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ZERO DISSIPATION LIMIT TO RAREFACTION WAVE WITH
VACUUM FOR ONE-DIMENSIONAL FULL COMPRESSIBLE
NAVIER-STOKES EQUATIONS*

MING-JIE LIt AND TENG WANGH#

Abstract. We study the zero dissipation limit of the full compressible Navier-Stokes equations
to a rarefaction wave which connects to vacuum at one side. It is shown that there exists a family of
smooth solutions to the full compressible Navier-Stokes equations converging to the rarefaction wave
with vacuum away from the initial layers at a uniform rate as the viscosity and the heat conduction
coefficient tend to zero. Our method of proof consists of a scaling argument and elementary energy
analysis based on the underlying wave structure.
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1. Introduction

This paper is a sequel of our previous work [3] on studying the asymptotic equiv-
alence between the solutions of a one-dimensional model system for the compressible
Navier-Stokes equations and those of the compressible Euler system with vacuum.
The previous paper is concerned isentropic case, while the present one treats the
compressible Navier-Stokes equations with heat-conduction. The one-dimensional full
compressible Navier-Stokes equations in Eulerian coordinates read

pt+ (pu)z =0,

() + (pu® +p) , = (cuz) (1.1)
2 2

[p(e+ %)] o+ [pu(e+ %) +up], = (Kb +euuy)

for z e R=(—00,400), t >0, where p >0, u(z,t), p(z,t), e(x,t) >0, and 6(z,t) >0 are
the mass density, fluid velocity, pressure, internal energy, and absolute temperature
respectively, while the positive constants € and x denote the viscosity and heat con-
ductivity coefficient respectively. Here we study the ideal polytropic gas so that p and
e are given by the state equations

-1 R
p=Rph=ApTexp (LS), e=——=0+const., (1.2)
R v—1
where S is the entropy, v>1 is the adiabatic exponent, and A and R are positive
constants. Due to the second law of thermodynamics,

p
de=60dS+ Edp, (1.3)
the following entropy equation can be derived from (1.1):
(0 (62)% | (uz)?
(pS)e+ (puS). = (H?)I—FK B +€T. (1.4)
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1136 ZERO DISSIPATION LIMIT TO RAREFACTION WAVE WITH VACUUM

We take A=R=+~—1 in this paper for simplicity. Then the local sound speed is

defined by
ci=\/y(y=1f=1/v(y—1)p " e, (1.5)

We are interested in the relation between the solutions of the compressible Navier-
Stokes equations and those of the corresponding inviscid Euler equations:

pi+(pu)z =0,

(puw)i + (pu® +p) , =0, (1.6)
2 2

[p(eJr %)LJF [pu(eJr %) +up]$:0.

The Euler system (1.6) is a strictly hyperbolic one for p>0 whose 1- and 3-
characteristic fields are genuinely nonlinear, that is, in the equivalent system

p u P 0 p
u | + | yAp 25w AprleS u | =0,
S/, 0 0 u S).
the Jacobi matrix
u P 0
yAPT 2% u AprleS
0 0 U

has three distinct eigenvalues
M(pu,S)=u—c, Xa(p,u,S)=u, As(p,u,S)=u+c,
with corresponding right eigenvectors
ri(pu,S)=(=p,c,0)",  7r3(p,u,8)=(p,c,0)",

such that

y+1

Ti(pvuvs)‘v(p,u,S))‘i(p7uvs): 2

c#£0, i=1,3, V0>0.
We can define two 1—Riemann invariants by

Egl) =u-+

2 2
76 Z(l ) =8 ,
and two 3—Riemann invariants by

Zgl) =u—

v—1
such that
Vo0 (1, 9) -1i(p,u, $) =0, i=1,3,j=1,2 Vp>0.

The study of the limiting process of viscous flows, when the viscosity tends to
zero, is one of the important problems in the theory of compressible fluids. From the
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kinetic theory, the viscosity € and heat-conductivity coefficient x should be on the
same order, so the following assumption is reasonable (see also [9]):

{<:>

for some positive constant c. This indicates that the coefficient of heat conduction
also tends to zero as the viscosity tends to zero, so we can take k =€ in the following
without loss of generality. The inviscid compressible flow contains singularities such
as shock and the vacuum in general. Therefore, determining how to justify the zero
dissipation limit of the Euler equations with basic wave patterns or the vacuum is a
natural and difficult problem.

For the full Navier-Stokes equations which also have conservation of energy, there
are also many results on the zero dissipation limit to the corresponding full Euler
system with basic wave patterns without vacuum. We refer to Jiang-Ni-Sun [9] and
Xin-Zeng [21] for the rarefaction wave, Wang [19] for the shock wave, Ma [14] for
the contact discontinuity. Huang-Wang-Yang [7, 8] proved the vanishing viscosity
of the compressible Euler equations for the cases of superposition of two rarefaction
waves and a contact discontinuity and the superposition of one shock and one rarefac-
tion wave. Recently, Huang-Wang-Wang-Yang [5] succeed in justifying the vanishing
viscosity limit of compressible Navier-Stokes equations in the setting of Riemann solu-
tions for the superposition of shock wave, rarefaction wave, and contact discontinuity.
Jiu-Wang-Xin [10] studied the large time asymptotic behavior toward rarefaction wave
for solutions to the one-dimensional isentropic compressible Navier-Stokes equations
with density-dependent viscosity for general initial data whose far fields are connected
by a rarefaction wave to the corresponding Euler equations with one end state being
vacuum.

