minimizing F d0 (θ, ϕ, δ), where F

d
0 is defined in (5.3).

The Γ-limit F 0
d has a unique minimizer (up to a sign) (cos π2 y, cos

π
2 y,

π
2 ) in

X0
d × R

+ and if the Γ-limit F d0 has a unique minimizer, then it follows from the
Γ-convergence theory that the sequence of minimizers of Fε converges to the mini-
mizer of F d0 [6]. Thus, with (5.2), we have the following result.

Theorem 5.4. Let (θε, ϕε, δ) ∈ Xd × R
+ be a minimizer of Fε. For ε = 1/h ≪ 1,

we have

εµ2 ≈ π

2
, Fε(θε, ϕε, δ) ≈ π, (5.5)

and
∫

I

∣∣∣ϕε(y)− cos
π

2
y
∣∣∣
2

dy ≪ 1. (5.6)

We look for a minimizer of Fε without imposing the Dirichlet boundary condition
on layers. We claim that the Γ-limit is (5.7), which is the same as the one in [15].
Again the lower bound inequality can be inherited from the case D1 = 0, so one only
needs to regularize the minimizing sequence obtained in [15]. In order to obtain the
estimate such as (5.4), we can use an extension operator, i.e., for any J ⊃ I and
for ϕ ∈ W 1,2(I), one can find an extension ϕ̃ ∈ W 1,2

0 (J) such that ϕ̃ = ϕ in I and
‖ϕ̃‖W 1,2(J) ≤ C‖ϕ‖W 1,2(I). Then we employ (5.4) to ϕ̃. Now we have the following.

Proposition 5.5. The variational problem in (θ, ϕ, δ) ∈ Xn × R
+ of minimiz-

ing Fε(θ, ϕ, δ) Γ-converges in [L2(I)]2 × R as ε → 0, to the variational problem in
(θ, ϕ, δ) ∈ X̄n × R

+ ∪ {0} of minimizing F (θ, ϕ, δ), where

F (θ, ϕ, δ) =





∫
I
(δ|θ|2 + 1

δ |θ′|2) dz + θ(1)2 + θ(−1)2, if δ 6= 0, θ = ϕ,

θ(1)2 + θ(−1)2, if δ = 0, θ = ϕ = constant,

∞, else.

(5.7)
Analogous to Theorem 5.4, we have the following result.

Theorem 5.6. Let (θε, ϕε, δε) ∈ Xn × R
+ be a minimizer of Fε constrained by∫

I
|θ|2 dz = 1. For ε = 1/h≪ 1, we have

εµ2 ≈ 0, Fε ≈ 1, (5.8)

and
∫

I

∣∣∣ϕε(z)−
1√
2

∣∣∣
2

dz ≪ 1. (5.9)
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By the virtue of Theorem 5.4 and 5.6, the descriptions of the director and layer
perturbations at the critical field are consistent with the result from [15] and experi-
mental results from [28].

6. Bifurcation
We find an eigenfunction and an eigenvalue for the Euler-Lagrange equation of the

functional Fε and use formal asymptotic expansions to solve the algebraic equation
that occurs in the process. Furthermore, we show that the kernel of the linearized
operator at the first eigenvalue is one dimensional. We also find the first eigenvalue
and the corresponding eigenfunction explicitly for bifurcation study.

6.1. Linearized functional. In order to carry out a bifurcation analysis for
the onset of the undulations, we find the basis of the kernel of the linearized operator
at the undeformed state in this section for both boundary conditions on the layer.

6.1.1. Dirichlet boundary condition.
Lemma 6.1. Let (θn, ϕn) ∈ Xd be a global minimizer of Fε in Xd. Then (θn, ϕn)
satisfies the Euler-Lagrange equations

D1ε
2

δn
ϕ

′′′′

n −
(
2D1ε+

1

δn

)
ϕ

′′

n +D1εθ
′′

n +
(
D1δn +

1

ε

)
(ϕn − θn) = 0,

(6.1)

−εθ′′

n + δnθn +D1εϕ
′′

n +
(1
ε
+D1δn

)
(θn − ϕn) = σnθn,

with boundary conditions

θn(±1) = 0, and ϕn(±1) =
(ε
δ
ϕ

′′

n − ϕ+ θ
)
(±1) = 0. (6.2)

There exists a discrete set H ⊂ R such that for any ε ∈ R\H and σ0
n = minFε(θn, ϕn)

in B̃, the space of solutions to the system of equations (6.1) is one-dimensional, and
is spanned by the functions

θ(y) = C cos
π

2
y,

(6.3)

ϕ(y) =
1− σmε+

√
(1− σmε)2 + 4δmε

2
θ(y), (6.4)

for some constant C. Furthermore, σ0
c = infn σ

0
n = σ0

m.

