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ITERATED AVERAGING OF THREE-SCALE OSCILLATORY

SYSTEMS∗

GIL ARIEL† , BJORN ENGQUIST‡ , SEONG JUN KIM§ , AND RICHARD TSAI¶

Abstract. A theory of iterated averaging is developed for a class of highly oscillatory ordinary
differential equations (ODEs) with three well separated time scales. The solutions of these equations
are assumed to be (almost) periodic in the fastest time scales. It is proved that the dynamics on the
slowest time scale can be approximated by an effective ODE obtained by averaging out oscillations.
In particular, the effective dynamics of the considered class of ODEs is always deterministic and
does not show any stochastic effects. This is in contrast to systems in which the dynamics on the
fastest time scale is mixing. The systems are studied from three perspectives: first, using the tools of
averaging theory; second, by formal asymptotic expansions; and third, by averaging with respect to
fast oscillations using nested convolutions with averaging kernels. The latter motivates a hierarchical
numerical algorithm consisting of nested integrators.
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1. Introduction

Averaging methods are some of the most widely used tools for the study and
approximation of highly oscillatory ordinary differential equations (ODEs). In its most
basic form, averaging means that following a change of variables that separates the
system into slow coordinates and periodic fast ones, the effect of the fast oscillations
can be integrated out, yielding an approximate effective equation. More precisely,
consider the initial value problem

x′=f(x,ǫ−1t), x(0)=x0, (1.1)

where 0<ǫ≤ ǫ0≪1 denotes the scale separation in the problem. It is assumed that
a unique uniformly bounded solution x(t)∈R

d exists in a time segment [0,T ] which
is independent of ǫ. Furthermore, f(x,s) is sufficiently smooth and 1-periodic in s;
see, for example, [11, 40] for details. Then, x(t) can be approximated by the effective
averaged equation

ξ′=F (ξ), ξ(0)=x0, (1.2)

where F (ξ) is the average of f(x,s) over one period of s:

F (ξ)= 〈f(ξ, ·)〉s≡
∫ 1

0

f(ξ,s)ds. (1.3)

Furthermore, the approximation is of order ǫ in the sup norm, i.e.

sup
0≤t≤T

|x(t)−ξ(t)|=O(ǫ). (1.4)
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This elementary result has been generalized considerably to include, for example,
chaotic and stochastic systems [7, 10, 11, 30, 31, 38, 39, 40]. From a computational
point of view, averaging methods inspire efficient numerical schemes for integrating
the slow components of slow-fast systems without fully resolving all fast oscillations
in [0,T ]; see, for example, [1, 2, 8, 14, 15, 16, 18, 19, 23, 25, 41, 42, 44] and references
therein.

The main purpose of this paper is twofold. First, we generalize the classical two-
scale averaging theory (1.1)-(1.4) to a model problem whose solutions possess slow
variables or observables as well as fast oscillations with frequencies that are separated
by two large spectral gaps. We shall call such systems three-scale oscillatory systems.
Our generalization is along the lines of the so-called iterated homogenization prob-
lem [9, 10, 12, 29, 34]. Similarly, we develop a theory of iterated averaging which is
approached from three different views: (1) application of long time asymptotic and
second order averaging theorems [40, 43]; (2) formal perturbation expansions applied
to an associated stochastic differential equation (SDE); and (3) a direct proof by re-
peated convolution with averaging kernels across different time scales. The latter is
the foundation for a hierarchical numerical algorithm consisting of nested integra-
tors, which is the second main objective of the paper. We demonstrate how tiers of
two-scale numerical methods can be “stacked-up” in order to construct a consistent
approximation of the effective slow dynamics in three-scale systems. To our knowl-
edge, very few algorithms have been developed considering directly three or more
scales. We develop our algorithm using the framework of the heterogeneous multi-
scale method (HMM) for highly oscillatory ODEs [2, 16]. A proof of concept for the
algorithm was previously suggested in [6] without the underlying mathematical theory
of iterated averaging or proof of convergence.