Now we give a description of the rarefaction wave connected to the vacuum to
the compressible Euler equations (1.6); see also the reference [18]. For definiteness,
3-rarefaction wave will be considered. If we investigate the compressible Euler system
(1.6) with the Riemann initial data

p(O,a:)zO, z <0, (1 9)
(p,u,@)(O,x)Z(p+,u+,9+), $>Oa '

), as e€—0,

(e
1.8
>c>0, as e€—0, (18)

where the left side is the vacuum state and py >0, u,60 >0 are prescribed constants
on the right state, then the Riemann problem (1.6), (1.9) admits a 3—rarefaction wave
connected to the vacuum on the left side By the fact that along the 3—rarefaction
wave curve, the 3—Riemann invariant E (p,u 0), (i=1,2) is constant in (z,t), we
can get the velocity u_ ng )(p+,u+,¢9+) being the speed of the fluid coming into
the vacuum from the 3-rarefaction wave. This 3—rarefaction wave connecting the
vacuum p=0 to (pi,uy,04) is the self-similar solution (p™,u™,0"3)(§), ({=%) of
(1.6) defined by

P (&) =0, if £<A3(0,u_,0)=u_,
A3(pr3(£)aur3(€)ver3(§)): 57 if u,§§§)\3(p+,u+,9+), (110)
A3(P45u4,04), i €>A3(py,uy,04),

and

=0 (o7 (€),u (€),07(€) = 25 (0,u-,0) =25 (p4 uy, 0). (1.11)
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Thus we can define the momentum m’”s and the total internal energy e’ of a 3-
rarefaction wave by

mrg(g):_{gf(f)uﬂ(@, i >0 (1.12)
and
%(5):_{873(5)93(@’ ! oy (1.13)

In the present paper, we want to construct a sequence of solutions (pe,me,gf::
p°0°)(z,t) to the compressible Navier-Stokes equations (1.1) which converge to the
3-rarefaction wave (p”,m", e’ = p"30"3)(x:/t) defined above as € tends to zero. The
effects of initial layers will be ignored by choosing the well-prepared initial data de-
pending on the viscosity for the Navier-Stokes equations.

The main novelty and difficulty of the paper is determining how to control the
degeneracies caused by the vacuum in the rarefaction wave. To overcome this diffi-
culty, we have to deal with the full compressible Navier-Stokes equations in Eulerian
coordinates, rather than Lagrangian coordinates generally used in previous papers,
because the Lagrangian transformation does not work when the vacuum state is in-
volved in the fluid. However, the new convection term, which couples by density and
velocity, complicates the calculations in the proof. Following our previous paper [3],
we cut off the 3-rarefaction wave with vacuum along the rarefaction wave curve. More
precisely, for any i >0 to be determined, the cut-off rarefaction wave will connect the
state (p,u,0) = (p,u,,e’ 1) and (p4,us,04), where u, can be obtained uniquely
by the definition of the 3-rarefaction wave curve; see Section 2 for more details. Then
an approximate rarefaction wave to this cut-off rarefaction wave will be constructed
through the Burgers equation. Finally, the desired solution sequences to the com-
pressible Navier-Stokes equations (1.1) could be established around the approximate
rarefaction wave. The new difficulty is that the temperature also degenerate in the
vacuum region. In fact, we choose p=¢€%|Ine| with a defined in (1.15) to control the
degeneracies caused by the vacuum in rarefaction wave. Compared with [3], we need
a more delicate a priori assumptions (3.11) to carry out the energy estimates. With
the balance the degeneracies between the density and the temperature, we can close
the a priori assumptions and obtain the desired results.

Now we state our main result as follows.

THEOREM 1.1.  Let (p",m",e")(x/t) be the 3-rarefaction wave defined by (1.10)-
(1.13) with one-side vacuum state. Then there exists a small positive constant €y such
that for any e € (0,€0), we can construct a family of global smooth solutions (p¢,mc=
peu,e€ = p0°)(x,t) to the compressible Navier-Stokes equations (1.1) satisfying

(1)

(pe_pr37m€_mT3ag€_é?é)a(p€7me7g€)$ GCO(O,+O<)’L2(R)))
s, 05, € L*(0,4+00; L*(R)).