Proof. The system of Euler-Lagrange equations (6.1) can be written as

D1D2ϕ+
1

ε
Dϕ−D1δDθ −

δ

ε
θ = 0,

Dθ −D1Dϕ+
1

ε
(θ − ϕ) = (σ −D1δ)θ,

where D = −ε d2dy2 + δI. Applying D to the second equation and combining it with
the first equation, we obtain a fourth order differential equation for θ,

D2θ +
(1
ε
− σ

)
Dθ − δ

ε
θ = 0,

which is

ε2θ
′′′′

+ (−2εδ + σε− 1)θ
′′

+ δ(δ − σ)θ = 0. (6.5)
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One can check that the following functions are solutions to this equation that are
linearly independent:

θ1(y) = sinh(
√
α(y − 1)), θ2(y) = sinh(

√
α(y + 1)),

θ3(y) = sin(
√
γ(y − 1)), θ4(y) = sin(

√
γ(y + 1)).

Here we use

α =
εδ +B

ε2
, γ =

−εδ +A

ε2
, and a = 1− σε, (6.6)

when

A =
−a+

√
a2 + 4εδ

2
, and B =

a+
√
a2 + 4εδ

2
.

Therefore the general solution to (6.5) is

θ(x) =

4∑

i=1

diθi(x). (6.7)

From (4.15), one can see that σ > δ and it is equivalent to γ > 0 and thus A > εδ > 0
and B > a. Using (6.7), the second equation of (6.1) becomes

D1εϕ
′′ −

(
1

ε
+D1δ

)
ϕ =

(
αε+ λ− δ − 1

ε
−D1δ

)
(d1θ1 + d2θ2)

(6.8)

+

(
−γε+ λ− δ − 1

ε
−D1δ

)
(d3θ3 + d4θ4)

Then one can find the general solution to (6.8),

ϕ = b1 sinh(β(y − 1)) + b2 sinh(β(y + 1))−A(d1θ1 + d2θ2) +B(d3θ3 + d4θ4), (6.9)

where

β =
1

ε

√
1 +D1δε

D1
.

Using the boundary condition (6.2) and setting

s1 = sinh(2
√
α), s2 = sin(2

√
γ), and s3 = sinh(2β),

we have



s1 0 s2 0 0 0
0 s1 0 s2 0 0
As1 0 −Bs2 0 −cs3 0
0 As1 0 −Bs2 0 −cs3
l1s1 0 l2s2 0 −l3s3 0
0 l1s1 0 l2s2 0 −l3s3



, (6.10)

where

l1 = A(−εα
δ

+ 1) + 1,
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l2 = −B(
εγ

δ
+ 1) + 1,

l3 =
(ε
δ
β2 − 1

)
.

Computing this with (6.6), we find

l1 = l2 = 0 and l3 =
1

D1δε
> 0.

Thus this matrix is equivalent to




s1 0 s2 0 0 0
0 s1 0 s2 0 0
0 0 (A+B)s2 0 0 0
0 0 0 (A+B)s2 0 0
0 0 0 0 1 0
0 0 0 0 0 1



. (6.11)

Because A+B =
√
a2 + 4δε > 0 and s1 > 0, we must have s2 = 0, which is identical

to the formula with Dirichlet boundary condition in [15]. This implies d1 = d2 = b1 =
b2 = 0 and

√
γ = nπ/2 for some integer n 6= 0. Solving (6.6) for σ, we have

σ =
4δ + εn2π2

4
+

n2π2

4δ + εn2π2
.

Then we see that σ is minimized when n = ±1. Hence we have

θ(y) = (−d3 + d4) cos
π

2
y,

ϕ(y) = Bθ(y), (6.12)

σ = σ(δ) =
4δ + επ2

4
+

π2

4δ + π2ε
.

