
COMMUN. MATH. SCI. c© 2014 International Press

Vol. 12, No. 6, pp. 989–1015

BLENDED FINITE ELEMENT METHOD AND ITS CONVERGENCE

FOR THREE-DIMENSIONAL IMAGE RECONSTRUCTION USING

L2-GRADIENT FLOW∗

GUOLIANG XU† AND CHONG CHEN‡

Abstract. The gradient-flow-based explicit and semi-implicit finite element methods proposed
in our earlier papers have been applied to solve various variational models for image reconstruc-
tion in cryo-electron microscopy and X-ray computed tomography, respectively. In this paper, we
develop a gradient-flow-based blended finite element method for solving the variational model of
three-dimensional image reconstruction. The method can be regarded as a linear combination of
the explicit and semi-implicit schemes, which combines the advantages of both. The computational
cost of each iteration of the method is less than that of the semi-implicit situation. In addition, the
convergence rate of the method is faster because the temporal step-size can be larger than that of
the explicit scheme. Furthermore, the convergence analysis for the blended finite element method is
presented. The numerical results also show that the method is more efficient than the explicit and
semi-implicit methods.

Key words. Three-dimensional image reconstruction, blended finite element method, conver-
gence analysis, variational model, cryo-electron tomography, X-ray computed tomography.
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1. Introduction

The reconstruction problem in computed tomography, or some other application
fields such as cryo-electron microscopy single-particle analysis or cryo-electron tomog-
raphy, is to produce a two-dimensional (2D) or three-dimensional (3D) image from a
large number of line-integral projections from different views (see [7, 14, 15, 20, 22]).
Recently, the iterative reconstruction algorithms have been much investigated because
they often yield better image quality than the classical methods for sparse-view and
(or) high-noise detected data (see [28, 24, 5, 21, 32]). The iterative tomographic re-
construction algorithms have been mainly used to solve two different types of models
in biomedical imaging. The first one includes the various optimization models based
on the total variation (TV) norm, Tikhonov norm, or other modified ones, which start
from the discrete formulation directly (see [17, 24, 30, 22]). The second one, however,
includes the variational models based on the TV regularization term, Tikhonov regu-
larization term, etc. that begin with modeling from the view of continuous functional
and then variating, finally followed by discretization (see [5, 21, 32]). It is worth noting
that the TV of the reconstructed image (see [26]) has been considered frequently in
the optimization-based or variational models as a result of the sparsity on the gradi-
ent of the piecewise-constant image because of the introduction of compressed sensing
theory (see [2, 10]). In this article, our main focus is to analyze the advantages and
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the disadvantages of our proposed gradient-flow-based finite element methods and to
further develop a new one.

In [21], we presented an iterative algorithm for reconstructing a 3D density func-
tion from a set of 2D electron microscopy images. By minimizing an energy functional
consisting of a fidelity term and a regularization term, an L2-gradient flow was de-
rived. The flow was integrated by an explicit finite element method. The method is
compared with weighted back-projection [25], the algebraic reconstruction technique
[18], the simultaneous iterative reconstructive technique [16], etc. The numerical re-
sults show that the L2-gradient flow method achieves a better resolution than the
other classical methods. Furthermore, the theoretical analysis of the convergence of
the iterative method has been considered in [6]. In addition, we also developed the
gradient-flow-based semi-implicit finite element method and its convergence analy-
sis for image reconstruction in [5]. The experimental results demonstrate that this
method has more desirable performance compared with other reconstruction methods
in solving a number of challenging reconstruction problems.

In this paper, we present a gradient-flow-based blended finite element method,
which includes the explicit and semi-implicit finite element methods as its special
cases, for solving the same variational model. An approximately optimal temporal
step-size is determined which makes the blended scheme more efficient than the ex-
plicit one. The amount of calculation in each iteration of the method is less than that
of the semi-implicit situation. Moreover, the convergence analysis for the blended
finite element method is also presented. The numerical results show that the method
is more efficient than the explicit and semi-implicit methods.

The rest of this paper is organized as follows. Section 2 sketches an overview of
the mathematical background knowledge on image reconstruction. In Section 3, we
first introduce a new computational method, then describe the detailed derivation of
our algorithm, and finally give the details of numerical computing. The theoretical
analysis of our numerical method is given in Section 4. In Section 5, several numerical
results are presented. Finally, Section 6 concludes the paper.

2. Mathematical preliminaries

The material of this section serves as the mathematical basis for the rest of the
paper. For a more detailed derivation, we refer the interested readers to [19, 22, 12].
Let f be a function defined on R

3, where R3 is the 3D real space consisting of 3-tuples
of real numbers, usually denoted by single letters, x=(x1,x2,x3)

T , y=(y1,y2,y3)
T ,

etc. The inner product and norm in R
3 are defined by 〈x,y〉=xTy=

∑3
1xiyi and

‖x‖=
√

〈x,x〉, respectively. In addition, the gradient of f(x) is denoted as ∇f =
(fx1

,fx2
,fx3

)T . The unit sphere in R
3 is denoted by S2. Let X be a real Banach

space with norm ‖·‖X . Then the space Lp((0,T0);X) is defined as the collection of
all measurable functions u : [0,T0]→X with

‖u‖Lp((0,T0);X) :=

(

∫ T0

0

‖u(t)‖pXdt

)
1

p

<∞,

for 1≤p<∞, denoted as ‖u‖Lp(X) for short, and

‖u‖L∞((0,T0);X) :=esssup
0≤t≤T0

‖u(t)‖X <∞,

abbreviated as ‖u‖L∞(X).
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For a given θ∈S2, the X-ray transform of a function f ∈L2(R3) in the direction
θ is defined as

Pθf(y)=

∫

R1

f(sθ+ y)ds, y∈θ⊥, (2.1)

where θ⊥ is the hyperplane passing through the origin and orthogonal to θ. From
(2.1), we can see that the X-ray transform is the integral of f ∈L2(R3) over the
straight line through the point y∈θ⊥ along the direction θ∈S2.

3. Reconstruction algorithm

In this paper, we concentrate on 3D image reconstruction from the parallel pro-
jections at different views inasmuch as the reconstruction method we propose can be
straightforwardly generalized to other projection geometries and higher dimensions.

3.1. Reconstruction model. Let f(x) :Ω⊂R
3→R represent an unknown

density function of a biomedical object, which has a bounded support in a cube Ω,
namely,

supp(f)⊆Ω. (3.1)

Let BV (Ω) denote the bounded variation space. For the definition and properties
of BV (Ω), we refer the interested readers to [11, 1]. We want to find a function
f ∈BV (Ω) such that the following energy functional is minimized:

E(f)=E1(f)+λE2(f), (3.2)

where E1(f) is represented as the fidelity term, E2(f) stands for the regularized term
obtained from a certain maximum a posterior estimation or priori information, and
λ≥0 is a parameter which balances the effects of the fidelity term and the regularized
one. In this work, E1(f) and E2(f) are given as follows:

E1(f)=
1

2

p
∑

i=1

∫

R2

(Pθif(y)−gi(y))
2
dy, (3.3)

E2(f)=

∫

R3

φ(‖∇f‖)dx, (3.4)

where θi∈S2 is the given ith projection direction, gi(y)=g(θi,y) is the corresponding
ith measured data. The way on how to choose the potential function φ can be found
in [1, 3]. φ is the engine to remove interfered artifacts as well as to preserve geometric
features.

From a theoretical point of view, the model (3.2) is well-posed. We present this
result in the following theorem.