TxV T

(2) As viscosity € —0, (p,me,e€)(x,t) converges to (p’,m"s e™s)(z/t) pointwise ex-
cept at (0,0). Furthermore, for any given positive constant I, there exists a constant



M.-J. LI AND T. WANG 1139

C; >0, independent of €, such that

sup ()= (5)]|_ <Cietnel,

t>1 t/ Lo

sup||m®(-,t) —m"® (f) H < 1| Ine],

tﬁH (1) )|, sCie’lne] (1.14)
sup éve(',t)fefrz(f)H < Cie|Ing|,

t>1 t/ Lo

with the positive constants a, b, and ¢ given by

1
. if 1<y<2,
a= XVTQ) (1.15)
i y>2,
23y-2)
3
% if 1<y<2,
8s(vr2) 7=
4v—-5
_) == if 2<A<?
b= 8(3’)’*2)7 1 <7—4’ (116)
1
- - f 9
2(3772)7 1 'Y>47
and
1 .
5 if 1<y<2,
= 1 1.1
Ty i 4>2 (1.17)
2(3y-2)

REMARK 1.2. It is noted that in the a priori estimates (3.14) below , the estimates for
¢? and (? from the potential energy hold with the weight p7~2 and p?~7 respectively
which degenerate in the vacuum region. Therefore, the convergence rate obtained in
Lemma 3.2 and thus in Theorem 1.1 depends on +.

REMARK 1.3. It is also interesting to study the zero dissipation limit for the full
compressible Navier-Stokes equations with variable viscosity. Li-Wang-Wang [11]
generalized Theorem 1.1 to the full compressible Navier-Stokes equations (1.1) with
temperature-dependent viscosity and heat-conduction coefficient.

The rest of the paper is organized as follows. In Section 2, we construct a smooth
3-rarefaction wave which approximates the cut-off rarefaction wave based on the in-
viscid Burgers equation. The proof the Theorem 1.1 is given in Section 3.

Throughout this paper, H*(R),k=0,1,2,..., denotes the [-th order Sobolev space
with its norm

k 1
; 2
1= (32103 £12) ", and |- = zeasy,
7=0

while L?(dz) means the L? integral over R with respect to the Lebesgue measure dz,
and z=x or y. For simplicity, we also write C as generic positive constants which
are independent of time ¢ and viscosity and heat conductivity coefficient e unless
otherwise stated.
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2. Rarefaction waves
As in our previous paper [3], the approximate rarefaction wave to the compressible
Navier-Stokes equations (1.1) can be constructed by the solution of Burger’s equation

w +ww, =0,
U)(O,LE):’U}CS({E) :w(%) = w+—;w7 + Y+ ;wi tanh§7

where 0 >0 is a small parameter to be determined. In fact, we choose § =¢” in (3.12)
with a given by (1.15) in the following. Note that the solution wj(¢,z) of the problem
(2.1) is given by

wi (t,x) =ws (o (t,x)), x=x0(t,x) +ws(zo(t,z))t. (2.2)

(2.1)

wj (¢,z) has the following properties.
LEMMA 2.1. ([20, 3]) The problem (2.1) has a unique smooth global solution wj(x,t)
for each § >0 such that

(1) w_ <wj(x,t) <wg, Opwi(z,t)>0, forzeR, t>0, §>0.

(2) The following estimates hold for all t>0, 6>0 and p €[1,00]:

|53 Dlar SCluw - )G+, (2:3)
195452 Pl <G a+t Sigmp, (2.4)

D20 (2.t | 48 1)
83:2 _5 Bx ’ (2:5)

(8) There ezists a constant 6 € (0,1) such that for § € (0,0¢], t >0,
ng(-,t) —wT(é) HLOO <C§t ! In(1+1t)+|Ind|].

As mentioned in the introduction, we will cut off the 3-rarefaction wave with
vacuum along the wave curve in order to overcome the degeneracies caused by
the vacuum. More precisely, for any ;>0 to be determined, we can get a state
(p,u,0) = (p1,u,,e° 17 ~1) belonging to the 3-rarefaction wave curve, where S=9, =
—(y—1)logpy +logf,. From the fact that the 3-Riemann invariant E:(;)(p,u,&)7 (1=
1,2) is constant along the 3-rarefaction wave curve, u, can be computed explicitly

by uu:§](1)(,0+,mr,9+)—&—21 /ﬁ/ﬂ—lesﬂ Now we get a new 3-rarefaction wave

(P2 up2,02)(§), (§=w/t) connecting the state (u,uu,eg/ﬂ_l) to the state (py,ur,01)

which can be expressed explicitly by
)\3(/1‘7’“”765#7_1)’ 5 < >\3(//L7u/jae§:u’y_1)7
)‘3(p;37u;339;3)(£): 67 )\3(/L,u#,es,[j,’y_l)Sfé)\3(ﬂ+,’d+79+)7
As(poug,by), > As(ps,uq,04)

(2.6)

and
S50 (o g 07 = 250 (w5 10 = 25 (04w, 04). (2.7)
Correspondingly, we can define the momentum function and the total internal energy
m2 = pfu? and er3 ==p,20, respectively. It is easy to show that the cut-off 3-

rarefaction wave (p;2,m;? e”)(;v /t) converges to the original 3-rarefaction wave with
vacuum (pr?’,mTS,eATg)(x/ t) in the sup-norm with the convergence rate p as p tends
to zero. More precisely, we have

LEMMA 2.2. There exists a constant uo € (0,1) such that for pe (0,ug], t>0,
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1(oy miye el ) (/1) = (p7,m" e70) (/1) || L= < Cp.