Differentiating σ(δ) with δ, one can see that the minimum value of σ is obtained when

δ =
π

2
− π2ε

4
. (6.13)

Then the minimum value of σ is

σ
(π
2
− π2ε

4

)
= π. (6.14)

We conclude that θ and ϕ in (6.12) are eigenfunctions associated with the first eigen-
value σ in (6.12). We need to recall that the choice of µ is restricted by µ = πn/r

for some integer n, where r = L̃/h. Following the same analysis in [15], we conclude
that the eigenvalue is simple for all ε except for a discrete set and there is an integer
m from (6.13) such that σm = σ(δm), where δm = ε(πm/r)2 is the first eigenvalue
for the system (6.1). The corresponding eigenfunctions (6.3) are then obtained from
(6.12). We also note that ϕm − θm = O(

√
ε).
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6.1.2. Natural boundary condition on layers.
Lemma 6.2. A minimizer of Fε in Xn is taken by real valued functions (θn, ϕn),
which satisfy the system (6.1) with the boundary condition

θn(±1) = 0,
(6.15)(ε

δ
ϕ

′′

n − ϕn + θn

)
(±1) =

(
−D1ε

(ε
δ
ϕ

′′′

n − ϕ′
n + θ′n

)
+

1

δ
ϕ′
n

)
(±1) = 0.

Also, the minimizer of Fε is obtained when δn = δ1 = ε(π)2+O(ε2) and the minimum
value of the functional is

σn = σ1 = 1 + (0.5 + 2/3(π)2)ε+O(ε2). (6.16)

For σn = minFε(θn, ϕn) in B̃, the solution to the system is spanned by the one
element,

θn(y) = − cos
√
γ cosh

√
αy + cosh

√
α cos

√
γy,

(6.17)
ϕn(y) = A cos

√
γ cosh

√
αy +B cosh

√
α cos

√
γy,

where α, γ,A, and B are given in (6.6). Furthermore, any solution of (6.1, 6.15) is
of the form C(θn, ϕn) for some constant C.

Proof. As in the proof of Lemma 6.1, we have the general solutions (6.7) and
(6.9). Using the boundary condition (6.15), we have




s1 0 s2 0 0 0
0 s1 0 s2 0 0

−A√αc1 −A√α √
γBc2

√
γB 0 0

−A√α −A√αc1
√
γB

√
γBc2 0 0

0 0 0 0 s3 0
0 0 0 0 0 s3



. (6.18)

Here the same notations in Lemma 6.1 are used and

c1 = cosh(2
√
α), c2 = cos(2

√
γ), and c3 = cosh(2β).

We notice that the first 4×4 matrix in (6.18) is identical to the coefficient matrix found
in the proof of Theorem 6 of [15] and hence the same eigenfunction and eigenvalue
are obtained, which are given in (6.17).

One can notice that the results obtained in Section 5 and this section are consis-
tent. Theorem 5.4 from the Γ-convergence method and Lemma 6.1 from the eigenvalue
estimate give the same description of the director and layer undulations as well as the
estimate of the critical field for the case of homogeneous Dirichlet boundary condition
for the layer function. For natural boundary condition on the layer function, the same
results are obtained from Theorem 5.6 and Lemma 6.2.

6.2. Bifurcation curve. Setting ϕ = u− y in the energy (4.9), εF becomes,
with D = (−r, r)× (−1, 1),

F(θ, ϕ, σ) :=

∫

D

(
D1ε(∆ϕ− cos θθx + sin θθy)

2
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+
D2ε

2
((ϕx − sin θ)2 + (ϕy + 1− cos θ)2)2 + ε|∇θ|2 (6.19)

+
1

ε
(ϕx − sin θ)2 +

1

ε
(ϕy + 1− cos θ)2 − σ sin2 θ

)
dydx

and (θ, ϕ) = (0, 0) corresponds to the flat layer state. We define the spaces

Z = {z = (θ, ϕ) : θ, ϕ ∈ C2(Ū), θ(x,±1) = ϕ(x,±1) = 0 for all x},
Y = C0(Ū)× C0(Ū)

with the graph topology, where U = R/(−r + 2rZ) × (−1, 1), having the periodic
boundary condition in the x direction. The Euler-Lagrange equations associated with
the energy (6.19) are, for z = (θ, ϕ),

