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CONVERGENCE TO SPDE OF THE SCHRÖDINGER EQUATION

WITH LARGE, RANDOM POTENTIAL∗

NINGYAO ZHANG† AND GUILLAUME BAL‡

Abstract. We study the asymptotic behavior of solutions to the Schrödinger equation with
large-amplitude, highly oscillatory, random potential. In dimension d<m, where m is the order of
the leading operator in the Schrödinger equation, we construct the heterogeneous solution by using
a Duhamel expansion and prove that it converges in distribution, as the correlation length ε goes
to 0, to the solution of a stochastic differential equation, whose solution is represented as a sum
of iterated Stratonovich integrals, over the space C([0,+∞),S′). The uniqueness of the limiting
solution in a dense space of L2(Ω×R

d) is shown by verifying the property of conservation of mass
for the Schrödinger equation. In dimension d>m, the solution to the Schrödinger equation is shown
to converge in L2(Ω×R

d) to a deterministic Schrödinger solution in [N. Zhang and G. Bal, Stoch.
Dyn., 14(1), 1350013, 2014].

Key words. Partial differential equation with random coefficients, Duhamel expansion, stochas-
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1. Introduction

We consider the following Schrödinger equation in dimension d<m:







(

i
∂

∂t
+
(

P (D)−
1

εd/2
q
(x

ε

)))

uε(t,x)=0, t>0, x∈R
d,

uε(0,x)=u0(x), x∈R
d,

(1.1)

where P (D) is the pseudo-differential operator with symbol p̂(ξ)= |ξ|m. Taking the
Fourier transform of both sides of (1.1), we obtain







(

i
∂

∂t
+ξm

)

ûε= ε−
d
2

∫

q̂(ζ)ûε(t,ξ−ε−1ζ)dζ,

ûε(0,ξ)= û0(ξ).

(1.2)

We assume that the Fourier transform of the covariance of the potential R̂(ξ) is
bounded and continuous at 0, and the initial condition satisfies (1+ |ξ|2m)|û0(ξ)|≤C
uniformly in ξ∈R

d.
The main objective of this paper is to construct a solution to the above equation

in L2(Ω×R
d) uniformly in time on bounded intervals and to show that the solution

converges in distribution as ε→0 to the unique solution of the following stochastic
partial differential equation (SPDE):







i
∂u

∂t
+P (D)u−σu◦Ẇ =0, t>0, x∈R

d

u(0,x)=u0(x), x∈R
d,

(1.3)
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where Ẇ denotes spatial white noise, ◦ denotes the Stratonovich product, and σ is
defined as

σ2 := (2π)dR̂(0)=(2π)d
∫

Rd

R(x)dx. (1.4)

To study this solution, we may take the Fourier transform of the equation to get

(i
∂

∂t
+ξm)û(t,ξ)=σ(2π)−d

∫

e−iξxu(s,x)◦dW (x)

=σ(2π)−d

∫

e−iξx

∫

eiξ1xû(s,ξ1)dξ1 ◦dW (x),

(1.5)

with initial condition û(0,ξ)= û0(ξ). To look for a mild solution, we recast (1.5) as

û= iσ(2π)−d

∫ ∫ t

0

eiξ
m(t−s)e−iξx

∫

eiξ1xû(s,ξ1)dξ1ds◦dW (x)+eitξ
m

û0(ξ). (1.6)

Define formally the stochastic integral

Hû(t,ξ)=(−iσ)(2π)−d

∫ t

0

ei(t−s)ξm
∫

e−iξx

∫

eiξ1xû(s,ξ1)dξ1ds◦dW (x). (1.7)

We may rewrite (1.6) as

û(t,ξ)= eitξ
m

û0(ξ)+Hû(t,ξ). (1.8)

The mild solution to (1.3) is thus defined as u(t,x)=F−1{û(t,ξ)}, where F−1 denotes
the inverse Fourier transform. Suppose that d<m. The following result holds for the
solution of (1.5).

Theorem 1.1. Suppose d<m. The series

û(t,ξ) :=
∑

n≥0

û(n)(t,ξ) (1.9)

converges in the L2(Ω×R
d) sense for each t≥0 and ξ∈R

d, and is the unique solution

to (1.5) in the space M , dense in L2(Ω×R
d) and defined in Section 5, where

û(n)=(−iσ)n(2π)−ndet
∫ ∞

0

· · ·

∫ ∞

0

∫

eiβtdβ

∫ n
∏

k=1

dξk







n
∏

k=0



1− i





∣

∣

∣

∣

∣

∣

ξ−
k

∑

j=1

ξj

∣

∣

∣

∣

∣

∣

m

−β















−1
n
∏

j=1

e−iξjxj û0

(

ξ−
n
∑

j=1

ξj

)

◦
n
∏

j=1

dW (ξj).

(1.10)
The following theorem shows the weak convergence of uε(t,x) to u(t,x) for any t>0
and x∈R

d.

Theorem 1.2. Suppose that d<m. For any integers r≥1, m1, · · · ,mr≥0 and

ξ(1), · · · ,ξ(r)∈R
d, t1, · · · ,tr≥0 we have the convergence of moments

lim
ε→0+

E{[ûε(t1,ξ
(1))]m1 · · · [ûε(tr,ξ

(r))]mr}=E{[û(t1,ξ
(1))]m1 · · · [û(tr,ξ

(r))]mr}. (1.11)
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The finite dimensional distribution of û(t,ξ) is uniquely determined by its mo-

ments of all orders. Moreover, the family of processes {ûε(t, ·),t≥0} is tight, as

ε→0+, over C([0,+∞);S ′(Rd)). The process {ûε(t, ·),t≥0} converges in law over

C([0,+∞);S ′(Rd)), as ε→0+, to {û(t, ·),t≥0}. Also, we have that in the spatial

domain, the process {uε(t, ·),t≥0} converges in law to {u(t, ·),t≥0}.