Theorem 3.1. If φ is a convex, nondecreasing function from R
+ to R

+ with
lims→+∞φ(s)=+∞, there exists two constants c>0 and b≥0 such that cs−b≤φ(s)≤
cs+b, ∀s≥0, and E1(f) and E2(f) are defined as (3.3) and (3.4) respectively, then
the minimization problem

min
f∈BV (Ω)

[

E1(f)+λE2(f)
]

(3.5)

admits a unique solution.
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The proof of existence and uniqueness of a solution for the minimization problem
is similar to that of [31]. Hence, we do not present the proof because there is no
essential difference.

To derive the reconstruction equations, we first need to variate the regularized
model. Using formulas (3.2), (3.3), and (3.4) and then variating E(f), we have

δ(E(f),h)=

p
∑

i=1

∫

R2

((Pθif)(y)−gi(y))(Pθih)(y)dy

+λ

∫

R3

φ′(‖∇f‖)∇fT∇h

‖∇f‖ dx, (3.6)

where ∀h∈C1(R3). Using the relation (see [22])

∫

θ⊥
i

Pθif(y)g(y)dy=

∫

R3

f(x)P∗
θig(x)dx,

and the Green formula, we obtain the following Euler-Lagrange equation:

p
∑

i=1

P∗
θi

(

Pθif−gi
)

−λ div

[

φ′(‖∇f‖)∇f

‖∇f‖

]

=0, (3.7)

where P∗
θi
g(x)=gi(Eθix) with Eθi the orthogonal projection on θ⊥i .

3.2. Numerical computing. Equation (3.7) is a typical integro-differential
equation. The equation is highly nonlinear so that the Fourier analysis method is
useless here. The frequently used method resorts to a gradient flow, i.e., converting
the elliptic differential equation to a time-dependent parabolic one in the domain
[0, T0] × Ω with a given T0�0. Hence, we obtain the following gradient flow, i.e., a
parabolic differential equation







∂f
∂t =λ div

[

φ′(‖∇f‖)∇f
‖∇f‖

]

−∑p
i=1P

∗
θi
(Pθif−gi), in ΩT0

,

f = 0, on ∂ΩT0
,

(3.8)

with a given initial condition f0=f(x,0), where ΩT0
:= (0, T0]×Ω and ∂ΩT0

:=
(0, T0]×∂Ω. When the above gradient flow achieves its steady state solution, we
obtain the solution of the Euler-Lagrange equation (3.7). Therefore, in what follows
our problem is

∫

Ω

[

∂f

∂t
h+

λφ′(‖∇f‖)(∇f)T∇h

‖∇f‖

]

dx+

p
∑

i=1

∫

R2

(Pθif−gi)Pθihdy=0, (3.9)

with a given initial value f0=f(x,0). To preserve the geometric features of the re-
constructed image, we need to choose the regularization function φ(s). In this paper,
we choose

φ(s)=
√

s2+ε2, (3.10)

and use a blended finite element method to solve (3.9), where ε is a fixed small positive
constant (we take it as 10−5). From a geometric point of view, the above regularizer is
able to remove the artifacts while preserving well the geometric features (see [9, 23, 4]),
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which can be seen as a regularization potential of modified TV (see [26]). Let Th be
a voxel mesh of Ω with mesh size h∈ (0, 1). Let

V h=span{φ0,φ1, . . . ,φN}

be the finite element space, where φi∈C1(R3) are the basis functions with compact
support Ωi in Ω. We assume that ∂Ωi is regular (Lipschitz continuous). In this paper,
we use a cubic B-spline function in the tensor product form defined on the uniform
mesh Th, that is, φi is defined as

φζ(n+1)2+β(n+1)+γ(x)=Nζ(x)Nβ(y)Nγ(z),

with ζ=0,1, . . . ,n, β=0,1, . . . ,n, γ=0,1, . . . ,n, where Nζ is the one-dimensional cubic
B-spline basis function defined on the knots [−2+ζ,−1+ζ,ζ,1+ζ,2+ζ]. It is easy
to see that

Nζ(x)=N0(x−ζ), (3.11)

so Ωi is a hypercube. Let

Ω=∪N
i=0Ωi, N =(n+1)3−1.

Then

f(x)=
N
∑

i=0

fiφi(x)

has compact support Ω. Let {tm}m0

m=0 be a partition of [0, T0] with mesh sizes

τm= tm− tm−1∈ (0, 1), τ = max
1≤m≤m0

τm.

In the following, we use the notation

dtf
m :=

fm−fm−1

τm

for the operator dt. Then the blended finite element discretization for the gradient
flow (3.9) is given as follows: Find Fm∈V h, for m=1,2, . . . ,m0, such that

∫

R3

[

dtF
mvh+α

λφ′(‖∇Fm−1‖)
‖∇Fm−1‖ (∇Fm)T∇vh

]

dx+α

p
∑

i=1

∫

R2

(PθiF
m−gi)Pθivhdy

=(α−1)
[

∫

R3

λφ′(‖∇Fm−1‖)
‖∇Fm−1‖ (∇Fm−1)T∇vhdx+

p
∑

i=1

∫

R2

(PθiF
m−1−gi)Pθivhdy

]

,

(3.12)

for ∀vh∈V h, with some initial value F 0∈V h that approximates f0, where α∈ [0,1].

Representing Fm(x) as
∑N

k=0f
(m)
k φk(x) and taking the test function vh(x)=

φj(x), we can rewrite (3.12) as the following linear system:

N
∑

k=0

[mjk+ατm(qjk+rjk)]f
(m)
k
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=

N
∑

k=0

[mjk−(1−α)τm(qjk+rjk)]f
(m−1)
k +τmbj , (3.13)

for j=0, . . . ,N , where

mjk=

∫

R3

φj(x)φk(x)dx, (3.14)

qjk=λ

∫

R3

[

φ′(‖∇Fm−1‖)
‖∇Fm−1‖ (∇φk)

T∇φj

]

dx, (3.15)

rjk=

p
∑

i=1

∫

R2

(Pθiφk)(Pθiφj)dy, (3.16)

bj =

p
∑

i=1

∫

R2

gi(y)(Pθiφj)(y)dy. (3.17)

Note that because the basis functions are locally supported, the coefficient matrices

M :={mjk}Nj,k=0, Q :={qjk}Nj,k=0

of the system are sparse. However, the matrix R :={rjk}Nj,k=0 is not sparse. Also note

that the matrices M , R, and B=[b0, . . . ,bN ]T do not depend on Fm−1, but Q does.
Hence, M , R, and B can be previously computed. In matrix form, equation (3.13)
can be rewritten as

[M+ατm(Q+R)]X(m)=[M−(1−α)τm(Q+R)]X(m−1)+τmB, (3.18)

where

X(m)=[f
(m)
0 , . . . ,f

(m)
N ]T , m=1,2, . . . .

System (3.18) is usually large, and solving it directly is impractical. An iterative
method, such as the GMRES method (see [27]), can be employed. However, the
computational cost is huge because a great number of matrix-vector multiplications
for each iteration are required.

Obviously, when α=0 and α=1, (3.18) becomes the explicit and semi-implicit
schemes, respectively. Furthermore, equation (3.18) can be regarded as a convex
combination of the following explicit and semi-implicit schemes:

MX(m)=[M−τm(Q+R)]X(m−1)+τmB, (3.19)

[M+τm(Q+R)]X(m)=MX(m−1)+τmB, (3.20)

with combination coefficients 1−α and α. Let

X(m)=X(m−1)+τm

∞
∑

i=0

τ imYi, (3.21)

with

Yi=[y
(i)
0 ,y

(i)
1 , . . . ,y

(i)
N ]T .
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Then substituting X(m) into (3.18), we have

[M+ατm(Q+R)]

∞
∑

i=0

τ imYi=B−(Q+R)X(m−1).