F1(z, σ) := D1ε∇(∆ϕ− cos θθx + sin θθy) ·
(

cos θ
− sin θ

)

+D2ε
(
(ϕx − sin θ)2 + (ϕy + 1− cos θ)2

)
(− cos θϕx + sin θϕy + sin θ)

−ε∆θ + 1

ε

(
− cos θ
sin θ

)
∇ϕ+

1

ε
sin θ − σ

2
sin 2θ = 0, (6.20)

F2(z, σ) := D1ε∆

(
∆ϕ−

(
cos θ
− sin θ

)
· ∇θ

)

−D2ε∇ ·
(
((ϕx − sin θ)2 + (ϕy + 1− cos θ)2)

(
ϕx − sin θ

ϕy + 1− cos θ

))

−1

ε

(
∆ϕ−

(
cos θ
− sin θ

)
∇θ

)
= 0. (6.21)

We let F = (F1, F2) : Z × R → Y. Recall that σ0
c is the minimum of the linearized

functional at the undeformed state under the Dirichlet boundary conditions for both
θ and ϕ. From Lemma 6.1, we have for σ = σ0

c , and except for a discrete set for ε,
that the linearized problem

−D1ε(∆ϕx − θxx) +
1

ε
(ϕx − θ) + ε∆θ + σθ = 0,

(6.22)

D1ε∆(∆ϕ− θx)−
1

ε
∆ϕ+

1

ε
θx = 0

has a solution set spanned by

z1 = (θ1, ϕ1) := (θm(y) cosµmx, ϕm(y) sinµmx) (6.23)

for some m. Reformulating these equations in Fourier space and using (4.13) and
Lemma 6.1, one can find that

θ1 = cos
π

2
y cosµmx,

(6.24)

ϕ1 =
1− σmε+

√
(1− σmε)2 + 4δmε

2µm
cos

π

2
y sinµmx.

As with the natural boundary condition (6.15) on ϕ, for σ = σc, the linearized problem
(6.22) has a solution set spanned by

z1 = (θ1, ϕ1) := (u(y) cosµ1x,
v(y)

µ1
sinµ1x), (6.25)



C.J. GARĆıA-CERVERA AND S. JOO 1177

where

u(y) = − cos
√
γ cosh

√
αy + cosh

√
α cos

√
γy,

(6.26)
v(y) = A cos

√
γ cosh

√
αy +B cosh

√
α cos

√
γy.

Then σ0
c and σc are simple eigenvalues and the structure of the local solution curves

can be understood using the Crandall-Rabinowitz theory for bifurcations at simple
eigenvalues ([4]).

Theorem 6.3. At σ = σ0
c and σc for each boundary condition, there is an r > 0 and

bifurcation curve of solutions to the system (6.20, 6.21) for s ∈ (−r, r), satisfying
1. F(z(s), σ(s)) = 0,

2. (z(0), σ(0)) = (0, σ0
c ),

3. z′(0) = (θ1, ϕ1),

4. θ(s) = sθ1 +O(s2), ϕ(s) = sϕ1 +O(s2) and σ(s) = σ0
c +O(s2).

Furthermore, the system (6.20, 6.21) has only two solutions, (z(s), σ(s)) and
z = 0, and the nontrivial solution is stable in a sufficiently small neighborhood of
(0, σ0

c ) and (0, σc).

Proof. We follow the proof given in Theorem 5 of [15] and thus here we
summarize the proof briefly. Following the Crandall-Rabinowitz theory, the existence
of such a bifurcation curve can be proved in exactly the same way as in [15]. Then
(0, σ0

c ) is a bifurcation point and there is a one parameter family of nontrivial solutions
(θ(s), ϕ(s), σ(s)) = (sθ1 + θ2(s), sϕ1 + ϕ2(s), σ

0
c + sσ1).

