COMMUN. MATH. SCI. (© 2014 International Press
Vol. 12, No. 6, pp. 1065-1100

INFLUENCE OF VACUUM ELECTRIC FIELD ON THE STABILITY
OF A PLASMA-VACUUM INTERFACE*

NIKITA MANDRIK! AND YURI TRAKHININ?

Abstract. We study the free boundary problem for the plasma-vacuum interface in ideal com-
pressible magnetohydrodynamics. Unlike the classical statement, when the vacuum magnetic field
obeys the div-curl system of pre-Maxwell dynamics, we do not neglect the displacement current in the
vacuum region and consider the Maxwell equations for electric and magnetic fields. We show that a
sufficiently large vacuum electric field can make the planar interface violently unstable. We find and
analyze a sufficient condition on the vacuum electric field that precludes violent instabilities. Under
the assumption that this condition is satisfied at each point of the unperturbed nonplanar plasma-
vacuum interface, we prove the well-posedness of the linearized problem in anisotropic weighted
Sobolev spaces.
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1. Introduction
We consider the equations of ideal compressible magnetohydrodynamics (MHD):
Orp+div(pv) =0, (1.1a
O (pv)+div(pv@v—H®H)+Vq=0, (1.1b
O H—V x(vxH)=0, (1.1c
O (pe+3|H[?) +div ((pe+p)v+Hx (vxH)) =0, (1.1d
where p denotes density, v € R?® plasma velocity, H € R® magnetic field, p=p(p,S5)
pressure, q=p+%\H|2 total pressure, S entropy, e=FE+ %|v|2 total energy, and E =
E(p,S) internal energy. With a state equation of gas, p=p(p,S), and the first principle

of thermodynamics, (1.1) is a closed system for the unknown U =U(t,z) = (p,v,H,S).
System (1.1) is supplemented by the divergence constraint

divH =0 (1.2)

)
)
)
)

on the initial data U(0,z)=Up(x). As is known, taking into account (1.2), we can
easily symmetrize system (1.1) by rewriting it in the nonconservative form

Lo givn—o, oY (V) H Vg0,
p dt dt

(1.3)
dH s _

- (H Hdivy = - =

ir (H,V)v+ Hdive=0, %
where d/dt=09;+ (v,V) and by (, ) we denote the scalar product. Equations (1.3)
form the symmetric system

0,

Ap()aU+> A (U)9;U =0, (1.4)

Jj=1
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1066 STABILITY OF A PLASMA-VACUUM INTERFACE

which is hyperbolic if the matrix Ay =diag (1/(p(12),p,p,p7 1,1,1, 1) is positive definite,
ie.,

p>0, pp>0, (1.5)

where a = (pp)_% is the sound velocity, and other symmetric matrices have the form

;% 1 0 0 0 0 0 0
1 pU1L 0 0 0 H2 H3 0
0 0 py 0 O0-Hy 0 0
Aj=| 0 0 0 pu 0 0 —H 0 |
0 0 O 0 v1 O 0 O
0 H2 —Hl 0 0 (%1 0 0
0 H3 0 —H1 0 0 U1 0
0 0 O 0 0 0 0 un
p% 0 1 0 0 0 0 O
0 pvo 0 0 —H, 0 0 0
1 0 PU 0 H1 0 H3 0
Ay=| 0 0 0 poz 0 0 -Hy 0 |
0 —H2 H1 0 V2 0 0 0
0 0 0 0 0 v 0 O
0 0 H3 —H2 0 0 Vo 0
0O 0 0 O 0 0 0 v
p’% 0 0 1 O 0 00
0 pv 0 0 —H3 0 00
0 0 pvs 0 O —-H300
Az = 1 0 0 pvs Hi Hy 00
0 —Hg 0 H1 V3 0 00
0 0 —H3 H2 0 V3 00
0 O 0O 0 O 0 w30
0 O 0O 0 O 0 0 ws

Plasma-vacuum interface problems for system (1.1) appear in the mathematical
modeling of plasma confinement by magnetic fields. This subject has been very pop-
ular since the 1950’s, but most theoretical studies were devoted to finding stability
criteria for equilibrium states. The typical work in this direction is the famous paper
of Bernstein et al. [2] where the plasma-vacuum interface problem was considered
in its classical statement modeling the plasma confined inside a perfectly conducting
rigid wall and isolated from it by a vacuum region. In this statement (see also, e.g.,
[4]) the plasma is described by the MHD equations (1.1) whereas in the vacuum region
one considers the so-called pre-Mazwell dynamics

VxH=0, divKH=0, (1.6)

describing the vacuum magnetic field 4 € R3. That is, one neglects the displacement
current (1/¢)9;E not only in nonrelativistic MHD but also in the Maxwell equations
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in vacuum, where E €R3 is the electric field and ¢ is the speed of the light. Then,
from

1
VxE=—-0H, divE=0
C

the vacuum electric field F is a secondary variable that may be computed from the
magnetic field H. Recall that the plasma electric field is a secondary variable as well
because in ideal MHD

1

EY=——vxH, (1.7)

where we use the notation E¥ to distinguish between the vacuum and plasma electric
fields.!

The classical statement [2, 4] of the plasma-vacuum problem for systems (1.1)
and (1.6) is closed by the boundary conditions

% ~0, [g=0, (H,N)=0, (1.82)
(H,N)=0, (1.8b)

on the interface I'(¢t) = {F(¢t,2) =0} and the initial data

U(0,2)=Ug(z), xeQ7(0), F(0,2)=Fy(x), xe€T(0),

H(0,2) =Ho(z), =€Q(0), (1.9)

for the plasma variable U, the vacuum magnetic field H, and the function F', where
Qt(t) and Q (¢) are space-time domains occupied by the plasma and the vacuum
respectively, N=VF, and [¢]=q|r — %|’;’-1,||2F denotes the jump of the total pressure
across the interface. The first condition in (1.8) means that the interface moves
with the velocity of plasma particles at the boundary and because F' is an unknown,
problem (1.1), (1.6)—(1.9) is a free-boundary problem. Moreover, in the plasma con-
finement problem both the plasma and vacuum regions are bounded domains, and
at the perfectly conducting rigid wall ¥ which is the exterior boundary of the vac-
uum region Q7 (¢) one states the standard boundary condition as (H,n)=0 (see [20]),
where n is a normal vector to 3.

In astrophysics, the plasma-vacuum interface problem (1.1), (1.6)—(1.9) can be
used for modeling a star or the solar corona when magnetic fields are taken into ac-
count. In this case, the vacuum region surrounding a plasma body is usually assumed
to be unbounded.

Until recently, there were no well-posedness results for full (non-stationary)
plasma-vacuum models. A basic energy a priori estimate in Sobolev spaces for the
linearization of the plasma-vacuum problem (1.1), (1.6)—(1.9) was first derived in [18],
provided that the stability condition stating that the magnetic fields on either side
of the interface are not collinear holds for a basic state (“unperturbed flow”). The
existence of solutions to the linearized problem was then proved in [14]. In [18, 14], as
in [6, 17], it was assumed that the hyperbolicity conditions (1.5) are satisfied in Q*(¢)
up to the boundary I'(¢), i.e., the density does not go to zero continuously, but has a
jump (clearly, in the vacuum region 7 (¢) the density is identically zero). It is note-
worthy that this assumption is automatically satisfied for the uniform incompressible

1Below we will drop the subscript “—” for the vacuum electric field: E:=E~.
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plasma, i.e., for the case when in problem (1.1), (1.6)—(1.9) system (1.1) is replaced
by the equations of ideal incompressible MHD with a uniform (constant) density. For
this case results analogous to those from [18, 14] were recently obtained in [9].

In [18, 14], for technical simplicity the moving interface I'(t) was assumed to
have the form of a graph F=xz;—¢(t,2'), 2’ =(x2,23), i.e., both the plasma and
vacuum domains are unbounded. However, as was noted in the subsequent paper
[15], this assumption is not suitable in a pure form for the original nonlinear free
boundary problem (1.1), (1.6)—(1.9) because in that case the vacuum region Q= (¢) =
{z1 < p(t,x’)} is a simply connected domain. Indeed, the elliptic problem (1.6), (1.8b)
has then only the trivial solution H =0, and the whole problem is reduced to solving
the MHD equations (1.1) with a vanishing total pressure ¢ on I'(t).

The technically difficult case of non-simply connected vacuum regions was post-
poned in [15] to a future work. Instead of this, the plasma-vacuum system was
assumed in [15] to be not isolated from the outside world due to a given sur-
face current on the fixed boundary of the vacuum region that forces oscillations.
Namely, in [15] the space domain § occupied by plasma and vacuum is given by
Q:={reR3|z; €(-1,1), 2’ € T?}, where T? denotes the 2-torus, which can be thought
of as the unit square with periodic boundary conditions, the interface I' is given by
F=x1—¢(t,2')=0, and QF(t)={z; = ¢(t,2")}NQ are the plasma and vacuum do-
mains respectively. On the fixed top and bottom boundaries I'y :={(£1,2'), 2’ € T?}
of the domain £, the authors of [15] prescribed the boundary conditions

vi=H1=0 on[0,7]xTy, vxH=3F onl0,T]xI_, (1.10)

where v=(—1,0,0) is the outward normal vector at I'_ and J represents a given sur-
face current which forces oscillations onto the plasma-vacuum system. In laboratory
plasmas this external excitation may be caused by a system of coils. This model can
also be exploited for the analysis of waves in astrophysical plasmas, e.g., by mimicking
the effects of excitation of MHD waves by an external plasma by means of a localized
set of “coils”, when the response of the internal plasma is the main issue (see a more
complete discussion in [4]).

Based on the results of [18, 14] for the linearized problem, if the above mentioned
stability condition [18] is satisfied at each point of the initial interface the existence
and uniqueness of the solution to the nonlinear plasma-vacuum interface problem
(1.1), (1.6)—(1.10) in suitable anisotropic Sobolev spaces was recently proved in [15]
by a suitable Nash-Moser-type iteration.

In relativistic settings, the displacement current (1/¢)0:E cannot be neglected
and we have the Maxwell equations

1 1
COHFVXE=0,  —9E-VxH=0 (1.11)

in the vacuum region whereas in the plasma region instead of system (1.1) one consid-
ers the equations of relativistic magnetohydrodynamics (RMHD). We do not include
the equations

diviH=0, divE=0 (1.12)

into the main system (1.11) because they are just divergence constraints on the initial
data. The relativistic plasma-vacuum interface problem for the case of special rela-
tivity was first systematically studied in [19]. For technical simplicity the plasma and
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vacuum regions were assumed to be unbounded and given by QF(t) ={x; = p(t,2')}
respectively. The Maxwell equations (1.11) and the RMHD equations are supple-
mented by the interface conditions (1.8) and suitable boundary conditions for the
vacuum electric field (see [19] and also below). It should be noted that the relativistic
version of the second boundary condition in (1.8a) has the form [19]

=l — 5 (HP~BP)|r (113)

with the relativistic total pressure q:er% (|H|2 — \Eﬂz), where the plasma electric
field E* is given by (1.7).