The rest of the paper is structured as follows. Section 2 gives the formal Duhamel
solutions for both the multi-scale Schrödinger equation and the limiting SPDE in
the Fourier domain. Section 3 demonstrates the first order moment convergence of
Duhamel solutions ûε. Section 4 proves that û, as the Duhamel expansion of the
limiting equation, is well defined in the space of in L2(Ω×R

d). Section 5 generalizes
the first order moment convergence proved in Section 3 to arbitrary orders. Section
6 follows the approach as in [5] to show that the weak convergence of {ûε(t,ξ)} in
C([0,+∞),S ′) to û(t,ξ) follows from tightness and convergence in finite dimensional
distribution.

The asymptotic theory of solution to parabolic equation with large potential in
dimension d<m is presented in [1, 6]. In [5], analysis is provided of the heat equa-
tion with long range correlated potential in d=3. Equation (1.1) may be seen as a
model for quantum dynamics with the wavelength of initial condition much larger
than the scale of oscillations of the random potential. The treatment of Schrödinger
equation (1.1) with the right scaling of potential (O(ε−

m

2 )), in dimension d>m, is
presented in [7]. It is then shown that uε converges in L2(Ω×R

d) to the solution of
a homogenized equation. For the case d=m a logarithmic correction to the scaling
of potential appears, which causes the solution to (1.1) to be a deterministic solution
to a homogenized equation. Although this critical dimension case which separates
homogenization from a stochastic limit is not discussed in [7], it is analyzed in [2] for
parabolic equations, to which we refer the readers for more details.

2. Duhamel expansion

Iterating Duhamel’s formula we obtain

ûε(t,ξ)= eiξ
mtû0(ξ)− iε−

d
2

∫ t

0

∫

eiξ
m(t−s)q̂(ζ)ûε(s,ξ−ε−1ζ)dsdζ

=

+∞
∑

n=0

û(n)
ε (t,ξ), (2.1)

where

û(n)
ε (t,ξ)=(−i)nε−

nd
2

∫

· · ·

∫

∆n(t)

ds1 · · ·dsn

∫

· · ·

∫ n+1
∏

k=1

ei(sk−1−sk)|ξ−ε−1∑k−1
j=1 ξj|

m

n
∏

k=1

q̂(ξk)dξkû0(ξ−ε−1
n
∑

j=1

ξj). (2.2)

Here, we introduce the notation
∑0

j=1 ξj :=0 and ∆n(t) := [t≥s1≥···≥sn≥0]. Let

∆̃n(t) := [
∑n

j=1 τj ≤ t,τj ≥0]. Changing variables sj :=
∑n

i=j τi and denoting τ0 := t−
∑n

i=1 τi we can rewrite (2.2) in the form

û(n)
ε (t,ξ)=(−i)nε−

nd
2

∫

· · ·

∫

∆̃n(t)

dτ1 · · ·dτn

∫

· · ·

∫ n
∏

k=1

q̂(ξk)dξk
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×

n+1
∏

k=1

eiτk−1|ξ−ε−1∑k−1
j=1 ξj|

m

û0(ξ−ε−1
n
∑

j=1

ξj)

=(−i)nε−
nd
2

∫ +∞

0

· · ·

∫ +∞

0

∫

· · ·

∫

dτ0 · · ·dτnδ(t−

n
∑

j=0

τj)

n
∏

k=1

q̂(ξk)dξk

×

n+1
∏

k=1

eiτk−1|ξ−ε−1∑k−1
j=1 ξj|

m

. (2.3)

Using δ(t)=
∫

eiβtdβ, we obtain, for any η>0,

û(n)
ε (t,ξ)=(−i)nε−

nd
2 eηt

∫ +∞

0

· · ·

∫ +∞

0

∫

· · ·

∫

dτ0 · · ·dτn

n
∏

k=1

q̂(ξk)dξk

×eiβ(t−
∑n

j=0 τj)
n+1
∏

k=1

eiτk−1|ξ−ε−1∑k−1
j=1 ξj|

m

û0(ξ−ε−1
n
∑

j=1

ξj). (2.4)

Integrating out all τj and choosing η=1 we get

û(n)
ε (t,ξ)=(−i)nε−

nd
2 eηt

∫

R

eiβtdβ

∫

· · ·

∫ n
∏

k=1

q̂(ξk)dξk

×







n
∏

k=0



1− i





∣

∣

∣

∣

∣

∣

ξ−ε−1
k

∑

j=1

ξj

∣

∣

∣

∣

∣

∣

m

−β















−1

û0(ξ−ε−1
n
∑

j=1

ξj). (2.5)

We now come to the analysis of the limiting equation. By Duhamel’s principle,
the solution to (1.5) formally satisfies the equation

û(t,ξ)=eiξ
mtû0(ξ)+(−iσ)(2π)−d

∫ t

0

ei(t−s)ξm
∫

e−iξxu(s,x)ds◦dW (x)

=eiξ
mtû0(ξ)+(−iσ)(2π)−d

∫ t

0

ei(t−s)ξm
∫

e−iξx

∫

eiξ1xû(s,ξ1)dξ1ds◦dW (x).

