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APPLICATION OF THE WASSERSTEIN METRIC TO SEISMIC

SIGNALS∗
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Abstract. Seismic signals are typically compared using travel time difference or L2 difference.
We propose the Wasserstein metric as an alternative measure of fidelity or misfit in seismology. It
exhibits properties from both of the traditional measures mentioned above. The numerical computa-
tion is based on the recent development of fast numerical methods for the Monge-Ampère equation
and optimal transport. Applications to waveform inversion and registration are discussed and simple
numerical examples are presented.
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1. Introduction

A classical way of comparing seismic signals is to use the travel time difference.
This can be done in the time domain or, more recently, by different measures of the
phase shift; see for example [17]. The misfit or fidelity estimate can be between two
measured signals or between a computed signal and a measured seismic signal. For
more complex signals, travel time estimates may not be appropriate and L2 estimates
of misfit are often used in full waveform inversion [15, 16].

We propose the Wasserstein metric as a measure of misfit that combines many of
the best features of the metrics given by travel time and L2. The Wasserstein metric
measures the difference between two distributions by the optimal cost of rearranging
one distribution into the other [18]. The mathematical definition of the distance
between the distributions f :X→R, g :Y →R can be formulated as

W 2
2 (f,g)= inf

T∈M

∫

X

|x−T (x)|2f(x)dx, (1.1)

where M is the set of all maps that rearrange the distribution f into g.
We consider two simple one-dimensional examples to show the relation of the

Wasserstein metric to travel time and L2. First, we compare the hat functions f(x)
and g(x,s)=f(x−s) with

f(x)=max{1−|x| ,0}. (1.2)

For small s, the L2 distance is

‖f−g‖2L2
=2s2+O(s3),
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and the Wasserstein metric measures the misfit by

W 2
2 (f,g)=s2.

For large s, on the other hand, the L2 distance is given by

‖f−g‖2L2
=‖f‖2L2

+‖g‖2L2
=2,

which is independent of s and of no value in minimization. However, the Wasserstein
distance preserves the ideal O(s2) scaling.

For an example that better resembles seismic signals, consider the misfit between
the simple wavelet f in figure 1.1(a) and another wavelet shifted by a distance s.
Figures 1.1(b)-1.1(c) clearly illustrate the advantage of using the Wasserstein distance
in minimization processes.

Earlier algorithms for the numerical computation of the Wasserstein distance
required a large number of operations [1, 3, 4]. The optimal transportation problem
can be rigorously related to the following Monge-Ampère equation [5, 14], which
enables the construction of more efficient methods for computing the Wasserstein
distance.











det(D2u(x))=f(x)/g(∇u(x))+〈u〉, x∈X,

∇u(X)=Y,

u is convex.

(1.3)

The Wasserstein distance is then given by

W 2
2 (f,g)=

∫

X

|x−∇u(x)|2f(x)dx. (1.4)

There are now fast and robust numerical algorithms for the solution of (1.3), and thus
for the computation of W 2

2 [2].
The solution u of the Monge-Ampère equation contains additional information

because the vector ∇u(x)−x indicates which parts of the distributions f and g are
connected under the optimal transport map. This information is useful for problems
in image registration [13], meteorology [7], mesh generation [6], reflector design [12],
and astrophysics [8]. As we will see, it can also be of great value in seismology.

2. Challenges in application to seismology

While the Wasserstein distance has many excellent properties, there remain chal-
lenges that need to be addressed due to the specific nature of seismic signals. Some of
these difficulties come from the formulation of the Wasserstein metric and some from
the numerical algorithm used to solve the Monge-Ampère equation.

2.1. Positivity. The Wasserstein metric requires f,g≥0, which is typically
not the case with seismic signals. This could be achieved by adding positive constants
to f and g, but this would distort the optimal transportation map. Another option
is to compare envelopes of the functions. We have chosen to compare separately the
positive and negative parts of f =f+−f−, g=g+−g−, then add the results. Then
the misfit we compute is

W 2
2 (f

+,g+)+W 2
2 (f

−,g−).
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Fig. 1.1. (a) A wavelet profile f(x). The distances between f(x) and g(x)=f(x−s) measured
by (b) L2

2(f,g), and (c) W 2
2 (f

+,g+)+W 2
2 (f

−,g−).
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2.2. Mass conservation. The Wasserstein metric also requires that mass is
conserved,

∫

X

f(x)dx=

∫

Y

g(y)dy.

This can be achieved most easily by a simple constant scaling of the densities f and
g.

Other scalings are also possible when additional information about the distribu-
tions is available. For instance, if the signals f and g are close to each other, with
each consisting of two separate components, we could rescale the components sepa-
rately. This would reduce the risk that the optimal transportation plan T (x) could
transport some mass between separate components, which may not be desirable in
certain applications.