By considering particular cases for the unperturbed flow, it was shown in [19] that,
unlike the non-relativistic case, even if the non-collinearity condition (H x H)|r #0
from [18, 14, 15] on the unperturbed magnetic fields holds a sufficiently large un-
perturbed vacuum electric field can make the relativistic planar interface violently
unstable. The main result of [19] found a sufficient stability condition which gives a
(basic) energy a priori estimate in the anisotropic weighted Sobolev space H} for the
variable coefficients linearized problem for nonplanar plasma-vacuum interfaces (see
[3, 20, 8, 13] and references therein as well as Section 3 for the definition of HJ™).
Namely, it was proved in [19] that under the non-collinearity condition the planar
interface is stable if, roughly speaking, the unperturbed vacuum electric field is small
enough. Moreover, if the sufficient stability condition holds at each point of the unper-
turbed nonplanar interface, then the linearized problem obeys the mentioned energy
a priori estimate. The deduction of this a priori estimate is the first step towards the
proof of a local-in-time existence and uniqueness theorem for the nonlinear problem.

However, due to enormous technical complication of the RMHD equations it is
very difficult to analyze (even numerically) the parametric domain described by the
sufficient stability condition found in [19] and its size in comparison with the whole
stability domain, i.e., the whole domain of the well-posedness of the constant coef-
ficients linearized problem for a planar interface. The whole stability domain could
be found by spectral analysis, but this seems technically impossible in practice (the
linearized RMHD equations are rather complicated even for particular cases of the
unperturbed flow).

At the same time, in the analysis in [19] relativistic effects play a rather passive
role whereas the crucial influence on stability is exerted by the vacuum electric field.
Recall that in the classical statement of the non-relativistic plasma-vacuum interface
problem [2, 4, 18, 14, 15] the influence of the vacuum electric field is ignored because
the vacuum electric field is a secondary variable defined through the vacuum magnetic
field which should satisfy the div-curl system (1.6). This seems reasonable at first
sight (and, as we will see, this is indeed so if the vacuum electric field is small enough)
because if we reduce the MHD system (1.3) and the Maxwell equations (1.11) to a
dimensionless form by introducing the scaled values
‘%:Z7 t:a?fv 6:%7 ﬁzgv ﬁ:%a S:%a
(1.14)

then after dropping tildes the MHD system in terms of the scaled values stays un-
changed whereas the Maxwell equations take the form

eOH+V x E=0, (1.15a)
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e E—V xH=0 (1.15b)

(clearly, the divergence constraints (1.12) stay unchanged), with

where ¢ is a characteristic length and p, @, and S are constants associated with a
uniform flow, namely, @ is the sound speed, p is the density, and S is the entropy
for this flow. Because for non-relativistic speeds characteristic plasma velocities, in
particular the constant sound speed a@ are very small compared to the speed of light,
the constant ¢ is a very small but fized parameter.

In this paper, unlike the classical statement in [2, 4, 18, 14, 15], we do not set e =0
in (1.15b) and consider the full Maxwell equations in vacuum. We show that in spite
of the fact that € is a very small constant a large enough vacuum electric field will
crucially influence the stability of a non-relativistic plasma-vacuum interface. Thus, in
our new statement the non-relativistic plasma is still described by the MHD equations
(1.3)% whereas the vacuum magnetic and electric fields obey the Maxwell equations
(1.15). Asin [19], for technical simplicity we consider the case of unbounded domains.
Namely, we assume that the domains Q* () = {x; = ¢(t,2’)} represent the plasma and
vacuum regions respectively. On the interface I'(t) = {F(t,z)=z1 —p(t,2’) =0} we
still have the boundary conditions (1.8), where the jump [¢] is given by (1.13) and ¢
is the total pressure of non-relativistic plasma appearing in (1.1), i.e., g=p+ %|H\2.
That is, one has

Opp=vn, (1.16a)
g=3(HP~|E?)  onI(t), (1.16b)
and
Hy =0, (1.17a)
Hn=0  onI(¢), (1.17Db)

where vy =(v,N), Hy=(H,N), Hy=(H,N), and N=VF=(1,-02p,—03p). As
for current-vortex sheets [16], conditions (1.17) are not real boundary conditions and
should be considered as restrictions on the initial data.

The boundary conditions for the vacuum electric field are just jump conditions
for equation (1.1¢) (in a dimensionless form) and (1.15a), i.e., for the conservation
laws

O(eHE)+V xEE=0 in Q*(¢),

with Ht=H, H-=H, ET=—¢(vx H) (cf. (1.7)), and E~ = E. These jump condi-
tions have the known form [2]

N x [E]=edip[H] on I'(t),

with [E] :E‘JIC—E\F, [H]=H|r —H|r, and, taking into account (1.16a) and (1.17a),
we exclude from them the velocity and the plasma magnetic field:

NxE=copM onT(t). (1.18)

2We assume that they are already written in terms of the scaled values (1.14) and tildes are
dropped.
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The first condition in (1.18) is nothing else than constraint (1.17b) and the other two
boundary conditions in (1.18) read

E., =cH30p, E.,=—cHa0p on I'(¢), (1.19)

with F., =FE10;p+E;, i=2,3. In fact, if in (1.19) we formally set e=1, then we
get the corresponding boundary conditions for the relativistic case in [19], where the
speed of the light was taken to be equal to unity.

Summarizing the above, we obtain the free boundary value problem for system
(1.4) in QT (¢) and system (1.15) in Q™ (¢) with the boundary conditions (1.16) and
(1.19) on I'(¢) and the initial data

U(0,x)=Uy(x), z€Qt(0), V(0,2)=Vo(x), x€Q(0), 190
o(0,0) = po(a'), ©ER2, (1:20)
where V = (H,FE). Moreover, exactly as in [19], we can prove that (1.2), (1.12), and
(1.17) are restrictions on the initial data (1.20), i.e., if they are satisfied at the first
moment t=0, then they hold for all ¢>0. System (1.15) is always hyperbolic and,
as in [19], we assume that the hyperbolicity condition (1.5) is satisfied up to the
boundary of the domain Q7 (¢).

In this paper, we study the linearized problem associated to (1.4), (1.15), (1.16),
(1.19), and (1.20). We first obtain a non-relativistic counterpart of the sufficient
stability condition from [19]. Then, our main goal is to analyze it for particular cases
and compare with the spectral stability condition that was technically impossible in
relativistic settings in [19]. The spectral stability condition is nothing else than the
Kreiss-Lopatinski condition [5, 7] for the constant coefficients linearized problem for a
planar interface. Even in our non-relativistic settings, for technical reasons we are not
able to find this condition for the general case of the unperturbed flow, but we can
fortunately analyze it both analytically and numerically for some particular cases.

Following [19], we can derive an energy a priori estimate in H} for the variable
coeflicients linearized problem for nonplanar plasma-vacuum interfaces, provided that
the sufficient stability condition holds at each point of the unperturbed interface.
Moreover, the existence of solutions of the linearized problem in H! was not proved
in [19] and we fill this gap for our non-relativistic version of the linearized problem.
But, it is worth noting that the same arguments towards the proof of existence are
still applicable in relativistic settings in [19].

The rest of the paper is organized as follows. In Section 2, we reduce the free
boundary problem (1.4), (1.15), (1.16), (1.19), (1.20) to an initial-boundary value
problem in a fixed domain and discuss properties of the reduced problem. In Section
3, we obtain the linearized problem and formulate main results for it (see Theorem 3.1
and Proposition 3.1). In Section 4, we find the mentioned sufficient stability condition
for a planar interface by the energy method applied to the linearized problem in the
case of constant coefficients. Moreover, in Section 4 we analyze this stability condition
for the particular case from Proposition 3.1. In Section 5, by considering particular
cases of the unperturbed constant solution, we prove that the planar interface can
be violently unstable, and we study both analytically and numerically the spectral
stability condition from Proposition 3.1. At last, Section 6 is devoted to the proof of
the well-posedness of the linearized problem under the sufficient stability condition
satisfied at each point of the unperturbed nonplanar plasma-vacuum interface.
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2. Reduced problem in a fixed domain

We straighten the interface I' by using the same change of independent variables
as in [16, 17, 18]. That is, the unknowns U and V' being smooth in Q*(¢) are replaced
by the vector-functions

U(t,x):=U(t, " (t,2),2"), V(t,2):=V(t,® (t,z),2"),
which are smooth in the half-space Ri, where
OF(t,x) :=da + U (t,x), UE(tx):=x(L£x)p(t,z),

X € C5°(R) equals 1 on [~1,1], and ||x'||z_ (=) <1/2. Here, we use the cut-off function
X to avoid assumptions about compact support of the initial data in our (future)
nonlinear existence theorem.? The above change of variable is admissible if 9; &% #0.
The latter is guaranteed, namely, the inequalities 8;®* >0 and 9;®~ <0 are fulfilled,
if we consider solutions for which |||z _ (jo,71xr2) <1. This holds if, dropping for

convenience tildes in U and V, we reduce (1.4), (1.15), (1.16), (1.19), (1.20) to the
initial boundary value problem

P(U,¥T)=0 in [0,7]xR3, (2.1)
V(V,¥7)=0 in[0,7]xR3, (2.2)
B(U,V,p)=0 on [0,T]x {z; =0} x R?, (2.3)

(U V)|i=0=(Uo,Vo) inR3, @li—o=¢o in R?, (2.4)

without loss of generality, we consider the initial data satisfying |[¢ol|r_ 2y <1/2,
and the time T in our existence theorem is sufficiently small.

Here
P(U, 9T =L(U, U, V(V,¥")=M(T7)V,
LU, U) = Ag(U)8, + Ay (U, U )0y + Ay (U)D + A3(U) s,
A (U OT) = 81; (A1(U) = Ag(U)0, 0T — Ao (U) 0,0 — A3(U) 03T,
M (V™) =el 8+ By (V)8 + By0y + B30,
El(\p—)zal%(Bl—elat\p——3282\11——3333\1/—), O OF =41+, 0%,

3In [19], for technical simplicity the cut-off function was not introduced, i.e., the simplest change
of variables with x =1 was used.
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N —Orp
03 b; . q—3 (1>~ |E]?)
B;= / ; :172a37 B Ua‘/a = 2 ;
j <bJT 03) J (U,V,0) B, — cHyd0
E., +eHa0up
000 001 0-10
bi={00 1|, bo=( 000], ts=[100],
0-10 —-100 00O

’Z)N:U17U282\IJ+7U3(93\I/+, En:Elﬁi\I/*+E¢, ’L:2,3

Regarding constraints (1.2), (1.12), and (1.17), following [16] and [19], we can
prove the following propositions.