(2.6)
Integrating (2.6) iteratively, we obtain formally the Duhamel expansion for (1.5):

û(t,ξ)=
∞
∑

n=0

û(n), (2.7)

where

û(0)= eitξ
m

û0(ξ) and û(n)=Hnû(0), (2.8)

for n=0,1, · · · , or more explicitly,

û(n)=(−iσ)n(2π)−nd

∫

· · ·

∫

∆n(t)

∫ ∫ n+1
∏

k=1

ei(sk−1−sk)ξ
m

k−1

n
∏

j=1

e−i(ξj−ξj−1)xj û0(ξn)

n
∏

k=1

dξk

n
∏

k=1

dsk ◦

n
∏

j=1

dW (xj). (2.9)
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Here, we define s0= t, sn+1=0, and ξ0 := ξ. At this point neither the iterative
Stratonovich integral of û(n) for n=1,2, · · · in (2.9) nor the sum (2.7) are well de-
fined. We give a justification for these expressions in Section 4.

Using the change of variables ξk→ ξk−1−ξk, and applying the same type of trans-
form as in (2.5), we obtain

û(n)=(−iσ)n(2π)−ndet
∫

Rd

∫

· · ·

∫

eiβtdβ

∫ n
∏

k=1

dξk







n
∏

k=0



1− i





∣

∣

∣

∣

∣

∣

ξ−

k
∑

j=1

ξj

∣

∣

∣

∣

∣

∣

m

−β















−1
n
∏

j=1

e−iξjxj û0(ξ−

n
∑

j=1

ξj)◦

n
∏

j=1

dW (xj),

(2.10)
which is the same as (1.10).

3. Convergence of the first moments

We shall prove the convergence of moments as stated in (1.11). For simplicity, we
shall first consider the case when n=m=1 and show that the limit

lim
ε→0+

Eûε(t,ξ) (3.1)

exists. The proof of convergence for general moments is given in Section 6.
Taking expectation of both sides of (2.1), we obtain

Eûε(t,ξ)=
∑

n≥0

Eû(2n)
ε (t,ξ). (3.2)

This is because expectation of the product of an odd number of Gaussian random
variables is 0. The expectation of the product of an even number of Gaussian random
variables is given as a sum of products of the expectation of pairs of variables, where
the summation runs over all possible pairs. The contribution of products of potentials
can thus be represented by

E

{

2n
∏

k=1

q̂(ξk)
}

=
∑

π

∏

(ef)∈π

R̂(ξe)δ(ξe+ξf ), (3.3)

where (ef) denotes pair of indices, π denotes a pairing of the 2n indices, and the
summation is over all possible pairings.

Adding up all the delta functions gives
∑2n

k=1 ξk=0. We can therefore write

Eû(2n)
ε (t,ξ)

=(−1)nεndetû0(ξ)

∫

R

eiβtdβ

∫

· · ·

∫

×







2n
∏

k=0



1− i





∣

∣

∣

∣

∣

∣

ξ−ε−1
k

∑

j=1

ξj

∣

∣

∣

∣

∣

∣

m

−β















−1

E{

2n
∏

k=1

q̂(ξk)dξk}

=(−1)nεndetû0(ξ)
∑

π

∫

R

eiβtdβ

∫

· · ·

∫

×







2n
∏

k=0



1− i





∣

∣

∣

∣

∣

∣

ξ−ε−1
k

∑

j=1

ξj

∣

∣

∣

∣

∣

∣

m

−β















−1

∏

(ef)∈π

R̂(ξe)δ(ξe+ξf )dξedξf .
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The above summation extends over all possible pairings π made over vertices
{1, · · · ,2n}. By changing variables ξk := ε−1ξk, we obtain

Eû(2n)
ε (t,ξ)=(−1)netû0(ξ)

∑

π

∫

R

eiβtdβ

∫

· · ·

∫

×







2n
∏

k=0



1− i





∣

∣

∣

∣

∣

∣

ξ−
k

∑

j=1

ξj

∣

∣

∣

∣

∣

∣

m

−β















−1

∏

(ef)∈π

R̂(ξe)δ(ξe+ξf )dξedξf .

(3.4)
We will show that the exchange of taking limit and expectation,

lim
ε→0+

Eûε(t,ξ)=

+∞
∑

n=0

lim
ε→0+

Eû(2n)
ε (t,ξ), (3.5)

is legitimate based on the fact that the sequence {sup |Eû
(2n)
ε (t,ξ)|}∞n=1 is summable.

Let L(π) be the set of all left vertices of a given pairing π. Define

Ak :=

∣

∣

∣

∣

∣

∣

ξ−

k
∑

j=1

ξj

∣

∣

∣

∣

∣

∣

m

, (3.6)

and

ê
(ρ)
A =[1− i(A−β)]−1. (3.7)

Using the contour integration method, we are able to show that

e
(ρ)
A =

{

eiAttρ−1e−t, t>0,
0, t<0.

(3.8)

The following estimate is then derived.

Lemma 3.1. Suppose that ρ>0. There exists a constant C>0 such that for an

arbitrary n≥1 we have

∣

∣

∣

∣

∣

∣

∫

eiβt

{

n
∏

k=1

[1− i(Ak−β)]

}−ρ

dβ

∣

∣

∣

∣

∣

∣

≤
Cntnρ−1e−t

[(n−1)!]ρ
. (3.9)

Readers are referred to [5] for the proof of this lemma.
With such notation, we may rewrite (3.4) as

Eû(2n)
ε (t,ξ)=(−1)netû0(ξ)

∑

π

∫

· · ·

∫

∏

k/∈L(π),k 6=2n

∗eAk
∗F (t,ξ;π)

×
∏

(ef)∈π

R̂(εξe)δ(ξe+ξf )dξedξf , (3.10)

where

F (t,ξ;π) :=

∫

eiβt(1− i(ξm−β))−2
∏

k∈L(π)



1− i





∣

∣

∣

∣

∣

∣

ξ−

k
∑

j=1

ξj

∣

∣

∣

∣

∣

∣

m

−β









−1

dβ (3.11)
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and
∏

k/∈L(π),k 6=2n∗êAk
denotes the convolution of all eAk

’s, where k is the right ver-
tices in the giving pairing π, except k=2n.

