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COMBINATORIAL APPROACHES TO HOPF BIFURCATIONS IN

SYSTEMS OF INTERACTING ELEMENTS∗

DAVID ANGELI† , MURAD BANAJI‡ , AND CASIAN PANTEA§

Abstract. We describe combinatorial approaches to the question of whether families of real
matrices admit pairs of nonreal eigenvalues passing through the imaginary axis. When the matrices
arise as Jacobian matrices in the study of dynamical systems, these conditions provide necessary
conditions for Hopf bifurcations to occur in parameterised families of such systems. The techniques
depend on the spectral properties of additive compound matrices: in particular, we associate with
a product of matrices a signed, labelled digraph termed a DSR[2] graph, which encodes information
about the second additive compound of this product. A condition on the cycle structure of this
digraph is shown to rule out the possibility of nonreal eigenvalues with positive real part. The
techniques developed are applied to systems of interacting elements termed “interaction networks”,
of which networks of chemical reactions are a special case.
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1. Introduction

The material in this paper can be motivated both by abstract questions in linear
algebra about the spectra of sets of matrices, and by the study of asymptotic be-
haviour in dynamical systems. The connection is quite natural: given a sufficiently
smooth dynamical system, the structure or spectra of the Jacobian matrices associ-
ated with the system may determine certain behaviours, for example the possibility of
various local bifurcations, and more generally the possibility of multiple steady states,
oscillations, or chaos. Given a set X and a map J : X → R

n×n, define

J = {J(x) : x ∈ X} and SpecJ =
⋃

x∈X

Spec J(x).

We may ask, for example:

Q1. “Is 0 ∈ SpecJ ?”

Q2. “Does SpecJ \{0} intersect the imaginary axis?”

Q3. “Does the nonreal part of SpecJ intersect both left and right open half-planes
of C?”

and so forth. The best-known special case is where J is a “qualitative class”, namely
it consists of all matrices with some sign pattern, in which case Q1 reduces to the
well-studied combinatorial problem of characterising sign nonsingular matrices [6]. By
an easy argument, given convex open Y ⊆ R

n, and a C1 function f : Y → R
n, sign

nonsingularity of the Jacobian matrices Df in fact implies injectivity of f [12]. Apart
from such applications, exploration of the zero patterns of sign nonsingular matrices
has led to a rich combinatorial theory [22].
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1102 HOPF BIFURCATION IN INTERACTION NETWORKS

If J arises as the Jacobian matrices of some family of vector fields, a negative
answer to either Q2 or Q3 implies that this family does not admit Hopf bifurcation.
In this paper it will be Q3 which is of primary interest.

The philosophical approach taken is quite analogous to that taken in the study
of sign nonsingularity. As a general principle, when posing some question about a
set of matrices J , one hopes to associate with elements of J discrete objects such as
graphs which are constant or vary little over J , and then reduce the question to some
finite computation on these objects. The most obvious example is again when J is a
qualitative class, which can naturally be associated with a signed digraph, or a signed
bipartite graph. However, more generally, products of matrices which have constant
sign pattern (or some of which are constant) also arise naturally in applications. To
see why it is worth going beyond qualitative classes, we introduce the notion of an
“interaction network” as described in [3].

1.1. Interaction networks. Consider a system consisting of n species with
values (amounts, concentrations, populations, etc.) x1, . . . , xn ∈ X ⊆ R. Define
x = (x1, . . . , xn)

t ∈ Xn to be the state of the system. Suppose that amongst these
species there are m interactions, each involving some nonempty subset of the species,
and occurring at rates vi : X

n → R (i = 1, . . . ,m) dependent on the state x, but inde-
pendent of time. Define the rate function v : Xn → R

m by v(x) = (v1(x), . . . , vm(x))t.
Finally, for i = 1, . . . , n, let fi : R

m → R describe the total rate of change of species i
as a function of the interaction rates. The evolution of the system is then given by

ẋi = fi(v(x)), i = 1, . . . , n, (1.1)

or more briefly, defining f : Rm → R
n by f(y) = (f1(y), . . . , fn(y))

t,

ẋ = f(v(x)). (1.2)

Assume that f and v are C1 functions, so that by the chain rule,

D(f(v(x)) = Df(v(x))Dv(x). (1.3)

For our purposes here, the important point is that the right hand side of an interaction
network (1.2) is defined as a composition of functions, and hence its Jacobian matrices
have a natural factorisation (1.3). This factorisation was the starting point for quite
general combinatorial approaches to questions of injectivity and multistationarity in
interaction networks in [3], and the treatment here relies heavily on the ideas first
presented there.

Remark 1.1. (1.2) is not restrictive because an arbitrary system of autonomous first
order differential equations can be represented in this way by choosing, for example,
one of v or f to be the identity function. Thus casting a system as an interaction
network cannot be done uniquely, and can be seen as a formalism for studying certain
questions about the system, rather than a categorisation of the system. However the
usefulness of this construction is most apparent when f and v are defined by natural
physical constraints as we shall see below.

1.2. Chemical reaction networks. O.D.E. models of systems of chemical
reactions, termed “chemical reaction networks” or CRNs, naturally take the interac-
tion network form: in fact (1.2) reduces to

ẋ = Γv(x). (1.4)
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where Γ is now a constant n ×m matrix, termed the “stoichiometric matrix” of the
system, and v(x) is the vector of reaction rates. As the state variables are chemical
concentrations, the natural state space is the nonnegative orthant in R

n, i.e. x ∈ R
n
≥0.

The Jacobian matrices become

ΓDv(x).

Moreover, under mild physical assumptions, the sign pattern of Dv may be related
to that of Γ. For example, if x ∈ intRn

≥0, no chemical occurs on both sides of any
reaction, and all chemical reactions are reversible, then we expect Dvji to have the
same sign as −Γij . This will be discussed further below.

1.3. A roadmap for the paper. The results will be developed as follows.
In Section 2 a considerable volume of preliminary material is gathered for subsequent
use. This includes definitions, notation, and known results, along with a few new but
relatively straightforward lemmas. Section 3 constructs an object termed the “DSR[2]

graph”, which is the central tool required for everything to follow. This is followed
in Section 4 by a series of claims which can be made immediately from observation
of the DSR[2] graph combined with the results in Section 2, and without the need for
deeper theory. Section 5 contains technical results on the DSR[2] graph which allow,
in Section 6, some nontrivial extensions of the results of earlier sections. Section 6
also describes limitations of the theory developed, and suggests the way forward.

Examples are interspersed throughout, and we return to examples to note how
the analysis becomes more sophisticated or more rapid as the theoretical tools are
developed. Similarly we sometimes prove results which later become corollaries of
deeper results; although this adds to the length of the paper, it is intended to make
the material more transparent. Remarks linking results here to related published
work, and also to the study of CRNs, are interspersed throughout. The frequent
reference to CRNs reflects the fact that although these systems are only one possible
application for the theory, they were an important motivator for this work.

2. Preliminaries

2.1. Some background on matrices. This paper is concerned with sets of
real matrices. These can be naturally identified with subsets of Euclidean space, thus
inheriting topological properties such as openness, closedness, and connectedness. We
begin with the most fundamental of these sets: a matrix M ∈ R

n×m determines the
qualitative classQ(M) ⊆ R

n×m consisting of all matrices with the same sign pattern
as M , i.e., X ∈ Q(M) if and only if (Mij > 0) ⇒ (Xij > 0); (Mij < 0) ⇒ (Xij < 0);
and (Mij = 0) ⇒ (Xij = 0). The closure of Q(M) will be written Q0(M), while
the closure of a more general M ⊆ R

n×m will be written M. A square matrix M is
sign nonsingular if all matrices in Q(M) are nonsingular and sign singular if all
matrices in Q(M) are singular [6].

Remark 2.1. Jacobian matrices of CRNs. Returning to (1.4) and the subse-
quent discussion, the notation developed above allows us to abbreviate the condition
“Dvji has the same sign as −Γij for all i, j” as Dv ∈ Q(−Γt). More generally, for
systems of reactions where no chemical occurs on both sides of any reaction, we expect
the condition

Dv ∈ Q0(−Γt) (2.1)

to hold on the entire nonnegative orthant, including the boundary. Even when this
does not hold (namely when some chemical occurs on both sides of some reaction),
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provided every reversible reaction is treated as a pair of irreversible reactions, we still
expect Dv to belong to the closure of a qualitative class which can be inferred from
the network structure. Thus quite generally, the Jacobian matrices of a CRN take
the form of a constant matrix times a matrix belonging to some qualitative class.

2.1.1. Submatrices, minors, and terms in a determinant. Given an
n × m matrix M , and nonempty α ⊆ {1, . . . , n}, β ⊆ {1, . . . ,m}, define M(α|β) to
be the submatrix of M obtained by choosing rows of M from α and columns from
β, and (provided |α| = |β|) M [α|β] to be the corresponding minor of M . M [α] will
be an abbreviation for the principal minor M [α|α]. Given an n × n matrix M and
some permutation σ of {1, . . . , n} denote by P (σ) the sign of this permutation, and
by M(σ) the term P (σ)Πn

i=1Miσi
in detM , so that detM =

∑

σ M(σ).

2.1.2. The Cauchy-Binet formula. Consider an n × k matrix A and an
k × m matrix B for arbitrary positive integers n,m, k. The Cauchy-Binet formula
([11] for example) tells us that for any nonempty α ⊆ {1, . . . , n}, β ⊆ {1, . . . ,m} with
|α| = |β|:

(AB)[α|β] =
∑

γ⊆{1,...,m}
|γ|=|α|

A[α|γ]B[γ|β]. (2.2)

This formula for the minors of a product is central to many of the matrix and graph-
theoretic results developed and cited below. This formula also has a briefer statement
in terms of compound matrices mentioned later.

2.1.3. Matrix spectra and stability. Given a square matrix M , define
Spec(M) to be the multiset of eigenvalues of M . Denote by C− (resp. C−) the open
(resp. closed) left half-plane of C with C+ and C+ similarly defined. A square matrix
M whose spectrum lies entirely in C+ (resp. C+) is positive stable (resp. positive
semistable). M is Hurwitz if all of its eigenvalues lie in C−, which occurs if and
only if −M is positive stable. P -matrices are square matrices all of whose principal
minors are positive. P0-matrices are matrices in the closure of the P -matrices, i.e.,
all of whose principal minors are nonnegative. Here a P -matrix (or P0-matrix) will
refer to a real matrix. Of particular importance will be the following restrictions on
the spectra of P0-matrices and P -matrices proved in [14].

Lemma 2.2. A complex number λ = reiθ is an eigenvalue of an n × n P0-matrix if
and only if r = 0 or

|θ − π| ≥ π/n. (2.3)

λ is an eigenvalue of an n× n P -matrix if and only if r > 0 and

|θ − π| > π/n.

This implies, in particular that no P0-matrix can have a negative real eigenvalue.
Obviously, if −J is a P0-matrix, then J cannot have a positive real eigenvalue. We will
also need the following well-known fact about the spectrum of a product of matrices.
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Lemma 2.3. Given A ∈ R
n×m, B ∈ R

m×n, Spec(AB)\{0} = Spec(BA)\{0}.