PROPOSITION 2.1.  Let the initial data (2.4) satisfy
divh=0 (2.5)
and
Hylpy=0=0, (2.6)
where
h=(Hy,Hy0:®" H301®"), Hy=H,—Hy0,V" — H303¥+.

If problem (2.1)~(2.4) has a solution (U,V,¢), then this solution satisfies (2.5) and
(2.6) for all t€0,T).

PROPOSITION 2.2.  Let the initial data (2.4) satisfy
HN|zy=0=0 (2.7)
and
divh=0, dive=0, (2.8)
where

Hy=H1—H20,V ™ —H303¥ ", bh=(Hn,H201P ,H30:P7),

QZ(EN,EQal(I)i,Egach)i), EN:E17E282\1177E333@7.
If problem (2.1)—(2.4) has a solution (U,V,p) with the property

then this solution satisfies (2.7) and (2.8) for all t€[0,T).
If problem (2.1)—(2.4), with the two additional boundary conditions

divhp,—0=0  and  dive|s,—o=0, (2.10)
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has a solution (U,V,p) with the property
Oy >0, (2.11)

then this solution again satisfies (2.7) and (2.8) for all t€[0,T].

The proof of Proposition 2.1 is absolutely the same as the corresponding one in
[16] for current-vortex sheets. To prove Proposition 2.2 we should just literally repeat
arguments from [19] with technical modifications connected with the introduction of
the cut-off function x in our change of variables. As in [19], without loss of generality,
we will consider below only case (2.9) when the plasma expands into the vacuum.*
Moreover, we naturally assume that the “stable” counterpart

Brp <0 (2.12)

of condition (2.9) holds. This means that in our future local-in-time existence theorem
we will consider initial data satisfying condition (2.12) and its fulfillment for solutions
will be guaranteed by a small enough time of their existence.

Under assumption (2.12) the boundary z1 =0 is noncharacteristic for system (2.2).
Indeed, all of the eigenvalues of the boundary matrix

edygp 0 0 0 —03p Oap
0 edp 0 O3 O 1
0 0 edp —Oap =1 0
0 O3p —Oap ebrp 0O 0

—d3p 0 -1 0 edp O
O 1 0 0 0 edwp

B(p) =B (T )|py—0= (2.13)

for system (2.2) are non-zero:

A2 =e0ip+ /14 (920)2 + (939)2,

A3a=e0ip— /14 (020)2+ (039)%, s =c0sp.

For case (2.12), the eigenvalues satisfy A; o >0 and A\, <0, k=3,4,5,6. As in [14, 15,
18], the boundary matrix 2A(U);,—0,¢) := Ay (U, )|, —o for the MHD system (2.1)
has one positive and one negative eigenvalue and the others are zero (see also next
section). That is, the boundary x; =0 is characteristic for system (2.1), and the whole
system (2.1), (2.2) for U and V has three incoming characteristics. This means that
the number of boundary conditions in (2.3) is correct because one of them is needed
for determining the function o(t,z").

REMARK 2.1. For case (2.11), when we have shrinkage of the plasma region, the
number of incoming characteristics is five (for this case the eigenvalues A5 ¢ above
are positive). This means that the correct number of boundary conditions is six and
problem (2.1)—(2.4) is formally underdetermined because it is missing two boundary
conditions. However, we supplement (2.3) with the additional boundary conditions
(2.10) which enable one to prove Proposition 2.2 for case (2.11). For the opposite

4As in [19], in this paper we postpone to a future work the consideration of the general mixed
case when ;¢ is indefinite in sign. For this difficult case the Maxwell system (2.2) is of variable
multiplicity; see Remark 2.1.
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case (2.12) these additional boundary conditions are unnecessary. This makes rather
difficult the analysis of the general case when for some parts of the interface the
plasma expands into the vacuum and for other parts the vacuum expands into the
plasma. On the other hand, locally in space either condition (2.9) or (2.11) is satisfied
on the interface and this makes reasonable the consideration of one of them.

3. Linearized problem and main results
3.1. Basic state. Let
(U(t,),V(t,2),4(t,)) (3.1)

~

be a given sufficiently smooth vector-function with U= (ﬁ,ﬂ,f[,g), V=(

S
o
&
=
o

(U V) lwz, ) 101U, V)llwz ) + 19llws (00r) <K, (3.2)
where K >0 is a constant,
Qr :=(—00,T] XR?H OV = (—00,T) x {1 =0} x R?,

and below all the “hat” values will be related to the basic state (3.1).
We assume that the basic state (3.1) satisfies the hyperbolicity condition (1.5) in
QT)

p(ﬁas)>07 pp(ﬁvs)>0a (33)
the boundary conditions in (2.3) except the second one on 9,

’[)N|m1:0:%7 E72|11:0:E%7:23|11:Oa E7'3|w1:0:_5%7:22|w1:07 (34)

and the interior equations for A and H in Q7 contained in (2.1) and (2.2):

N 1 T e

O+ = {(w,V)H— (h,V)v+Hdlvu} =0, (3.5)
-9~ 1 ~ ~ N\ ~

ey = = (bl—b282\1: b5 )E_o, (3.6)

N,81</IS+@2,81</15+@3). At last, we assume

where x=08,¢, w=1a—(,V",0,0), 4= (b
2). More precisely, let

= (
that the basic state satisfies condition (2.1

»x<—-e1<0 (3.7)

on JQ7 with a fixed constant 1.
Moreover, without loss of generality we assume that ||4]|._ (a0,) <1. This implies

9T >1/2, 9B <-1/2.
Note that (3.2) yields
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where W :=(U,0,U, 1,V UV, ,¥7), V. =(0:,V), and C=C(K)>0 is a con-
stant depending on K.

Assumptions (3.5) and (3.6) on the basic state are necessary to deduce for the
linearized problem equations associated to constraints (2.5)—(2.8) (see [16, 19]). For
the same reason we have to assume that the basic state satisfies these constraints:

Hyloy—0=0, Hnls—0=0, (3.8)

divh=0, divh=0, divé=0. (3.9)

However, together with (3.5) and (3.6) it is enough to assume that (3.8) and (3.9)
hold only for t=0. Then, it follows from the proofs of propositions 2.1 and 2.2 (see
[16, 19]) that conditions (3.8) are true on 99 and equations (3.9) hold in Q7. Thus,
without loss of generality for the basic state we also require the fulfillment of (3.8) on
0Qp and (3.9) in Q.

At last, we note that the first conditions in (3.4) and (3.8) endow the boundary
matrix diag (A(U)z,—0,¢),B(p)) for the linearized problem with the same structure
as the boundary matrix for the nonlinear problem (2.1)—(2.4). Concerning the second
and third conditions in (3.4), we need them in order to deduce a linearized version of
(2.7) for solutions of the linearized problem.

3.2. Linearized problem. The linearized equations for (2.1)-(2.3) read:

P d
B/(0,94)(8U,00) = T B(U V)= fi in Qr,

V’(IA/,A_)((SV,(S\I/‘)::(?

€

V(Ve, ¥ )|e=o=fur in Qr,

~ o~ d
B (U,V,$)(8U,8V,6p) := &B(UE,VE,@E)\;O:g on 007,

where U, =U +€0U, V.=V +€6V, pe=9+edp, and

‘I’Et (t,l‘) ::X(ixl)gpe(taxl)v (I)Et (t7x) =tz + \I/g:(t,x),

SUE(t,z) = x(£x1)dp(t, ).

Here we introduce the source terms f=(f1, fur)=(f1,...,f14) and g=(g1,...,94) to
make the interior equations and the boundary conditions inhomogeneous.
We easily compute the exact form of the linearized equations (below we drop §):

Pl(ﬁai\j—F)(Uv\Iri_) :L(67@+)U+C(ﬁai}+)U_ {L((/j\"{l\l"')(f"} (’I; :fh

V’(‘A/,\Tf*)(V,\IF):M(@*)V+{M(\fl*)\lf}a = =i,
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UN — Orp — V20200 — D303
q¢—(H.H)+(E.E)
E,, - aﬁgﬁtga —exHs +E‘182<p
E., +€7:Z26t<,0+€%7'[2 +E‘183<p }

B'(U,V,0)(U,V,¢) =

ac1:0

where g=p+ (H,H), vy =v1 — 205U+ — 3050+, B, = Elaj\fl* + E;, and the matrix
C(U,¥7) is determined as follows:

C(U, )Y =(Y,V,A0(0))8,U + (Y,V , AL (U, 01))0, U
+(Y,V, A2(0))0:U + (Y, V, A3(U)) 05U,

(KVyA((/j» ZZZ%‘ Tyz

i=1

Y=U

: (8A(Y)

) ¥

The differential operators P'(ﬁ,\fﬁ) and V’(VA/I\I_) are first-order operators in
Ut and W~ respectively. As in [19], following Alinhac [1], we introduce the “good
unknowns”
) vt ) v
U=U—-——0U, Vi=V—-——0,V. (3.10)
81 + 1@7

Omitting detailed calculations, we rewrite the linearized interior equations in terms
of the new unknowns (3.10):

PO PPN + P
L(U,\IJ+)U+C(U,\I/+)U+8\II§)+ H{P(U, ¥} = f1, (3.11)
1
~ . U~ ~ ~
M(\IJ—)V+a — 0 {V(V,¥7)} = fur. (3.12)
1

Dropping as in [1, 14, 15, 16, 17, 19] the zero-order terms in ¥* and U~ in (3.11)
and (3.12),%> we write down the final form of our linearized problem for (U,V,):

LU, 9HU+CU, U=/  inQp, (3.13)
M@ )W=f1 inQp, (3.14)

i)N —8t<p—@282<p—13383<p+906101v

. ~ . ~ =g on 007, (3.15)
E‘T2 *Eat(,Hggﬁ) —exnHs +32(E1g0)
By, +e0y(Hap) +exHa+05(Erp)

(U,V,0)=0  for t<0, (3.16)

5In the future nonlinear analysis the dropped terms in (3.11) and (3.12) should be considered as
error terms at each Nash-Moser iteration step.
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where [01G) = (014) |2, —0 — (H,01H) |2, 0 + (E, 81 E)|4,—0 and all of the values with dots
(0N, 4, etc.) are determined similarly to corresponding values without dots. We used
(3.6) taken at x1 =0 while writing down the last two boundary conditions in (3.15).
We assume that f and g vanish in the past and consider the case of zero initial data,
which is the usual assumption.b

3.3. Function spaces. Thanks to assumption (3.7) the boundary matrix
%::%(cﬁ) (see (2.13)) for system (3.14) is non-singular. At the same time, in view
of the first conditions in (3.4) and (3.8), the boundary matrix ﬁ::m((7|m1:0,<ﬁ) for
system (3.13) is singular, i.e., the boundary 1 =0 is characteristic for the linearized
MHD equations (3.13). Indeed, let

W:(Q7®N7@27®37HN7H27H37S)

and U=JW. Clearly, detJ#0. Using the first conditions in (3.4) and (3.8), after
some algebra we obtain

QAU,U) =240y (3.17)
It follows from (3.17) that
010---0
100---0
QU,U) = (JTATW,W) = (EW, W),  Ep=| 0000 (3.18)
0000

Hence, the matrix 2 has one positive and one negative eigenvalue, and other eigen-
values are zero.