The following inequality plays an important role in estimating Eû
(2n)
ε (t,ξ).

Lemma 3.2. Suppose ρ∈ ( d
m
,1). Then

sup
β∈R,ω∈Rd

∫

Rd

|−β+ |ξ−ω|m+ i|−ρdξ<+∞. (3.12)

Proof. We may first shift ξ to get rid of ω and perform the spherical change of
coordinates

∫

Rd

|−β+ |ξ−ω|m+ i|−ρ≤Ωd

∫ +∞

0

|−β+ξm+ i|−ρξd−1d|ξ|, (3.13)

where Ωd is the area of the unit sphere in R
d. Let Q= ξm. The integral on the right

hand side of (3.13) may be rewritten as

∫ +∞

0

|−β+Q+ i|−ρQd/m−1dQ. (3.14)

Without loss of generality, we assume β≥0 and the integral above can then be written
as the sum of three integrals I, II, III according to whether ξ belongs to (0,β/2),
(β/2,2β), or (2β,+∞). We have

I≤
[

1+
(β

2

)2]− ρ
2

∫ β/2

0

Q
d
m
−1dQ≤

m

d

[

1+
(β

2

)2]− ρ
2
(β

2

)
d
m

≤
m

d
. (3.15)

The second integral can also be estimated as

II≤ (2β)
d
m
−1

∫ 2β

β
2

|Q−β+ i|−ρdQ. (3.16)

If β≤1 we have

II≤3×2
d
m
−2. (3.17)

If β>1, we estimate

II≤ (2β)
d
m
−1

∫ 2β

β
2

|Q−β|−ρdQ≤
[

1+
(1

2

)1−ρ]

2
d
m
−1. (3.18)

The third integral is estimated as

III≤
m

d
(β2+1)−

ρ
2 β

d
m ≤

m

d
. (3.19)

This concludes the proof of the lemma.

Let

F1(t,ξ;π) :=

∫

R

eiβtdβ

[1− i(ξm−β)]2











∏

k∈L(π)



1− i





∣

∣

∣

∣

∣

∣

ξ−

k
∑

j=1

ξj

∣

∣

∣

∣

∣

∣

m

−β









−ρ










(3.20)
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and

F2(t,ξ;π) :=

∫

R

eiβtdβ











∏

k∈L(π)



1− i





∣

∣

∣

∣

∣

∣

ξ−
k

∑

j=1

ξj

∣

∣

∣

∣

∣

∣

m

−β









−(1−ρ)










. (3.21)

Since

F1(t,ξ;π)= e
(ρ)
B1(ξ)

∗···∗e
(ρ)
Bn+2(ξ)

(t) (3.22)

for some Bj(ξ), we get F1(t,ξ;π)=0 for t<0. Likewise, F2(t,ξ;π)=0 for t<0. We
can therefore write

F (t,ξ;π)=

∫ t

0

F1(t−s,ξ;π)F2(s,ξ;π)ds≥0. (3.23)

Observe that by Lemma 3.1,

F2(t,ξ;π)≤
Cntn(1−ρ)−1

[(n−1)!]1−ρ
(3.24)

and

∏

k/∈L(π),k 6=2n

∗eAk
(t)≤

Cntn−1

(n−1)!
(3.25)

for t>0. On the other hand, we have obviously

|F1(t,ξ;π)|≤C

∫

R

dβ

1+ |ξm−β|2











∏

k∈L(π)

∣

∣

∣

∣

∣

∣

1− i





∣

∣

∣

∣

∣

∣

ξ−

k
∑

j=1

ξj

∣

∣

∣

∣

∣

∣

m

−β





∣

∣

∣

∣

∣

∣

−ρ










(3.26)

for some constant C>0. As a result, we obtain

|Eû(2n)
ε (t,ξ)|

≤Cet|û0(ξ)|
∑

π

∫ t

0

(t−s)n−1ds

(n−1)!
×

∫

· · ·

∫

F (s,ξ;π)
∏

(kl)∈π

R̂(εξe)δ(ξe+ξf )dξedξf

≤
Cnet|û0(ξ)|

[(n−1)!]2−ρ

∫ t

0

(t−s)nsn(1−ρ)−1ds
∑

π

∫

R

dβ

1+ |ξm−β|2

∫

· · ·

∫

×
∏

(ef)∈π

R̂(εξe)δ(ξe+ξf )dξedξf











∏

k∈L(π)

∣

∣

∣

∣

∣

∣

1− i





∣

∣

∣

∣

∣

∣

ξ−
k

∑

j=1

ξj

∣

∣

∣

∣

∣

∣

m

−β





∣

∣

∣

∣

∣

∣

−ρ










. (3.27)

Here, we just need half of the order of decay of the initial condition û0(ξ) that we
assumed:

|û0(ξ)|

(1+ |ξm−β|2)1/2
≤

C

(1+ξ2m)1/2(1+ |ξm−β|2)1/2
≤

1

(1+β2)1/2
. (3.28)

The right hand side of the above inequality is then used for estimating the integration
in β by Lemma 5.2 in [7]:

∫ +∞

−∞

dβ

(1+β2)1/2(1+ |ξm−β|2)1/2
≤C

1+log+ |ξ|

(1+ξ2m)1/2
, (3.29)
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where log+ |ξ| :=max(0, log |ξ|).
Using Lemma 3.2 we conclude therefore that

|Eû(2n)
ε (t,ξ)|≤ (2n−1)!!