2.1.4. Compound matrices. We define Λk
R

n as the kth exterior power of
R

n. In particular, Λ0
R

n = R, Λ1
R

n = R
n, and for k ≥ 2, the elements of Λk

R
n are

finite formal linear combinations of elements of the form

u1 ∧ u2 ∧ . . . ∧ uk,

where ui ∈ R
n, and “∧” is the wedge-product (see [10] for example). Let M denote

a linear transformation from R
m to R

n, and also its matrix representation in some
basis. M determines transformations from Λk

R
m to Λk

R
n in two important ways

[17]:

1. M (k) : Λk
R

m → Λk
R

n is defined by

M (k)(u1 ∧ · · · ∧ uk) = (Mu1) ∧ · · · ∧ (Muk).

In this case the map M (k) is termed the kth exterior power of M , or the kth
multiplicative compound of M . Choosing some bases for Λk

R
m and Λk

R
n,

the resulting
(

n
k

)

×
(

m
k

)

matrix will also be denoted M (k).

2. If m = n, M [k] : Λk
R

n → Λk
R

n is defined by

M [k](u1 ∧ · · · ∧ uk) =

k
∑

i=1

u1 ∧ · · · (Mui) ∧ · · · ∧ uk.

In this case the map M [k] is termed the kth additive compound of M . Choos-
ing a basis for Λk

R
n, the resulting matrix is

(

n
k

)

×
(

n
k

)

, and will also be denoted

M [k]. Note that (−M)[2] = −(M [2]), so we can write without ambiguity
−M [2].

Remark 2.4. Multiplicative and additive compound matrices can easily be shown
to satisfy the relationships (AB)(k) = A(k)B(k) (provided A and B are of dimensions
such that AB makes sense) and (A + B)[k] = A[k] + B[k] (provided A and B are
square and of the same dimensions). (AB)(k) = A(k)B(k) is in fact a restatement of
the Cauchy-Binet formula in terms of multiplicative compounds.

Remark 2.5. When referring to a compound matrix we assume without comment
that the dimensions are such that the matrix exists. For example, if M [2] mentioned,
it is to be assumed that M is a square matrix of dimension at least 2.

2.1.5. Spectra of compound matrices. Compound matrices of a square
matrix M ∈ R

n×n appear naturally in the study of various questions on the stability
of differential equations (see [21] for example). We will refer to some of this theory,
but most important here are basic spectral properties of compound matrices: for
k = 1, . . . , n, the

(

n
k

)

eigenvalues of M (k) are precisely products of all sets of k distinct

elements of Spec(M), while the
(

n
k

)

eigenvalues of M [k] are the sums of all sets of k
distinct elements of Spec(M). Here it is second additive compound matrices which
will be of most interest: if Spec(M) = {λ1, . . . , λn} then

Spec(M [2]) = {λi + λj : 1 ≤ i < j ≤ n}.

Second additive compound matrices are sometimes presented by means of a bialternate
product [13]. This reference also demonstrates that second additive compounds are
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natural objects to consider when studying Hopf bifurcation. For us, the following two
observations are important.

Lemma 2.6. If M is a real square matrix and M [2] is nonsingular, then SpecM\{0}
does not intersect the imaginary axis.

Proof. If SpecM\{0} intersects the imaginary axis, then M has a pair of
eigenvalues ±iω where ω 6= 0. These sum to zero and hence M [2] is singular.

Lemma 2.7. If M is a real square matrix and M [2] is a P0-matrix, then the nonreal
part of SpecM (i.e. SpecM\R) does not intersect C−. If −M [2] is a P0-matrix, then
the nonreal part of SpecM does not intersect C+.

Proof. If the nonreal part of SpecM intersects C−, then M has a pair of
eigenvalues a± iω where a < 0. These sum to 2a < 0 and hence M [2] has a negative
real eigenvalue, forbidden by Lemma 2.2. The second statement follows immediately
because the spectrum of −M [2] is simply the reflection in the imaginary axis of that
of M [2].

Remark 2.8. If M [2] is a P0-matrix, then in fact Lemma 2.7 extends immediately as
follows: given any nonnegative diagonal matrix D, the nonreal part of Spec (M +D)
does not intersect C−. This follows because (i) (M +D)[2] = M [2] +D[2], (ii) D[2] is
itself a nonnegative diagonal matrix, and (iii) the set of P0-matrices is closed under the
addition of nonnegative diagonal matrices. This fact is of importance in applications
to CRNs, where diagonal terms represent arbitrary degradation or outflow of chemicals
(see [7, 4]). This will be commented on further below.

We also have the following two lemmas about stability.

Lemma 2.9. Consider a square matrix M . If both M and M [2] are P0-matrices (resp.
P -matrices), then M is positive semistable (resp. positive stable).

Proof. Because M is a P0-matrix (resp. P -matrix) by Lemma 2.2 the real part
of SpecM does not intersect C− (resp. C−). Because M [2] is a P0-matrix (resp.
P -matrix), by Lemma 2.7, the nonreal part of SpecM does not intersect C− (resp.
C−). Combining these two facts, M is positive semistable (resp. positive stable).

Remark 2.10. Continuing from Remark 2.8, if the conditions of Lemma 2.9
hold, namely both M and M [2] are P0-matrices (resp. P -matrices), then given any
nonnegative diagonal matrix D, M +D is positive semistable (resp. positive stable).

Lemma 2.11. Consider a set M ⊆ R
n×n which is path-connected. Suppose that for

each M ∈ M, both M and M [2] are nonsingular and that M includes a positive stable
(resp. Hurwitz) matrix. Then M consists entirely of positive stable (resp. Hurwitz)
matrices.

Proof. Let M ′ ∈ M be a positive stable (resp. Hurwitz) matrix which exists
by assumption. Suppose M includes a matrix M ′′ which fails to be positive stable
(resp. Hurwitz). Because M is path-connected, and eigenvalues of a matrix depend
continuously on the entries of a matrix, there must lie, on any path in M connecting
M ′ and M ′′, a matrix M ∈ M with some eigenvalue on the imaginary axis. However,
because both M and M [2] are nonsingular, by Lemma 2.6, M has no eigenvalues on
the imaginary axis.
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Remark 2.12. The stability criterion in Lemma 2.11 is closely related to that of Li
and Wang in [18], and indeed, it is possible to use the spectral properties of compound
matrices to develop other stability criteria for sets of matrices which can be more useful
in practice than attempting directly to check the Routh-Hurwitz conditions.

2.2. Hopf bifurcations. A one-parameter family of vector fields f(x, µ)
generically undergoes a Poincaré-Andronov-Hopf bifurcation (from here on abbrevi-
ated to “Hopf bifurcation”) if there exists some (x0, µ0) such that f(x0, µ0) = 0,
Df(x0, µ0) has a pair of imaginary eigenvalues, and moreover these eigenvalues cross
the imaginary axis as µ varies through µ0 ([25] for example). Thus vector fields can
be shown to forbid Hopf bifurcation either if the nonzero spectrum of each Jacobian
matrix avoids the imaginary axis, or the nonreal spectrum of each Jacobian matrix
avoids C− or C+.

Let R and ℑ be the real and imaginary axes in C. As indicated earlier, we
are particularly interested in matrix products. In particular, when studying Hopf
bifurcation, we are led to the following questions:

1. Given A ⊆ R
n×m and B ⊆ R

m×n, is Spec(AB)\{0} ∩ ℑ = ∅ for all A ∈
A, B ∈ B?

2. Given A ⊆ R
n×m and B ⊆ R

m×n, is Spec(AB) ⊆ R ∪ C+ for all A ∈ A, B ∈
B?

Because under certain assumptions, the Jacobian matrix of a CRN is of the form
−AB where B ∈ Q0(A

t) (see Remark 2.1), when analysing the behaviour of CRNs
we are led to the following questions:

1. Given A ∈ R
n×m, is Spec(AB)\{0} ∩ ℑ = ∅ for all B ∈ Q0(A

t)?

2. Given A ∈ R
n×m, is Spec(AB) ⊆ R ∪ C+ for all B ∈ Q0(A

t)?

In this paper we begin the process of developing tools which provide answers to
these questions.

Remark 2.13. From Lemma 2.7, the reader may already guess that our main
tools for ruling out Hopf bifurcations here will involve proving that J [2] or −J [2] is a
P0-matrix for each allowed Jacobian matrix of some system. Continuing the theme
of Remark 2.8, if Hopf bifurcation is ruled out for a chemical system with Jacobian
matrices J because −J [2] is a P0-matrix for all J ∈ J , then it is in fact ruled out even
if arbitrary degradation or outflow reactions are added. (Analogous statements follow
replacing “−J [2]” with “−J” and “Hopf bifurcation” with “saddle-node bifurcation”,
but this is well-studied [3, 5] and not the theme of this paper.)

As indicated earlier, second additive compounds arise naturally in the study of
Hopf bifurcations, a theme discussed thoroughly in [13]. In that work, the focus lies
on devising continuation methods to detect Hopf bifurcations, with J [2] occurring
in algebraic systems which augment the equilibrium condition. On the other hand,
our goal here is to present conditions which rely on combinatorial features of J [2]

to forbid Hopf bifurcation. These conditions translate into graphical requirements
involving DSR graphs, which are discussed next.

2.3. The DSR graph. A class of generalised graphs, sometimes termed
SR graphs and DSR graphs, have become useful tools in the study of properties of
interaction networks, such as multistationarity and stability [8, 4, 3, 1, 9, 20].

DSR graphs for general interaction networks were constructed originally in [3].
The definition presented here involves some minor modifications of that in [3] for ease
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of presentation and maximum generality. Given A ∈ R
n×m and B ∈ R

m×n, the DSR
graph GA,B is defined as follows: we begin with a signed bipartite digraph on n+m
vertices, S1, . . . , Sn, termed S-vertices, and R1, . . . , Rm, termed R-vertices, with arc
RjSi if and only if Aij 6= 0, and arc SiRj if and only if Bji 6= 0. The arc RjSi is said
to have R-to-S orientation and is given the sign of Aij ; the arc SiRj is said to have
S-to-R orientation and is given the sign of Bji. In addition:

1. A pair of antiparallel edges of the same sign are treated as a single undirected
edge, so that each edge of GA,B either has S-to-R orientation or R-to-S ori-
entation or both, in which case we say that the edge is undirected. When
discussing the degree of a vertex, an undirected edge incident into the vertex
contributes exactly 1 to the degree.

2. It is useful to give the (directed or undirected) edge RjSi associated with a
nonzero entry Aij the label |Aij |. We refer to this label of an edge e as l(e).
If e has only S-to-R orientation (i.e. it is associated only with an entry from
B), then we formally define l(e) = ∞. This choice of labelling convention
springs from the fact that we can generally consider A to be constant if the
system being studied is a CRN (see Remark 2.1).