2.3. Convexity. Other challenges come from the solution of the Monge-
Ampère equation. In particular, the set Y where the target density g(y) is positive
must be convex. This can be accomplished by first selecting a convex set Ỹ containing
Y , then preprocessing the data as follows:

g̃+(y)=

{

g+(y)+θ, y∈ Ỹ +,

0, otherwise.
(2.1)

Here θ>0, Ỹ + is a convex set containing the support of g+, and the same type
of transformation can be applied to the other components f+, f−, and g−. In the
examples below, we choose the convex sets to be rectangles. This θ-layer will introduce
a small amount of artificial transport into and out of the layer. To reduce distortion
of the optimal transportation plan, we will choose all rectangles to have the same size,
with each one centred at the centre of mass of the corresponding distribution. If the
optimal transportation plan itself is of interest, we can reduce some of the artificial
transport by thresholding the transport vectors ∇u(x)−x to zero in the layer.

2.4. Regularity. The numerical method used to solve the Monge-Ampère
equation also requires that the ratio f(x)/g(y) is Lipschitz continuous in the y variable.
This leads to the requirement that θ cannot be too small, particularly if there are
regions where g=0 and the corresponding gradient is not small. Appropriate choice
of θ and convolution of g (and f for symmetry) with a regularizing kernel will ensure
the success of the numerical method.

2.5. Stability and accuracy. Viscosity solutions of the Monge-Ampère
equation, and the method we use to approximate them, are stable in L∞ with respect
to perturbations in the data or operators [11]. The addition of background mass into
the problem will result in mass being transported from regions that previously held
no mass, which can lead to large pointwise errors in the gradient map. These errors
correspond to very small amounts of mass, however, so that the Wasserstein distance
itself will be stable.

The pre-processing we need to perform will affect the accuracy of the computa-
tions. For optimal results, we suggest a choice of θ>O(

√
dx). While this may reduce

the accuracy of the computed distance, it will not change the location of the mini-
mum. Thus for the full waveform inversion problem, it may be possible to use very
strong regularization without negatively affecting the computed results.
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3. Numerical algorithm

We describe here a two-dimensional form of the algorithm we use to solve the
Monge-Ampère equation. The method is based on the following variational char-
acterization of the Monge-Ampère equation (1.3) combined with the convexity con-
straint [9, 10]:

det+(D2u)= min
{ν1,ν2}∈V

{max{uν1,ν1
,0}max{uν2,ν2

,0}

+min{uν1,ν1
,0}+min{uν2,ν2

,0}} , (3.1)

where V is the set of all orthonormal bases for R
2. The transportation constraint

∇u(X)=Y can be re-expressed as the Hamilton-Jacobi equation

H(∇u(x))=0, x∈∂X, (3.2)

where H(y) is the signed distance to the convex target set Y [2].
The discretization described below leads to a large system of nonlinear equations,

which is solved using Newton’s method. The linear equations arising in each Newton
iteration are solved using a direct sparse solver. In a typical example, fewer than ten
iterations are required for convergence.

3.1. Monotone approximation of the Monge-Ampère equation. Equa-
tion (3.1) can be discretized by computing the minimum over finitely many directions
{ν1,ν2}, which may require the use of a wide stencil. For simplicity and brevity, we
describe a compact version of the scheme and refer to [10] for complete details.

We begin by introducing the finite difference operators

[Dx1x1
u]ij =

1

dx2
(ui+1,j+ui−1,j−2ui,j) ,

[Dx2x2
u]ij =

1

dx2
(ui,j+1+ui,j−1−2ui,j) ,

[Dx1
u]ij =

1

2dx
(ui+1,j−ui−1,j) ,

[Dx2
u]ij =

1

2dx
(ui,j+1−ui,j−1) ,

[Dvvu]ij =
1

2dx2
(ui+1,j+1+ui−1,j−1−2ui,j) ,

[Dv⊥v⊥u]ij =
1

2dx2
(ui+1,j−1+ui+1,j−1−2ui,j) ,

[Dvu]ij =
1

2
√
2dx

(ui+1,j+1−ui−1,j−1) ,

[Dv⊥u]ij =
1

2
√
2dx

(ui+1,j−1−ui−1,j+1) .

In the compact version of the scheme, the minimum in (3.1) is approximated using
only two possible values. The first uses directions aligning with the grid axes.

MA1[u]=max{Dx1x1
u,δ}max{Dx2x2

u,δ}
+min{Dx1x1

u,δ}+min{Dx2x2
u,δ}−f/g (Dx1

u,Dx2
u)−u0. (3.3)

Here dx is the resolution of the grid, δ>Kdx/2 is a small parameter that bounds
second derivatives away from zero, u0 is the solution value at a fixed point in the
domain, and K is the Lipschitz constant in the y-variable of f(x)/g(y).
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For the second value, we rotate the axes to align with the corner points in the
stencil, which leads to

MA2[u]=max{Dvvu,δ}max{Dv⊥v⊥u,δ}+min{Dvvu,δ}+min{Dv⊥v⊥u,δ}

−f/g

(

1√
2
(Dvu+Dv⊥u),

1√
2
(Dvu−Dv⊥u)

)

−u0. (3.4)

Then the compact monotone approximation of the Monge-Ampère equation is

−min{MA1[u],MA2[u]}=0. (3.5)