The fact that the boundary 7 =0 is characteristic for the MHD system implies
a natural loss of control on derivatives in the normal direction. It is known that in
MHD, unlike the situation in gas dynamics (see, e.g., [17]), this loss of control on
derivatives cannot be compensated and the natural functional setting is provided by
the anisotropic weighted Sobolev spaces H}".

The functional space H]" is defined as follows (see [3, 20, 8, 13]):

HMRY):={u€e Ly(R}) | 0Y0Ffue Lo(RY) if |a|+2k<m},

where meN, 0¢=(001)*105205°, and o(r1) € C°(R4) is a monotone increasing
function such that o(z1)=x1 in a neighborhood of the origin and o(z;)=1 for x;
large enough. The space H"(R?) is normed by

H“H?n* = Z ||333{€u||2L2(R§r)~

la|+2k<m

We also define the space
H™(Qr)= ﬂHk —o0,T),H™ *(R3))

6The case of nonzero initial data is postponed to the nonlinear analysis (construction of a so-called
approximate solution; see, e.g., [16]).
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equipped with the norm

T m
[U]i,*,TZ/ ()17, .t where [[fu(®)[[5,.. =D 10/ u()[|5 ;.-
7=0

— 00

Within this paper we use the space H!"(Qdy) mainly for m=1. Clearly, the norm for
HL(Q7) reads

[u]? . r :/Q (u? + (Oyu)? + (001 u)? + (Dou)® + (95u)?) dtdz.

3.4. Reduced linearized problem with homogeneous Maxwell equations
and boundary conditions.  Following (with technical modifications) arguments
in [19] we can pass from the unknown (U, V) to a new unknown (U%,V%) such that it
satisfies problem (3.13)—(3.16) with fi; =0, g=0, and fi replaced by a vector-function
F=(F,...,F4,0,0,0,Fg) obeying the estimate

[Fl1 0 <C{fils,e.r + 1 fuill 30y + 19l 53 0020) - (3.19)

Here and later on C is a constant that can change from line to line, and it may
depend on other constants. In particular, in (3.19) the constant C' depends on K
and T. Dropping for convenience the indices ?, we write down our reduced linearized
problem for the new unknown (U,V):=(U% V%) and the interface perturbation ¢:

3
A U+Y A;9,U+CU=F  inQr, (3.20)
j=1
€0,V +B10,V +BydV +B3dsV =0  in Qr, (3.21)
at(p:UN *@252§0*@38350+<,0811A)N, (3.22&)
E,, =c8,(Hsp) — 0s(Ey ) +£5Ms, (3.22¢)
E,, =—e0;(Hap) — 03(Erp) —e3Hy  on Qr, (3.22d)
(U,V,0)=0 for t <0, (3.23)

where Ay :=A,(U) (0=0,2,3), A;:=A,(U,¥+), C:=C(U, V"), and By :=B; (V7).

Because the boundary conditions (3.22), equation (3.21), and the fifth, sixth,
and seventh equations in (3.20) are homogeneous, following arguments in [19] (with
technical modifications necessary for our non-relativistic settings), we can prove that
solutions to problem (3.20)—(3.23) satisfy

divh=0  in Qr, (3.24)

divh=0, dive=0  in Qf, (3.25)
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HN:?1282<,0+I§383¢—<,06‘1ﬁN on 8QT, (326)

Hy =Hobrp+HsOsp— 0 Hy  on 9, (3.27)
where

h=(Hy,Hy0,9" H30,9"), Hy=H,—Hy0,U" — Hy05U

b (/HN7H251‘5_,H381‘5_), Hy =Hy—HaOo U™ —Hzds W™,

QZ(EN,EQ(?l%i,Egala\)i), EN:EleQaQCI\/i*Egag\/I)i.

Moreover, again referring to [19] for detailed arguments, we can estimate solutions of
problem (3.13)—(3.16) through solutions of problem (3.20)—(3.23):

U1+ VI 00 < Ul + 11V [ o 00
+C{[filse.r+ I full s r) + gl 3000 } - (3.28)

Taking into account estimate (3.28), from now on we concentrate on the study
of the reduced linearized problem (3.20)—(3.23). Under suitable assumptions on the
basic state and the regularity of the data F', the well-posedness of problem (3.20)-
(3.23) implies the well-posedness of problem (3.13)—(3.16) for which the regularity of
the data should be consistent with estimate (3.19).

3.5. Constant coefficients linearized problem for a planar interface.
If we “freeze” the coefficients of problem (3.20)—(3.23), drop zero-order terms, assume
that 0, =03¢ =0, and in the change of variables take y =1, then we obtain a con-
stant coeflicients linear problem which is the result of the linearization of the original
nonlinear free boundary value problem (1.4), (1.15), (1.16), (1.19), (1.20) about its
ezact constant solution

U:ﬁz(ﬁ,ﬁ,ﬁ,g):const for xq > st,

V=V =(H,E)=const for x1 < st

for the planar plasma-vacuum interface x; = »t, where s is a constant interface speed.
This exact constant solution satisfies (3.4) and (3.8):

@12%, ﬁ1=ﬁ1:0, E2:€%7:Z37 ESZ_E%/}:ZQ. (3.29)

Moreover, because the original nonlinear equations were already written in a dimen-
sionless form (see (1.14)), without loss of generality we can suppose that

p=1 and a=1 (3.30)

(then M = /03 + 03 is the Mach number).
Taking into account (3.29) and (3.30), we have the following constant coefficients
problem:

3
QU+ A;0,U=F  inQp, (3.31)

Jj=1
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£,V +B1O\V 4+ Bod,V 4+ BsdsV =0  in Qr, (3.32)

Oyp =11 — V2020 — 130300,
qzﬁg(’Hg +exkEs) +7:Z3(7'[3 —exEs) —ElEl,

~ ~ (3.33)
Ey=eH301p— E102p+¢€2Hs,
Es= —e’ﬁgﬁt@ - Eﬁw —exHo, on 0Q7,
(U,V,0)=0 for t <0, (3.34)
and solutions to problem (3.31)—(3.34) satisfy
divH=0, div-H=0, divi E=0 in Qr, (3.35)
H, :ﬁ282g0+ﬁ383<p, Hi =ﬁ282g0+ﬁ38390 on O, (3.36)

where div™ a=—01a; + 02a2 + J3a3 for any vector a=(ay,az,a3) and

010000 OO

10000H, Hy 0 ex 0 0 0 0 0
000000 00O 0ex 0 0 0 1
A,=|000000 00 B_| 0 0ex0-10
000000 00] 0 0 0ex0 0|
0H,0000 00 0 0—-10ex0
0H;000 0 0 0 0 1.0 0 0 ex
000000 00O
% 0 1 0 0 0 0 0
0 99 0 0 —HyO 0 O
1 0 &% 0 0 0 Hy 0
A= 0 0 0 0 0-Hy0 |,
0-Hy, 0 0 o 0 0 0
00 0 0 0 @ 0 0
0 0 Hy—H, 0 0 o 0
00 0 0 0 0 0
%3 0 0 1 0 0 00
0 935 0 0 —Hs 0 00
0 0 o 0 0 —H300
A= 1 0 0 4 0 Hy 00
0-Hs 0 0 o35 0 00
0 0 —HsHy, 0 o 00
00 0 0 0 0 90
00 0 0 0 0 0

From the physical point of view, the well-posedness of problem (3.31)—(3.34) can
be interpreted as the stability of a planar relativistic plasma-vacuum interface (or the
macroscopic stability of a corresponding nonplanar interface).
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3.6. Main results. We are now in a position to state the main results of this
paper.
THEOREM 3.1. Let the basic state (3.1) satisfy assumptions (3.2)—(3.9). Let also

|HoHs — ﬁ3ﬁ2\|z1:0 >e5>0, (3.37)

where €9 is a fixed constant. Then there exists a positive constant Ef such that if the
basic state satisfies the condition |Ey|< E; on 8, then problem (3.20)~(3.23) has a
unique solution (U,V,@)€ HX(Qr) x H (Qr) x H32(0Qr) for all F € H(Q7) which
vanish in the past. Moreover, the solution obeys the a priori estimate

U e + IV 2 @) + 1@l m22000) < CLELLw TS (3.38)

where C=C(K,T,e2) >0 is a constant independent of the data F.

REMARK 3.2. In fact, we prove Theorem 3.1 for » <0, i.e., including the case
when the interface speed is zero somewhere (or even everywhere) on the unperturbed
interface. But, we prefer to keep assumption (3.7) in the formulation of Theorem 3.1
for its future usage in the nonlinear analysis of the plasma-vacuum problem.

We note that the existence of solutions of the linearized problem was not proved
in [19], but our arguments towards the proof of existence in this paper are directly
applicable to the relativistic settings in [19] as well. In other words, we have the
side result that is the well-posedness of the linearized problem for relativistic plasma-
vacuum interfaces under a suitable stability condition from [19].

In view of (3.4),

- |E|
| By | = = =
N /11 (020)2 + (059)2

That is, Theorem 3.1 says that if the unperturbed vacuum electric field on the inter-
face is small enough, then under the non-collinearity condition (3.37) the linearized
problem is well-posed. The natural question is whether a large enough vacuum elec-
tric field can make the linearized problem ill-posed. As in the relativistic settings in
[19], the answer on this question is positive, but in our non-relativistic case we can
analyze the influence of the vacuum electric field on well-posedness in more detail (at
least, for particular cases of the unperturbed flow).

Clearly, the ill-posedness of the corresponding “frozen” coefficients linearized
problem indicates the ill-posedness of the problem with variable coefficients. In
other words, we may study the influence of the constant vacuum electric field on
the well-posedness of the constant coefficients linearized problem (3.31)—(3.34). This
ill-posedness will mean the violent (Kelvin-Helmholz) instability of a planar interface.
Mathematically this means that there is a range of admissible parameters of problem
(3.31)—(3.34) for which the Kreiss-Lopatinski condition [5, 7] is violated.