Remark 2.14. What is here termed GA,B would be GA,Bt in the terminology of
[3]. Further, the construction here is presented for a single pair of matrices rather
than directly for sets of matrices; note however that if A is fixed and B varies over
a qualitative class, then the DSR graph remains constant. On the other hand, if A
varies (within a qualitative class), then varying edge labels can be replaced with the
formal label ∞.

Example 2.15. Below we illustrate the DSR graph GA,B associated with two ma-
trices A and B. Negative edges (corresponding to negative entries in the matrices)
are shown as dashed lines, while positive edges are bold lines, a convention which will
be followed throughout this paper. To make the construction more transparent, an
intermediate stage is shown where separate signed digraphs GA,0 and G0,B are con-
structed from A and from B: GA,B can be regarded as the “superposition” of these
two digraphs. Edge-labels are associated only with A: an edge imported only from B
is labelled ∞.

A =





−1 3
0 2

−6 1



 , GA,0 =

S1 R2 S2

R1 S3

3

6

1 1

2

Bt =





−6 2
0 2
8 0



 , G0,B =

S1 R2 S2

R1 S3

S1 R2 S2

R1 S3

3

6

∞

1 1

2

GA,B

Remark 2.16. A special case relevant to the study of CRNs is when the matrices
A,B satisfy B ∈ Q(At). In this case all edges of GA,B are undirected, and in fact
GA,B = GA,At . This graph can also be referred to as the SR graph corresponding
to the matrix A.

To present the main results about DSR graphs, some further definitions are
needed.
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2.3.1. Walks and cycles. A walk W in a digraph is an alternating sequence
of vertices and edges, beginning and ending with a vertex, and where each edge in
W is preceded by its start-point and followed by its end-point, each vertex (except
the first) is preceded by an edge incident into it, and each vertex (except the last) is
followed by an edge incident out of it. Here we allow a walk W to repeat both vertices
and edges, and its length |W | is the number of edges in W , counted with repetition.
If the first and last vertex are the same, the walk is called closed. In what follows
we may refer to walks by their sequence of edges, or vertices, or both and we will
say that a walk is empty and denote it as ∅ if it contains no edges (an empty walk
may include a single vertex). When used without qualification, “walk” will mean a
nonempty walk. The sign of a walk is defined as the product of signs of the multiset
of edges in the walk. The empty walk is formally given the sign +1.

A closed nonempty walk which does not repeat vertices (except in the trivial sense
that the first and last vertices are the same), is called a cycle. Clearly a cycle has
no repeated edges. A DSR graph with no cycles will be termed acyclic: note that
(u, v, u) is considered a cycle in a DSR graph if and only if uv and vu are directed
edges with different signs and so are not treated as a single edge.

2.3.2. Parity of walks, e-cycles and o-cycles. As DSR graphs are bipartite
objects, each closed walk W has even length. Any walk of even length can be given
a parity P (W ) defined as:

P (W ) = (−1)|W |/2sign(W ).

If P (W ) = 1, then W is termed even, and if P (W ) = −1, then W is termed odd. A
cycle C is termed an e-cycle if P (C) = 1, and an o-cycle if P (C) = −1.

2.3.3. Closed s-walks and s-cycles. A closed walk W = (e1, e2, . . . , e2r) is
an s-walk if each edge e in W has an associated label l(e) 6= ∞ and

r
∏

i=1

l(e2i−1) =

r
∏

i=1

l(e2i).

If W is a cycle which is an s-walk, it is termed an s-cycle.

2.3.4. Intersections of cycles. A cycle in a DSR graph which includes some
edge with only S-to-R orientation or only R-to-S orientation has a unique orientation;
otherwise the cycle has two possible orientations. Two oriented cycles in a DSR
graph are compatibly oriented if each induces the same orientation on every edge in
their intersection. Two cycles (possibly unoriented) are compatibly oriented if there
is an orientation for each so that this requirement is fulfilled. In a DSR graph, two
cycles have odd intersection if they are compatibly oriented and each component
of their intersection has odd length. Note that odd intersection was termed “S-to-R
intersection” in [8, 3].

Remark 2.17. A necessary condition for the existence of two cycles, say C and D,
with odd intersection in a DSR graph is the existence of at least one S-vertex of degree
3 or more, and of at least one R-vertex of degree 3 or more. This follows because the
vertices at the ends of a component of the intersection of C and D of odd length must
have degree at least 3, and one of these must be an S-vertex and one an R-vertex.
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2.3.5. Matchings. A matching in a DSR graph is a set of edges without
common vertices. An S-to-R matching is a matching all of whose edges have S-to-R
orientation, and an R-to-S matching is similarly defined. A matching which covers all
vertices is perfect.

2.4. Some useful results on matrix sets and DSR graphs. We will
refer to a DSR graph G as odd if G has no e-cycles. We will refer to it as odd∗ if
all e-cycles in G are s-cycles, and no two e-cycles have odd intersection. It will be
called steady if all cycles in G are s-cycles. We summarise several important results
connecting DSR graphs and P0-matrices in a single theorem.

Theorem 2.18. Define the following conditions on matrices A ∈ R
n×m and B ∈

R
m×n and associated graphs:

C1. GA,B is odd.

C2. GA,B is odd∗.

C3. A′B′ is a P0-matrix for all A′ ∈ Q0(A), B
′ ∈ Q0(B).

C4. AB′ is a P0-matrix for all B′ ∈ Q0(B).

C5. GA,At is odd.

C6. GA,At is odd∗.

C7. Every square submatrix of A is either sign nonsingular or sign singular.

C8. Every square submatrix of A is either sign nonsingular or singular.

C9. A′C is a P0-matrix for all A′ ∈ Q0(A), C ∈ Q0(A
t).

C10. AC is a P0-matrix for all C ∈ Q0(A
t).

The following implications hold:

C1 ⇔ C3
⇓ ⇓
C2 ⇒ C4.

C5 ⇔ C7 ⇔ C9
⇓ ⇓ ⇓
C6 ⇒ C8 ⇔ C10.

Proof. The implications C1 ⇒ C2, C3 ⇒ C4, C5 ⇒ C6, C7 ⇒ C8 and
C9 ⇒ C10 follow by definition, while the other implications are results in [5, 4, 3], or
are immediate consequences of these results. Note that C5 ⇔ C9 and C6 ⇒ C10 are
just immediate corollaries of C1 ⇔ C3 and C2 ⇒ C4 respectively.

Remark 2.19. Although some of the proofs of results in Theorem 2.18 are lengthy,
the spirit is worth outlining. Consider matrices A and B and DSR graph GA,B .
Because the results are about the product AB, they begin with the Cauchy-Binet for-
mula (2.2), which provides an expression for each minor of AB as a sum of products of
minors of A and B. The transition from matrices to DSR graphs is via the association
of terms in minors with matchings in DSR graphs. Given appropriate sets α, β a term
in A[α|β] corresponds to an R-to-S matching in GA,B which is perfect on the vertices
{Si}i∈α ∪ {Rj}j∈β , while a term in B[β|α] corresponds to an S-to-R matching which
is perfect on the same vertex set. The union of these matchings is a subgraph of GA,B

consisting of (disjoint) cycles and isolated, undirected, edges. Conclusions about the
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signs and values of terms in the minors follow from examination of these subgraphs.

Alongside Theorem 2.18, we will need a few further results specifically about
steady DSR graphs, which were not considered in the references above, but become
important in the discussion here.

Lemma 2.20. Let G be a steady DSR graph. Then any closed walk on G is an s-walk.

Proof. Let W be a closed walk on G. Certainly each edge of W which occurs in
a cycle of G has finite label, because all cycles are s-cycles. Further, each edge of W
not occurring in a cycle of G must be undirected, and consequently have a finite label.
Traversing arc uv and returning subsequently to u otherwise implies the existence of
a cycle which includes uv. Thus all edges in W have finite labels. We show that

λ(W )
def

=





∏

e∈{S-to-R edges of W}

l(e)









∏

e∈{R-to-S edges of W}

l(e)





−1

= 1.

If no vertex is repeated in W , then W is either a cycle, in which case λ(W ) = 1
by hypothesis, or a single edge traversed backward and forward, in which case again
λ(W ) = 1. If, on the other hand, W contains repeated vertices, then the shortest
closed subwalk of W, denoted U , is either a cycle or a single repeated edge. Denote by
W\U the closed subwalk obtained by removing U from W , namely if the vertex-list
of W is (w1, w2, . . . , wr = w1) and that of U is (wj , . . . , wk = wj), then for W\U we
have (w1, . . . , wj , wk+1, . . . , wr = w1). Clearly

λ(W ) = λ(U)λ(W\U) = λ(W\U).

If the walk W\U does not repeat vertices, we are done. Otherwise, we may repeat
this procedure until the remaining walk has no repeated vertices, and the lemma is
proved.

Because an acyclic DSR graph vacuously fulfils the conditions of Lemma 2.20, an
immediate corollary is the following.

Corollary 2.21. Let G be an acyclic DSR graph. Any closed walk on G is an
s-walk.

Lemma 2.22. Consider some M ′ ∈ R
n×m, and some M ⊆ Q(M ′) such that for each

M ∈ M, GM,Mt is steady. Given any A,Bt ∈ M, AB is a P0-matrix.

Proof. If the premise of the theorem implies that AB is a P0-matrix for each
A,Bt ∈ M, then the result follows for A,Bt ∈ M because the set of P0-matrices is
closed in R

n×n. So consider A,Bt ∈ M. Given any nonempty α ⊆ {1, . . . , n}, the
Cauchy-Binet formula implies

(AB)[α] =
∑

γ⊆{1,...,m}
|γ|=|α|

A[α|γ]B[γ|α]. (2.4)

Fix γ, and for brevity define M = A(α|γ) and k = |α|. Suppose M(σ) and M(τ)

are two nonzero terms in detM = A[α|γ] corresponding to permutations σ 6= τ of
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{1, . . . , k}. Note that

|M(σ)| =

k
∏

i=1

|Miσi
|, |M(τ)| =

k
∏

i=1

|Miτi |.

M(σ) and M(τ) each correspond to a matching in GA,At , and the union of these two
matchings defines a set of disjoint cycles corresponding to nontrivial cycles in the
permutation τ ◦ σ−1 and isolated edges corresponding to trivial cycles in τ ◦ σ−1 (see
Remark 2.19). Because GA,At is steady, we get |M(σ)| = |M(τ)| (see the proof of
Lemma 7 in [4] for example). Thus A[α|γ] = r(α, γ)|M(σ)|, where r(α, γ) is an integer
independent of the values of nonzero entries in A. Because Bt belongs to the same
qualitative class as A and all cycles inGBt,B are s-cycles, we get B[γ|α] = r(α, γ)|N(σ)|
where N = B(γ|α). Thus

A[α|γ]B[γ|α] = [r(α, γ)]2 |M(σ)| |N(σ)| ≥ 0,

and the result that AB is a P0-matrix now follows from (2.4).