Now the approximate rarefaction wave (p,.s5,%u.6,0,,5)(z,t) of the cut-off 3-
rarefaction wave (p)2,u;?,0,2)($) to compressible Euler equations (1.6) can be defined
by

wy =A3(p4,u,0+), w_ = )‘3(/‘71‘#765#7_1)7
wg(t,:c):)\3(/3”,5,11”,5,9,1,5)(15,:5), (2.8)
D/~ - 7 1 1 5 ~_
Eé )(p,u,zsvuy,z?agu,(s)(xat) = Zi(’, )(P+,U+,9+) = E:(’, )(/Jvu,uveslu’y 1);
where wj is the solution of Burger’s equation (2.1) defined in (2.2). From now on,
the subscript of (ps, ., Us,.,05,.)(2,t) will be abbreviated as (p,u,0)(x,t) for simplicity.
Then the approximate cut-off 3-rarefaction wave (p,,0) defined above satisfies
pe+ (f)ﬂ)x =0,
(pu)e + (pu®+ Rpf) =0,

p 2

and the properties of the approximate rarefaction wave (ﬁ,ﬂ,@) are listed without
proof in the following lemma.

. (2.9)
+ [ﬁa(é+ %) +ap}

T
t

:O’

LEMMA 2.3. The approzimate cut-off 3-rarefaction wave (p,u,0) defined in (2.8)
satisfies the following properties:

(i) ﬁw(x,t):%(wg)w>0, forzeR, t>0,

_ 1 3=y _

P:c:\/mﬂ 2 Ug,

5=l 555G 4370 52-v(g )2
Pae= e P T Gee T g P (W)

g, — \/Ee‘%am and Opp = | 205 Ui + 57 (1),

(ii) The following estimates hold for all t>0, §>0, and p €[1,00]:

172 ()| e < Cwy —w_)V/P(5+1) 7117,

|z (- ) | Lo < C (5 +8) "1~ 1FY/P,
(i11) There exists a constant dg € (0,1) such that for 6 € (0,00], t>0,
[(p—p2,a—ul2,0—073) (1) || oo < OOt [In(141) + |Ind]].

3. Proof of Theorem 1.1

In order to prove Theorem 1.1, we regard the solution (p¢,u¢,60¢) as the perturba-
tion around the approximate rarefaction wave (p,,0). Consider the Cauchy problem
for (1.1) with smooth initial data

(p,uc, 0% (x,t=0)=(p,u,0)(z,0). (3.1)
Then we introduce the perturbation

(6.%,0)(y,7) = (p,u",0) (w,t) — (p,@,0) (x,1), (3.2)
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where y,7 are the scaled variables
Yy=—, T=-, (33)

and (p°,uc,0°) is assumed to be the solution to the problem (1.1). For the simplicity
of the notation, we will omit the superscript of (p¢,u¢,0¢) as (p,u,d) from now on if
there is no confusion of the notation. Substituting (3.2) and (3.3) into (1.1) and using
the defining relation for (5,%,0), we obtain

Gr + oy +udy =—f, (3.4)
pr + puthy + (v = 1)(09y + pCy) —byy = —y, (3.5)
PG+ puly — Cyy = —h, (3.6)
(¢,%,¢)(y,0)=0, (3.7)
where
F=ay0+p,0, o
9=+ ooy + (1 =1) (¢~ 222, (38)

h=(y— 1)(P9¢y +/)C7ly) +m/19y - éyy - (ay)2 — 2Uythy — (%)2

We seek a global (in time) and bounded (in L* norm) solution (¢,1,() to the
problem (3.4) —(3.7). To this end, the solution space for (3.4) —(3.7) is defined by

x0.7() = { (6.6.0](6.0.0) ORI R)). 6, € L2(0.71(€):L2(R).
Uy Gy € L0, () H'(R)) |

with 0< 71 (€) < 4o0.

THEOREM 3.1.  There exist positive constants €1 and C independent of €, such that
if 0<e<ey, then the problem (3.4)—(3.7) admits a unique global-in-time solution

(¢,,¢) € x(0,400) satisfying

. _ o o
sup /(p” 2674 g4 PTG Y24 (2 ) dy
T7€[0,4) /R p
+oo
+ / / (V24 R+ (7207 T U ()
0 R
2 2
+2 o SW dydr
PP
< Ce/2=79) | Ine|V/ 27, (3.9)
where a is given by (1.15). Consequently,

C€2(71+2)|1H€|1/4_’Y/2, if 1<y<2,

su ST || Lo < .
P )H(b( e {C’eé|lne|5(17)/4, it y>2,

T€[0,4+00
CesarD llne| =772, if 1<~<2,

i 3.10
Ceso Ine| /2, if y>2, (3.10)

sup w(~,7>||m<{
T€[0,400)