Comparing the coefficient of τ im, we obtain

Y0=M−1[B−(Q+R)X(m−1)], (3.22)

Yi=−αM−1(Q+R)Yi−1, i=1,2, . . . .

Notice that by choosing an appropriate value of α, we can make ‖αM−1(Q+R)‖<1.
Then the power series (3.21) is convergent. Let

yi(x)=

N
∑

j=0

y
(i)
j φj(x), i=0,1, . . . .

Then

Fm(x)=Fm−1(x)+τm

∞
∑

i=0

τ imyi(x).

Substituting Fm(x) into (3.2) and putting

e(τm) :=E

(

Fm−1(x)+τm

∞
∑

i=0

τ imyi(x)

)

,

we can represent e′(τm) as a power series with respect to τm,

e′(τm)=

∞
∑

i=0

eiτ
i
m.

In our implementation, expansion (3.21) is truncated as

X(m)=X(m−1)+τmY0+τ2mY1. (3.23)

From

e′(τm)=0,

we obtain a cubic equation (ignoring the higher order term O(τ4m) yielded from the
regularizer)

e0+e1τm+e2τ
2
m+e3τ

3
m=0. (3.24)

Then we take τm as the minimal positive root of the equation. To satisfy the con-
vergence conditions of the iterative method, the τm need to be adjusted to verify the
restriction (4.2) (see Remark 4.2 for details). Having τm, Y0, and Y1, X

(m) can be
approximated as (3.23). The coefficients ei in equation (3.24) are given as follows:

e0=

p
∑

i=1

∫

R2

(PθiF
m−1−gi)(Pθiy0)dx+λr′(0), (3.25)
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e1=

p
∑

i=1

∫

R2

(Pθiy0)
2+2(PθiF

m−1−gi)(Pθiy1)dx+λr′′(0), (3.26)

e2=

p
∑

i=1

∫

R2

3(Pθiy0)(Pθiy1)dx+
λ

2
r′′′(0), (3.27)

e3=

p
∑

i=1

∫

R2

2(Pθiy1)
2dx+

λ

6
r′′′′(0), (3.28)

where r′, r′′, . . . denote the derivatives of r(τ) with respect to τ , and

r(τ)=

∫

R3

φ(g(τ))dx, g(τ)=‖∇Fm−1+τ∇y0+τ2∇y1‖.

Using the chain rule for the derivatives of a composite function, we easily obtain

r′=

∫

R3

φ′g′dx,

r′′=

∫

R3

(φ′′(g′)2+φ′g′′)dx,

r′′′=

∫

R3

(φ′′′(g′)3+3φ′′g′g′′+φ′g′′′)dx,

r′′′′=

∫

R3

(φ′′′′(g′)4+6φ′′′(g′)2g′′+3φ′′(g′′)2+4φ′′g′g′′′+φ′g′′′′)dx.

According to

g′g=(∇Fm−1+τ∇y0+τ2∇y1)
T (∇y0+2τ∇y1),

the higher order derivative of g can be progressively computed using the following
formulas:

g′′g+(g′)2=(∇y0+2τ∇y1)
T (∇y0+2τ∇y1)+2(∇Fm−1+τ∇y0+τ2∇y1)

T∇y1,

g′′′g+3g′′g′=6(∇y0+2τ∇y1)
T∇y1,

g′′′′g+4g′′′g′+3(g′′)2=12(∇y1)
T∇y1.

Lemma 3.2. Assume Y0 6=0, e0, and e1 are defined by (3.25) and (3.26), respectively.
Then e0<0 and e1≥0.

Proof. Using the notations (3.15)–(3.17) and formula (3.22), e0 can be translated
into the equation

e0=Y T
0 RX(m−1)−Y T

0 B+Y T
0 QX(m−1)

=Y T
0 [(Q+R)X(m−1)−B]

=−Y T
0 MY0. (3.29)

Because M is a positive definite Gram matrix, e0=−Y T
0 MY0<0. Combining nota-

tions (3.15)–(3.17), we obtain

e1=Y T
0 RY0+2(Y T

1 RX(m−1)−Y T
1 B)+Y T

0 QY0+2Y T
1 QX(m−1)

+λ

∫

R3

[

φ′′(‖∇Fm−1‖)
‖∇Fm−1‖2 − φ′(‖∇Fm−1‖)

‖∇Fm−1‖3
]

[(∇Fm−1)T∇y0]
2dx. (3.30)
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Then by (3.22)–(3.23) and the symmetry of Q, R, and M , the first four terms on the
right-hand side of (3.30) become

Y T
0 (Q+R)Y0+2Y T

1 [(Q+R)X(m−1)−B]=Y T
0 (Q+R)Y0−2Y T

1 MY0

=(1+2α)Y T
0 (Q+R)Y0. (3.31)

Because φ(s)=
√
ε2+s2, we immediately obtain

φ′(s)=
s

(ε2+s2)1/2
, φ′′(s)=

ε2

(ε2+s2)3/2
. (3.32)

Then, in the last term on the right-hand side of (3.30), we have

φ′′(‖∇Fm−1‖)
‖∇Fm−1‖2 − φ′(‖∇Fm−1‖)

‖∇Fm−1‖3 =− 1

(ε2+‖∇Fm−1‖2)3/2 . (3.33)

By (3.15), (3.33), and the inequality ((∇Fm−1)T∇y0)
2≤‖∇Fm−1‖2‖∇y0‖2, the last

term on the right-hand side of (3.30) becomes

−λ

∫

R3

[(∇Fm−1)T∇y0]
2

(ε2+‖∇Fm−1‖2)3/2 dx≥−λ

∫

R3

‖∇Fm−1‖2‖∇y0‖2
(ε2+‖∇Fm−1‖2)3/2 dx

≥−λ

∫

R3

‖∇y0‖2
√

ε2+‖∇Fm−1‖2
dx

=−λ

∫

R3

φ′(‖∇Fm−1‖)
‖∇Fm−1‖ ‖∇y0‖2dx

=−Y T
0 QY0. (3.34)

Therefore, using (3.30), (3.31), and (3.34), we easily obtain

e1≥ (1+2α)Y T
0 RY0+2αY T

0 QY0, α∈ [0,1].

As Q is positive definite and R is at least semi-positive definite, hence e1≥0.

Remark 3.1. Because e0<0, e(τ) is a decreasing function around zero. If there
exists a minimal positive root of equation (3.24), we then choose τm as this root. If
equation (3.24) has no positive root, we can choose any positive number as τm (in our
implementation, we choose 0.1 as τm in this case).

Now we summarize the iteration scheme as the following algorithm.

Algorithm 3.1 Blended Finite Element Method

1. Set m=0, set the initial B-spline coefficients X(0)=0.

2. Compute M ={mjk} and B={bj} using (3.14) and (3.17), respectively.

3. Compute Q={qjk} using (3.15).

4. Compute Y0 and Y1 using (3.22) and (3.23), respectively.

5. Compute e0, e1, e2, and e3 using (3.25)–(3.28) and then compute τm using
(3.24).

6. Compute X(m) using (3.23).

7. Check the stopping condition. If it is satisfied, stop the iteration. Otherwise,
set m to be m+1 and return to step 3.
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Remark 3.2. If we take Y1=0 in (3.23), then the obtained X(m) is the same as
the one obtained from the explicit finite element method for the given τm. Hence
our method can be regarded as a correction of the explicit finite element method by
adding a second-order term τ2mY1. Even higher order terms can be computed from
(3.21). But because τm is small in general, these terms are negligible.