3. Compound matrices and the DSR[2] graph

The main purpose of this section is as follows: given a square matrix product AB,
we wish to be able to write (AB)[2] = ÃB̃ where Ã depends only on A, and B̃ depends
only on B. This will allow us to construct an object, the DSR[2] graph of AB, whose
structure encodes information about (AB)[2] allowing the use of Theorem 2.18 and
subsequent results. To motivate the construction we first present two examples:

Example 3.1. Consider the matrices

A =





1 1 0
1 1 1
0 1 1



 , B
t =





a b 0
c d e

0 f g



 , J = AB =





a+ b c+ d f

a+ b c+ d+ e f + g

b d+ e f + g



 .

(3.1)

Assume that a, b, c, d, e, f, g > 0. Here, as in all examples to follow, we let ei denote
the ith standard basis vector in R

n and choose the natural basis for Λ2
R

3 consisting
of the wedge-products of pairs of vectors ei, arranged in lexicographic order. So for
Λ2

R
3, using the basis (e1 ∧ e2, e1 ∧ e3, e2 ∧ e3), we can compute:

J [2] =





a+ b+ c+ d+ e f + g −f
d+ e a+ b+ f + g c+ d
−b a+ b c+ d+ e+ f + g



 . (3.2)

By computing its 7 principal minors, we can check directly that J [2] is a P0-matrix
(although J itself need not be). We will see later that the conclusion that J [2] is a P0-
matrix can be reached without symbolic computation, and this example is a special
case of a much more general result.

Example 3.2. Consider the matrices A,B defined by:

A =









a b 0
−c d 0
0 e f
0 0 g









, Bt =









a′ b′ 0
−c′ d′ 0
0 e′ f ′

0 0 g′









,

where a, b, c, d, e, f, g, a′, b′, c′, d′, e′, f ′, and g′ are all positive real numbers. AB is a
4× 4 matrix, so (AB)[2] is a 6× 6 matrix. (i) We can check that AB is a P0-matrix.
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(ii) With the help of a symbolic algebra package such as MAXIMA [19], we can
compute the 63 principal minors of (AB)[2], confirm that these are all nonnegative,
and conclude that (AB)[2] is a P0-matrix. By Lemma 2.9, (i) and (ii) imply that
AB is positive semistable. It is again natural to ask whether this conclusion can be
reached simply, via Theorem 2.18, and without the use of symbolic algebra. We will
return to this example and show that this is indeed the case.

3.1. Identifying Λ2
R

n with antisymmetric matrices. We will eventually
write

(AB)[2] = L
A
LB ,

where the matrix L
A

depends on A and LB depends on B. The linear algebraic
justification for the factorisation begins by identifying Λ2

R
n with the set of n × n

antisymmetric matrices.
Define the matrix Xij by

Xij = eie
t
j − eje

t
i.

Note that (Xij)
t = Xji = −Xij . Denote by asym(n) the subspace of Rn×n spanned

by {Xij}, i.e. the space of all real n×n antisymmetric matrices. Given any C ∈ R
n×n

define LC : asym(n) → asym(n) via LC(X) = CX+XCt. Identifying Xij ∈ asym(n)
with ei ∧ ej ∈ Λ2

R
n, LC can be identified with the second additive compound C [2].

To be precise, define ι : Λ2
R

n → asym(n) via ι(ei ∧ ej) = Xij . That this action on
basis vectors extends naturally to give a well-defined linear bijection can easily be
checked. We can then confirm that given any square matrix C, the following diagram
commutes:

Λ2
R

n Λ2
R

n

asym(n) asym(n)

ι

LC

C [2]

ι

The calculation is straightforward:

(ι ◦ C [2])(ei ∧ ej) = ι(Cei ∧ ej + ei ∧ Cej)

= ι

(

∑

k

Ckiek ∧ ej

)

+ ι

(

ei ∧
∑

k

Ckjek

)

=
∑

k

Ckiι(ek ∧ ej) +
∑

k

Ckjι(ei ∧ ek)

=
∑

k

CkiXkj +
∑

k

CkjXik

=
∑

k

[

Cki(eke
t
j − eje

t
k) + Ckj(eie

t
k − eke

t
i)
]

= Ceie
t
j − eje

t
iC

t + eie
t
jC

t − Ceje
t
i

= CXij +XijC
t = LCXij = (LC ◦ ι)(ei ∧ ej).
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3.2. Factorising the second additive compound. The construction is
first carried out for rank 1 matrices and extended to arbitrary matrices.

Given s ∈ R
n, we can define the linear map L

s
: Rn → asym(n) via its action on

coordinate vectors:

L
s
ek = eks

t − setk =
∑

l

eksle
t
l −
∑

l

slele
t
k =

∑

l

slXkl = −
k−1
∑

l=1

slXlk +
n
∑

l=k+1

slXkl.

Noting that if k < l and i < j, then etiXklej = δikδjl (where δik is the Kronecker

delta), a matrix representation of L
s
is obtained:

L
s

(i,j),k =
[

L
s
ek

]

(i,j)
(i < j)

=

n
∑

l=k+1

sle
t
iXklej −

k−1
∑

l=1

sle
t
iXlkej

=

n
∑

l=k+1

slδkiδjl −

k−1
∑

l=1

slδkjδil =







sj , (k = i),
−si, (k = j),
0, otherwise.

. (3.3)

For example if s = (s1, s2, s3, s4)
t, then

L
s
=

















1 2 3 4

(1, 2) s2 −s1 0 0
(1, 3) s3 0 −s1 0
(1, 4) s4 0 0 −s1
(2, 3) 0 s3 −s2 0
(2, 4) 0 s4 0 −s2
(3, 4) 0 0 s4 −s3

















.

Row and column labels have been shown explicitly to highlight the fact that each
column is associated with an entry in s, while each row is associated with a pair of
entries. If v is a 1 × n matrix (a row vector) then Lv : asym(n) → R

n is similarly
defined via its action on basis elements of asym(n):

LvXij = Xijv
t = (eie

t
j − eje

t
i)v

t = eivj − ejvi.

With i < j, we obtain the coordinate representation.

Lv
k,(i,j) = [LvXij ]k = etk(eivj − ejvi) = δkivj − δkjvi =







vj , (k = i),
−vi, (k = j),
0, otherwise.

Thus Lv = (L
vt

)t.
Now consider some rank 1 matrix C = sv where s, vt ∈ R

n, and the associated
operator LC : asym(n) → asym(n). Applying the definitions,

LCX = svX +Xvtst = (Xvt)st − s(Xvt)t = (LvX)st − s(LvX)t = L
s
LvX.

In other words, LC = L
s
Lv. Thus representations of L

s
and Lv above give us a

natural representation and factorisation of Lsv.
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More generally, consider any A ∈ R
n×m and B ∈ R

m×n. Defining Ak to be the
kth column of A and Bk to be the kth row of B we have AB =

∑

k AkB
k. We get

LABX =
∑

k

(AkB
kX +X(Bk)t(Ak)

t)

=
∑

k

((X(Bt)k)(Ak)
t −Ak(X(Bt)k)

t)

=
∑

k

((LBk

X)(Ak)
t −Ak(L

Bk

X)t) =
∑

k

L
Ak

LBk

X.

Choosing a basis for Λ2
R

n we define for any n×m matrix A the matrices

L
A
=
[

L
A1

|L
A2

| · · · |L
Am
]

and LA =













LA1

LA2

...

LAn













.

Note that LA =
(

L
At)t

. Given A ∈ R
n×m and B ∈ R

m×n, we get

(AB)[2] = L
A
LB . (3.4)

Observe that L
A
has dimensions

(

n
2

)

×mn and LB has dimensions mn×
(

n
2

)

.

Remark 3.3. When A and B are matrices with symbolic entries, one approach to
computation of any minor of (AB)[2] is by application of the Cauchy-Binet formula
to (3.4). For example assuming that A is n × m and B is m × n, and defining
α = {1, . . . ,

(

n
2

)

}:

det ((AB)[2]) =
∑

β⊆{1,...,nm}

|β|=(n2)

L
A
[α|β]LB [β|α]. (3.5)

This observation can be used in conjunction with Lemma 2.6 to rule out the possibility
of pairs of imaginary eigenvalues of AB.

3.3. The DSR[2] graph. Given A ∈ R
n×m and B ∈ R

m×n with n ≥ 2 we
define the DSR[2] graph of the product AB

G
[2]
A,B = G

L
A
,LB

to be the DSR graph of the product L
A
LB . Examination of this graph allows us to

make statements about (AB)[2] using, for example, Theorem 2.18.

3.3.1. Terminology and notation. The S-vertices of G
[2]
A,B are the

(

n
2

)

unordered pairs (i, j) ∈ {1, . . . , n} × {1, . . . , n}, i 6= j; the R-vertices of G
[2]
A,B are

the mn pairs (k, l) ∈ {1, . . . ,m} × {1, . . . , n}. For notational convenience we denote
S-vertices (i, j) = (j, i) by ij, or ji; R-vertices (k, l) by kl; and an edge between them
of unknown direction and sign by (ij, kl). From the definitions, a necessary condition
for the edge (ij, kl) to exist is l ∈ {i, j}.
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Remark 3.4. Continuing from Remark 2.16, it is clear that given a matrix A and

some B ∈ Q(At), G
[2]
A,B = G

[2]
A,At . It is also not hard to see that if G

[2]
A,At is odd∗, then

so is G
[2]
A,B where B ∈ Q0(A

t) (G
[2]
A,B is just a subgraph of G

[2]
A,At). On the other hand,

if A has more than one row, and there exist i, j such that AijBji < 0, then G
[2]
A,B

automatically fails Condition C2. This follows because given any k 6= i there exist

two edges (ik, jk) in G
[2]
A,B , oppositely directed, of opposite sign, and one having label

∞; so G
[2]
A,B has an e-cycle of length two which is not an s-cycle. In this paper, most

claims will involve matrix pairs A,B satisfying AijBji ≥ 0 (namely, A,Bt ∈ Q0(C)
for some matrix C), and often we will in fact assume B ∈ Q0(A

t).

Example 3.5. If A = (1, 1, 1, 1)t, we can easily compute G
[2]
A,At to be:

11

12

13

14

12

13

14

23

24

34

All edge-labels are 1, so have been omitted. More generally it is clear that if v ∈ R
n

has no zero entries, then (disregarding edge-signs and labels) G
[2]
v,vt is a subdivision of

the complete graph Kn on the R-vertices 11, . . . , 1n.

4. Results illustrating the use of the DSR[2] graph

Here we develop and apply some results using DSR[2] graphs before the devel-
opment of further theory. Some of the examples presented will later be shown to
fall into families amenable to analysis, after the development of theory relating DSR
and DSR[2] graphs. The following rather basic result about the second additive com-
pounds of certain rank 1 matrices can easily be proved directly, but demonstrates
application of the DSR[2] graph. A far-reaching generalisation of this result will be
presented as Theorem 6.5.

Lemma 4.1. If u ∈ R
n and s, v ∈ Q0(u), then (svt)[2] is a P0-matrix.