Cntn(2−ρ)et

(n!)2−ρ

1+log+ |ξ|

(1+ξ2m)1/2
, (3.30)

and (4.6) follows by letting a2n=(2n−1)!!C
ntn(2−ρ)et

(n!)2−ρ . We obtain

lim
ε→0+

Eûε(t,ξ)=

+∞
∑

n=0

ū(2n)(t,ξ), (3.31)

where

ū(2n)(t,ξ) :=(−R̂(0))netû0(ξ)
∑

π

∫

R

eiβtdβ

∫

· · ·

∫

×







2n
∏

k=0



1− i





∣

∣

∣

∣

∣

∣

ξ−

k
∑

j=1

ξj

∣

∣

∣

∣

∣

∣

m

−β















−1

∏

(ef)∈π

δ(ξe+ξf )dξedξf .

(3.32)
In what follows, we show that

ū(2n)(t,ξ)=Eû(2n)(t,ξ). (3.33)

The expectation of multiple Stratonovich integrals is defined as follows:

E

{

2n
∏

j=1

dW (xj)
}

=
∑

π

∏

(ef)∈π

δ(xe−xf )dxedxf . (3.34)

Upon integrating in all variables x, the first moment of û(2n) can therefore be written
as

Eû(2n)=(−iσ)2n(2π)−2ndet
∑

π

∫ ∞

0

· · ·

∫ ∞

0

∫

eiβtdβ

∫ 2n
∏

k=1

dξk

×







2n
∏

k=0



1− i





∣

∣

∣

∣

∣

∣

ξ−
k

∑

j=1

ξj

∣

∣

∣

∣

∣

∣

m

−β















−1

û0(ξ)
∏

(ef)∈π

δ(ξe+ξf ),

(3.35)

which gives exactly (3.33).

4. L2 convergence of the SPDE solution

We now come to the series (1.9), which we claim is the solution to (1.6). The
readers are referred to [1] for a more complete description of the relationship between
the Stratonovich and Itô integrals and for additional details on the theory presented
in this section.

We first prove that û(t, ·) in (1.9) as a series is well-defined in the space L2(Ω×R
d).

Denote û(n)=In(fn), where In denotes the n-th order iterated Stratonovich integral,
and fn is a n-parameter function, i.e.

In(fn)=

∫

Rnd

fn(x1, . . . ,xn)dW (x1) . . .dW (xn). (4.1)



834 CONVERGENCE TO SPDE OF THE SCHRÖDINGER EQUATION

By the definition of the L2 norm of multiple Stratonovich integral, we have

E|û(n)|2=E{I2n(fn⊗ f̄n)}

=E

∫

R2nd

fn(x1, . . . ,xn)f̄n(y1, . . . ,yn)dW (x1) . . .dW (xn)dW (y1) . . .dW (yn).

(4.2)
Taking the same approach as in the calculation of the first moment in (3.35), we
obtain

E|û(n)(t,ξ)|2

=(σn(2π)−det)2
∑

π2n

∫ ∫ ∫

R2

ei(β1−β2)tdβ1dβ2û0(ξ−
n
∑

j=1

ξ
(1)
j )û0(ξ+

n
∑

j=1

ξ
(2)
j )

×







n
∏

k=0



1− i





∣

∣

∣

∣

∣

∣

ξ−
k

∑

j=1

ξ
(1)
j

∣

∣

∣

∣

∣

∣

m

+β1









n
∏

k=0



1+ i





∣

∣

∣

∣

∣

∣

ξ+
k

∑

j=1

ξ
(2)
j

∣

∣

∣

∣

∣

∣

m

+β2















−1

∏

(ef)∈π

δ(ξe+ξf )dξ
(1)dξ(2). (4.3)

We denote dξ(l)=dξ
(l)
1 · · ·dξ

(l)
n , l=1,2. ξe and ξf are paired arguments in the graph

comprised of 2n arguments in total with their index e and f .
The idea that we use to estimate the first moment applies here too. However,

note that we have {k=n}∈L(π) for the crossing graphs defined in [2], and one of the
terms [1− i(ξm−β)]−1 in the function F1 defined in (3.20) now becomes [1− i(|ξ−
∑n

j=1 ξ
(1)
j |m−β)]−1. Therefore, we have to make the following adjustments in the

proof. Using the smoothness condition for the initial condition, we have

∣

∣

∣

∣

∣

û0(ξ−
∑n

j=1 ξ
(1)
j )

1− i(|ξ−
∑n

j=1 ξ
(1)
j |m−β1)

∣

∣

∣

∣

∣

≤
1

(1+ |ξ−
∑n

j=1 ξ
(1)
j |2m)1/2

1

(1+β2
1)

1/2
. (4.4)

We use the term [1+ |ξ−
∑n

j=1 ξ
(1)
j |2m]−1/2 for the integration in ξn, and the term

[1+β2
1 ]

−1/2 together with [1− i(ξm+β1)]
−1 indexed by {k=0} in the first product in

(4.3), and get

∫ +∞

−∞

dβ1

(1+β2
1)

1/2|1− i(ξm+β1)|
≤C

1+log+ |ξ|

(1+ξ2m)1/2
. (4.5)

We also use the smoothness condition for the initial condition and obtain another
(1+log+ |ξ|)/(1+ξ2m)1/2 from the integration in β2. Finally, we obtain the estimate

E|û(n)(t,ξ)|2≤ (2n−1)!!
Cntn(2−ρ)et

(n!)2−ρ

1+log+ |ξ|

(1+ξ2m)1/2
(4.6)

for any ρ∈ ( d
m
,1). This implies that the iterated Stratonovich integral û(n) is indeed

well-defined. Integrating in ξ and summing the above bound over n gives

(E

∫

|û(t,ξ)|2dξ)1/2≤
∑

n≥0

(E

∫

|û(n)(t,ξ)|2dξ)1/2<∞, (4.7)
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and the L2(Ω×R
d) convergence of (1.9) follows. In fact, by first multiplying ξm with