3.3. Computation of RX. In the above algorithm, we need to compute the
multiplication of R and X=[x0, . . . ,xN ]T . In general, matrix R is not sparse. Hence if
N is large, for instance N =5123, the required space for storing the matrix R, which is
N2=5126, may be beyond the capacity of the used computer. Hence, it is impractical
to compute the multiplication of R and X directly. What we suggest is to represent
RX as follows:

RX=

p
∑

i=1

∫

R2

N
∑

k=0

xk(Pθiφk)(y)(Pθiφj)(y)dy.

Hence, we first compute

Xi(y) :=
N
∑

k=0

xk(Pθiφk)(y), i=1, . . . ,p, (3.35)

and then compute

yij :=

∫

R2

Xi(y)(Pθiφj)(y)dy, i=1, . . . ,p, j=0, . . . ,N. (3.36)

Finally, RX is computed as

RX=

[

p
∑

i=1

yi0, . . . ,

p
∑

i=1

yiN

]T

. (3.37)

3.4. Algorithm details and analysis of computational complexity. We
present the algorithm details and analyze the computational complexity for Algorithm
3.1 from step 2 to step 6. The computational cost of the first and last steps are
relatively small.

1. Matrix M is sparse and its elements have closed-form representations. Uti-
lizing the tensor product form of the basis functions, we only need to store
and invert an n×n matrix. Hence, the computational cost of the inversion of
M is O(n3). Let p be the number of projections. Then using the translation
property (3.11) of the basis functions, we know that Pθiφj can be computed
from Pθiφ0. Because Pθiφj has compact support, the computational cost of
bj is O(p). Hence, the computational complexity of B is O(pn3). All these
computations in step 2 are out of the m-iteration loop in Algorithm 3.1. They
can be previously computed.

2. The cost of computing Q in step 3 is of the same order as computing M :
O(n3). Because qjk depends on Fm−1, it needs to be recomputed in each of
the m iterations.

3. To compute Y0 and Y1 in step 4, we need to first compute QX(m−1) and
RX(m−1). Because Q is a sparse matrix, the cost of computing QX(m−1) is
O(n3). RX(m−1) is computed using (3.35)–(3.37). The cost of computing
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each Xi(y) using (3.35) is O(n3). For computing all Xi(y), i=1, . . . ,p, the
cost is O(pn3). Because Pθiφj is locally supported, the cost of computing yij
is O(1). Hence the total cost of computing {yij} is O(pn3). Finally, com-
puting RX using (3.37) requires O(pn3) arithmetic operations. Adding these
together, the total cost of computing RX is O(pn3). The cost of computing
the multiplication M−1 and a vector is O(n3) using the property that M−1

is approximated by a band matrix. In summary, Y0 can be computed with
the complexity O(pn3). After Y0 is computed, Y1 is similarly computed via
(3.23). Again, the cost is O(pn3).

4. Now we consider the computations of e0, . . . ,e3 in step 5. The cost of comput-
ing all the Pθiy is O(pn3). The cost of computing ∇Fm−1 and ∇y is O(n3).
Hence the order of computing e0, . . . ,e3 using (3.25) and (3.28) is O(pn3).

5. The cost of computing X(m) in step 6 using (3.23) is O(n3). Hence, for each
m-iteration, the total cost is on the order of O(pn3).

Remark 3.3. The above analysis shows that the computational complexity of the
blended scheme is O(pn3) for one iteration. This is of the same order as that of the
explicit finite element method presented in [21]. However, because the blended scheme
requires fewer iterations in general than the explicit scheme, the presented method is
more efficient.

Fig. 3.1. Curves of L2-error for different values of α∈ [0,1].

3.5. Selection of α. For a given τm, a smaller α≥0 makes the convergence of
the series (3.21) faster. However, the smaller α≥0 makes the iteration scheme (3.18)
closer to the explicit scheme. On the other hand, when α approaches 1, the scheme
(3.18) is implicit which could support the use of larger τm. However, the convergence
of the power series expansion becomes slow and the truncation of the power series may
not be an accurate approximation of the inverse of the matrix I+ατmM−1(Q+R).
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Therefore, using too large a value of α (close to one) or too small a value of α (close
to zero) are both not ideal choices.

Based on an experiment for phantom data, we take α=0.25. The experiment
is conducted as follows. First we construct sphere data, serving as the exact data.
Then we compute projection images using some given directions from the volume
data. Finally we reconstruct volume data using the reconstruction algorithm to be
tested. Figure 3.1 shows the curves of the L2-error between the exact volume data
and the reconstructed volume data. For different values of α in (3.18), the L2-errors
are plotted with respect to the number of iterations. It is easy to see that α=0.25
yields the best result.

4. Convergence of blended finite element discretization

In this section, we give the convergence analysis of the finite element discretization
for the blended scheme.

Theorem 4.1. Given α∈ [0,1], assume that f0∈L2(R3) has support Ω, and gi∈
L2(R2). Then {Fm} derived from the blended scheme

X(m)=X(m−1)+τm[M+τmα(R+Q)]−1[B−(R+Q)X(m−1)], (4.1)

with the constraint

0<τm≤ ‖X(m)−X(m−1)‖2M
2(1−α)[‖X(m)−X(m−1)‖2R+‖X(m)−X(m−1)‖2Q]

, (4.2)

satisfies

l
∑

m=1

[

τm
2
‖dtFm‖2L2(R3)+

τ2m
2

p
∑

i=1

‖dt(PθiF
m−gi)‖2L2(R2)

]

+E(F l)≤E(F 0). (4.3)

Proof. To verify (4.3), taking the testing function vh in (3.12) as dtF
m, we

obtain

‖dtFm‖2L2(R3)+

∫

R3

λ

[

φ′(‖∇Fm−1‖)
‖∇Fm−1‖ (α∇Fm+(1−α)∇Fm−1)T∇dtF

m

]

dx

+

p
∑

i=1

∫

R2

[

(αPθiF
m+(1−α)PθiF

m−1)−gi
]

dtPθiF
mdy=0. (4.4)

Considering the last term on the left-hand side of equation (4.4), we have

∫

R2

[

(αPθiF
m+(1−α)PθiF

m−1)−gi

]

dtPθiF
mdy

=

∫

R2

[

α(PθiF
m−PθiF

m−1)+(PθiF
m−1−gi)

]

dtPθiF
mdy

=
dt‖PθiF

m−gi‖2L2(R2)

2
+

(2α−1)τm‖dt(PθiF
m−gi)‖2L2(R2)

2
, (4.5)

and similarly

[α∇Fm+(1−α)∇Fm−1]T∇dtF
m=

dt‖∇Fm‖2
2

+
(2α−1)τm‖∇dtF

m‖2
2

. (4.6)
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Hence, combining equations (4.5) and (4.6), equation (4.4) becomes

‖dtFm‖2L2(R3)+

∑p
i=1dt‖PθiF

m−gi‖2L2(R2)

2

+
(2α−1)τm

∑p
i=1‖dt(PθiF

m−gi)‖2L2(R2)

2

+
λ

2

∫

R3

φ′(‖∇Fm−1‖)
‖∇Fm−1‖ (dt‖∇Fm‖2+τm‖∇dtF

m‖2)dx

+
λ

2

∫

R3

φ′(‖∇Fm−1‖)
‖∇Fm−1‖ (2α−2)τm‖∇dtF

m‖2dx=0. (4.7)

Because

dt‖∇Fm‖2= 2‖∇Fm−1‖(‖∇Fm‖−‖∇Fm−1‖)+(‖∇Fm‖−‖∇Fm−1‖)2
τm

,

the fourth term on the left-hand side of (4.7) becomes

1

2

∫

R3

φ′(‖∇Fm−1‖)
‖∇Fm−1‖ dt‖∇Fm‖2dx

=
1

τm

∫

R3

φ′(‖∇Fm−1‖)(‖∇Fm‖−‖∇Fm−1‖)dx

+
1

2τm

∫

R3

φ′(‖∇Fm−1‖)
‖∇Fm−1‖ (‖∇Fm‖−‖∇Fm−1‖)2dx. (4.8)

Using the Cauchy inequality (∇Fm)T∇Fm−1≤‖∇Fm‖‖∇Fm−1‖, we have

‖∇dtF
m‖2≥ (‖∇Fm‖−‖∇Fm−1‖)2

τ2m
.