To gain insight on the analysis of the numerical method described in [6], it is
helpful to study the method when it is applied to an appropriately chosen and sim-
pler problem which shows the similar features of the original model but is easier to
analyze. We thus develop a simple model, motivated by Fermi, Pasta, and Ulam
(FPU) [24], which shows the multiscale behavior in time scales of integer powers of
ǫ. The FPU model involves almost-periodic dynamics on the ǫ time scale, dynamics
of soft nonlinear springs on the time scale independent of ǫ, and the slow energy ex-
change among stiff springs on the ǫ−1 time scale; see e.g. [28]. We remark however
that there of course exist dynamical systems whose multiscale features are not integer
powers of ǫ, e.g. in weakly coupled, nearly resonant harmonic oscillators. A method
for near-resonance is beyond the scope of this paper, but a new approach for these
general systems will be reported in a forthcoming paper.

Consider ODE systems evolving on three well-separated time scales of the form






x′= ǫ−1f̃1(x,y,z)+ f̃0(x,y,z), x(0)=x0,

y′= ǫ−1g̃1(x,y,z)+ g̃0(x,y,z), y(0)=y0,

z′= ǫ−2h̃2(x,y,z), z(0)= z0,

(1.5)

where the separation into the three components x, y, and z is according to the time-
scale on which variables evolve, ǫ2, ǫ, and 1, respectively. Throughout this paper
we assume the existence of a unique solution for each initial condition (x0,y0,z0)∈
D0⊂R

d0 ×R
d1 ×R

d2 which is bounded independent of ǫ in a time segment [0,T ] also
independent of ǫ. Because the time derivatives of (x(t),y(t),z(t)) are not uniformly
bounded while solutions are, fast variables y(t) and z(t) are either dissipative (i.e.,
converge to a stable low dimensional manifold on an ǫ or ǫ2 time scale), or highly
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oscillatory. In this paper we concentrate on the highly oscillatory case. Accordingly,
we assume the following:

• For fixed x and y, z(t)∈R
d2 is quasi-periodic (i.e., diffeomorphic to uniform

rotations on a d2 dimensional torus) with frequencies of order ǫ−2 over t∈
[0,T ].

• For fixed x, y(t)∈R
d1 quasi-periodic with frequencies of order ǫ−1 over t∈

[0,T ].

• The variable x(t)∈R
d0 is slow. More precisely, there exists a function ξ(t)

which is independent of ǫ such that

sup
0<ǫ≤ǫ0

sup
0≤t≤T

|x(t)−ξ(t)|≤Cǫ,

for some constants ǫ0, T , and C independent of ǫ. In the following, it will be
shown that a necessary condition for x to be slow is that the average of f̃1
over z vanishes.

In many situations, one is only interested in the slowly changing quantity x(t).
Accordingly, our main objective is to investigate and approximate the effective dy-
namics ξ(t), discarding the fast variables y(t) and z(t). When only looking for the
effective dynamics ξ(t) of the slow variable x(t) in the time interval [0,ǫT ], one can
simply truncate the f̃0 term, and average over y and z. On the other hand, in the case
of [0,T ], we cannot neglect f̃0 because its effect appears in this longer time interval.

In this paper, we focus on a a simplified version of (1.5) in which the fast scales
associated with y and z are given explicitly as known time-dependent functions. Most
of the analytical results will be proven in this simpler setup. However, in Section 1.4
we explain heuristically why this simpler form keeps the essential multiscale features
of the more general system (1.5) and why our suggested numerical method applies to
the full three-scale problem (1.5). We consider ODE systems of the form

x′= ǫ−1f1(x,ǫ
−1t,ǫ−2t)+f0(x,ǫ

−1t,ǫ−2t), x(0)=x0, (1.6)