(4.6) and performing the integration and summation we can further obtain

E

∫

ξm|û(t,ξ)|2dξ<∞. (4.8)

5. Uniqueness of the SPDE solution

Let us now provide the rigorous definition for the operator H. Suppose f(t,ξ) is
a sum of iterated Stratonovich integrals

f(t,ξ)=
∑

n≥0

In(fn(t,ξ, ·)). (5.1)

We define

Hf(t,ξ)=
∑

n≥1

In((Hf)n(t,ξ, ·)), (5.2)

where

(Hf)n+1(t,ξ,x,x1,··· ,xn) :=(−iσ)(2π)−d

∫ t

0

∫

e
i(t−s)ξm

e
i(ξ0−ξ)x

fn(s,ξ0,x1,··· ,xn)dξ0ds.

(5.3)

One can check that under this definition Hû=
∑

n≥1 û
(n)= û− û(0). The Duhamel

solution (1.9) is therefore a solution to the equation (1.6).
We can also define

J f(t,ξ)=
∑

n≥0

In+1((J f)n+1(t,ξ, ·)), (5.4)

where

(J f)n+1(t,ξ,x,x1, · · · ,xn) := e−iξx

∫

eiξ0xfn(s,ξ0,x1, · · · ,xn)dξ0. (5.5)

For the Duhamel solution (1.9), we have

E|In+1 ((J û)n+1(t,ξ)) |
2

=(σn(2π)−d
e
t)2
∑

π2n

∫ ∫ ∫

R2

e
i(β1−β2)tdβ1dβ2û0(ξ−

n+1
∑

j=1

ξ
(1)
j )û0(ξ+

n+1
∑

j=1

ξ
(2)
j )

×

{

n+1
∏

k=1

[

1− i

(
∣

∣

∣

∣

∣

ξ−
k
∑

j=1

ξ
(1)
j

∣

∣

∣

∣

∣

m

+β1

)]

n+1
∏

k=1

[

1+ i

(
∣

∣

∣

∣

∣

ξ+

k
∑

j=1

ξ
(2)
j

∣

∣

∣

∣

∣

m

+β2

)]}−1

×
∏

(ef)∈π

δ(ξe+ξf )dξ
(1)

dξ
(2)

. (5.6)

Although it looks a little different from (4.3), it can be estimated in the same way as

(E|û(n)|2)1/2< (2n−1)!!
Cntn(2−ρ)et

(n!)2−ρ

1+log+ |ξ|

(1+ξ2m)1/2
, (5.7)

which upon summation in n implies that E|û(t,ξ)|2 is uniformly bounded for all ξ∈R
d.
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Note that Hû(t,ξ)=(−iσ)(2π)−d
∫ t

0
ei(t−s)ξm(J û)(s,ξ)ds. û(t,ξ) is therefore a

solution to the equation

(i
∂

∂t
+ξm)û(t,ξ)=σ(2π)−dJ û(t,ξ). (5.8)

Now we prove that this equation preserves mass. Multiplying this equation by ¯̂u(t,ξ),
and integrating in ξ and over the probability space Ω gives

i

2

∂

∂t
E

∫

|û|2dξ+E

∫

ξm|û|2dξ=σ(2π)−d
E

∫

(J û)¯̂udξ. (5.9)

The right hand side of this equation can be written out explicitly as

E

∫

(J û)¯̂udξ=

∫

∑

n,m

E

{

In+1

(

e−iξx

∫

eiξ1xfn(t,ξ1)dξ1

)

Im
(

f̄m(t,ξ)
)

}

dξ

=

∫

∑

n,m

∫



e−iξx

∫

eiξ1xfn(t,ξ1)dξ1f̄m(t,ξ)
∑

π

∏

(ef)∈π

δ(xe−xf )dx



dξ

=
∑

n,m

∑

π

∫

eiξ1xfn(t,ξ1)dξ1

∫

e−iξxf̄m(t,ξ)dξ
∏

(ef)∈π

δ(xe−xf )dx

=
∑

n,m

∑

π

∫

f̌n(t,x)
¯̌fm(t,x)

∏

(ef)∈π

δ(xe−xf )dx, (5.10)

which is real-valued because of the symmetry of this summation. Extracting the
imaginary part from both sides of (5.9) gives

∂

∂t
E

∫

|û(t,ξ)|2dξ=0. (5.11)

Finally, we define the space M in which the equation (5.8) admits a unique
solution. In light of the equation (5.9), M consists of sum of iterated Stratonovich
integrals f(t,ξ)=

∑

n≥0In(fn(t,ξ, ·)) such that

1. f(t,ξ)∈L2(Ω×R
d),

2. J f ∈L2(Ω),

3. |ξ|
m

2 f(t,ξ)∈L2(Ω×R
d).

As a reminder, defining the sum of iterated Stratonovich integrals f as in (5.1),
we have that

f =
∑

n≥0

In(fn)=
∑

m≥0

Im(gm), (5.12)

where

gm(t,ξ,x)=
∑

k≥0

(m+2k)!

m!k!2k

∫

Rkd

fm+2k(t,ξ,xm,y⊗2
k )dy. (5.13)

Here, y⊗y≡ (y,y), and

Im(gm) :=

∫

Rmd

gm(t,ξ,x1, · · · ,xm)dW (x1) · · ·dW (xm) (5.14)
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denotes the iterated Itô integral. The L2 norm of f can then be computed using the
orthogonality of the Wiener Chaos expansion as

‖f‖L2(Ω)=







∑

m≥0

m!

∫





∑

k≥0

(m+2k)!

m!k!2k

∫

Rkd

|fm+2k|(t,ξ,xm,y⊗2
k )dy





2

dx







1
2

<∞.