Then by φ′(s)≥0, we obtain

1

2

∫

R3

φ′(‖∇Fm−1‖)
‖∇Fm−1‖ τm‖∇dtF

m‖2dx

≥ 1

2τm

∫

R3

φ′(‖∇Fm−1‖)
‖∇Fm−1‖ (‖∇Fm‖−‖∇Fm−1‖)2dx. (4.9)

Substituting (4.8) and (4.9) into (4.7), we obtain

‖dtFm‖2L2(R3)+

∑p
i=1dt‖PθiF

m−gi‖2L2(R2)

2

+
(2α−1)τm

∑p
i=1‖dt(PθiF

m−gi)‖2L2(R2)

2

+
λ

τm

∫

R3

φ′(‖∇Fm−1‖)(‖∇Fm‖−‖∇Fm−1‖)dx

+
λ

τm

∫

R3

φ′(‖∇Fm−1‖)
‖∇Fm−1‖ (‖∇Fm‖−‖∇Fm−1‖)2dx

+
λ

2

∫

R3

φ′(‖∇Fm−1‖)
‖∇Fm−1‖ (2α−2)τm‖∇dtF

m‖2dx≤0. (4.10)
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We can show that (see [5] for details of this derivation)

∫

R3

φ′(‖∇Fm−1‖)(‖∇Fm‖−‖∇Fm−1‖)dx

+

∫

R3

φ′(‖∇Fm−1‖)
‖∇Fm−1‖ (‖∇Fm‖−‖∇Fm−1‖)2dx

≥
∫

R3

φ′(‖∇Fm‖)(‖∇Fm‖−‖∇Fm−1‖)dx. (4.11)

Using the convexity of φ(s), the term on the right-hand side of (4.11) is bounded by

∫

R3

φ′(‖∇Fm‖)(‖∇Fm‖−‖∇Fm−1‖)dx≥ τmdt

∫

R3

φ(‖∇Fm‖)dx. (4.12)

Substituting (4.12) into (4.11), and then substituting the resulting inequality into
(4.10) after multiplying it by τm, we obtain

τm‖dtFm‖2L2(R3)+

∑p
i=1 τmdt‖PθiF

m−gi‖2L2(R2)

2

+
(2α−1)τ2m

∑p
i=1‖dt(PθiF

m−gi)‖2L2(R2)

2

+λτmdt

∫

R3

φ(‖∇Fm‖)dx

+
λ

2

∫

R3

φ′(‖∇Fm−1‖)
‖∇Fm−1‖ (2α−2)τ2m‖∇dtF

m‖2dx≤0. (4.13)

The left-hand side of above inequality can be written as the sum of the following two
parts:

P1=
τm
2
‖dtFm‖2L2(R3)+

∑p
i=1 τmdt‖PθiF

m−gi‖2L2(R2)

2
+λτmdt

∫

R3

φ(‖∇Fm‖)dx,

P2=
τm
2
‖dtFm‖2L2(R3)+

(2α−1)τ2m
∑p

i=1‖dt(PθiF
m−gi)‖2L2(R2)

2

+
λ

2

∫

R3

φ′(‖∇Fm−1‖)
‖∇Fm−1‖ (2α−2)τ2m‖∇dtF

m‖2dx.

Because

τ2m‖dtFm‖2L2(R3)=‖Xm−Xm−1‖2M ,

τ2m

p
∑

i=1

‖dt(PθiF
m−gi)‖2L2(R2)=‖Xm−Xm−1‖2R,

τ2m

∫

R3

φ′(‖∇Fm−1‖)
‖∇Fm−1‖ ‖∇dtF

m‖2dx=‖Xm−Xm−1‖2Q,

then under the constraint (4.2), we have

2P2≥ τ2m

p
∑

i=1

‖dt(PθiF
m−gi)‖2L2(R2).
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Therefore, (4.13) becomes

τm
2
‖dtFm‖2L2(R3)+

τ2m
∑p

i=1‖dt(PθiF
m−gi)‖2L2(R2)

2

+

∑p
i=1 τmdt‖PθiF

m−gi‖2L2(R2)

2
+λτmdt

∫

R3

φ(‖∇Fm‖)dx≤0. (4.14)

Applying the summation operation
∑l

m=1 to the above inequality, we get (4.3).

Remark 4.1. From Theorem 4.1, we have the following conclusions.

1. If α=0, the iterative scheme (3.12) is explicit. Hence, the inequality (4.2)
becomes

0<τm≤ ‖X(m)−X(m−1)‖2M
2‖X(m)−X(m−1)‖2R+2‖X(m)−X(m−1)‖2Q

, (4.15)

where

X(m)=X(m−1)+τmM−1[B−(R+Q)X(m−1)].

From the numerical point of view, the temporal step-size should be finite for
the convergence of the explicit iterative scheme which is consistent with the
theoretical constraint (4.15).

2. If α=1, the iterative scheme (3.12) is semi-implicit. The inequality (4.2)
becomes

0<τm≤+∞. (4.16)

Hence, the choice of the temporal step-size is arbitrary which is consistent
with the result of the semi-implicit iterative scheme in [5].

3. If α∈ (0,1), the iterative scheme (3.12) is a blended iterative scheme. As
a result of the equivalence of norms in the finite element space, there exist
positive parameters a and b such that

a‖v‖R≤‖v‖M , b‖v‖Q≤‖v‖M .

Then

‖X(m)−X(m−1)‖2M
(2−2α)‖X(m)−X(m−1)‖2R+(2−2α)‖X(m)−X(m−1)‖2Q

≥ a2b2

2(1−α)(a2+b2)
. (4.17)

Hence, if

τm≤ a2b2

2(1−α)(a2+b2)
,

(4.2) is satisfied. Therefore, the constraint on τm is nonempty.
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Remark 4.2. For the case α∈ (0,1), using (3.23), we can estimate a bound τ
(1)
m for

τm by solving a cubic equation. Let

τ (1)m =min

{

τm>0 : τm=
‖X(m)−X(m−1)‖2M

2(1−α)[‖X(m)−X(m−1)‖2R+‖X(m)−X(m−1)‖2Q]

}

.

Then we require that τm≤ τ
(1)
m . We can prove that there exists a positive constant c

with τ
(1)
m ≥ c.

Based on Theorem 4.1, we can establish the convergence result. Given α∈ [0,1],
let {Fm}m0

m=1 be the finite element solutions with τm satisfying constraint (4.2). In
what follows we give its constant and linear interpolation in the temporal direction
(see [13]):

F
h,τ

(x, t) :=Fm−1(x), ∀t∈ [tm−1,tm), (4.18)

F
h,τ

(x, t) :=
t− tm−1

τm
Fm(x)+

tm− t

τm
Fm−1(x), ∀t∈ [tm−1, tm], (4.19)

for 1≤m≤m0, where m0 is defined by

m0=argmin

{

l≥1 :
l
∑

m=1

τm≥T0

}

,

and T0 is a given positive number. We assume τ
m0

is truncated such that

m0
∑

m=1

τm=T0.