We proceed to study the stability of the nontrivial solution curve. From Theorem
1.16 in [5] it follows that there are eigenvalues µ(s) and γ(σ) with eigenvectors ω(s)
and u(σ), respectively, such that

Fz(z(s), σ(s))ω(s) = µ(s)ω(s), (6.27)

Fz(0, 0, σ)u(σ) = γ(σ)u(σ), (6.28)

with µ(0) = γ(σ0
c ) = 0 and ω(0) = (θ1, ϕ1) = u(σ0

c ). In order to show µ(s) < 0, which
means stability of the nontrivial curve, we use the relation ([5])

γ′(σ0
c ) 6= 0 and lim

s→0

−sσ′(s)γ′(σ0
c )

µ(s)
= 1, (6.29)

if µ(s) 6= 0 for s 6= 0. Because the codimension of the range of (Fz(0, 0, σ
0
c )) is 1, there

exists l ∈ Y ∗ such that N(l) = R(Fz(0, 0, σ
0
c )). Differentiating (6.28), we obtain that

〈l,Fzσ(0, 0, σ
0
c )z1〉 = γ′(σ0

c )〈l, z1〉. (6.30)

A direct computation gives

Fzσ(0, 0, σ
0
c )(θ1, ϕ1) = (θ1, 0), (6.31)

and hence

γ′(σ0
c ) > 0. (6.32)

It is not surprising to see that σ′(0) = 0 because the linearized operator is invariant
with respect to (θ, ϕ) → (−θ,−ϕ) transformation. The proof is below. Then σ′(s) =
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σ
′′

(0)s + O(s2) and hence the formula (6.29) gives µ(s) < 0 if σ
′′

(0) > 0. Thus,
Theorem 6.3 follows from the following lemma and this is a supercritical pitchfork
bifurcation.

Lemma 6.4. σ′(0) = 0 and σ
′′

(0) > 0.

Proof. The derivative of σ can be evaluated using the formula [24]

σ′(0) = −1

2

〈Fzz(0, 0, σ
0
c )(z1, z1), (z1)〉

〈Fzσ(0, 0, σ0
c )z1, z1〉

. (6.33)

Differentiating (6.20) twice, we find

DzzF1(z0, σ)[z] = −D1ε(2θ(−∆ϕy + 2θxy) + 2θxθy)−
2

ε
θϕy,

(6.34)

DzzF2(z0, σ)[z] = −2D1ε(3θyθyy + θxxθy + 2θxθxy + θ∆θy) +
2

ε
θθy.

Combining this with (6.33) and (6.31), we have

σ′(0) =
1

2

∫

D

(
D1ε

[
2θ21(−∆(ϕ1)y + 2(θ1)xy) + 2(θ1)x(θ1)yθ1

−2{3(θ1)y(θ1)yy + (θ1)xx(θ1)y + 2(θ1)x(θ1)xy + θ1∆(θ1)y}ϕ1

]

+
2

ε
(θ21(ϕ1)y − θ1ϕ1(θ1)y)

)
dxdy

= 0, (6.35)

because the integrand is an odd function in x from (6.24) and (6.26). Then the formula
for σ

′′

(0) is given by [24]

σ
′′

(0) = −1

3

〈Fzzz(0, 0, σ
0
c )(z1, z1, z1), z1〉

〈Fzσ(0, 0, σ0
c )z1, z1〉

. (6.36)

From a direct computation, we have

DzzzF1(z0, σ)[z] = −3D1εθ1

[
θ1(−∆(ϕ1)x + 2(θ1)xx − 2(θ1)yy) + 2(θ1)

2
x − (θ1)

2
y

]

+6D2ε((ϕ1)x − θ1)(((ϕ1)x − θ1)
2 + (ϕ1)

2
y)

+
1

ε
θ21(−3(ϕ1)x + θ1)− 4σθ31,

DzzzF2(z0, σ)[z] = −3D1ε
[
2((θ1)

2
x + (θ1)

2
y)(θ1)x + θ21∆(θ1)x

+2θ1(3(θ1)x(θ1)xx + (θ1)x(θ1)yy + 2(θ1)y(θ1)xy)
]

+6D2ε
[
((ϕ1)x + (ϕ1)y − θ1)

2(∆ϕ1 − (θ1)x)

+2((ϕ1)x − θ1)
2((ϕ1)xx − (θ1)x) + 2(ϕ1)

2
x(ϕ1)yy

]

+
3

ε
θ21(θ1)x. (6.37)