Proof. If the result is true for s, v ∈ Q(u), then it follows for s, v ∈ Q0(u)
because the set of P0-matrices is closed. So consider s, v ∈ Q(u). By Remark 3.4,

G
[2]
s,vt = G

[2]
s,st . Note that from the definition of L

s
, row (j, k) (j < k) has at most two

nonzero entries, the entry sk in column j and the entry −sj in column k. Thus the
edges incident with S-vertex jk have labels |sj | and |sk|.

(i) No two cycles have odd intersection. Because no row of L
s
has more than

two nonzero entries, each S-vertex in G
[2]
s,st has maximum degree 2, as illus-

trated for example by the DSR[2] graph of Example 3.5. This rules out odd
intersections of cycles (see Remark 2.17).

(ii) G
[2]
s,st is steady. Define I = {1, . . . , n} and I2 = {(1, 2), (1, 3), . . . , (n − 1, n)}

(the set of all unordered pairs from I). Let i1, . . . , im ∈ I be distinct, and
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α1, . . . , αm ∈ I2 be distinct. An arbitrary cycle in G
[2]
s,st must be of the form

C = (1i1 , α1, 1
i2 , α2, · · · , 1

im , αm, 1i1),

where ik, ik+1 ∈ αk, and because ik, ik+1 are distinct this implies that αk =
(ik, ik+1). (Here we define im+1 = i1.) So the sequence of edge-labels in C is

(|si2 |, |si1 |, |si3 |, |si2 |, · · · , |sin |, |sin−1
|, |si1 |, |sin |),

and C is clearly an s-cycle.

(i) and (ii) together imply that G
[2]
s,st is odd

∗, and hence by Theorem 2.18 that (svt)[2]

is a P0-matrix.

Example 4.2 (Example 3.1 continued). We now return to the matrices in (3.1).
We will see that the DSR[2] graph makes our earlier conclusions immediate, but
shows moreover that the example provides just a special case of a general result,
Proposition 4.4 below. Using (3.3), we compute

L
A
=





1 −1 0 1 −1 0 1 0 0
0 0 −1 1 0 −1 1 0 0
0 0 −1 0 1 −1 0 1 −1



 .

The DSR graphs GA,At (left) and G
[2]
A,At (right) are depicted below:

S1 S2

S3

R3

R1

R2

12 23

13

13

12

11
23

22

21
33

32

31

All edge-labels are 1 and have been omitted. Consequently, GA,At and G
[2]
A,At are

steady. GA,At includes the e-cycles (S1, R1, S2, R2, S1) and (S2, R2, S3, R3, S2) which
have odd intersection and so fails to be odd∗. It is also easy to confirm that for some
choice of B ∈ Q(At), AB fails to be a P0-matrix. On the other hand, because all R-

vertices in G
[2]
A,At have degree less than or equal to 2, G

[2]
A,At cannot have a pair of cycles

with odd intersection, and so is odd∗ (see Remark 2.17). By Theorem 2.18, (AB)[2]

is a P0-matrix for all B ∈ Q0(A
t), and so, by Lemma 2.7, the nonreal eigenvalues of

AB lie in C+.

Remark 4.3. In fact, if B ∈ Q(At), and the matrices J = AB arise as the Jacobian
matrices of a differential system, the form of J [2] in (3.2) has strong consequences.
In particular, suppose Y ⊆ R

3 is open, f : Y → R
3 is C1, and consider the system

ẋ = f(x) on Y . Let X ⊆ Y be some compact, forward invariant set, and assume that
for each x ∈ X, −Df(x) is of the form in (3.1). Then, by observation of (3.2), Df(x)[2]
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is irreducibly diagonally dominant (in its columns) with negative diagonal entries, and
it is possible to find a (single) positive diagonal matrix E such that EDf(x)[2] E−1

is strictly diagonally dominant for all x ∈ X. Thus there exists a “logarithmic norm”
µE( · ) and p < 0 such that for all x ∈ X, µE(Df(x)[2]) < p [23], and applying the
theory developed by Li and Muldowney ([15, 16] for example), the system ẋ = f(x)
cannot have invariant closed curves in X: periodic orbits whether stable or unstable
are ruled out, as are homoclinic trajectories, heteroclinic cycles, etc. In fact every
nonwandering point of the system must be an equilibrium [16].

Example 3.1 suggests the following much more general result.

Proposition 4.4. (i) Consider any 3×m (0, 1,−1) matrix A and any B ∈ Q0(A
t).

Then (AB)[2] is a P0-matrix and the nonreal spectrum of AB does not intersect C−.
(ii) Consider any m× 3 (0, 1,−1) matrix A and any B ∈ Q0(A

t). Then the nonreal
spectrum of AB does not intersect C−.

Proof. If the results hold for each B ∈ Q(At), they follow for each B ∈ Q0(A
t)

by closure. Choose any B ∈ Q(At). (i) All edge-labels in G
[2]
A,B are 1 and so G

[2]
A,B

is steady. On the other hand, all R-vertices in G
[2]
A,B have degree less than or equal

to two (three edges of the form (12, kl), (13, kl) and (23, kl) cannot all exist), and so

odd intersections between cycles are impossible. Consequently, G
[2]
A,B is odd∗. The

conclusions follow from Theorem 2.18 and Lemma 2.7. (ii) From (i), (AtBt)[2] is
a P0-matrix and consequently, by Lemma 2.7, the nonreal spectrum of AtBt does
not intersect C−. Because the nonzero spectrum of AB is equal to that of AtBt

(Lemma 2.3), the same holds for AB.

Further generalisations of Proposition 4.4 will be proved as Theorem 6.1 later.

Remark 4.5. Proposition 4.4 has the following interpretation in terms of the dy-
namics of CRNs. Consider a system of reactions where all entries in the stoichiometric
matrix have magnitude 1 (a fairly common situation) and where the kinetics satisfies
the condition in (2.1). Suppose further there are no more than three substrates, or
no more than three reactions. Then the system is incapable of Hopf bifurcations.

The next result which follows with little effort, involves (0, 1,−1) matrices with
no more than two entries in each column (or row).

Proposition 4.6. Let A be an n×m (0, 1,−1) matrix. (i) If A has no more than
two nonzero entries in each column then, for each B ∈ Q0(A

t), AB and (AB)[2] are
P0-matrices and so AB is positive semistable. (ii) If A has no more than two nonzero
entries in each row then, for any B ∈ Q0(A

t), AB is positive semistable.

Proof. If the results are true for each B ∈ Q(At), then they hold for each
B ∈ Q0(A

t) by closure. Choose any B ∈ Q(At). (i) As all edge-labels in GA,B and

G
[2]
A,B are 1, both are steady. As all R-vertices in GA,B have degree less than or equal

to two, by Remark 2.17, GA,B is in fact odd∗. Further, all R-vertices in G
[2]
A,B have

degree less than or equal to two: this follows by noting that the edge (ij, kj) exists if
and only if Aik 6= 0, which (for fixed k, j) can occur for a maximum of two indices
i by the assumption that no column of A contains more than two nonzero entries.

Consequently, G
[2]
A,B is odd∗. The remaining conclusions follow from Theorem 2.18

and Lemma 2.9. (ii) From (i), AtBt and (AtBt)[2] are P0-matrices and consequently,
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by Lemma 2.9, AtBt is positive semistable. Because the nonzero spectrum of AB is
equal to that of AtBt (Lemma 2.3), the same holds for AB.

Remark 4.7. Proposition 4.6 will be generalised as Theorem 6.4, where the require-
ment that A is a (0, 1,−1) matrix will be weakened to the requirement that GA,At

is steady. CRNs where the degree of each S-vertex is less than or equal to two were
discussed in [1].

Example 4.8 (Example 3.2 continued). Returning to this example we have the
matrix A and DSR graph GA,At :

A =









a b 0
−c d 0
0 e f
0 0 g









, GA,At = R1

S2c

R2

d

S1
ba

S3
e

R3

f
S4

g

GA,At is odd by inspection, and so AB is a P0-matrix for all B ∈ Q0(A
t). Following

removal of vertices and edges which do not participate in any cycles, we get the

reduced representation of G
[2]
A,At :

23

13
b

13

a

23

cd

24

14
b

14

a

24

cd

31f g

32f g

12

21
e

d

22 e

b

which can be computed to be odd∗. Consequently (AB)[2] is a P0-matrix for all
B ∈ Q0(A

t). Thus, by Lemma 2.9, AB is positive stable for each B ∈ Q0(A
t).

Example 4.9. We illustrate the use of the DSR[2] graph to make claims about the
second additive compound of a single square matrix (rather than a product of two
matrices). Let a, b, c, d, e, f, g, h, j > 0 and consider the matrix and DSR graph:

A =









a b 0 0
−c d g 0
0 0 e h
j 0 0 f









, GA,I :

R2

S2d

R3

g

S3

e

R4
h

S4
f

R1

j

cS1

a

b

Here I is the 4× 4 identity matrix which we note lies in Q0(A). GA,I has exactly two
cycles, one of which is odd and one of which is even. Following removal of vertices
and edges which do not participate in any cycles, we get the reduced representation

of G
[2]
A,I :
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23

13

13

23

24

14

14

2434 34

31 12
12

42

41

Edge labels have been omitted for the reason that G
[2]
A,I is odd, namely there are no

e-cycles at all. Consequently A[2] = (AI)[2] is a P0-matrix, and A cannot have a pair
of nonreal eigenvalues in C−.

Remark 4.10. The matrix A in Example 4.9 is not obviously amenable to analysis
using the results of [12] or [2]; the sufficient conditions for the absence of stable
oscillation in dynamical systems developed in these papers are neither necessary nor
sufficient for the preclusion of Hopf bifurcation.

5. Relationships between the DSR and DSR[2] graphs

Throughout this section we consider two matrices A ∈ R
n×m and B ∈ R

m×n

(n ≥ 2). In order to understand better the DSR[2] graph, it is convenient to develop

some theory on the relationship between structures in GA,B and G
[2]
A,B . The results

presented below begin this process. Applications of this theory are presented in the
final section.

5.1. Removing leaves. Our first observation is that a certain simple opera-
tion on DSR graphs of the form GA,At—the removal of pendant R-vertices and their
incident edges—does not alter the cycle structure of the corresponding DSR[2] graph.
This claim does not extend to the removal of pendant S-vertices.

Lemma 5.1. Consider an n × m matrix A (m ≥ 2) whose kth column has a single
nonzero entry Ak0,k, so that vertex Rk in GA,At has degree 1. Let Ã be the submatrix

of A where the kth column has been removed. Then G
[2]

Ã,Ãt
is odd∗ (resp. odd, resp.

steady) if and only if G
[2]
A,At is odd∗ (resp. odd, resp. steady).

Proof. In one direction the result is trivial: if G
[2]
A,At is odd∗ (resp. odd, resp.

steady), then so is G
[2]

Ã,Ãt
as it is a subgraph of G

[2]
A,At .