The test of the Kreiss-Lopatinski condition is equivalent to the usual normal
modes analysis (spectral analysis), i.e., the construction of an Hadamard-type ill-
posedness example. Unfortunately, due to principal technical difficulties a complete
normal modes analysis of problem (3.31)—(3.33) seems impossible (even numerically).
In this paper we restrict ourselves to the following particular case of the uniform
unperturbed flow for which a part of the analysis can be done analytically:

+0(e) on 0fr.

D1 =0y=0, Ho=H3=0, HyH+O0. (3.39)
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Strictly speaking, because 1 = 5 (see (3.29)), we have > =0. However, by a continuity
argument this can be extended to the case || < 1.

The (rough) sufficient stability condition |E1| <1 for a planar interface can be
essentially specified by a numerical analysis of the positive definiteness of some matrix
of order 42 (see the next section). But, for the particular case (3.39) this can even
be done analytically. This enables us to compare our (specified) sufficient stability
condition with the spectral stability condition describing the whole stability domain.
We summarize our results for the particular case (3.39) in the following proposition.

T

08 08 o —
=
—

06 2 06 7

04 04

02 02

T o = o
-0.2 -0.2

04 04
0.6 2 06 2.
=
-
08 08 ——=
0 01 02 03 04 05 06 07 08 0 02 04 06 : 08 1
E1
a) H3—1 b) H3:2/3
08 / 4 08 [
= f
06 2 06
——
v
04 04
02 02
o // 0
02 02
04 04
=< 06
06 2 -0,
-0.8 4 -08 |
0 02 04 06 08 0 02 o4 06 08 1
~ E1 ~ E1
C) H3:0.5 d) H3:0.25

Fic. 3.1. Domains 1 and 8 are the domains described by the sufficient instability condition
(3.42) and the sufficient stability condition (3.41) respectively. The union of domains 2 and 3 is the
whole domain of stability, and the union of domains 1 and 4 is the whole domain of instability.

PROPOSITION 3.1.

Suppose that the uniform (piecewise constant) flow with the pla-

nar plasma-vacuum interface x1 =0 satisfies conditions (3.39). If the flow parameters
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satisfy the inequalities

1~
E12<f7-[§,
H

2 N 2. 42 2 (3.40)
2E4<H }”%j >—E12<1+2H13+H +;’;’>+1>0
2

2
3752 3

~. /53 A2
2Ef( + 3) E1<3+A2+2 B >+1>0
H3 3

then the planar interface is linearly stable and solutions to problem (3.31)—(3.34) obey
the energy estimate (3.38). For the static case V3 =0 inequalities (3.40) are equivalent
to the condition

1 H3HE
E? <min L (3.41)
2(HZ + H3)
and if
E?>H2, (3.42)

then the planar interface is violently unstable. Moreover, condition (3.42) is sufficient
for instability whereas the whole instability domain is wider than that described by
(3.42) and can be found numerically. The whole instability domain (for the static

case 03=0) is represented in figure 3.1 for certain fized values of ﬁg.

As we can see in figure 3.1, the domain described by the sufficient stability condi-
tion (3.41) (domain 3) is relatively big in comparison with the whole stability domain
(the union of domains 2 and 3). It is important that the sufficient stability condition
(3.41) and its non-static counterpart (3.40) are found analytically for the particular
case (3.39). But, even in the general case of the unperturbed flow, a numerical anal-
ysis of the positive definiteness of some matrix of order 42 appearing in our energy
method (see the next section) seems straightforward. At the same time, we are able
to find the whole stability domain by a numerical realization of the normal modes
analysis only for relatively simple particular cases like (3.39), whereas in the general
case this is connected with very expensive numerical calculations. Moreover, the num-
ber of dimensionless parameters of the unperturbed flow is really big, and a complete
numerical test of the Kreiss-Lopatinski condition seems unrealizable in practice.

Thus, the main goal of our calculations for the particular case (3.39) was to show
that the unshaded interlayer in figure 3.1 (domain 2) between the instability domain
(the union of domains 1 and 4) and the part of the whole stability domain found by
the energy method is not, in a certain (loose) sense, extremely big (in comparison
with domain 3). Moreover, our energy method enables one to derive the a priori
estimate (3.38). To do the same by starting from the normal modes analysis we
should construct a Kreiss-type symmetrizer [5, 7]; this is very difficult and often
technically impossible in MHD (especially, for the case of characteristic boundary).

4. Energy method for the constant coefficients problem
For the derivation of the a priori estimate (3.38) we should make technical modifi-
cations in the relativistic case in [19] where a dissipative energy integral for a prolonged
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linearized system was constructed. These modifications are connected only with unim-
portant peculiarities of our problem in comparison with its relativistic counterpart.
We could just try to explain these modifications by referring to the arguments in [19].
However, this would be, first, very inconvenient for the reader and, second, the main
reason that we prefer to include the derivation of estimate (3.38) is that in Section 6
we will need details of the construction of the dissipative energy integral for the proof
of existence of solutions. At the same time, here, unlike [19], we prove the a priori
estimate only for the case of constant coefficients. In Section 6 we mainly concentrate
on the proof of existence of solutions and drop a detailed description of the extension
of the a priori estimate to the case of variable coefficients because the corresponding
arguments are really similar to those in [19].

For problem (3.31)—(3.34) we first derive the a priori estimate (3.38) under the
(rough) sufficient stability condition that the constant |Ej| is small enough and the
vectors (Ha, Hs) and (ﬁg,ﬁg,) are nonzero and nonparallel to each other (cf. (3.37)),
ie.,

HyHs — HsHy #0. (4.1)

After that on the example of the particular case (3.39) we show that the rough condi-
tion |E1| < 1 can be essentially specified and for this case we get the sufficient stability
condition (3.40).

As in [19], the crucial role in deriving the a priori estimate for the linearized
problem is played by a secondary symmetrization of the Maxwell equations (1.15).
Following [19], we equivalently rewrite the symmetric system (1.15),

3
0,V +> _ B;0;V =0,

J=1
as the new symmetric system

3
B0V + Y B;0;V =0, (4.2)

j=1
provided that the hyperbolicity condition By >0 holds, where

1 0 0 0 Vs —Uy V1 Vo V3 0 0 0
0 1 0 —v3 0 v -1 0 0 0 -1
0 0 1 Vo —Uq
0

H
S

_ 0 _ 1% 0 —1 0 1 0
Bo= —v3 v, 1 0 0 |’ Bi=19 0 o v vy vy |’
V3 0 —U1 0 1 0 0 O 1 Vo —Uq 0
—UVy 11 0 0 0 1 0 —1 0 V3 0 —U1
—Uy 1 0 0 O 1 —U3 0 11 0 -1 0
Vy UV Vs 0 0 O 0 —U3 V9 1 0 O
B v3—v, —1 0 0 . vy vrnpb vy 0 0 O
B;= o |° B=| o 1 0 -3 0 v |’

0

0 0 -1 —UVg V1
0 0 O V1 Vg Us -1 0 0 O —UV3 Vg
1 0 O 0 V3 —Uy 0 0 0 v vV Vs
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and v; are arbitrary functions v;(t,x) satisfying the condition By >0, i.e.,
lv| <1, (4.3)

with the vector-function v = (v1,v2,v3).
Using the secondary symmetrization (4.2) of the Maxwell equations, we rewrite
system (3.32) as

sBoﬁtV+l§161V+8262V+6383V:O in Qr, (44)
where gl =exBy— B1, and our choice of v; is the following:
V:E@:€(@1,’f)2,ﬁ3) (45)

(01 =, see (3.29)). Because ¢ is very small, the hyperbolicity condition (4.3) holds.
By standard arguments of the energy method applied to the symmetric hyperbolic
systems (3.31) and (4.4) (we multiply (4.4) by e~ 1), we obtain

t
It+2 ] Qda'ds<C <||F||12(QT)+ / I(s)ds) : (4.6)
o0, 0

where

I(t)= /R

We write down the quadratic form Q:

1 ~ 1 -~
(JUP+(BoV,V))da, Qz—i(AlU,U)ul:o—%(Blv,v)ulzo.

3
+

Q={—s(H3+H3+E3+E3)+H1(02Ho+03H3) + E1(02F> + 03 F3)
+exE, (1737'[2 — @27‘[3) —I—E%'Hl(’f)zEg — @3E2)
+ (671 +€%2)(H3E2 —H2E3) —qvl}‘xlzo.

Using the boundary conditions (3.33) and the second condition in (3.36), after lengthy
calculations (which are similar to those in [19]) we get

Q=ji{Erdip+ (e Hot 3E3) 030 — (e " Ha — #E2)dap} |, .
where

fi=Ey ety Hs —cdsHy = E1 +O(e). (4.7)
We rewrite Q as follows:

Q =0y (pEr |2y =0) + 02 (fup(3cE2 — e~ M) |y —0) + 03 (fip(e ™ Ha + #E3)|,—0) + Qo,

and in view the third equation in (3.35), Qp =0 because it is the left-hand side of the
fourth equation in (3.32) considered on the boundary and multiplied by —e~!/i¢:

=0.

£E1:0 -

Qp=—[ip (6tE1 + 2201 B4 +€7183H2 *671827'[3) |

It follows from (4.6) that

t
1042 [ ipBiluiads’ <0 (100 + [ 16)45). (1)
R 0
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and we see that we are not able to “close” the estimate in Ly. But, if we differen-
tiate systems (3.31) and (4.4) with respect to 2, o3, and ¢, we obtain the following
counterparts of (4.8) for the first-order tangential derivatives of U and V:

t
Ia(t)JrQ/ ﬂ@a¢8QE1|rl_odx’§C<[F]i*T+/ Ia(s)ds), (4.9)
R2 0
where a=0,2,3,

Ia(t):/ (10U + (BodaV,0.V)) dz and 8y :=0;.
]R3

+

The terms 0o 04 F1]z, =0 appearing in the boundary integral are, in some sense,
lower-order terms and below we explain how to treat them by using our important
assumption (4.1) and passing to the volume integral.

Thanks to (4.1), from (3.36) and the first boundary condition in (3.33) we get

0 0
Orp=ajHi|z,=0+aHi|z,=0 + 01|z, =0,

(ﬁfﬁHl —ﬁfﬂﬂ)\zlzo
HoyHsz— HzHs
(ﬁ2H1 - ﬁ2H1)|m1:0

Ogp=—~—2 1 2L =a?Hy|p,—0 +a3H1 |, -0,
HQHg*HgHQ 1 z1 2 1

Oop= ZG%H1|11:0+G%7‘[1|1:1:0, (4.10)

B

where the constants a; can be easily written down. Then (4.10) implies

(01 OrE1 4 02 02 E1 + 03003 E1 ) |2, =0

:'UlatE1|11:0+ Z (G?H18QE1+G§H1aﬁE1)
£=0,2,3

(4.11)

£E1:0

To treat the integrals of the lower-order terms like H10FE1|z,—0, k=2,3, con-
tained in the right-hand side of (4.11), we use the same standard arguments as in
[16, 17, 19], i.e., we pass to the volume integral and integrate by parts:

/ Hlé)kElezodx’:— 81(H18kE1)dx: {8kH161E1—81H18kE1}dx.