Ces |Ine|~OFD/4, if 1<y<2,
6'62&;12)|1ne|(1_2"*)/47 it v>2,

sup [|C(-,7) Lo < {

7€[0,400)
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In what follows, the analysis is always carried out under the a priori assumptions

sup  [o(,) o= <€, sup [[($y,¢)DIST,  sup [[C(,T) pe €07
0<r<ri(e) 0<r<ri(e) 0<r<mi(e)
(3.11)

with a given by (1.15), where [0,71(¢)] is the time interval in which the solution exists
(which may depend on ¢€). Take

p=€"|lne|, d=¢" (3.12)

in what follows. Then pu>Ce®, where C’zmax{?,@e‘g)ﬁ} if e< 1. Under the a
priori assumptions (3.11), we can get

p 3p 0 3
E<p< —<h< . 1
2 2=7= 2 (3.13)

In fact, if e<1, then one has

NN

=

)

N | =

p=p+¢=>p—|dll=>p—e">p—

and

oE

_ _ S |
p=p+o<pt|@llLe <p+e’<ptous

Similarly, note that 6=p" —1¢8 z,u'y_leg by the definition of the rarefaction wave
profile defined in (2.8), and it holds that

S
6=0+C20||Clim 200D 20—y 26—

N D
N D

and

_ _ _ _ S _ 0
0=0+C<0+Cllie <O+ 0V <0+ Tp T <04+ 5 =
Because the proof for the local existence of the solution to (3.4) — (3.7) is standard,
we omit it for brevity. We use the continuity argument to prove Theorem 1.1 just like
in our previous paper [3], and it is sufficient to show the following a priori estimates
for fixed e.

LEMMA 3.2. (A priori estimates) Letv>1 and (¢,v,¢) € x(0,71(€)) be a solution
to the problem (3.4) — (3.7), where 71(€) is the mazimum existence time of the solution
satisfying the a priori assumptions (3.11). Then there exists positive constants €3 such
that if 0<e<ey, then

- o o o
swp [ (700 S0 ) dy
0<r<71(¢e)/R P
71(€)
+f /R (V24 I+ TR+ (720 4+ T P+ ()
0

2 2
e
p p
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< Cet/2779) | Ipe|t/277, (3.14)
Consequently,

Ce2<71+2>|lne|1/477/2, it 1<vy<2,

su T || pee < 1
P )HQS( e {C’es|lne|3(1_7)/4, if v>2,

0<7<7 (e
3 .
Cesto [Ine| ™72, if 1<y<2,

_ 3.15
068@7*52)|1n6|77/2, if v>2, (3.15)

sup [l (-7l g{

0<7<7(€)

Ceblln~O+, i 1<y<,
CemT e, it >,

w7l < {

0<7<7 (e

where a is given by (1.15) and the constant C' is independent of € and 7 (€).

Proof. (Proof of Lemma 3.2) The proof of Lemma 3.2 consists of the following
steps.

Step 1. First, inspired by [13], we define the relative entropy-entropy flux pair
(n,q) as

{n=—9{p5—p5—Vx(pS)|x_x~(X—X)}, (3.16)
q=—0{puS —puS—Vx(pS)|x_x- (Y -Y)},
where
2
U
X=(p,pu,p|0+—)),
( 2( 2 )) 2 (3.17)
Y= (pu,pu +(7—1)p9,pu(79+7))-
A simple computation implies
2
u
(pS)P:S+@_73
u
(pS)m=—7, (3.18)
1
u2
where m = pu and E:p(9+ ?), and then we get
1 =p0—0pS+p[(S =)0+ zlu—al’]+ (v 1)pd
= (7= 1)p0D(2) + 2% + ph(4), (3.19)
q =un+(vy—1)(u—a)(pd — ph),
with
®(n):=n—Inn—1. (3.20)
Direct computations yield
o= S9] ma o (Ces e

A _ 0,¢¢, _ _
= %9yy+uyyw+ yecfy + %(u§+2uywy),
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where

1 =plu=+ (=)o () + =170 (2)

vy—1-1 _ P 0
0% plu— —1)logE +log =
S p(u U)((v )ng+og9)
. o N1 5 02
>(1— — )3 — Z — Y= ((v=— s e
> (1=)p(u—a)* + (=102 (5) + (- 1(2) ~ - (- Dog +1055) |
(3.22)
with € >0 to be determined later. We say that
é —
H>C [p¢2+5¢2+§§2]. (3.23)

In fact, let

=

I
YIS
I

y =
Under a priori assumptions (3.11), one has z,y ~1 as ¢ — 0. Considering the function

fla,y) =z —logz—1+(y—1)(y—logy—1) — — ((v—1)logy +logz),

dey
it follows that
1 1
fm(w,y)=;—w[1—((v—1)logy+10gw)],
1—-v1
fa:y(xvy)_ %y Eu

i) = (=) {1= 5= [(=1) = (= D 1ogy +1oga) }

It is easy to check that

f(lrl):faf(Ll):fy(lvl):Ov

and the Hessian matrix of f at point (1,1) is

1 1 1—7v
2 _ 2ey 2ey
Vf(lvl)_ 1—v ( 71)(17’}/—1) ’
2ey K 2ey

3
and is positive near the point (1,1) if we set e= 1 Then (3.23) is obtained under a
priori assumptions (3.11).
Then integrating the equation (3.21) over R! x [0,7] and using (3.13) imply
[ (7726 w0 47276 (raay
R