(5.15)
The readers are referred to [1] for more details.

It is easy to verify that the space defined above is dense in L2(Ω×R
d). Denote

the space consisting of all functions that satisfy condition (1) and (2) by M̃ . In fact,
any function f(ξ)∈L2(Ω×R

d) can be written as its Wiener Chaos expansion

f(ξ)=
∑

m≥0

Im(gm(ξ,xm)). (5.16)

Each gm can be approximated by a function fk
m, which vanishes in a set of measure

at most k−1 in the vicinity of the measure 0 set of diagonals given by the support
of the distributions δ(xe−xf ). By the change of change of coordinates in (5.13), we

have g
(k)
m =f

(k)
m , so that the Itô and Stratonovich integrals agree. Define

f (k)(ξ)=
∑

m≥0

Im(f (k)
m ). (5.17)

Using formula (5.15), we may verify that

‖J f (k)‖L2(Ω)<∞, (5.18)

and

lim
k→∞

‖f (k)(ξ)−f(ξ)‖L2(Ω×Rd)=0. (5.19)

We have shown that M̃ is dense in L2(Ω×R
d). Since M is dense in M̃ , it is also

dense in L2(Ω×R
d).

6. General moment convergence

We now extend the result of Section 3 to general moment convergence. It suffices
to prove that for all (t1,ξ

(1)), · · · ,(tr,ξ
(r)), we have

lim
ε→0

E{ûε(t1,ξ
(1)) · · · ûε(tr,ξ

(r))}=E{û(t1,ξ
(1)) · · ·û(tr,ξ

(r))}. (6.1)

We will take the same approach as we did for proving the first moment convergence.
Specifically, we shall rewrite ûε as the expansion (2.1), and show that every cross
moment

Iε(n) :=E{û(n1)
ε (t1,ξ

(1)) · · · û(nr)
ε (tr,ξ

(r))} (6.2)

converges, where n=(n1, · · · ,nr). We point out that since all Iε(n) are the expectation
of a product of Gaussian variables, the terms for which |n| :=

∑r
l=1nl are odd are equal

to 0. Using equation (2.5) and (3.3) we may write Iε(n) explicitly as

Iε(n)=(−i)|n|exp
(

r
∑

l=1

tl

)

∑

π

∫

R|n|d

exp
{

i
r

∑

l=1

βltl

}

r
∏

l=1

dβl

∫

· · ·

∫ r
∏

l=1

dξ(l)
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×

r
∏

l=1

û0

(

ξ(l)−

nl
∑

k=1

ξ
(l)
k

)

∏

(ef)∈π

R̂(εξe)δ(ξe+ξf )

×







r
∏

l=1

nl
∏

k=0



1− i





∣

∣

∣

∣

∣

∣

ξ(l)−

k
∑

j=1

ξ
(l)
j

∣

∣

∣

∣

∣

∣

m

−β















−1

. (6.3)

Here, we define dξ(l) :=dξ
(l)
1 · · ·dξ

(l)
nl , and denote the pair of vertices by (ef). As ε→0,

Iε(n) converges to

I(n) :=(−iσ(2π)−d)|n|
∑

π

∫

R|nd|

exp
{

i

r
∑

l=1

βltl

}

r
∏

l=1

dβl

∫

· · ·

∫ r
∏

l=1

dξ(l)

×

r
∏

l=1

û0

(

ξ(l)−

nl
∑

k=1

ξ
(j)
k

)

∏

(ef)∈π

δ(ξe+ξf )

×







r
∏

l=1

nl
∏

k=0



1− i





∣

∣

∣

∣

∣

∣

ξ(l)−
k

∑

j=1

ξ
(l)
j

∣

∣

∣

∣

∣

∣

m

−βl















−1

= E{û(n1)(t1,ξ
(1)) · · · û(nr)(tr,ξ

(r))}, (6.4)

which are the cross moments that appear on the right hand side of (6.1).
Now we show that moving the passage to the limit of ε→0+ inside the summation

is legitimate. Reproducing the work for estimating the first order moment in Section
3 yields

|Iε(n)|≤ (|n|−1)!!
(Ct2−ρ)

|n|
2 erT )

( |n|
2 !)2−ρ

, (6.5)

assuming 0≤ t1, . . . ,tr≤T , where the constant C is independent of ε∈ (0,1], |n|, and
r. The summation of

(

N+r−1
r−1

)

non-negative integer-valued multi-indices satisfying
equation |n|=N is estimated as

∣

∣

∣

∣

∣

∣

∑

|n|=N

Iε(n)

∣

∣

∣

∣

∣

∣

≤ cN , (6.6)

where

cN :=

(

N+r−1

r−1

)

(N−1)!!
(CT 2−ρ)

N
2 erT

(N2 !)
2−ρ

. (6.7)

The convergence of
∑+∞

N=1 cN is easy to verify.
As a result, we conclude that

lim
ε→0+

E{ûε(t1,ξ
(1)) ···ûε(tr,ξ

(r))}=
∑

lim
ε→0+

Iε(n)=
∑

I(n)=E{û(t1,ξ
(1)) ···û(tr,ξ

(r))}.

(6.8)
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7. Weak convergence

The sufficient condition to prove the weak convergence of ûε(t,ξ) in
C([0,+∞),S ′(Rd)) is tightness and the convergence of finite dimensional distribution.

In order to prove the tightness of {ûε(t,ξ)} over C([0,+∞),S ′(Rd)), it suffices
(by [4]) to prove the tightness of {uφ

ε (t) := 〈ûε(t, ·),φ〉L2(Rd),t≥0} for an arbitrary

φ∈S(Rd), which, by Kolmogorov’s theorem, follows from the following result.