R2 R3 R3

+ +
Concerning the terms like H10:F1|.,—0, wWe again pass to the volume integral, but
before integration by parts we apply the third equation in (3.35):

/ HlatEl‘mlzodl'/:— 81(H18tE1)dx
R2

3
Ry

:—/ 61H18tE1d:13—/ HlatalEldx

R3 R3

¥ ¥

:/ {82H18tE2+83H18tE3—81H18tE1}da:.
R

After that the normal (x-) derivatives of vy, Hy, and V can be expressed through
tangential derivatives by using the facts that the boundary z; =0 is noncharacter-
istic for the “vacuum” system (3.32) and vy and H; are noncharacteristic “plasma”
unknowns.
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Namely, taking into account (3.17), (3.18), and the first equation in (3.35), we
have

P - _
( a”;) _ {JT (8tU+A282U+A333U+F) }(12), (4.12)
1
O Hy = —0yH, — 93 Hs, (4.13)

where {--}(12) denotes the first two components of the vector inside braces.” As in
[19], we could resolve the “vacuum” system for the normal derivative 9,V under as-
sumption (3.7) guaranteeing det El #0. However, this would lead to the appearance of
¢~ ! as a coefficient of tangential derivatives of V' and give a more restrictive sufficient
stability condition (with a constant Ej of order less than or equal to & in Theorem
3.1). To avoid this we replace the first and fourth equations in system (3.32) with the
second and third equations in (3.35) and then from the resulting system express 9, V/
through tangential derivatives of V:

(1—82%2)(827'[24-837‘[3)
E%(@{Hg +83E1) —0H1— 01 F
- 1 5%(@7{3—82]51)—83’}-[1 +8tE2
1252 (1—e%3%) (02 By + 03 E3)
5%(8tE2 — 337'[1) — 0o B 4+ 0y H3
8%(atE3 + 827'[1) — O3 F1—0Ha

v (4.14)

Note that (4.14) is valid also for the case =0 (cf. Remark 3.2).
Then, (4.11)—(4.14) and the above calculations yield

2 Y /ﬂaagoaaEﬂml:odx':/ ﬂ(QOZ,Z)d:v—2/ [(F 8 Eydz,  (4.15)
a=0,2,37/R? R3 R2.

where Qg is a quadratic matrix of order 42 whose elements can be explicitly written
down if necessary and Z = (0;U,0;V,0:U,0,V,03U,05V).
Summing up inequalities (4.9) and taking into account (4.15), we obtain
[LFl 8tE1 dz
3

J +

gc([Fﬁ,*T+ T /0t1a<s>ds)7 (4.16)

a=0,2,3

(o + Q) Z, Z)dz—2 /

3
3 R

where o =diag(I,By,...,I,Bp) is the block-diagonal positive definite matrix of order
42. Using the Young inequality and the elementary inequality

”F(t)HiQ(Ri) <C[F} s

following from the trivial relation

d .
GIFOR, ey =2 [ (PoF)s,

+

"In fact, below we use only the first row in (4.12).
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we estimate:

gl

where d is a small positive constant, and (4.16) and (4.17) give

J

If Ay + 41Qo >0 or, in view of (4.7), if

N 1
AR <C{S1Z012, ) + 5 IF R o} (117)

3
+

(o +7iQ0) 2, 2)dr <C (3| Z(O)13 ooy + FRur +120300,) - (418)

3
+

Ao+ F1Qo >0, (4.19)

then choosing § to be small enough, from inequality (4.18) we derive

12O, @) <C (PR ar+ 12100, )- (4.20)

We can already apply Gronwall’s lemma to (4.20) and get an a priori estimate for
tangential derivatives. After that it is easy to insert the Lo norm of the solution in
this estimate and finally get an estimate in a conormal Sobolev space. However, for
adapting the arguments of this section to the case of variable coefficients it is better
to follow the plan of [19], and by using (4.20) obtain the inequality

TN .+ 1V O F g ) + M@l /e gey

<O{IFR i+ U IV s ) + 1002000, ) (121)

We drop the arguments towards the proof of (4.21) because they are relatively stan-
dard and absolutely similar to those in [19]. In fact, here we improve the correspond-
ing inequality from [19] by replacing the H' norm of ¢ with its H3/2 norm. Taking
into account (4.10), this can be easily done because we control the H'/? norms of
the traces of the noncharacteristic unknowns vy, Hy, and H;. Applying Gronwall’s
lemma, from (4.21) we derive the desired a priori estimate (3.38), provided that the
sufficient stability condition (4.19) holds.

Because the matrix 2y is positive definite, condition (4.19) is satisfied for |E1 | <
1. Clearly, in the general case it is technically impossible to analyze the positive
definiteness of the matrix 2y + F1 Qo of order 42 analytically. Here we do this for the
particular case (3.39). In this case the coefficients in (4.10) read

- 1 1 V3 p
a?:/\ ) a%:/\ ’ 0,(1):7,\ ’ ag:07 CL%ZO, llg:O,
Hj Ha Hj

and, for example, (4.12) has the simple form
011 = —0yp — Oav2 — O3v3 — V303, 81q=—0yv1 — 03030, + H3d3 Hy,

and we have (4.14) with »=0.

__ After long calculations we get that the positive definiteness of the matrix 2o+
E1Qq is equivalent to the fact that all of the roots of the following polynomial are
positive:
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2 Ef 9 ~9 f]2
P(JJ)Z{(l—x) —2%}{(1_@ o <1+ﬁ3§)}

. o H2 4 g2 52 2 £2
x ((1—1:)2—E12) (1—ap—opptatHs) BET ([ p oBr
H3IH? H? H3

2

x {(1-@2 ((1-@2 —2FE? 1:7;%) — E?(3402) ((1—93)2—252) } (4.22)

3 3

We see that the polynomial P(x) can be considered as a polynomial in y=(1—z)2.
Because the matrix 2 —I—El Qo is symmetric, all of its eigenvalues are real and, hence,
all of the roots of the polynomial Q(y):= P(z) should be positive. One can show
that this is indeed so and, therefore, the requirement > 0 is equivalent to y <1. The
polynomial Q(y) is the product of four polynomials (four expressions in braces in
(4.22)). The requirement that each of these four polynomials has only roots less than
unit is equivalent to the four inequalities in (3.40). In the static case 03 =0 this gives
condition (3.41), and domains 3 in figure 3.1 describe this condition for different fixed
values of FAI3 in the plane of parameters El and 7-72.

REMARK 4.1. Under assumption (4.1) the interface symbol is elliptic, i.e., we are able
to resolve the boundary conditions ((3.33) together with the boundary constraints
(3.36)) for the gradient V, o= (0pp,02¢,05¢), cf. (4.10). This assumption is really
crucial for deriving the a priori estimate. On the other hand, the interface symbol can
be elliptic even if (4.1) is violated. Indeed, substituting the first condition in (3.33)
into the third and fourth ones and using the second condition in (3.36), we obtain

1020 = —Es |z, —0 +5(7:231)1 —03H1 +%7'l3) |21 =0,

/ SO (4.23)
[1030 = — B34, — + & (= Hav1 +02H1 — 5H2) |2, 0,
and the substitution of (4.23) into the first condition in (3.33) gives
10y = E11 |5y —0 + 02 Ba|uy 0 + 03 E3) 0, —0 +3¢(5H2 — 02H3) |2y o (4.24)

That is, if i #0, then the interface symbol is elliptic.® Note that without taking into
account the second condition in (3.36) we can resolve the boundary conditions (3.33)
for Vi, under the more restrictive condition El 0.

Substituting (4.23) and (4.24) into (4.9) for corresponding ow=0,2,3 and repeat-
ing the arguments towards getting equality (4.15) (passing to volume integrals, inte-
grating by parts, etc.), we obtain a counterpart of (4.15), where the matrix iQq is
replaced by some symmetric matrix Qo which can be explicitly calculated. Then the
quadratic form ((2p+Qp)Z,Z) in (4.16) is replaced by the form ((2o+Qo)Z,Z).
Omitting simple calculations connected with the reduction of the boundary integrals
fRQ EOxE1 |, =0dx’ for k=2,3 to volume integrals of tangential derivatives of FE,
we get that the quadratic form for the vector (92F7,03E1,02F5,03F3) contained in
(Ao+Qo)Z,Z) reads

—{(02E1)* + (03 E1)? + (02 F2)? + (03 F3)* + 402 E2 03 B3 } .

8If =0, then we can get an a priori estimate for the case of constant coefficients even in Lg
(cf. (4.8)), but for the case of variable coefficients the assumption about ellipticity of the interface
symbol is really necessary for obtaining an estimate (see [19]).
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Hence, the whole quadratic form ((2o+Qo)Z,Z) cannot be positive definite. We have
a similar situation if for finding V; ¢ we use (3.33) together with the first condition
in (3.36) (but not the second one as above).

Thus, we are not able to derive an a priori estimate by using our energy method
for the case when assumption (4.1) is violated (or if instead of (4.1) we just apply
other ellipticity conditions for the interface symbol). Moreover, if ﬁgﬁ;} —ﬁ37:l2 =0,
then, at least for a particular case, in the next section we prove that the linearized
problem is ill-posed for any F; #0.

5. Normal modes analysis for particular cases
We seek exponential solutions to problem (3.31)—(3.33) with F'=0 and special
initial data:

U=Uexp{rt+&x1+i(y,2")}, (5.1)
V=Vexp{rt+&mzi +i(y,2")},
e=pexp{rt+i(y,z")}, (5.3)

where U and V are complex-valued constant vectors, T, &p, &v, and @ are complex
constants, and v’ = (72,73) with real constants 2 3. The existence of exponentially
growing solutions in form (5.1)—(5.3), with

RT>0, RNEG<0, RNE <O, (5.4)
implies the ill-posedness of problem (3.31)—(3.33) because the consequence of solutions
(U(nt,nx),V (nt,nz),p(nt,nz’))exp(—/n), n=1,2,3,...,

with U, V, and ¢ defined in (5.1)—(5.3), is the Hadamard-type ill-posedness example.
Because the last equation in (3.31) for the entropy perturbation S plays no role in
the construction of an ill-posedness example, we will suppose that U= (p,u, H).

Theoretically, we can construct a 1D ill-posedness example (with 7/ =0) on a
codimension-1 set in the parameter domain. But this is not the case for problem
(3.31)—(3.33). Indeed, in 1D we have E; =0 and the energy inequality (4.8) implies
well-posedness. Thus, we may assume that 7' #0 and even, without loss of generality,
Y'l=1.