3.2. Monotone approximation of the Hamilton-Jacobi boundary con-

dition. We describe the boundary conditions in the special case where the source
and target sets are rectangles and refer to [2] for details of the more general setting. In
this setting, the Hamilton-Jacobi equation can be written as the Neumann boundary
condition

ux1
(xmin

1 )=ymin
1 , ux1

(xmax
1 )=ymax

1 , ux2
(xmin

2 )=ymin
2 , ux2

(xmin
2 )=ymin

2 , (3.6)

which transports each side of the domain X to the corresponding side of the target
rectangle Y . A monotone discretization is easily constructed; on the left side of the
domain, for example,

u2,j−u1,j

dx
=ymin

1 . (3.7)

3.3. Filtered approximation. For improved accuracy, we can combine the
monotone scheme FM just described with a scheme that is formally more accurate FA.
A second-order scheme is easily constructed using a centred difference discretization
of the two-dimensional Monge-Ampère equation

uxxuyy−u2
xy =f/g(ux,uy)

and a one-sided second-order approximation of the Neumann boundary conditions.
We introduce a filter such as

S(x)=



















x, |x|≤1,

0, |x|≥2,

−x+2, 1≤x≤2,

−x−2, −2≤x≤−1.

(3.8)

Then a convergent, higher-order scheme is given by

FF [u]=FM [u]+ǫS

(

FA[u]−FM [u]

ǫ

)

. (3.9)

In many cases, the higher order accuracy can be achieved even when the filtered
scheme is based on a compact monotone scheme; see [11].

4. Numerical examples for a two-layer material

We consider the example of the response from a two-layer material width upper
and lower depths d1,d2 and wave speeds v1,v2 respectively; see figure 4.2(a). Typical
seismic signals are pictured in figure 4.2(b)-4.2(c) in the offset-time domain. After
preprocessing, we compute the optimal transportation plan between these two distri-
butions.
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4.1. Inversion. One potential application of optimal transportation is full
waveform inversion. To accomplish this, it is necessary to determine the unknown
parameters that minimize the misfit between the observed and synthetic signals. In
this example, the unknown parameters are d1, d2, v1, and v2. To demonstrate the
advantage of the Wasserstein metric as a measure of misfit, we fix one signal g that is
computed using d1=1, d2=0.5, v1=1, and v2=1.5. We then compute the distance
W 2

2 (f,g), where f is computed for a range of different parameter values. We plot sev-
eral cross-sections of this distance in figure 4.1. For comparison, we also plot several
cross-sections of the L2

2 distance ‖f−g‖2L2
. It is clear that the Wasserstein distance

is much more suitable for minimization. In preliminary computations, the minimiza-
tion has been successfully accomplished using a simple Matlab implementation of the
Nelder-Mead simplex method.
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Fig. 4.2. (a) A two-layer material, (b),(c) seismic signals from different materials, and (d) the
displacement ∇u(x)−x coming from the optimal transportation map that defines registration between
the two signals.

4.2. Registration. A second application we have in view is seismic regis-
tration. With this in mind, we consider the (scaled) displacement vectors ∇u(x)−x,
which are pictured in figure 4.2(d). This figure indicates that the two components of
the initial distribution are being transported towards the two corresponding compo-
nents of the target distribution. (The small amount of artificial transport due to the
preprocessing is truncated to zero.) The vector ∇u(x)−x then gives the connection
between f and g, and det(D2u) can be used to measure the registered amplitude
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Fig. 4.3. (a) Sample noisy profiles f(x) and g(x). The distances between f(x) and g(x)
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difference.

4.3. Noise. The W2 metric is highly robust to noise. The difference between
a noisy signal

f(x)+h(x)>0, E[h(x)]=0

and the clean signal f(x)>0 is typically minimal owing to the strong cancellation
between nearby positive and negative values of h(x). The L2 difference ‖h‖L2

is
typically substantially larger.

To demonstrate the insensitivity to noise, we repeat the computation of the
W 2

2 (f(x),f(x−s)) distance for the wavelet profiles in figure 1.1. However, this time we
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add uniform random noise into either the source distribution f or both distributions
f,g. While the noise has a clear effect on the computed values of the L2

2 difference, the
W 2

2 distance computed between the noisy profiles is nearly indistinguishable from the
original setting; see figure 4.3. For clarity, we restrict this presentation to one dimen-
sion, but similar results are observed when we introduce noise into two-dimensional
distributions.

5. Conclusions

We have introduced the Wasserstein metric W 2
2 as a measure of fidelity or misfit

in seismology. It can be seen as incorporating the most desirable properties from
both the travel time difference and the L2

2 difference. We exploit recent progress in
the theory of optimal transport and in fast, robust numerical methods for the Monge-
Ampère equation. We further present solutions to specific challenges coming from
seismic signals. A set of simple numerical examples illustrates the advantages of this
approach for potential application to full waveform inversion and registration. Our
Monge-Ampère based techniques are easily generalized to higher dimensions.
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