In the other direction, we show that G
[2]

Ã,Ãt
is an induced subgraph of G

[2]
A,At

obtained by removing only leaves of G
[2]
A,At , and consequently has the same cycle

structure. Note that G
[2]

Ã,Ãt
is the induced subgraph of G

[2]
A,At obtained by removing

all R-vertices of the form kj and their incident edges. However, an edge in G
[2]
A,At of

the form (ij, kj) exists if and only if Aik 6= 0, which occurs if and only if i = k0.

Thus for each j, column kj of L
A

has a single nonzero entry (in row k0j), and the

corresponding R-vertex in G
[2]
A,At is a leaf which can be removed without affecting

any cycles of G
[2]
A,At .

5.2. Projections of DSR[2] cycles. It is useful to distinguish two types of
edges in a DSR[2] graph: (ij, kmin{i,j}) and (ij, kmax{i,j}). Recall from Section 3 that
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if i < j then

L
A

ij,ki = Ajk, LB
ki,ij = Bkj , whereas L

A

ij,kj = −Aik, LB
kj ,ij = −Bki.

This fact, in conjunction with the definition of GA,B , implies that for any edge

(ij, ki) in G
[2]
A,B there exists an edge (Sj , Rk) in GA,B having the same direction, the

same label and the same sign; and similarly, for any edge (ij, kj) in G
[2]
A,B there exists

an edge (Si, Rk) in GA,B having the same direction and label, but opposite sign. We

have defined a mapping of the edge-set of G
[2]
A,B into the edge-set of GA,B .

Definition 5.1. Let E = E(GA,B) and E2 = E(G
[2]
A,B) denote the set of edges of

GA,B and G
[2]
A,B respectively. Similarly let V = V (GA,B) and V 2 = V (G

[2]
A,B). The

mapping π : E2 → E defined by

π((ij, kj)) = (Si, Rk) (and π((ij, ki)) = (Sj , Rk))

is termed the projection map on edges of DSR[2].

Remark 5.2. A few immediate properties of the projection map are worth empha-
sising.

1. π is surjective if n ≥ 2, but not necessarily injective if n ≥ 3. Indeed, if
(Si, Rk) ∈ E then for any j ∈ {1, . . . , n}\{i} we have π((ij, kj)) = (Si, Rk). If there
is more than one choice for such j then π is not injective.

2. Following the discussion preceding Definition 5.1, π acts on edge-signs as
follows:

sign(π(e)) =

{

sign(e), if e = (ij, kmin{i,j}),
−sign(e), if e = (ij, kmax{i,j}).

(5.1)

3. π does not extend naturally to vertices of G
[2]
A,B . While π may be viewed

as mapping the R-vertex kl ∈ V 2 to Rk ∈ V , this interpretation is ambiguous for
S-vertices ij ∈ V 2: edges in E2 incident to ij may be mapped to edges in E incident

to either Si or to Sj . As a consequence, a walk in G
[2]
A,B does not necessarily project

to a walk in GA,B . This is illustrated in the following diagram, which also shows that
projection may change edge signs.

13 1231 22

S3 S2R3

π π π

S1 R2

Having defined the projection map, it is natural to examine the projection of

cycles in G
[2]
A,B .

Proposition 5.3. Let C = (e1, . . . , eN ) be a cycle in G
[2]
A,B with edges enu-

merated so that the initial vertex of e1 is an S-vertex ij. Then there exists a par-
tition of {1, . . . , N} = {i1 < . . . < iM} ∪ {j1 < . . . < jN−M} such that W ′ =
(π(ei1), . . . , π(eiM )) and W ′′ = (π(ej1), . . . , π(ejN−M

)) satisfy either

(i) W ′ and W ′′ are closed walks, one containing Si and the other containing Sj ;
or
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(ii) W ′ and W ′′ are walks, one from Si to Sj and the other from Sj to Si.

Proof. Let (ij = a1b1, . . . , aN/2bN/2, aN/2+1bN/2+1 = ij) denote the S-vertices
of C, and such that ai < bi for each i. The construction of W ′ and W ′′ is done
by successively appending the walks of length two (π(e1), π(e2)), (π(e3), π(e4)), . . . ,
(π(eN−1), π(eN )) of GA,B to either W ′ or W ′′. Begin by defining W ′

1 and W ′′
1 as

the empty one-vertex walks {Si} and {Sj}, respectively. Next, inductively define,
for r = 2, . . . , N/2 + 1, walks W ′

r and W ′′
r in GA,B whose end vertices are different

elements of {Sar
, Sbr} in the following fashion. Assume that Sar−1

is the end vertex of
W ′

r−1 and Sbr−1
is the end vertex of W ′′

r−1 (the other case is similar). The walk wr =
(e2r−3, e2r−2) has the form (ar−1br−1, k

l, arbr), where one of the following possibilities
holds: (1) l = ar−1 = ar so that π(wr) = (Sbr−1

, Rk, Sbr ); (2) l = ar−1 = br so that
π(wr) = (Sbr−1

, Rk, Sar
); (3) l = br−1 = ar, so that π(wr) = (Sar−1

, Rk, Sbr ); (4)
l = br−1 = br so that π(wr) = (Sar−1

, Rk, Sar
). In cases (1) and (2) define W ′′

r =
(W ′′

r−1, π(wr)) and let W ′
r = W ′

r−1; in cases (3) and (4) define W ′
r = (W ′

r−1, π(wr))
and let W ′′

r = W ′′
r−1. Either way, W ′

r and W ′′
r are walks ending at different vertices

from {Sar
, Sbr}. It is easy to check that W ′ = W ′

N/2+1 and W ′′ = W ′′
N/2+1 satisfy the

conclusion of the proposition.

Remark 5.4.

1. In Case (i) of Proposition 5.3 W ′ and W ′′ are closed walks in GA,B and it is

not hard to see that choosing a different initial vertex from C in G
[2]
A,B leads to the

same two closed walks (albeit possibly renamed, and traversed from different initial
points); in Case (ii) of Proposition 5.3 W ′ and W ′′ traversed successively form a closed
walk of length N , which we will denote by W ′⊔W ′′. Again choosing a different initial
vertex from C leads to the same object, traversed from a different initial point.

2. By construction, a pair of consecutive edges of C beginning and terminating at
an S-vertex are projected to a pair of consecutive edges in eitherW ′ orW ′′. With nota-
tion from Proposition 5.3, this means that i2r = i2r−1+1 for each r = 1, . . . ,M/2, and
j2r = j2r−1 + 1 for each r = 1, . . . , (N −M)/2. In particular, a sequence (Sa, Rk, Sa)
traversing an unoriented edge (Sa, Rk) in each direction consecutively cannot occur
in W ′,W ′′ or W ′⊔W ′′: such a sequence must be the projection of a sequence of edges

in G
[2]
A,B of the form (ab, kb, ab), traversing an unoriented edge (ab, kb) back and forth,

which clearly cannot occur in a cycle C.

It is transparent from the previous remark that whether projection of a cycle C

in G
[2]
A,B leads to Case (i) or Case (ii) in Proposition 5.3 is a property of C alone. A

cycle C of G
[2]
A,B will be called direct if it projects as in Case (i) and twisted if it

projects as in Case (ii). In view of Remark 5.4 the following notion is well-defined.

Definition 5.5. Let C be a cycle in G
[2]
A,B and W ′,W ′′ corresponding walks in GA,B

constructed as in Proposition 5.3. The projection π(C) of C is defined as follows:

(i) if C is direct then π(C) = {W ′,W ′′};

(ii) if C is twisted then π(C) = W ′ ⊔W ′′.

Example 5.6. We return to the DSR[2] and DSR graphs in Example 3.2 to illustrate
the projections of direct and twisted cycles. The cycle

(13, 23, 23, 32, 24, 14, 14, 31, 13)
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(with image shaded in the DSR[2] graph on the left) is direct, and projects to the two
closed walks

W ′ = (S1, R2, S2, R1, S1), W ′′ = (S3, R3, S4, R3, S3)

(with images shaded in the DSR graph on the right).

23

13
b

13

a

23
cd

24

14
b

14

a

24
cd

31f g

32f g

12

21 e

d

22 e

b

R1

S2c

R2

d

S1 ba

S3
e

R3

f
S4

g

On the other hand, the cycle

(13, 13, 23, 22, 12, 21, 13)

(with image shaded in the DSR[2] graph on the left) is twisted, and projects to the
closed walk

W ′ ⊔W ′′ = (S1, R1, S2, R2, S3, R2, S1)

(with image shaded in the DSR graph on the right).

23

13
b

13

a

23
cd

24

14
b

14

a

24
cd

31f g

32f g

12

21 e

d

22 e

b

R1

S2c

R2

d

S1 ba

S3
e

R3

f
S4

g

Remark 5.7. Let C be a cycle in G
[2]
A,B .

1. If C is twisted then |π(C)| = |C|, whereas if C is direct and π(C) = {W ′,W ′′}
then |C| = |W ′|+ |W ′′|.

2. In the case that C is direct, various scenarios are possible: one of W ′ or W ′′

may be empty; W ′ and W ′′ may be disjoint; they may share vertices or edges; or
they might even coincide. To see how one of W ′ or W ′′ may be empty, consider the
following example. Let A ∈ R

5×4 be such that A11, A14, A31, A32, A42, A43, A53, and

A54 are positive. We get an 8-cycle C = (23, 22, 24, 32, 25, 42, 12, 12, 23) inG
[2]
A,At which

projects to an empty walk W ′ and an 8-cycle W ′′ = (S3, R2, S4, R3, S5, R4, S1, R1, S3)
in GA,At :

C :

12 23

25 24

12
A11 A31

22

A32

A42

32
A43A53

42

A54

A14

W ′ : ∅ W ′′ :

S1 S3

S5 S4

R1

A11 A31

R2

A32

A42

R3
A43A53

R4

A54

A14
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Note that in this case, the index 2 is common to all S-vertices in C, and, dis-
regarding signs of edges, the edge-sequence of W ′′ mirrors that of C. In situations
such as this, we make an abuse of terminology and write π(C) = W ′′ rather than
π(C) = {∅,W ′′}. To see how W ′ and W ′′ may coincide consider the 20-cycle C
illustrated below. For simplicity only S-vertices are depicted:

C : 12

13

23 24

34

35

45

1415

25

W ′,W ′′ : S1

S2

S3

S4

S5

Identifying whether a cycle is direct or twisted. If ij and i′j′ are two

consecutive S-vertices of a cycle C in G
[2]
A,B , then {i, j} ∩ {i′, j′} must include at least

one element, say i. We call the pair (ij, ij′) an inversion if (i − j)(i − j′) < 0.
Whether a cycle is direct or twisted can be computed by counting inversions.

Proposition 5.8. A cycle C of a DSR[2] graph G
[2]
A,B is direct if it has an even

number of inversions, and twisted otherwise.