5.1. Analytical study. We analytically construct a 2D ill-posedness example
with y3=0 (i.e., 72 =1) for some particular cases of the unperturbed flow. Because
the assumption v3 =0 is a restriction, this will give us sufficient instability conditions.

We will consider the unperturbed flow with

by =10y =Hy =0 (5.5)

(recall that H, =0; see (3.29)). Because 01 = 7, we have »r=0. However, by continuity
the below ill-posedness examples can be extended to the case || < 1. Substituting
(5.1) and (5.2) into (3.31) (with F'=0) and (3.32) respectively, we get the dispersion
relations

det(71+&,A;+iA;)=0  and  det(er]+£& By +iBy) =0,

from which, omitting technical calculations, we find the unique roots

&=—V1+K72, & =—V1+e272 (5.6)
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with property (5.4), where K =1/(1+ H?2).

Consider first the particular case Hy =0 of the unperturbed flow (5.5). For this
case our basic assumption (4.1) is violated. Substituting (5.1)—(5.3) into the boundary
conditions (3.33), we obtain

TO="171, qzﬁgﬁg—ﬁlEl, EQZET@ﬁg—i@Eh
and excluding the constant ¢ we come to the relations
}7+H31{\[3+E1E1—7:[3ﬁ320, (iE1—T€7/'[\3)171 +7E,=0. (5.7)

From (5.1) and (5.2) we have

1 - ~ o~
p+&p01 + = (HaHs — E1Ey) =0,
Tp_ EEM T( 3 _3 1_ 1) ) ) (5.8)
T171+§p(]5+H3H3):0, T€E1 :Z'H;),, TEEQZEVH:),.

Then, (5.7) and (5.8) imply

1 ~ ~

T & 7;(E1 +iteHs) P

0 T —&o(By +irets) | | 0 ) =0 (5.9)
. . E

0 i —7eHs —7&y !

Because we are interesting in solutions with (U,V)#0, the determinant of the
matrix in (5.9) should be equal to zero. Taking into account (5.6), this gives us the
following final equation for 7:

2V 14272 = (By +iteHs)*V1+ K72, (5.10)

If E; =0, then (5.10) has only roots with R7=0. That is, for the 2D problem (recall
that 3 =0) the Kreiss-Lopatinski condition is satisfied, but only in a weak sense
because the Lopatinski determinant has imaginary roots. At the same time, because
we assume that 9o =0 (see (5.5)), for the case when Ho=F; =0 the constant [ in
(4.7) is zero. Then (4.8) implies an Lo a priori estimate for problem (3.31)—(3.34),
i.e., the Kreiss-Lopatinski condition is satisfied (in 3D) at least in a weak sense.?

If B #£0, then, formally setting ¢ =0, graphically it is easy to see that equation
(5.10) has a root 72> 0, i.e., we have an “unstable” root 7>0. Because ¢ is a very
small (fixed) constant, it is clear that there is an “unstable” root 7 with 7 >0 for
€ #0. Thus, we see that if assumption (4.1) is violated, then the linearized problem
can be ill-posed (see Remark 4.1).

We now consider a particular case when assumption (4.1) holds. Let Hs =0 and
HsHy#0. In view of (5.5), this is nothing else than the particular case (3.39). Sub-
stituting (5.1)—(5.3) into the boundary conditions (3.33), after excluding the constant
(¢ we obtain

Pt HyHy+ Fy By — HoHo=0, 7Ey+iv1 1 =0, E3+ev1Hs=0. (5.11)

90ur hypothesis is that in the general case the Kreiss-Lopatinski condition can be satisfied only
in a weak sense, i.e., the uniform Kreiss-Lopatinski condition is always violated for problem (3.31)—
(3.34), but this is hard to be proved analytically.
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It follows from (3.31) and (3.32) that

1 L
Tﬁ+§p@1+;(H2H2—E1E1)=O, T@1+fp(]5+H3H3)=07 (5 12)

TE?'_[Q:—fvEg, T€E2 :f\,?'_lg, TEEl :7:7'_[3.

From (5.11) and (5.12) we get

&H3 14
(6+7F) 2B

2 R o | =0 (5.13)
0 (r+§p£ 2) —&E |\ By
0 El —va

System (5.13) has a nonzero solution (p, vy, Fy) if

2V 14e?r? = (B2 - H3(1+%72)V/1+ K72 (5.14)
or
G(y)=yv/1+e%y— (B} —H3(1+c))\/1+ Ky =0,
with y=72. If E2>H2, then G(0)<0 and G(y*) >0, where

= w >0

213
(recall that we consider the case Ho + 0). Hence, if (3.42) holds, then equation (5.14)
has an “unstable” root 7>0, i.e., problem (3.31)—(3.34) is ill-posed. If (3.42) is
violated, taking into account that ¢ is small enough, it is easy to see that (5.14) has
only roots with 87 =0. That is, again the Kreiss-Lopatinski condition can only be
satisfied in a weak sense (at least, in 2D).

5.2. Numerical investigation. It should be noted that condition (3.42)
is only sufficient for instability for the particular case (3.39) because normal modes
analysis was performed under the restriction 3 =0 on the wave vector. For finding a
necessary and sufficient instability condition we have to repeat our above analysis for
an arbitrary wave vector 7' (with |y/|=1). Because it is technically impossible to do
this analytically, we do numerical calculations by using MATLAB® software.

For technical simplicity we consider the static case U3=0. Repeating the ar-
guments above, we obtain the following counterparts of (5.6) and the Lopatinski
determinant (5.14) for the general case of the wave vector = (72, v3) = (cost),sin):

4

ép:_\/H(Hffz) : &=-V1+er?,
3

. 75 ’
72 4sin®ep H32

(r? —|—ﬁ§ sin?y)&, = (E% —H2(272 + cos?1p) — 2ieT By Ho Sin’L/)) &p- (5.15)

We fix e =107% and four different values of I/‘jg flg =1, ﬁg =2/3, ﬁg =0.5, and
H3=0.25. Then, we choose the partition of the interval (0,27) with the step 102 for
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the angle 1 and for all its points numerically solve equation (5.15) for 7. The results
of these calculations in the plane of parameters E; and H, are presented in figure 3.1,
where the union of domains 1 and 4 is the whole instability domain for case (3.39)
with 03 =0. Recall that domain 1 is the domain described by the sufficient instability
condition (3.42) found analytically.

6. Well-posedness of the linearized problem
For the case of variable coefficients the counterpart of the secondary symmetriza-
tion (4.4) for the linearized “vacuum” system reads

eBodV +B101V +BydyV 4 BsdsV =0  in Qp, (6.1)
where
I 1 ~ ~_ o~
B =—— (Bl—g.ratqz — By, U™ — B39 )
81<I>—

We can prove the equivalence of systems (3.21) and (6.1).

LEMMA 6.1. Assume that the functions v;(t,x) satisfy the hyperbolicity condition
(4.3) and systems (3.21) and (6.1) have common initial data satisfying constraints
(3.25) for t=0. Assume also that the corresponding Cauchy problems for (3.21) and
(6.1) have a unique classical solution on a time interval [0,T]. Then these solutions
coincide on [0,T].

Lemma 6.1 can be proved with minor modifications of the proof of corresponding
to a lemma from [14], where a hyperbolic e-regularization was used for the elliptic
system of pre-Maxwell dynamics. We just refer the reader to [14] in this connection.

For variable coefficients the counterpart of (4.10) reads

Vi =01HyN|z—0 +G2H N |z, —0 + A3VUN|2,—0 + Q0P (6.2)

where the vector-functions Gq = aa (W)s, —0) = (a3,al,,a2) can be easily written down;

in particular, as=(1,0,0),
(H30y Hy — Hz1 ) oy =0
(HyH3— HsHsa)|e =0

Hslo,—
a} = —=— 3|flA0 , ag=
(HoH3— HsHa)|e =0

, etc.

The boundary condition (3.22b) together with the result of the substitution of (6.2)
into (3.22¢)—(3.22d) is written in the form

M (g) +bp=0 on 90, (6.3)

where the matrix M and the vector b can be explicitly defined; in particular, the first
equation in system (6.3) is nothing else than (3.22b).

LEMMA 6.2. Problem (3.20)-(3.23) is equivalent to problem (3.20), (3.21), (6.3),
(3.22a), (3.23).

Proof. Clearly, smooth enough solutions to problem (3.20)—(3.23) (if they exist)
satisfy problem (3.20), (3.21), (6.3), (3.22a), (3.23). We need to prove the opposite.
First of all, using (3.22a) and the equation for H contained in (3.21) (see (3.5) with
dropped hats), we obtain constraint (3.26). After that we substitute vy|,,—o and
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Hpy |z, =0 expressed from (3.22a) and (3.26) into the second and third boundary con-
ditions in (6.3). Using the result of this substitution and system (3.21) at 1 =0 we
can derive the second constraint (3.27) (we omit calculations). Then (6.3), (3.26),
(3.27), and (3.22a) imply the boundary conditions (3.22). 0

It is worth noting that, in view of Lemma 6.1, system (3.21) in problem (3.20),
(3.21), (6.3), (3.22a), (3.23) can be equivalently replaced by (6.1). That is, from now
on we can concentrate on the proof of the well-posedness of the following problem:

3
AU+ A;0,U+CU=F  inQp, (6.4a)
j=1
EBoﬁtV+l§181V+6282V+B383V:0 in Qr, (64b)
M <‘[i) +bp=0 on 0O, (6.4c)
(U,V)=0 for t <0, (6.4d)
8,5%0:’[}N—’l}282<p—1}363(p+g081f}]v on 8QT7 (646)
=0 for t<0. (6.4f)

LEMMA 6.3. Suppose that the basic state satisfies the assumptions of Theorem 3.1.
Then the a priori estimate (3.38) holds for problem (6.4).

Proof. The arguments toward the extension of the a priori estimate (3.38)
derived in Section 4 for the constant coefficients problem (3.31)—(3.34) to the case of
variable coefficients are similar to those in the relativistic case in [19]. Then smooth
solutions to problem (3.20)—(3.23) (if they exist) obey estimate (3.38). By virtue of
lemmata 6.1 and 6.2, we come to the conclusion of Lemma 6.3. 0

To prove the existence of smooth solutions to problem (6.4) we can use the idea of
[14], applied there to a hyperbolic e-regularization of the linearized hyperbolic-elliptic
plasma-vacuum problem. Namely, assuming that problem (6.4a)—(6.4d) has a unique
smooth solution (U,V) for any given smooth enough function ¢ vanishing in the past,
we prove the existence of the solution to (6.4) by a fixed point argument. After that
we should solve problem (6.4a)—(6.4d) under the assumption that ¢ is given.