_’_/OT/R[uy(ﬁq—2¢2+pw2+p2—~yc2)+¢§+<§}dyd7'
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<C/ /‘Cayy+uyy¢+< 02 C(zwy i, + ycy)‘dydT
::Z (3.24)
i=1
By Sobolev’s inequality and Lemma 2.3, we can obtain
[ ¢
<Cu 2 [,

SCM_(W_I)Q/O T+15/e 91/2H1/2H61/2

N 1/4/ 1
O (;ﬂé) o T+6/€

1/2 1/2 1/2
gall el |l )

H1/2

a2l ar

Al

01/2

1 200 (7 1 \3| ¢ |3
<- dr p2=C|12d —
*8 H *3 / | CIPdr+Cu /O (T+5/6) 7/
gl am g [ W s e
8 0 8[0 71 (€)
1 4/3 |\ 3/2
(1-27)/3 d
+C’(,u /0 <T+6/e) T)
1
A e e Y R e L
8Jo 8 0,m1(e)]
1/2
1/2—~
+COu (5) , (3.25)
where we have used the fact that
1
C’,uiVCSfle:C’elf"*“”\lnerVSC\lnerVSé, if ex1.
By Sobolev’s inequality and Cauchy’s inequality, we can get
I = / / iy, dydr
<C [l ol 2,12 < / 57 e
<= 2dyd +0/ 234
<g | [otaaric [ ()" e -
1 /7 1 1 4/3 .
<= 2dydr +Cu™3 d
<5 [ vt ecu s Vol ()

1 1 3
gf/ /¢§dyd7+ / sup_[|vpuPdr+C( 5)
0 0.7
2 € 2
_8/ /¢ dydr+ - /O [0521(36)]”{11)” dT+C’( — 15) .
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Recalling Lemma 2.3, and Cauchy’s inequality, it holds that

&
|
\\]
7
SIEAS
I
<N
oW
<
IS
ﬂ

3

INA
N

W0 Cdydr +C / / P20 uddydr
0 R
iy [y

4 7 1 2
s [ (s
0

52— 2 .
wp ¢ dyd7+0u76

//ﬂyﬁQ_VCQdydT—i—Ce%_”ﬂlne|%_7,
o JrR

3

— S 55—
————

IA

(3.27)

IN

3

IN
<l

00| = 0ol = 0ol 00l = o] = 5

IN

where we have used the fact that

C%:C’el*aﬂmﬂner“’§C’e%7w|lne|%77, if ex1.
i

Similarly,
NS ¢
I, = /72u1/)+ﬂdyd7
* Ra( vty g )
iy VPP (4 + 07 21¢, ) dydr

(w§+f)dydr+c / ' / PR dydr (3.28)
A

3
T
i

(N8

IN

IN

Yo+ 9 dydT—i—C //uyp2 TCdydr

/ / z/ﬂ C2 dydTJr / / a,p* ¢ dydr.

Combining (3.24)-(3.28) and recalling (3.12) yields

ol = o= ook

IN

| (72020 47776y

+ / / (0245 + (7207 + 0%+ 2Py | dydr
0 JR
< Ce/2=70)|Ine|t/277, (3.29)

Step 2. We make use of the idea in [4] with modifications to derive the estima-
tion of ¢,. Differentiating (3.4) with respect to y and then multiplying the resulted
equation by ¢,/p® yields

(2 +

2
(2? ) %52% i (Uyyd+ Pyyth +2pythy). (3.30)
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Multiplying (3.5) by ¢, /p? gives

2 0 2
(z/xby) B (z/xbr _ 9 ) (- 1) (o )Cy¢y %y%
o ¢ b ww, Cur e
— Yy¥ =~ Yy — = Y ¢
- + 2 i + Py + pyly — — pu, =—g-%.
P Py P Pyy — P Pyly 02 Py 02 02
(3.31)
Adding (3.30) and (3.31) together, then integrating the resulting equation over R x

[0,7] implies
/ <¢2 w(% dy+/ / —1 (7—1)%613/617'

/ / wz"’__ywi_Q_ 1#;/13, ﬁyyq{f py“yi¢+ﬁ_y¢p¢y
—% (ﬂyy¢+ﬁyy¢+2ﬁy¢y) - g% }dydr. (3.32)
Combining (3.29) and (3.32) leads to
/R (?+pw2+p”‘2¢2+p2‘”<2)dy
+/T/ ¢§+ﬁ1‘”<§+ﬁ”‘3¢§+(ﬁy‘2¢2+ﬁw2+ﬁ2—7c2)ay)dyd7
<[ [ oSl el 2] o
20 [ (o 2| o 22|+ o 222 [ 2 Yt