Obviously, F
h,τ

is continuous with respect to x but discontinuous in t. However, F
h,τ

is continuous with respect to both x and t.

Theorem 4.2. Assume that f0∈L2(R3) with support Ω, gi∈L2(R2), and there ex-
ists a unique solution f ∈L∞((0,T0);BV (Ω))∩H1((0,T0);L

2(R3)) of the gradient flow
(3.8). Then under the following constraint of the initial value f0,

lim
h→0

‖f0−F 0‖L2(R3)=0, (4.20)

the following results are valid:

lim
h,τ→0

‖f−F
h,τ

‖L∞((0,T0);Lp(R3))=0, (4.21)

lim
h,τ→0

‖f−F
h,τ‖L∞((0,T0);Lp(R3))=0, (4.22)

for any p∈ [1, n
n−1 ) (n=3).

Proof. To show (4.21) and (4.22), we first notice that (4.3) implies the following
(uniform in both h and k) estimates:

‖F
h,τ

t ‖L2(L2(R3))=

(

m0
∑

m=1

τm‖dtFm‖2L2(R3)

)
1

2

≤C, (4.23)
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‖PθiF
h,τ‖L∞(L2(R2))≤‖PθiF

h,τ
‖L∞(L2(R2))= max

0≤m≤m0

‖PθiF
m‖L2(R2)

≤ max
0≤m≤m0

‖PθiF
m−gi‖L2(R2)+‖gi‖L2(R2)≤C, (4.24)

‖∇F
h,τ‖L∞(L1(R3))≤‖∇F

h,τ
‖L∞(L1(R3))= max

0≤m≤m0

‖∇Fm‖L1(R3)

≤ max
0≤m≤m0

∫

R3

φ(‖∇Fm‖)dx≤C, (4.25)

m0
∑

m=1

p
∑

i=1

‖PθiF
m−PθiF

m−1‖2L2(R2)

=

m0
∑

m=1

τ2m

p
∑

i=1

‖dt(PθiF
m−gi)‖2L2(R2)≤C, if λ 6=0, (4.26)

where C is a constant. Then taking the test function vh in (3.12) as Fm, we have

∫

R3

[

(dtF
m)TFm+

λφ′(‖∇Fm−1‖)
‖∇Fm−1‖ (α∇Fm+(1−α)∇Fm−1)T∇Fm

]

dx

+

p
∑

i=1

∫

R2

[(αPθiF
m+(1−α)PθiF

m−1)−gi]PθiF
mdy=0. (4.27)

For the first term in the integration of (4.27), we have

(dtF
m)TFm=

Fm−Fm−1

τm
Fm=

dt|Fm|2
2

+
τm|dtFm|2

2
. (4.28)

Hence, using the matrix notations, equation (4.27) becomes

dt‖Fm‖2L2(R2)

2
+

τm‖dtFm‖2L2(R2)

2
+αX(m)TQX(m)+(1−α)X(m)TQX(m−1)

+ αX(m)TRX(m)+(1−α)X(m)TRX(m−1)−X(m)TB

=
dt‖Fm‖2L2(R2)

2
+

τm‖dtFm‖2L2(R2)

2

+X(m)T [α(R+Q)X(m)+(1−α)(R+Q)X(m−1)−B]

=0. (4.29)

Note that

(X(m))T [α(R+Q)X(m)−αB]

=α

[

‖X(m)‖2Q+
1

2

p
∑

i=1

‖PθiF
m−gi‖2L2(R2)+‖PθiF

m‖2L2(R2)−‖gi‖2L2(R2)

]

. (4.30)

Using the iterative scheme (4.1), we obtain

(X(m))T [(R+Q)X(m−1)−B]

=
(

X(m−1)+τm[M+τmα(R+Q)]−1(B−(R+Q)X(m−1))
)T

[(R+Q)X(m−1)−B]

=X(m−1)T [(R+Q)X(m−1)−B]−τm‖(R+Q)X(m−1)−B‖2[M+τmα(R+Q)]−1
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=‖X(m−1)‖2Q+

∑p
i=1‖PθiF

m−1−gi‖2L2(R2)+‖PθiF
m−1‖2L2(R2)−‖gi‖2L2(R2)

2

−τm‖(R+Q)X(m−1)−B‖2[M+τmα(R+Q)]−1

=‖X(m−1)‖2Q+

∑p
i=1‖PθiF

m−1−gi‖2L2(R2)+‖PθiF
m−1‖2L2(R2)−‖gi‖2L2(R2)

2

−τ−1
m ‖X(m)−X(m−1)‖2M+τmα(R+Q). (4.31)

Using (4.30) and (4.31), we can write equation (4.29) as

dt‖Fm‖2L2(R2)

2
+

τm‖dtFm‖2L2(R2)

2

+X(m)T [α(R+Q)X(m)+(1−α)(R+Q)X(m−1)−B]

=
dt‖Fm‖2L2(R2)

2
+

τm‖dtFm‖2L2(R2)

2

+α

[

‖X(m)‖2Q+

∑p
i=1‖PθiF

m−gi‖2L2(R2)+‖PθiF
m‖2L2(R2)−‖gi‖2L2(R2)

2

]

+(1−α)

[
∑p

i=1‖PθiF
m−1−gi‖2L2(R2)+‖PθiF

m−1‖2L2(R2)−‖gi‖2L2(R2)

2

+‖X(m−1)‖2Q−τ−1
m ‖X(m)−X(m−1)‖2M+τmα(R+Q)

]

=0. (4.32)

Ignoring the nonnegative terms

‖X(m)‖2Q, ‖PθiF
m−gi‖2L2(R2), ‖PθiF

m‖2L2(R2),

and

‖X(m−1)‖2Q, ‖PθiF
m−1−gi‖2L2(R2), ‖PθiF

m−1‖2L2(R2),

in (4.32), we obtain

dt‖Fm‖2L2(R2)

2
+

τm‖dtFm‖2L2(R2)

2
−(1−α)τ−1

m ‖X(m)−X(m−1)‖2M+τmα(R+Q)

=
dt‖Fm‖2L2(R2)

2
+(α− 1

2
)τ−1

m ‖X(m)−X(m−1)‖2M −α(1−α)‖X(m)−X(m−1)‖2R+Q

≤
p
∑

i=1

‖gi‖2L2(R2). (4.33)

By (4.33), we have

dt‖Fm‖2L2(Ω)

2
+ατm‖dtFm‖2L2(Ω)−α(1−α)‖fm−fm−1‖2R+λQm−1

≤
p
∑

i=1

‖gi‖2L2(R2)+
τm‖dtFm‖2L2(Ω)

2
. (4.34)
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Using the constrained condition (4.2), we have

ατm‖dtFm‖2L2(Ω)−α(1−α)‖fm−fm−1‖2R+λQm−1 ≥0.

Hence by the inequality above and (4.34), we obtain

dt‖Fm‖2L2(Ω)

2
≤

p
∑

i=1

‖gi‖2L2(R2)+
τm‖dtFm‖2L2(Ω)

2
. (4.35)

Conducting operations 2
∑l

m=1 τm on the two sides of (4.35), we have

‖F l‖2L2(Ω)≤2
l
∑

m=1

τm

p
∑

i=1

‖gi‖2L2(R2)+‖F 0‖2L2(Ω)+
l
∑

m=1

τ2m‖dtFm‖2L2(Ω), (4.36)

for ∀1≤ l≤m0. According to the conclusion (4.3) of Theorem 4.1, there exists a
positive constant C satisfying the following inequality:

m0
∑

m=1

τm‖dtFm‖2L2(Ω)≤C.