LEMMA 6.4.  Assume that for all given F € HX(Qr) and p € H3?(0Q) vanishing
in the past, problem (6.4a)—(6.4d) has a unique solution (U,V)e H}(Qr)x HY(Qr),
with (¢,on, Hn,V)|zy=0 € HY/?(0Qr), such that

(Ul + VI a1 (20) + (@08, HN V) |y =oll 1/2000)
SC{[Fl1,er+ el gor2000) - (6.5)

Then problem (6.4) has a unique solution (U,V,p) € HX(Qr) x H (Qr) x H3/2(0Q7).

Proof. Suppose that %€ H3/?(0Qr) vanishes in the past. We consider problem
(6.4) with @ instead of ¢ in (6.4c). According to our assumption, there exists a unique
solution (U, V)€ HX(Qr) x H(Qr), with (q,un, Hy,V )|z =0 € H/?(0Q7r) of (6.4a)-
(6.4d) (with % instead of ¢) enjoying the a priori estimate (6.5) with @ instead of .
Taking into account the boundary condition (6.4e) and following arguments in [14],
we can prove the estimate

el zsr2000) < C{F1er + 1@l as/2007) } - (6.6)
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This defines a map @—¢ in H32(0Qr). Let $',%%>c H3?(00Qr), and
(UL, V1Y, (U2,V?), o', 0% be the corresponding solutions of problem (6.4) with @ in-
stead of ¢ in (6.4c), respectively. Thanks to the linearity of the equations we obtain,
as for (6.6),

o' =3[l mr2/2(000) S CIB' =Bl 32 (00)-

Then the map @ — ¢ has a unique fixed point, by the contraction mapping principle.
The fixed point p=¢ provides a unique solution of problem (6.4). |

Lemma 6.4 enables us to consider —by as a given source term ¢ in (6.4c):

U
M(V>:g::—bg0 on OQr.

Then, following the classical argument, we reduce problem (6.4a)—(6.4d) to one with
homogeneous boundary conditions (with g =0) by subtracting from (U,V') a function
(U',V"Ye H*(Q7) x H?(27) such that

!
M(‘(i,):g on 0€p.

That is, in view of the above lemmata, assuming that problem (6.4) with ¢ =0 in
(6.4c) has a unique solution (U,V)€ H}(Qr)x HY(Qr), with (q,on, HN,V )|z =0 €
H'Y?(99Qr), such that

Ui sr + WV ) + (@ o8 HN V) |z =0l 2 00.0) < CHFL s s (6.7)

we get the solution of problem (3.20)—(3.23) with the regularity prescribed in Theorem
3.1. In other words, it remains to prove the existence of a unique solution (U,V) to
the problem

3
AU+ A;0,U+CU=F  inQp, (6.84)
j=1
B,V +B10V +BadyV +BsdsV =0  in Qp, (6.8b)
M (g) =0 on 0O, (6.8¢)
(U,V)=0 for ¢ <0. (6.8d)
LEMMA 6.5. Suppose that the basic state satisfies the assumptions of Theo-

rem 8.1. Then problem (6.8) has a unique solution (U,V)€ HY(Qr)x H(Qr), with
(q,un, Hn, V)| o, —0 € HY?(0Q7), obeying the a priori estimate (6.7).

Proof.  In Section 4 we had constructed the dissipative energy integral which
is inequality (4.21), and we have the same energy inequality for the case of variable
coefficients. However, because integration by parts was used (see Section 4), we
cannot claim that the boundary conditions for the system prolonged up to the first-
order tangential derivatives are dissipative in the classical sense. Now we prove that
they are indeed dissipative if we drop zero-order terms in (.

Setting ¢ =0 in (6.3) means that we drop the lower-order term doe in (6.2), i.e.,
we substitute (6.2) with o =0 into the boundary integrals

2/ 100p 00 E1 |:1:1:0de7
R2
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cf. (4.9).1% For technical simplicity, let us first discuss the case of constant coefficients
when, in particular, ji=const. The substitution of the second line in (4.10) into the
above boundary integral with a=2 leads to the appearance of, for example, the
integral

2/ frayH102E1 |4, —oda’. (6.9)
R2

On the one hand, we can rewrite the boundary integral in (6.9) by passing to the
volume integral and integrating by parts:

/ 7-[102E1|w1:0dx’:/ (827'[161E1—81/H1(92E1)dx,
R2 R3

+

and, on the other hand, we have

t
/ H182E1 |11:0d1'/ :/ / (87H182E1 — 82H187E1) |x1:0d’7'd$/.
R2 0 JR2

Hence, integral (6.9) disappears in (4.9) with a=2 after adding to it the identity

J

multiplied by 2/ia3, and the volume integral

t
(827‘[181E1 —81H182E1)d37 —/ / (8TH182E1 — 827‘[18-,—E1) |m1:0d7d$/ =0
i 0 JR2

(6.10)

2/ ﬂa% (827‘[181E1 — 817‘[182E1)d$
R}
makes a corresponding contribution to the integral of the quadratic form with the
matrix 4@ in (4.16).
We can write down a symmetric (but not hyperbolic) system for which we have
the energy identity (6.10). Indeed, the system of evident equations
—8t(82E1)+82(8tE1):07 Bt(alEl)—al(atEl):O, 81(82E1)—(92(81E1):0,
0t (02H1) — 2(0eH1) =0, —0i(O1H1)+01(0:H1)=0, —01(02H1)+02(01H1)=0

is the symmetric system
B30, X —B101 X + B30 X =0 (611)

for the vector X = (01H1,02H1,0:H1,01E1,0:FE1,0:F1) and obeys the energy identity
(6.10), where the symmetric matrices B; are the same as in the Maxwell equations
(2.2). Moreover, using the divergence constraints (3.35),

O\H1=0Ho+03Hs, O1E1=0Er+03E3,

we can pass in (6.11) from the vector X to the vector of only tangential derivatives
Y = (02H2,03H3,02H1,0:H1,02F2,03 E3,02 F1,0: 1) keeping the symmetry property:

(TEBsT)0Y — (T BiT)ohY + (T  BaT)d:Y =0, (6.12)

10We have the same integrals for the case of variable coefficients, where 1= ji(t,z) is the function
defined through the basic state by formula (4.7).
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where X =7Y, the rectangular matrix 7 can be easily written down, and the matrices
’TTB]-T are again symmetric.

Using analogous simple arguments, we can understand that any integration by
parts in Section 4 can be associated with the addition of the energy identity for some
symmetric system for a vector whose components are components of the vector Z
of the tangential derivative of U and V. This means that we add to the symmetric
hyperbolic system

3
W Z+> W0, Z=F (6.13)

j=1

constructed from system (6.8a), (6.8b) (here in the case of constant coefficients) a
symmetric system

3
(QudZ+> Q0,7 =Qus,

j=1
and then consider the energy identity for the resulting system

3
(Ao +1Q0)0: Z + Z(Q[J +Q;)09;Z = (1+Q4)F, (6.14)

Jj=1

which is hyperbolic under condition (4.19), where the matrices 2 and Qg were defined
in Section 4,

2y :diag(A\h&‘ilB\l,...,A\l,é‘ilgl), Q[k:diag(A\k,€7lBk,...,A\k,€718k), k=2,3,

§=(0,F,0,0,F,0,05F,0), 0=(0,0,0,0,0,0),

and the matrices Q; (1=1,4) can be explicitly written down if necessary.
If we do not apply the Young inequality towards the derivation of inequality
(4.16), we obtain the corresponding identity

J

Instead of the usage of inequality (4.17) we can first express 9;F; from the fourth
equation in (3.32) by taking into account the third constraint in (3.35),

t
((Ql0+ﬂQ0)Z,Z)dx—2/ /fLFlatEld:r:2// (3, 2)dadr. (6.15)
R3 0 JR2

3
+

8tE1 = —%(82E2 +33E3) +€71(83/H2 — 827'{3),

and then we have
t
/ﬂFlatEldl‘:// fi{ 3¢(0: F10; o + 03 F1 0, E3)
R% 0 JRY

t
— e (O3 F10, Mo — 0,10, Hz) dwdr = / / (Qu3, Z)dadr,
0 JR

3
+
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and (6.15) implies the energy identity

J

Clearly, here the matrix Q4 is the same as in system (6.14) for which the energy
identity reads
/.

+

:2/;/]1@ (I+Qu)§, Z)dadr. (6.17)

(o + Qo) 2, Z) dar =2 /O /R ((T+Qu)§, Z)dudr (6.16)

t
((2(0+,aQO)Z,Z)dx—/O /R (1 +Q1)Z, Z) ], —oda’dr

Comparing (6.16) and (6.17) we conclude that the boundary conditions for system
(6.14) are dissipative, to be exact,

((Qll +Ql)sz)‘m:O:O-

For the case of variable coefficients some “lower-order” terms appear in energy
integrals, but again any integration by parts towards the proof of the energy inequality
(4.21) can be associated with the addition of some symmetric system for the vector
(W,Z), with W= (U,V) (unlike the case of constant coefficients it will contain also
equations for the original unknown W). The boundary integral will again disappear
in the final energy identity, i.e., the boundary conditions for the prolonged system are
dissipative. Moreover, for guaranteeing the hyperbolicity of the prolonged system for
(W,Z), together with the variable coefficients counterpart of (6.13), we consider the
“trivial” system

BOW — Wy =0 (6.18)

with the constant § large enough and the vector Wy contained in Z = (Wy, Wa, W3).

The vector Z satisfies the variable coefficients counterpart of (6.13) obtained by
the formal differentiation of system (6.8a), (6.8b) with respect to ¢, xo, and z3, i.e.,
Wy and W3 are associated with 0,W and 03W respectively. Because zero-order terms
in ¢ play no role in the derivation of the energy estimate for the variable coefficients
problem (see [19]), problem (6.8) obeys the a priori estimate (6.7). Moreover, the
same estimate takes place for ;W and dsW. But, because Wy and W3 satisfy the
same problem as 9oW and 03W, estimate (6.7) implies uniqueness, i.e., Wy =0, W,
k=2,3.

Thus, we obtain a symmetric (prolonged) system by adding to (6.18) and the
variable coefficients counterpart of (6.13) the symmetric system for (W, Z) associated
with integrations by parts. This system is hyperbolic under condition (4.19) and for
large enough constants 8. Moreover, the boundary conditions for this system are
dissipative. Finally, as the boundary is characteristic of constant multiplicity [10],
we may apply the result of [11, 12] and we get the solution from H["(Qdr), with
m>1 and the noncharacteristic unknowns having a greater degree of regularity in
the normal direction. In view of (6.18), integrating the interior equations and the
boundary conditions for Wy =0, W (containing lower-order terms with W) over the
time interval [0,¢] and taking into account the zero initial data, we get the solution of
(6.8) with the prescribed regularity. d
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Taking into account the arguments before Lemma 6.5, the proof of this lemma
completes the proof of the existence of the solution of problem (3.20)—(3.23).
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