Proposition 7.1. For T >0 and φ∈S(Rd) there exists a constant C>0 such that

E|uφ
ε (t)−uφ

ε (s)|
2≤C(t−s)2, (7.1)

uniformly in s,t∈ [0,T ] and ε>0.

Proof. From equation (1.2), we obtain

uφ
ε (t)−uφ

ε (s)= i

∫ t

s

uφ1
ε (τ)dτ+(−i)ε−

d
2

∫ t

s

∫ ∫

q̂(ζ)ûφ
ε (τ,ξ−ε−1ζ)dζdξdτ, (7.2)

where φ1(ξ) := ξmφ(ξ). Define

vφε (τ) :=
∑

n≥0

vn,φε (τ),

vn,φε (τ) :=(−i)n+1ε−
d(n+1)

2 eτ
∫

R

eiβτdβ

∫

· · ·

∫ n
∏

k=0

q̂(ξk)dξk

∫

Rd

dξ

×







n
∏

k=0



1− i





∣

∣

∣

∣

∣

∣

ξ−ε−1
k

∑

j=0

ξj

∣

∣

∣

∣

∣

∣

m

−β















−1

û0

(

ξ−ε−1
n
∑

j=0

ξj

)

φ(ξ).(7.3)

We then have

uφ
ε (t)−uφ

ε (s)= i

∫ t

s

uφ1
ε (τ)dτ+

∫ t

s

vφε (τ)dτ. (7.4)

Mimicking the proof in Section 4, we argue that for all τ ∈ [0,T ], we have
E|uφ1

ε (τ)|2≤C and E|vφε (τ)|
2≤C for a constant C independent of ε∈ (0,1]. Applying

the Cauchy-Schwarz inequality to the right hand side of (7.4) leads to (7.1).

Using (2.10) for any φ∈S(Rd), we can write

〈û(n)(t, ·),φ〉−〈û(n)(s, ·),φ〉

=

∫ t

s

eτdτ

∫

R

e−iβτdβ

∫

· · ·

∫ n
∏

k=1

dξk

∫

dξ

×







n
∏

k=0



1− i





∣

∣

∣

∣

∣

∣

ξ−

k
∑

j=1

ξj

∣

∣

∣

∣

∣

∣

m

+β















−1

û0(ξ−

n
∑

j=1

ξj)φ(ξ)

n
∏

j=1

e−iξjxj ◦

n
∏

j=1

dW (xj)

− i

∫ t

s

eτdτ

∫

R

βe−iβτdβ

∫

· · ·

∫ n
∏

k=1

dξk

∫

dξ

×







n
∏

k=0



1− i





∣

∣

∣

∣

∣

∣

ξ−
k

∑

j=1

ξj

∣

∣

∣

∣

∣

∣

m

+β















−1

û0(ξ−
n
∑

j=1

ξj)φ(ξ)
n
∏

j=1

e−iξjxj ◦
n
∏

j=1

dW (xj).

(7.5)
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Applying the technique that we used in Section 4, we check that for any T >0, we
have

E|〈û(n)(t, ·),φ〉−〈û(n)(s, ·),φ〉|2≤ (CT )2(t−s)2(n!)(1−ρ),∀n≥1,s,t∈ [0,T ] (7.6)

for some constant C>0 independent of n. This in turn implies that

E|〈û(t, ·),φ〉−〈û(s, ·),φ〉|2≤C(t−s)2,∀n≥1 (7.7)

on any compact set. By the Kolmogorov-Chentsov Theorem, we have that 〈û(t, ·),φ〉
is continuous almost surely.

It remains to prove the convergence of the finite dimensional distribution of ûε,
i.e., the convergence of distributions of (ûε(t1,ξ

(1)), · · · ,ûε(tr,ξ
(r))) for an arbitrary

r≥1, t1, · · · ,tr≥0, ξ(1), · · · ,ξ(r)∈R
d. For simplicity we consider only the case r=1,

as it is easy to generalize to the case for arbitrary r. Since we have already had
moment convergence, it suffices to verify the determinacy of the distributions by their
moments. In fact, we point out that the estimate (6.5) still holds if we replace some
of the terms in (6.2) with their complex conjugates. Therefore, for n being even, we
have

E|û(t,ξ)|n≤

+∞
∑

N=0

(

N+n−1

n−1

)

(N−1)!!
(Ct2−ρ)

N
2 ent

(N2 !)
2−ρ

. (7.8)

Using Stirling’s formula we can easily obtain that

(

N+n−1

n−1

)

≤C
(

1+
n−1

N

)N(

1+
N

n−1

)n−1

. (7.9)

Plugging this into equation (7.8) therefore gives

E|û(t,ξ)|n≤C2n−1ent
n−1
∑

N=0

(

1+
n−1

N

)N

(N−1)!!
(Ct2−ρ)

N
2

(N2 !)
2−ρ

+Cent
+∞
∑

N=n

(

1+
N

n−1

)n−1

(N−1)!!
(Ct2−ρ)

N
2

(N2 !)
2−ρ

.

(7.10)

The first term is bounded by Cnn while the second by a constant C independent of
n. Therefore we have

+∞
∑

n=1

1

[E|û(t,ξ)|2n]1/2n
≥C

+∞
∑

n=1

1

n1/2
=+∞, (7.11)

and the uniqueness follows from Carleman’s condition.
Weak convergence of {ûε(t,ξ)} follows from the convergence of finite dimensional

distribution and tightness. Back in the spatial space, by the Plancherel theorem,
we have 〈u(t, ·),φ〉= 〈û(t, ·),φ̂〉. Hence, the process {uε(t,x)} converges in law over
C([0,+∞);S ′(Rd)) to {u(t,x)}.
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