Assuming that 0<τm<1, we immediately obtain

m0
∑

m=1

τ2m‖dtFm‖2L2(Ω)≤
m0
∑

m=1

τm‖dtFm‖2L2(Ω)≤C. (4.37)

Thus using (4.36) and (4.37), we have

‖F l‖2L2(Ω)≤2
l
∑

m=1

τm

p
∑

i=1

‖gi‖2L2(R2)+‖F 0‖2L2(Ω)+C, ∀1≤ l≤m0. (4.38)

Utilizing the known condition f0∈L2(R3), gi∈L2(R2), and (4.20), we have

2

l
∑

m=1

τm

p
∑

i=1

‖gi‖2L2(R2)+‖F 0‖2L2(Ω)≤2T0

p
∑

i=1

‖gi‖2L2(R2)+‖F 0‖2L2(Ω)≤C. (4.39)

Combining (4.38) and (4.39), we obtain

‖F l‖2L2(Ω)≤C, ∀1≤ l≤m0. (4.40)

As a result of (4.40), we have

‖Fh,τ‖L∞(L2(R3))≤‖F
h,τ

‖L∞(L2(R3))= max
0≤m≤m0

‖Fm‖L2(R3)≤C. (4.41)

Then based on (4.23), (4.25), (4.37), and (4.41), there exists a convergent sub-

sequence of {F
h,τ

} (denoted by the same notation) (see [29, 13]) and a function
f ∈L∞((0,T0);BV (Ω))∩H1((0,T0);L

2(R3)) such that as h,k→0,

F
h,τ

−→f weakly ? in L∞((0, T0);L
2(R3)),

weakly in L2((0, T0);L
2(R3)),

strongly in Lp(Ω),1≤p<
n

n−1
, for a.e. t∈ [0, T0],

(4.42)
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and

F
h,τ

t −→ft weakly in L2((0, T0);L
2(R3)). (4.43)

Here we have used the fact that BV (Ω) is compactly embedded in Lp(Ω) for 1≤p<
n

n−1 . Notice that the assumption on F 0 implies that f(0)=f0. As the authors have

done in [13, 5], we can further obtain that the whole sequence F
h,τ

t converges to f .
Therefore, the proof of (4.21) is completed.

Now we prove (4.22). Using (4.3), we have

m0
∑

m=1

τm‖dtFm‖2L2(R3)≤C.

According to above formula, it is easy to show that

‖F
h,τ

−F
h,τ‖2L2(L2(R3))=

∫ T0

0

‖F
h,τ

−F
h,τ‖2L2(R3)dt

=
1

3

m0
∑

m=1

τ3m‖dtFm‖2L2(R3)

≤ τ2

3

m0
∑

m=1

τm‖dtFm‖2L2(R3)≤Cτ2. (4.44)

Using (4.21) and (4.44), we obtain (4.22). Therefore, for the blended scheme (3.12),
the proof of convergence is completed.

Theorem 4.3. Under the conditions of Theorem 4.1, the sequence {E(Fm)}∞m=0,
obtained from the blended finite element scheme (4.1), satisfies

E(Fm)<E(Fm−1), m=1,2, . . . . (4.45)

Furthermore, if τm satisfies

c≤ τm≤ ‖X(m)−X(m−1)‖2M
2(1−α)[‖X(m)−X(m−1)‖2R+‖X(m)−X(m−1)‖2Q]

, (4.46)

then we have

lim
m→∞

Fm=F ∗, (4.47)

where F ∗ is the minimum solution of the minimization problem (3.5) in the space V h,
and c is a positive constant.

Proof. The results of this theorem can be easily obtained from the corresponding
convergence analysis of the gradient-flow-based semi-implicit finite element method
in [5]. It should be pointed out that τm satisfying the restriction (4.46) exists (see
Remark 4.2).

Remark 4.3. If α=0, the blended finite element method becomes the explicit
scheme. The convergence result we obtained shows that the explicit scheme is con-
vergent under the constraint (4.15) on the temporal step-size. It should be pointed
out that in the convergence analysis for the blended finite element method, X(m) is
computed from (4.1), while in Algorithm 3.1, X(m) is approximately computed by
(3.23). Because the convergence of the blended scheme depends mainly on the tem-
poral step-size as does that of the explicit scheme, if the temporal step-size is chosen
properly, then the algorithm is convergent.
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5. Numerical results

In this section, we present three numerical experiments. The aim of the first
experiment is to show the effect of the regularizer for noisy projection images using
a synthetic dataset. The second experiment is used to illustrate that our blended
finite element method is convergent using a given function to be reconstructed. In
the third experiment, we compare the efficiency of the blended finite element method
with those of the explicit finite element method and the semi-implicit finite element
method, using a real dataset.

5.1. Effect of the regularizer. For noisy projection images, applying the
regularizer in the reconstruction process is necessary. In this test, we first project
a phantom (the widely used 3D Shepp–Logan phantom) of volume data (without
noise) with size 129×129×129 to produce a set of 2D projection images with size
129×129. The number of total projection images is 1296. The projection angles,
θi, are uniformly distributed around the spherical coordinates. The 3D image to be
reconstructed has a size of 129×129×129. Then these images are artificially polluted
by adding the additive Gaussian white noise with noise levels of 6 dB and 12 dB,
respectively, obtaining two sets of images. When the additive Gaussian white noise is
added to the projections, the signal-to-noise ratio (SNR) of detected data in decibels
is defined as

SNR=10log10
1

V Pσ2

V−1
∑

v=0

P−1
∑

p=0

∣

∣gv(yp)
∣

∣

2
, (5.1)

where V is the number of the angles, P is the number of projections from each angle
and σ2 is the variance of noise [8].

Fig. 5.1. The graph plots of the L2-errors of the exact volume data and the reconstructed
volume data using different λ for each set of the noisy images.

Finally, we reconstruct the volume data via the noisy images using our blended
finite element method. Figure 5.1 shows the L2-errors between the exact volume data
and the reconstructed volume data using different λ for each set of noisy images. Here
the L2-error is defined as [

∑N
i,j,k(f

ex
ijk−f re

ijk)
2/N3]1/2, where f ex and f re denote the

exact and the reconstructed volume data, respectively. N is the dimension of the
volume data in each direction. All the reconstructed volume data are the results of
the blended finite element method after 20 iterations.



1010 A NEW ALGORITHM FOR 3D IMAGE RECONSTRUCTION

SNR λ=0 λ=0.001 λ=0.015 λ=0.025 λ=0.03
6dB 0.082 300 0.081 761 0.076 641 0.074 744 0.073 688
12dB 0.070 841 0.070 587 0.069 594 0.069 406 0.069 477

Table 5.1. L2-errors between the reconstructed functions and the exact function for different
λ and different SNR.

In table 5.1, we list the L2-errors between the exact volume data and the recon-
structed volume data. For the first set of images, λ=0.03 leads to the best fitting,
while for the second set of data, λ=0.025 leads to the best reconstruction results.
As shown in table 5.1, the detected data of 6 dB have more noise than those of 12
dB, and it makes sense that noisier data to be reconstructed should require a larger
value of λ. Generally speaking, the ideal choice of the factor λ depends on the noise
level. Considering the fact that for the real data the exact volume data are unknown,
how to choose a value of λ that leads to the best reconstruction results in certain
senses (for instance, in the L2-sense) is a difficult problem. To further illustrate the
effectiveness of the regularization term, we show, in figure 5.2 and figure 5.3, slices of
reconstructed images after 20 iterations for comparison.