Proof. Let C be a direct cycle with the sequence of S-vertices (ij = a1b1, a2b2, . . . ,
arbr = ij). Assume that ak < bk for all k. By the construction in Proposition 5.3,
one element of {ak, bk} is assigned to W ′ and the other is assigned to W ′′. Define
ind(akbk) as

ind(akbk) =

{

1, if ak is assigned to W ′,

2, if ak is assigned to W ′′.

Note that ind(akbk) 6= ind(ak+1bk+1) if and only if the pair (akbk, ak+1bk+1) is an
inversion. By definition, C is direct if and only ifW ′ is a closed walk, i.e., if ind(arbr) =
ind(a1b1), which is equivalent to saying that the number of switches between 1 and 2
in the sequence

ind(a1b1), ind(a2b2), . . . , ind(arbr)

is even.

Example 5.9. The nature of the two cycles in Example 5.6 is now easily computed:
the first contains no inversions and so is direct; the second contains one inversion
(23, 12) and is therefore twisted.

The parity of a cycle in G
[2]
A,B relates to the parity of its projection, as shown in

the following result.

Proposition 5.10. Let C denote a cycle in G
[2]
A,B.

(i) If C is direct and π(C) = {W ′,W ′′} then P (C) = P (W ′)P (W ′′).

(ii) If C is twisted then P (C) = −P (π(C)).

Proof. Let C = (e1, . . . , eN ) be such that the initial vertex of e1 is an S-vertex,
and let {i1, . . . , iM}, {j1, . . . , jN−M} be the partition of {1, . . . N} obtained as in
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Proposition 5.3. In view of Remark 5.4 we have

P (W ′) = (−1)
M
2

M
2
∏

r=1

[

sign(π(ei2r−1
))sign(π(ei2r−1+1))

]

. (5.2)

(We adopt the convention that an empty product has value 1.) Equation (5.1) implies
that, for any r ∈ {1, . . . , M

2 },

sign(π(ei2r−1
))sign(π(ei2r−1+1)) = −sign(ei2r−1

)sign(ei2r−1+1)

if the two S-vertices of the pair ei2r−1
, ei2r−1+1 form an inversion, and

sign(π(ei2r−1
))sign(π(ei2r−1+1)) = sign(ei2r−1

)sign(ei2r−1+1)

otherwise. Denoting by inv(W ′) the number of pairs from (ei1 , ei1+1), (ei3 , ei3+1), . . . ,
(eiM−1

, eiM ) whose S-vertices form an inversion, equation (5.2) becomes

P (W ′) = (−1)
M
2 (−1)inv(W

′)

M
2
∏

r=1

sign(ei2r−1
)sign(ei2r−1+1). (5.3)

Multiplying with the corresponding equation for W ′′ yields

P (W ′)P (W ′′) = (−1)
M
2 (−1)inv(W

′)(−1)
N−M

2 (−1)inv(W
′′)

N
∏

r=1

sign(er)

= (−1)inv(C)P (C)

where inv(C) = inv(W ′) + inv(W ′′) is the number of inversions in the S-vertex
sequence of C. It follows from Proposition 5.8 that if C is direct then inv(C) is
even and part (i) of the conclusion follows. If C is twisted then inv(C) is odd,
P (π(C)) = P (W ′ ⊔W ′′) = P (W ′)P (W ′′) and (ii) follows.

Having dealt in Proposition 5.10 with the behaviour of parity under projection

we next ask what can be inferred about s-cycles in G
[2]
A,B from their projections.

Proposition 5.11. Let C be a cycle of G
[2]
A,B.

(i) If C is twisted then π(C) is an s-walk if and only if C is an s-cycle.

(ii) If C is direct, π(C) = {W ′,W ′′}, and both W ′ and W ′′ are s-walks, then C
is an s-cycle.

Proof. We may assume that C is directed; otherwise, if all its edges are undi-
rected, we simply choose one of the two possible orientations. By definition, C is an
s-cycle if

∏

e∈{S-to-R edges of C}

l(e) =
∏

e∈{R-to-S edges of C}

l(e). (5.4)

Because an S-to-R edge of G
[2]
A,B projects to an S-to-R edge of GA,B with the same

label, one has

∏

e∈{S-to-R edges of C}

l(e) =
∏

e∈{S-to-R edges of π(C)}

l(e)
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in Case (i), and

∏

e∈{S-to-R edges of C}

l(e) =





∏

e∈{S-to-R edges of W ′}

l(e)









∏

e∈{S-to-R edges of W ′′}

l(e)





in Case (ii). Similar equalities hold for R-to-S edges and the conclusion is now imme-
diate from (5.4).

In conjunction with Lemma 2.20, Proposition 5.11 has an immediate notable
consequence.

Corollary 5.12. If GA,B is steady, then the same is true for G
[2]
A,B . In particular,

if GA,B is acyclic, then G
[2]
A,B is steady.

Remark 5.13. The condition that GA,B is steady is often fulfilled in applications

to CRNs. Corollary 5.12 shows that when this is the case, verifying that G
[2]
A,B is odd∗

boils down to ruling out odd intersections of e-cycles.

5.3. Liftings of DSR cycles. As explained in Remark 5.2, the projection

map π is not injective; in particular different cycles in G
[2]
A,B may project to the same

closed walk in GA,B . If W is a cycle of GA,B then any cycle C of G
[2]
A,B that projects

to W will be called a lifting of W. By way of Definition 5.5 and Remark 5.7, either
C is twisted or, if π(C) = {W ′,W ′′} then W ′ = ∅ or W ′′ = ∅. In the first case C
will be called an internal lifting of W and in the second, C is an external lifting

of W. The next proposition sheds light on this terminology.

Proposition 5.14. Let W be a cycle in GA,B with vertex sequence (Si1 , Rj1 , . . . ,
SiN , RjN , Si1).

(i) A cycle C in G
[2]
A,B is an external lifting of W if and only if there exists

p 6∈ {i1, . . . , iN} such that

C = (i1p, j
p
1 , . . . , iNp, jpN , i1p).

(ii) If C is an internal lifting of W then the S-vertices of C are a subset of
{i1, . . . , iN} × {i1, . . . , iN}.

Proof.

(i) In one direction we can easily check by computing π(C) that a cycle of the
form C is an external lifting of W . On the other hand, suppose an external lifting
of W gives rise to a cycle whose vertex sequence is not of this form, implying that C
contains three consecutive S-vertices (ij, ij′, i′j′), with no common element (namely
i, i′, j, j′ are all distinct). It follows from the proof of Proposition 5.3 that each of
W ′ and W ′′ must include a vertex from {Si, Sj} and a vertex from {Si′ , Sj′}, which
means that each of W ′ and W ′′ contains at least two S-vertices and therefore at least
two edges. This contradicts the fact that one of them must be empty.

(ii) Because C is twisted, W = W ′ ⊔ W ′′. If ij is an S-vertex of C then, by
construction, either Si is an S-vertex of W ′ and Sj is an S-vertex of W ′′, or vice
versa. The conclusion follows.

Remark 5.15. It is clear from Proposition 5.10 that if a cycle C in G
[2]
A,B is an

external lifting of a cycle W in GA,B , then P (C) = P (W ), while if C is an internal
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lifting of W , then P (C) = −P (W ). In other words internal liftings change parity,
while external liftings preserve parity of cycles in GA,B .

Remark 5.16. A cycle C in G
[2]
A,B of length 4 must be of the form (ap, cp, dp, ep, ap),

with a 6= d and c 6= e. Thus, by observation π(C) is (Sa, Rc, Sd, Re, Sa), namely a
cycle of length 4 in GA,B . As C is clearly direct, it has the same parity as π(C). Thus

by Proposition 5.14 cycles of length 4 in G
[2]
A,B arise precisely as external liftings of

cycles of length 4 in GA,B . The same remark applies to cycles of length 2, although

these cannot occur in GA,B or G
[2]
A,B if AijBji ≥ 0.

Example 5.17 (Example 4.9 revisited). We may now argue that G
[2]
A,I in this

example is odd directly from GA,I . Consider a cycle E of G
[2]
A,I , and let W ′ and W ′′

denote the two walks in GA,I that form its projection. Because there are
(

4
2

)

= 6

S-vertices in G
[2]
A,I , the length of E can not exceed 12. Notice that GA,I has two

cycles: an even Hamiltonian cycle C, and an odd 4-cycle D. In view of Remark
5.4(2), neither W ′ nor W ′′ can traverse back and forward consecutively an unoriented
edge of GA,I , and π(E) must therefore consist of copies of C and D. In fact, there
is at most one copy of each of C and D in this union; two copies of C would imply
the contradiction length(E) ≥ 16, while two copies of D would imply that E contains
both liftings of D allowed by Remark 5.16 (where p is 3 and 4 respectively), so E
cannot be a cycle itself. Now suppose that W ′ ∪ W ′′ has the same edges as C ∪ D
(counted with multiplicity). Then the directed path (S2, R2, S1) is traversed twice,
and therefore both directed paths P1 = (23, 23, 13) and P2 = (24, 24, 14) must exist
in E. Further, (S4, R4, S3) must arise as the projection of one of the directed paths
P3 = (14, 41, 13) or P4 = (24, 42, 23). However, clearly P3 and P1 cannot both exist in
E and similarly P4 and P2 cannot both exist in E, a contradiction. We conclude that
E is either a lifting of C or a lifting of D. Because all liftings of e-cycle D are internal

and all liftings of o-cycle C are external, it follows, by Remark 5.15, that G
[2]
A,I is odd.

Remark 5.18. Although this could not occur in the previous example, in general

the same cycle in GA,B may lift to multiple cycles of different parities in G
[2]
A,B , by

lifting both externally and internally. This is illustrated in the following example
(edge labels have been omitted):

C1 :

12 14

15 45

11

24

35

41 C2 :

23 34

35 13

13

33

23

43W :

S2 S4

S5 S1

R1

R3

R2

R4

W is an e-cycle, as is its external lifting C2 (note that it has four inversions). On the
other hand, the internal lifting C1 is an o-cycle with one inversion.

6. Further applications and limitations of the DSR[2] graph

We present some further results which illustrate use of the theory developed so
far. In particular we show how it is possible in some cases, via the theory in Section 5,
to make claims about (AB)[2] by examination of the DSR graph GA,B and without

explicit construction of G
[2]
A,B .
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6.1. When the DSR graph has three S-vertices or three R-vertices.

Given C ∈ R
3×m and A,Bt ∈ Q0(C), then G

[2]
A,B has a particularly nice structure,

illustrated generically in the figure below:

12 23

13

13

12

11
23

22

21
. . .

...

. . .
m3

m2

m1

Depending on the particular entries of A and B, some edges may be absent, some
edges may become directed, some edges may change sign, and some edges may get

the label ∞. Nonetheless, the generic structure of G
[2]
A,B is always the same and in

particular, the degree of any R-vertex is at most 2. This fact implies that no odd

intersection of cycles is possible (see Remark 2.17) and checking that G
[2]
A,B is odd∗

amounts to showing that all its e-cycles are s-cycles. This has a pleasant translation
into a property of the DSR graph, as follows.