where f1(x,s1,s2) and f2(x,s1,s2) are sufficiently smooth (e.g. C1) and 1-periodic in
s1 and s2. As before, it is assumed that a unique bounded solution exists for each
x0∈D1⊂R

d in a time segment [0,T ]. Both the bound and T are independent of ǫ.
The dynamics of (1.6) can be characterized across three well-separated time scales: a
fast time scale involving time intervals with length of order ǫ2, an intermediate scale
of order ǫ, and a slow O(1) scale. In Section 2 we will show that if the average of f1
with respect to s2 vanishes, then x(t) effectively varies on the time scale of O(1), i.e.,
x(t) is the slow variable. Moreover, effective equations for x(t) will also be given.

In the following, we shall use s1 and s2 exclusively for the variables which will
be scaled respectively to ǫ−1t and ǫ−2t. Moreover, averages of a function f(x,s1,s2)
with respect to s1 and s2 with x fixed are denoted respectively by

〈f(ξ,s1,s2)〉1, 〈f(ξ,s1,s2)〉2.

Accordingly, the double average of f(x,s1,s2) over both s1 and s2 is denoted

〈f(x,s1,s2)〉12.

As motivation, we begin formally. Assuming that for fixed x and s1 the average of
f1 with respect to s2 vanishes, x(t) can be written as a sum of a smooth function w(t)
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whose first time derivative is bounded independent of ǫ, and fast oscillations around
w(t) whose amplitudes tend to zero as ǫ→0 [37, 40]. As a motivation for identifying
an ODE for w(t), consider the form

x(t)=w(t)+ǫφ(w(t),ǫ−1t,ǫ−2t).

Substituting into (1.6) yields

w′= ǫ−1
(

f1−
∂φ

∂s2

)

+(∇xf1)φ−
∂φ

∂s1
+f0+O(ǫ). (1.7)

In order to have that w′(t) is bounded independent of ǫ we require that ∂φ/∂s2=f1.
Consequently, φ should be taken to be the anti-derivative of f1 with respect to s2 and

w′=(∇xf1)φ−
∂φ

∂s1
+f0+O(ǫ). (1.8)

Because φ is periodic in s1 and s2, ∂φ/∂s1 averages to zero and therefore does not
contribute to the effective equation. In order to eliminate small oscillations in φ, the
right hand side (RHS) of (1.8) should be averaged with respect to s1 and s2. This
leads to the averaged equation

ξ′=F (ξ), ξ(0)=x0, (1.9)

where

F = 〈(∇xf1)φ+f0〉12,

φ(ξ,s1,s2)=

∫ s2

0

f1(ξ,s1,τ)dτ.
(1.10)

Remark 1.1. The definition of φ is not unique. For example, it is straightforward
to verify that taking φ(ξ,s1,s2)=

∫ s2
0
f1(ξ,s1,τ)dτ+a(ξ,s1) where, for fixed ξ, a(ξ,s1)

is periodic in s1, one would arrive at the same averaged equation. Two canonical
choices are either a(ξ,s1)=0, which is used in sections 2 and 4, or a(ξ,s1) such that
〈φ〉2=0, which is used in Section 3.

Remark 1.2. Following the previous remark we note that in general, it is not true
that x=w+ǫφ+O(ǫ2).

The following theorem is proved in Section 2.

Theorem 1.1. Let x(t) and ξ(t) denote solutions of equations (1.6) and (1.9) respec-
tively. If f1 has a zero average with respect to s2, then there exists a constant C>0
independent of ǫ such that

sup
0≤t≤T

|x(t)−ξ(t)|≤Cǫ.