Using this in (6.36), we obtain

σ
′′

(0) = −1

3

∫

D

(−3D1εg1 + 6D2εg2 +
1

ε
g3 − 4σθ41) dxdy, (6.38)
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where

g1 = θ31(−∆ϕ1 + 2(θ1)xx − (θ1)yy) + 2θ21(θ1)
2
x − θ21(θ1)

2
y

+2ϕ1(θ1)x((θ1)
2
x + (θ1)

2
y) + θ21ϕ1∆(θ1)x,

+2θ1ϕ1(3(θ1)x(θ1)xx + (θ1)x(θ1)yy + 2(θ1)y(θ1)xy)

g2 = θ1((ϕ1)x − θ1)(((ϕ1)x − θ1)
2 + (ϕ1)

2)

+((ϕ1)x + (ϕ1)y − θ1)
2(∆ϕ1 − (θ1)x)ϕ1

+2ϕ1((ϕ1)x − θ1)
2((ϕ1)xx − (θ1)x) + 2ϕ1(ϕ1)

2
x(ϕ1)yy,

g3 = (−3θ21(ϕ1)x + θ31)θ1 + 3θ21(θ1)xϕ1.

Integrating by parts, we find
∫

D

g3dx dy =

∫

D

(−3θ31(ϕ1)x + θ41 + 3θ21(θ1)xϕ1)dx dy

(6.39)

=

∫

D

(θ41 − 4θ31(ϕ1)x)dx dy.

With the Dirichlet boundary condition, and using (6.24), (6.39) becomes

∫

D

(1− 4A)θ41dx dy,

where A = 1
2

(
1− σmε+

√
(1− σmε)2 + 4δmε

)
= 1 + O(

√
ε). Thus g3 < 0. With

the natural boundary condition, and using (6.26), (6.39) becomes

g3 = u3 cos4 µ1x(u− 4v)

= u3 cos4 µ1x
(
(1− 4B)u− 4(A+B) cos

√
γ cosh(

√
αy)

)
.

From the estimate that A = O(ε), B ∼ c, γ ∼ 0, we have g3 < 0. Note that g1 and
g2 are O(ε−1) because µ2

m = O( 1ε ). From (6.38) and the estimate σ0
c = O(1) and

σ0
c = O(1), it is easy to see that σ

′′

(0) > 0 as claimed.

7. Asymptotic analysis of a domain wall: smectic a energy
In this section, we consider one dimensional domain wall profile by using asymp-

totic analysis for the applied magnetic field κ ≥ 1. This process is motivated by the
work in [12]. From |n| = 1, we can introduce the scalar variable θ, with 0 ≤ θ < 2π,
such that

n = (sin θ, cos θ) (7.1)

and θ = θ(x) and φ = φ(x), θ → ±π/2 as x → ±∞. Then the free energy (3.4)
becomes

F(θ, φ) =

∫

R

(
D1(φ

′′ − cos θθ′)2 +
D2

2

(
(φ′ − sin θ)2 + cos2 θ

)2

(7.2)
+((φ′ − sin θ)2 + cos2 θ) + θ′2 − κ2 sin2 θ

)
dx

The energy is minimized if

φ′ = sin θ. (7.3)
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Then the Euler-Lagrange equation is

θ
′′

+ (D2 cos
2 θ + 1 + κ2) sin θ cos θ = 0. (7.4)

As in [12], we write a unit vector n as n = (tanh ζ, sechζ) rather than (7.1) and then
find the equation for ζ. From sin θ = tanh ζ, we obtain

θ
′′

= sechζ(ζ
′′ − ζ ′2 tanh ζ)

and the system (7.4) becomes

ζ
′′

+ tanh ζ(D2 sech
2ζ − ζ ′2) + (1 + κ2) tanh ζ = 0,

(7.5)
φ′ = tanh ζ.

By changing a variable, x̃ = κx, ζ(x) = ϕ(x̃) and φ(x) = η(x̃), (7.5) becomes

ϕ
′′ − tanhϕϕ′2 + tanhϕ+ ε2(D2sechϕ+ 1) tanhϕ = 0,

(7.6)
η′ = ε tanhϕ,

where ε = 1/κ. Assuming ϕ = ϕ0 + εϕ1 + ε2ϕ2 + · · · , and η = η0 + εη1 + ε2η2 + · · · ,
we obtain the O(1) system:

ϕ
′′

0 + (1− (ϕ′
0)

2) tanhϕ0 = 0,
(7.7)

η′0 = 0.