Theorem 6.1. Let C ∈ R
3×m and A,Bt ∈ Q0(C). If GA,B satisfies (i) all e-cycles

of length 4 are s-cycles; and (ii) all o-cycles of length 6 are s-cycles, then G
[2]
A,B is

odd∗, (AB)[2] is a P0-matrix, and the nonreal spectrum of AB does not intersect C−.

Proof. If G
[2]
A,B is odd∗, then the remaining conclusions follow from Theorem 2.18

and Lemma 2.7. Because R-vertices of G
[2]
A,B have degree at most 2, in order to show

that G
[2]
A,B is odd∗ we need only show that all e-cycles of G

[2]
A,B are s-cycles. As

explained in Remark 5.16, all 4-cycles of G
[2]
A,B are external liftings of 4-cycles of

GA,B , whose parity (and edge-labels) they inherit. It follows from (i) that all e-

cycles of length 4 in G
[2]
A,B are s-cycles. On the other hand, any 6-cycle C of G

[2]
A,B

includes all S-vertices of G
[2]
A,B , namely 12, 23, and 13, and therefore has exactly one

inversion. Thus C is twisted (Proposition 5.8), π(C) is a closed walk, and moreover
(propositions 5.10 and 5.11) C is an e-cycle if and only if π(C) is odd, and C is an
s-cycle if and only if π(C) is an s-walk.

We may distinguish three possibilities for a 6-cycle C, according to the three pos-
sible structures of its projection, illustrated below. Here vertices depicted as distinct
are distinct, and the projected closed walks are obtained by following the arrows.
As the hypothesis that A,Bt ∈ Q0(C) means that no pair of vertices in GA,B are
connected by more than one edge, two arrows between a pair of vertices mean that
an undirected edge is traversed twice:
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(c)

R

R

R

SS

S
(b)

R

R

SS

S
(a)

R

SS

S

We now need to show that the hypotheses of the theorem imply that odd walks
in GA,B of types (a), (b), and (c) are closed s-walks. Type (a) is an acyclic walk
and is structurally a closed s-walk (see Corollary 2.21). Type (b) is composed of an
undirected edge traversed twice and a 4-cycle. If the walk is odd then the 4-cycle
must be even and thus an s-cycle by hypothesis (i); it follows that the walk itself is a
closed s-walk. Finally, type (c) is covered by hypothesis (ii).

As we might expect, there is a dual result to Theorem 6.1 for matrices with three
columns.

Corollary 6.2. Let C ∈ R
m×3 and A,Bt ∈ Q0(C). If GA,B satisfies (i) all

e-cycles of length 4 are s-cycles and (ii) all o-cycles of length 6 are s-cycles, then the
nonreal spectrum of AB does not intersect C−.

Proof. Observe that GA,B satisfies conditions (i) and (ii) on its cycles if and
only if GAt,Bt does. By Theorem 6.1, the nonreal spectrum of AtBt does not intersect
C−. Because AB has the same nonzero spectrum as AtBt (Lemma 2.3), the result
follows.

Remark 6.3. The conclusions in Example 4.2 and Proposition 4.4 are an immediate
consequence of Theorem 6.1.

6.2. When the DSR graph is steady with a vertex set of low degree.

Whereas the results of Section 6.1 dealt with matrices restricted by size, we now con-
sider matrices of arbitrary dimension but with restrictions on the number of nonzero
entries in rows/columns. The following generalisation of Proposition 4.6 is immediate.

Theorem 6.4. Let A ∈ R
n×m be such that GA,At is steady.

(i) If A has no more than two nonzero entries in each column then, for any B ∈
Q0(A

t), AB and (AB)[2] are P0-matrices and so AB is positive semistable.

(ii) If A has no more than two nonzero entries in each row then, for any B ∈
Q0(A

t), AB is positive semistable.

Proof. GA,At is steady by assumption and G
[2]
A,At is steady by Corollary 5.12.

The proof now proceeds exactly as that of Proposition 4.6.

6.3. When the DSR graph is acyclic.

Theorem 6.5. Let C ∈ R
n×m be such that GC,Ct is acyclic. Then, for each

A ∈ Q0(C) and B ∈ Q0(C
t), AB and (AB)[2] are P0-matrices and AB is positive

semistable.

Proof. Because GC,Ct is acyclic, it is odd, and so by Theorem 2.18 AB is a
P0-matrix for each A,Bt ∈ Q0(C). Observe that (i) given any A ∈ Q(C), because

GA,At is acyclic, G
[2]
A,At = G

L
A
,(L

A
)t

is steady by Corollary 5.12 and (ii) given any
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A,Bt ∈ Q(C), L
A

∈ Q(L
C
) and LB ∈ Q((L

C
)t). By Lemma 2.22 (i) and (ii)

imply that (AB)[2] = L
A
LB is a P0-matrix for each A,Bt ∈ Q(C) and the result

extends by closure to A,Bt ∈ Q0(C). Because for each A,Bt ∈ Q0(C) both AB and
(AB)[2] are P0-matrices, the conclusion that AB is positive semistable now follows
from Lemma 2.9.

Remark 6.6. Lemma 4.1 is clearly a special case of Theorem 6.5. If C is a column
vector then GC,Ct is in fact a star.

Remark 6.7. IfGC,Ct is acyclic, this does not imply thatG
[2]
C,Ct is odd∗. While most

of the examples presented have involved situations where the DSR[2] graph is odd or
odd∗, Theorem 6.5 illustrates that the DSR[2] graph may provide useful information
even in the case where it fails to be odd∗.

Remark 6.8. Observe that Theorem 6.5 does not imply that if GA,B is acyclic, then
AB is positive semistable. However, given A,Bt ∈ R

n×m, there exists C ∈ R
n×m with

GC,Ct acyclic and such that A ∈ Q0(C), B ∈ Q0(C
t) if and only if the underlying

undirected graph of GA,B is acyclic (i.e., GA,B has no semicycles). Theorem 6.5 could
thus be rephrased: “If the underlying undirected graph of GA,B is acyclic, then AB
and (AB)[2] are P0-matrices and AB is positive semistable.”

6.4. Limitations of the theory developed so far. There are a number
of ways in which naive application of the theory described here can fail to provide
information, even when a set of matrices structurally forbids the passage of a pair
of nonreal eigenvalues through the imaginary axis. We illustrate with a couple of
examples. Following up on Remark 6.7, the next example illustrates that even when

G
[2]
A,B is not odd∗ and in fact (AB)[2] is not necessarily a P0-matrix, it may still be

possible to infer the absence of Hopf bifurcation from the DSR[2] graph.

Example 6.9. Consider the matrices

A =





a 0 0
0 b 0
0 0 c



 , B =





0 −d 0
−e 0 f
g 0 h



 ,

with a, b, c, d, e, f, g, h > 0. G
[2]
A,B is shown:

12 23

13

13

12

11
23

22

21
33

32

31
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Labels have been omitted, but it is easy to check that G
[2]
A,B fails to be odd∗ as

a consequence of the cycle C = (13, 23, 23, 13, 13) which is even but, involving ∞
labels, not an s-cycle. Indeed (AB)[2] is not necessarily a P0-matrix for all values of
the entries. However computation reveals that (AB)[2] is nonsingular and applying
Lemma 2.6, Spec (AB)\{0} does not intersect the imaginary axis, forbidding Hopf
bifurcation.

In fact, more careful application of the theory developed in [3] allows us to infer

from G
[2]
A,B , and without direct computation of det((AB)[2]), that det((AB)[2]) > 0;

the argument is only sketched here. There are exactly two cycles in G
[2]
A,B , an odd cycle

D = (12, 32, 23, 13, 13, 21, 12) and the even cycle C. However C does not contribute
any negative terms to the determinant; this follows from the fact that no undirected
edges are incident into S-vertex 12 and consequently there is no set of three R-vertices

matched with the three S-vertices in both G
[2]
A,0 and G

[2]
0,B in such a way that the union

of these matchings includes C; see Remark 2.19, and also the discussion on “good”
cycles [24] (resp. “central” cycles in [22]) and Pfaffian orientations. Because C is the

only even cycle in G
[2]
A,B and contributes nothing to the determinant, det((AB)[2]) ≥ 0.

That det((AB)[2]) 6= 0 follows from the existence of D, which traverses each S-vertex
and thus contributes a nonzero term to det((AB)[2]).

Remark 6.10. Remark 2.8 does not apply to Example 6.9, because (AB)[2] has
not been proved to be a P0-matrix.

The next example demonstrates that (AB)[2] may be a P0-matrix for all B ∈

Q0(A
t), although this does not follow from examination of G

[2]
A,At using any of the

theory presented so far. It seems likely that this information can indeed be inferred

from G
[2]
A,At , but that new techniques will be needed.

Example 6.11. Consider the matrix

A =













1 0 0 0
−1 1 0 0
0 −1 1 0

−1 0 −1 1
0 0 0 −1













.

Symbolic computation confirms that (AB)[2] is a P0-matrix for arbitrary B ∈ Q0(A
t).

Because GA,At is odd, AB is also a P0-matrix, and so, by Lemma 2.9, AB is in fact

positive semistable. However, neither G
[2]
A,At nor G

[2]
At,A is odd∗. The picture on

the left shows two e-cycles of G
[2]
A,At with odd intersection. On the right G

[2]

Ãt,Ã
is

depicted, where Ã denotes the submatrix of A obtained by removing its first and last
rows. The e-cycles (13, 21, 12, 32, 23, 13, 13) and (13, 31, 14, 14, 24, 32, 23, 13, 13) have

odd intersection, and G
[2]

Ãt,Ã
fails to be odd∗. By Lemma 5.1, G

[2]
At,A is not odd∗ either.
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15

14

24

34

35

45

25
42

15

4114

24

43 35

24

14

34

23

12

13

14

34

24

32

21

13

31

33

Notice that although G
[2]
A,At is steady, Lemma 2.22 cannot be applied because G

[2]
Bt,B is

not in general steady. An interesting feature of this example is that some products of

the form L
A
[α|β]LB [β|α] in (3.5) contain negative terms, but all such negative terms

are cancelled by positive terms arising from other products.

The last two examples demonstrate that DSR[2] graphs have more to offer than is
explored in this paper. In particular a more complete analysis of projection and lifting
may provide new techniques to rule out Hopf bifurcation in families of matrices.

We conclude by remarking that criteria such as “(AB)[2] is a P0-matrix” or even
“det((AB)[2]) > 0”, which forbid the passage of a real eigenvalue of (AB)[2] through
zero, are sufficient but not necessary to preclude Hopf bifurcation. Indeed a real eigen-
value of (AB)[2] may pass through zero as a consequence of migration of eigenvalues
of AB on the real axis without any possibility of Hopf bifurcation. This limitation
may be circumvented by resorting to conditions that distinguish imaginary pairs of
eigenvalues of AB from pairs of real eigenvalues summing to zero, for example based
on subresultant criteria [13]. Natural extensions of the work here involve exploiting
such criteria, and also examining other graphs related to AB whose cycle structure
contains information about Hopf bifurcation.
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