+C//’g

= ZJi +Cell/2779) | In¢|V/ 277,

i=1

(1/2=ya) |1 ¢ 1/2—7 (3.33)

Now we estimate the terms on the right-hand side of (3.33) one by one. By Lemma
2.3, (3.13), and Cauchy’s inequality, it holds that

n<c / /R (W 1V 720+ VB =38, V50| + [, VB dydr
0
e / / 51y D73, |y |dydr
1
~y—3 —y—2
(16 ,u75 / / (]5 +w dydT—l-C’ / /uy ¢ +p1/J YdydT
gf/ /p”’_3¢2dyd7+06(1/2_7a)|1ne|1/2_7. (3.34)
sl J” %
Similarly,

J2<C/ / ’_lﬂ—&—p 'yuy)puyz/} dydt
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w0 [0 (o)t ) Vo, | apoldydr
e / 50w g =2oldyar
e / |7l o= oldyr (3.35)

=3 42 = ! —y=2,2 | =2
<i | [riairot [ a2 pgr

gf/ /,m*%‘zdydwce(l/?ﬂa)|1ne|1/2ﬂ.
8 0 R Y

Finally, one has

17 T
J3S*/ /ﬁ773¢§dyd7'+0/ /ﬁfl*WQQdydT. (3.36)
8Jo Jr 0o Jr

Recalling (3.8), (3.13), and Lemma 2.3, one can get
9] < ltyy|+1puy | +C(|py ¢l + 1,07 2))
_ = _3—7 a1 (3.37)
<lagyl+Cuy(|py|+[p 7 ¢+ p77 ).

Thus the last term in (3.36) can be estimated by

/ / p Y dydr

<C//p dydT+C// TVl (pV PP 4 pyp® + p () dydr
R

<o~ / ||uyy|| ar+0—= //u P2 4 R P dydr ¢

3.38)
<cu(5) +g [ [ mm e o o iy
<Celt/2= ’Ya)‘ln€|1/2 v,

Substituting (3.34)-(3.36) and (3.38) into (3.33) and recalling (3.12), it holds that
¢2
[ (72 vt 4+ 2 ay
R P

+ /0 /R [w§+ﬁ1‘”<§+ﬁ”‘3¢>§+(ﬁ”‘%f+ﬁ¢2+ﬁ2‘”<2)ﬁy}dyd7
<Ce/ 290 et 277 if ex 1. (3.39)

Step 3. Finally, we estimate sup ¢, || and sup||(,||. For this, firstly multiplying
(3.5) by —tby,/p gives

,(/}2 ,(/}2 ~ 2 2 ’l/) 3 ’l/)
( 5 ) (1/Jy1/1'r +U*) Qy +— p 9% Qy +(y=1)(09y +pCy) zy

(3.40)
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Then integrating the above equation over R! x [0,7] yields

/R1/J§dy+/0T/R<ayw§+¢§y)dydT

t (3.41)
- (62— 20 4 (5 108, +.6,) 222y
o JRY P 2 R

First, one has

[ ] =100, o) 2ayar]
2 5.0 4-2
1 Yyy o Sy
<3 /O dydr+ / / 62+ g)dydT (3.42)
Sf‘/ /#dydT—i—Ce(l/Q*”“)|lne|1/2*”’.
8Jo Jr P
Then it follows from (3.38) that

[hopast=i [ hoe] oo

/ /1/}yy —|—O€(1/2 'ya)|1n€|1/2 v

0

(3.43)

Furthermore, we can compute that

’/ /idyd7‘<0/ [yl 1y 2 dr
//%ydydfw/ I 1% r
// yydydT+CT€S%I; ||¢yH3/ oy |2 (3.44)

//wyydydwc/ 14, |2dr,

where in the last inequality we have used the a priori assumptions (3.11).
Substituting (3.42)-(3.44) into (3.41) and using (3.13) and (3.39), it holds that

T 2
/ Gdy+ / / (%1/)5+@)dydTg06(1/2_”“)|1ne\1/2_7. (3.45)
R 0 JR p

Secondly, multiplying (3.6) by —(y,/p leads to
<2 5 G G G
(2) (cyg —) ity = (3.46)

Integrating the above equation over R! x [0,7] yields

/ b g +/T/R(7“‘y25+§i@f)dyd72/oT/R(h<y;—%)dydr. (3.47)
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By Sobolev’s inequality and (3.45), we can get

/ U gyir| < / ¥ by 1 1y Pl

A/%dyd”of [yl 1G5 dr
/ / wyydydfwosgpe el Gy 11* / / S gyar
’8/ /ﬂdd +C// ydydT
(3.48)

where in the last inequality we have used the a priori assumptions (3.11). Recalling
(3.8), (3.13), and Lemma 2.3, one can get

11 < C{ Byl +2) + 1y (15C] + [y | + 1003 0] + 1000 |+ 2. (3.49)

By Cauchy’s inequality, it holds that

T 2 2
/ nyd dr / / Cy_ydydT—i-C’/ hfdydT
o JR P R P

1 /7 <2 4
== Wdydr+y L;.
8/0 /R p ;