The first equation corresponds to the equation θ
′′

0 +sin θ0 cos θ0 = 0. It is known that
sin θ0 = tanhx is a solution, which describes the Landau-Lifshitz profile ([12, 25]).
Thus, the solution to (7.7) is ϕ0 = x̃ and η0 = c0 for some constant c0. Now the
system of the order O(ε) is

ϕ
′′

1 − 2ϕ′
0ϕ

′
1 tanhϕ0 − (ϕ′

0)
2ϕ1sech

2ϕ0 + ϕ1sech
2ϕ0 = 0,

(7.8)
η′1 = tanhϕ0.

Because ϕ0 = x̃, (7.8) becomes

ϕ
′′

1 − 2ϕ′
1 tanh x̃ = 0 and η′1 = tanh x̃. (7.9)

As in [12],

(
ϕ′
1

cosh2 x̃

)′

=
ϕ

′′

1 − 2ϕ′
1 tanh x̃

cosh2 x̃
= 0

gives

ϕ1(x̃) = b1
sinh 2x̃+ 2x̃

4
+ b2.

We have b2 = 0 from the assumption that ϕ is odd and b1 = 0 so that ϕ0 dominates
ϕ1. Thus, we have ϕ1 = 0. The solution η1 is given by

η1 =

∫
tanh x̃ dx̃ = − ln(cosh x̃) + c1.
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The O(ε2) system is

ϕ
′′

2 − tanhϕ0(2ϕ
′
0ϕ

′
2 + ϕ′2

1 )− 2ϕ′
0ϕ

′
1ϕ1sech

2ϕ0

−(ϕ2sech
2ϕ0 − ϕ2

1sech
2ϕ0 tanhϕ0)ϕ

′2
0 + ϕ2sech

2ϕ0
(7.10)

−ϕ2
1sech

2ϕ0 tanhϕ0 + (D2sech
2ϕ0 + 1) tanhϕ0 = 0.

η′2 = ϕ1sech
2ϕ0.

Using ϕ0 = x̃ and ϕ1 = 0, (7.10) becomes

ϕ
′′

2 − 2ϕ′
2 tanh x̃+ (D2sech

2x̃+ 1) tanh x̃ = 0 and η′2 = 0.

By following the calculation in [12], the solution can be found to be

ϕ2 =
D2

4
tanh x̃+

1

2
x̃ and η2 = c2.

Thus, for ε≪ 1,

ϕ(x̃) = x̃+
ε2

4
(D2 tanh x̃+ 2x̃) +O(ε3),

η(x̃) = c0 + ε(− ln(cosh(x̃)) + c1) + ε2c2 +O(ε3),

and then for κ≫ 1,

ζ(x) = κx+
1

4κ2
(D2 tanh(κx) + 2κx) +O

( 1

κ3

)
.

φ(x) = − 1

κ
ln(cosh(κx)) + c0 +

c1
κ

+
c2
κ2

+O
( 1

κ3

)
. (7.11)

Therefore, we have

n =

(

tanh
(

κx+
D2 tanh(κx) + 2κx

4κ2

)

, sech
(

κx+
D2 tanh(κx) + 2κx

4κ2

)

)

+O(κ−3). (7.12)
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Fig. 7.1. The first column depicts the profile of φ in the variation of κ. The profile and abscissa
are scaled by κ in the second column.

The profiles (7.11) of φ in the variation of κ with c0 = 1 and c1 = c2 = 0 are given in
figure 7.1. We also illustrate layers scaled by κ. This suggests the profile of the layer variable
when κ ≫ 1. The asymptotic solutions of n are depicted in the first column of figure 7.2 and
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κ2=25, Asymptotic Solution
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Fig. 7.2. The asymptotic approximation obtained in (7.12) and numerical solution profile in
the middle of the cell.

the director profiles in the middle of the cell (y = 0) numerically computed in the Section 3
are presented in the second column with κ2 = 5 and 25. Even though the description in
Section 3 is governed by the Dirichlet boundary condition on the top and bottom of the cell,
one can see that the domain wall profile is well approximated by the asymptotic solution
where we have an infinite one dimensional problem.
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