Fig. 5.2. SNR = 6dB, the central slices of volume data along z-axis. Left: The true Shepp-
Logan phantom. Middle: The reconstructed volume data without regularization term (λ=0). Right:
The reconstructed volume data with regularization term (λ=0.03).

Fig. 5.3. SNR = 12dB, the central slices of volume data along z-axis. Left: The true Shepp-
Logan phantom. Middle: The reconstructed volume data without regularization term (λ=0). Right:
The reconstructed volume data with regularization term (λ=0.025).
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As shown in figure 5.2, the performance of the reconstruction when λ=0.03 is
better than that when λ=0. In addition, figure 5.3 shows that the performance of
the reconstruction when λ=0.025 is better than that when λ=0. In the following
experiments, we do not address the effect of λ and fix a value of λ. Of course, that
may not be the best λ for those data.

5.2. Convergence test. In these experiments, we are given a function f on a
domain Ω. We first compute the projection images from a set of uniformly distributed
projection directions around the spherical coordinates as the first experiment does.
The size of these projection images is 143×143. Then we reconstruct f using the
projected data. The size of the reconstructed volume f is 143×143×143. Because the
data are clean, we take a small λ (=0.001) to ensure that the reconstruction problem
is well-posed. For increasing numbers of iterations and projection directions, we
obtain a table of the reconstructed functions. The L2-errors between the reconstructed
functions and the exact function f are computed. Table 5.2 lists these L2-errors for
iteration numbers 3, 6, 9, 12, 15, 18, and 21. The exact function to be projected is
taken as a Gaussian map

f(x)=

10
∑

i=1

e
−σ

(

‖x−xi‖
2

r2
i

−1

)

, (5.2)

where σ=0.125, x∈Ω=[−32,−8]× [−26,−2]× [−35,−11], [xi,ri] are taken as

[16.0,27.0,26.0,20.0], [19.2,35.0,32.0,20.0], [22.4,43.0,38.0,20.0],

[25.6,31.0,31.0,20.0], [28.8,39.0,37.0,24.0], [32.0,27.0,30.0,24.0],

[35.2,35.0,36.0,24.0], [38.4,43.0,29.0,24.0], [41.6,31.0,35.0,28.0],

[44.8,39.0,28.0,28.0].

3×3 6×6 12×12 24×24 48×48 96×96
3 0.060 928 0.039 551 0.034 565 0.034 424 0.034 423 0.034 422
6 0.055 311 0.023 134 0.014 116 0.013 738 0.013 731 0.013 730
9 0.053 429 0.017 421 0.007 177 0.006 572 0.006 550 0.006 540
12 0.052 398 0.014 749 0.004 348 0.003 651 0.003 600 0.003 573
15 0.051 702 0.013 295 0.003 065 0.002 446 0.002 357 0.002 305
18 0.051 178 0.012 400 0.002 431 0.001 987 0.001 868 0.001 793
21 0.050 755 0.011 788 0.002 096 0.001 832 0.001 695 0.001 604

Table 5.2. L2-errors between the reconstructed functions and the exact function.

From the table, we can see that the L2-errors decrease as the numbers of projec-
tion directions and iterations increase. Hence, the convergence can be observed. In
addition, as shown in figure 5.4, if the number of projections is large, the reconstructed
image is almost the same as the true image. However, if the number of projections
is small, the reconstructed function has artifacts and does not approximate well the
exact function, although the algorithm is convergent.

5.3. Efficiency test. For the efficiency test, we use a set of real tomog-
raphy images, named as 1FFK. This set has 5000 images with size 143×143. The
size of the reconstructed 3D volume is 143×143×143. These images are very noisy
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Fig. 5.4. The central slices of volume data perpendicular to z-axis. Left: The exact image.
Middle: The reconstructed image by 3×3 uniformly distributed projections with λ=0.001. Right:
The reconstructed image by 96×96 uniformly distributed projections with λ=0.001.

and we choose λ=0.05. We compare the computational complexity of the blended
finite element method with those of the explicit and the semi-implicit finite element
methods.

To be fair in the comparison, we first set a time upper bound T . Then for
the explicit and the blended finite element methods, we perform the reconstruction
iteratively, and at the same time we compute τ =

∑K
s=1 τs, for a certain K, until τ ≥T .

For the semi-implicit finite element method, we iterate once with temporal step-size
T , because the semi-implicit finite element method has no limitation on the temporal
step-size. The resulting system (3.20) is solved by the GMRES iterative method, in
which the control accuracy is set to be 10−5. Then we compute the required CPU
time for each of the three cases.

Here all the numerical computations are conducted in parallel on a desktop
equipped with an Intel(R) Xeon(R) CPU X5550 (2.76GHz) with 8 Cores. We set
the time upper bound T =0.38. For the blended finite element method, the temporal
step-size is taken as τ1=0.00606 for the first iteration. The temporal step-size of the
later iterations is taken as 0.02. Hence the number of iterations of the blended scheme
is 20. The required CPU time is about 1.225 h for each iteration. The total time cost
is 24.5 h. For the explicit scheme, the CPU time is about 0.4 h for each iteration.
The explicit scheme is not convergent if the temporal step-size is taken as that of the
blended scheme. In order to make the explicit scheme converge, its temporal step-size
should be less than 0.0025. To arrive at T =0.38, at least 152 iterations are required.
Accordingly, the total time cost is at least 61 h. Therefore, the convergence rate of
the blended scheme is much faster than that of the explicit scheme. On the other
hand, using the semi-implicit finite element method, the required CPU time is about
26.25 h for one iteration with the temporal step-size taken as 0.38.

In addition, we use the slices and isocontours of reconstructed images to compare
the performance of the blended scheme with those of the explicit and semi-implicit
schemes. As shown in figure 5.5 and figure 5.6, the reconstruction results, with arti-
facts at the background, from the blend scheme and the explicit scheme are almost
the same. Because the measured images are very noisy, these results are trustworthy.
Comparing with these results, the semi-implicit scheme gives much smoother result.
In fact, using one iteration for the semi-implicit scheme is not enough to obtain rea-
sonable results because the scheme is not fully implicit. Some quantities are treated as
explicit (using previous step data). Because the previous step data is the initial value
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which is taken as zero, the quantities computed using previous data have no accuracy
at all. Therefore, at least two iterations are needed. This increases the computational
time to about 52.5 h.

In conclusion, not only does the blended scheme have better performance than
the semi-implicit scheme, but the blended scheme requires less CPU time. Hence, the
numerical comparisons indicate that the blended finite element method is numerically
convergent and more efficient than the other two methods.

Fig. 5.5. The central slices of reconstructed images perpendicular to z-axis. Left: The blended
finite element method at T =0.38 with 20 iterations. Middle: The explicit finite element method at
T =0.38 with 152 iterations. Right: The semi-implicit finite element method at T =0.38 with one
iteration.

Fig. 5.6. The middle-value isocontours of the reconstructed images. Left: The blended finite
element method at T =0.38 with 20 iterations. Middle: The explicit finite element method at T =0.38
with 152 iterations. Right: The semi-implicit finite element method at T =0.38 with one iteration.

6. Conclusions

We have presented a gradient-flow-based blended finite element method which in-
cludes the explicit and semi-implicit schemes as its special cases. The proposed algo-
rithm facilitates the optimal temporal step-size determination. The convergence anal-
ysis of the proposed algorithm has been conducted, demonstrating that the method
is convergent. The numerical results illustrate that the presented method is also
convergent and more efficient than both the explicit and semi-implicit schemes.

Acknowledgment. The authors would like to express their sincere gratitude to
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greatly the presentation of this paper.
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