Now we estimate the terms on the right-hand side of (3.50) one by one. By Lemma

2.3, one has
Ly =/ /ﬁ_l(\éyy\z—i-ﬂ;)dydr
0o JR

1 [T a — 2 _1(€)?
<ot [l i+l Par <o (5)
0

(3.50)

(3.51)

Similarly,

<C/ / AP +r+ POy dydr
cu~?! / /¢ dydT—i—C/ / 7 g (PP P+ ) dydr (3.52)

Yodydr+C— ay (p* 77 ¢+ py?)dydr
() [ fmarres [,

IN

IA

and

Ls= / / p P 0P dydr <C / / Yodydr. (3.53)
0 R 0 R
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By Sobolev’s 1ncquahty and recalling (3.45), we can get

vi= [ [ Bayir<cu [ Plelor
<t [ [ g scu [ an
o JrR P

3.54
<O Ind O s | [ vaavar (3:54)

[0,71(€)
<Cel'21Ine|' /277 4 Ot 20D |lne|_1_27/ /wgdym
< Ce(l/?*w)“ndl/?*v7 oo
where in the last inequality we have used (3.45) and the fact that
7200 ) I T2 <1, i ex.

Substituting (3.48) and (3.50)-(3.54) into (3.47), we can get
2 r =2 2
/ Cydy+/ / (%4_@)@6”Sce(l/%w)undl/?ﬂ_ (3.55)
R 2 0o JR\ 2 P

Therefore, (3.14) can be derived directly from (3.39), (3.45), and (3.55). It follows
from (3.14) that if 1 <y <2, then

sup  [lo(, )l <V2 sup  [o(7)[V 216y ()M

0<7<71(€) 0<7<71(€)

<C sup /ﬁ”*%zdy
0<7<71(€) R

1
=(Ce2(v+2) |1n6|1/4_7/2

4

(/ ﬁ3¢§dy> o (3.56)
R

and

sup  [ICC, )z~ <v2 sup [ICC )Y G, (o)1

0<7<71(€) 0<7<71(€)

<o ® s ([ #ocay) ([ Ga) G
0<7<7y(€) R R

:Ce§|lne|fl%w.

If v>2, then
sup  |lo(-, )||L°°<\f sup ||¢( DIy ()l
0<7<71(€) <7<71(€)
1
1 1
<op'® s | [pday) ([ posay) G
0<7<71(€) R R
=Ce¥|Ine* T
and

sup  [ICCo7)llz= V2 sup GGG ()12

0<7<71(€) 0<7<71(€)

<C s < / p”&dy) ( / <§dy> (3:59)
0<7<7(¢€) R R

= Cez(g;j’z) |Ine] =
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Meanwhile we also have

sup (|||l +11¢y 1) < CeG=5) | Ine|/47/2 <1, (3.60)

T€[0,71(€)]

So the a priori assumptions (3.11) are verified if e< 1. The proof of Lemma 3.2 is
completed. O

Note that the obtained a priori estimates (3.56)-(3.60) are better than the a priori
assumptions (3.11) in the maximum time interval [0,71(¢)]. Based on these a priori
estimates, we can claim 71 (€) = 0o. If 71 (€) < 0o, then by again using the local existence
at time 7=71(€), we can find anther time 75(e) > 71 (€) so that the solution satisfies
the assumptions (3.11) in the time interval [0,72(€)] which contradicts the assumption
that 71 (€) is the maximum time. Therefore we extend the local solution to the global
solution in [0,00) for small but fixed e.

Proof. (Proof of Theorem 1.1) It remains to prove (1.14) with a, b, and ¢
given in (1.15)-(1.17) respectively. From Lemma 2.2, Lemma 2.3 (iii), Lemma 3.2,
and recalling that ©=¢€%|lne| and § =€, it holds that for any given positive constant
[ there exists a constant C; >0 which is independent of € such that

w0+
tZI;HP( )= ()]

< s (1607~ +sup| a0 - o2 )
T€[0,400) t>l

H +sup
Lo 4>

3 i _ A3 i
Pu (t) P (t)HLOO
@) 672(”*1“)|ln6|1/4_7/2+5|1n5|+u), if 1<y<2,

C e%|1ne|3<1—7)/4+6|1n5|+M)’ it r>2,
S Cl€a|1n€|7

a0 )],

t>1
<sup ([m(et) ~m(et)lm + ety iz ()| e (3) = (5] )
<sup () =)o+ |me0) =i (3|, + i (7) =7 (7).
<C sup (||¢HLOO+||¢|\LOO)+supHm(.7t)—mLs(;)H

A >0 t/) Lo

73 ; _ T3 ;

i () )l

<Cie’|Inel,

and
sup||e(-,¢ —ﬁ(i)H

co (Kottt} gt -F G

+aup e (5) -5 ;)|
tz? A\t t/ e

< Cie’|Ine|.
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Thus the proof of Theorem 1.1 is completed. ]
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