In fact, as will be seen later, the same theorem holds under weaker assumptions on
the fast and intermediate time scales s1 and s2. The fast, ǫ2 scale can be periodic,
ergodic on a torus, or almost periodic with frequencies that are bounded from below.
On the intermediate O(ǫ) scale, the only requirement is that for fixed ξ, the effective
dynamics obtained after integrating the fastest ǫ2 time scale is ergodic and that a two-
scale averaging principle [40] holds. This includes oscillatory, stochastic, and chaotic
dynamics. Such generalizations are further discussed in Section 5.
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1.1. A simple example. Consider the ODE system

x′=2πǫ−1
[
xsin(2πǫ−2t)+cos(2πǫ−2t)

]
, x(0)=0. (1.11)

for 0≤ t≤1. By the method of variation of parameters, the exact solution of (1.11)
is found to be

x(t)=2πǫ−1e−ǫcos(2πǫ−2t)

∫ t

0

cos(2πǫ−2s)eǫcos(2πǫ
−2s)ds. (1.12)

Expanding in ǫ,

x(t)=πt+ǫ
[
sin(2πǫ−2t)−πtcos(2πǫ−2t)

]
+O(ǫ2). (1.13)

Hence, x(t)=πt+O(ǫ) for t∈ [0,1].
A naive approach for obtaining an effective equation is to assume that in any suf-

ficiently short time interval the solution of (1.11) can be approximated by integrating
over the fast oscillations in the RHS of (1.11) while keeping x fixed. This yields

x̃(t)= 2πǫ−1

∫ t

0

[
X sin(2πǫ−2s)+cos(2πǫ−2s)

]
ds

∣
∣
∣
∣
X=x̃(t)

=2πǫ−1
[
XO(ǫ2)+O(ǫ2)

]
,

(1.14)
which implies that x̃(t)=O(ǫ) only for t∈ [0,Cǫ].

In contrast, Theorem 1.1 yields the correct averaged equation for x for t∈ [0,1]:

X ′=π, X(0)=0,

which clearly implies that

sup
t∈[0,1]

|x(t)−X(t)|≤ (1+π)ǫ.

On the other hand, performing averages over fast oscillations can be approximated in
a convenient and computationally efficient way by convolution of x′ with appropriate
compactly supported kernels. Inside the convolution, the value of x is not exactly
fixed but varies following the correct dynamics. This subtle change in the values of

x(t) allows for the kernel to capture the correct effective change of x(t) in a longer

time scale. This can be demonstrated in the case of example (1.11). Consider a cosine
kernel, which is particularly convenient in this example:

K(t)=
1

2
χ[−1,1](t)[1+cos(πt)] ,

where χA is the indicator function of a set A. Furthermore, for η>0, let Kη denote
a scaling of K(t) to [−η,η],

Kη(t)=
1

η
K

(
t

η

)

.

Without loss of generality, we calculate the convolution of Kη with x′ in (1.11) at
t=0:

(Kη ∗x′)(0)=
2π

ǫ

∫ η

−η

Kη(−s)
[
x(s)sin(2πǫ−2s)+cos(2πǫ−2s)

]
ds.
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Substituting in the expansion of x(s) shown in equation (1.13), and using η=nǫ2

yields

(Kη ∗x′)(0)=
π

ηǫ

∫ nǫ2

−nǫ2

[

1+cos(
πs

η
)

][

πssin(
2πns

η
)+cos(

2πns

η
)

]

ds

+
π

η

∫ nǫ2

−nǫ2

[

1+cos(
πs

η
)

][

sin2(
2πns

η
)− πs

2
sin(

4πns

η
)

]

ds+O(ǫ)

=π+O(ǫ),

which is, to leading order in ǫ, the correct derivative for the slow variable x for t∈ [0,1].
In Section 4 these ideas are generalized to oscillatory three-scale systems in which

kernels are applied iteratively to the different time scales. This can then be exploited
for construction of efficient multiscale numerical schemes.

1.2. Formal asymptotic expansions. Formal asymptotic expansions of
singularly perturbed operators have been successfully applied to a wide variety of
problems [10, 39]. Of particular relevance are the applications to SDEs [15, 35, 38, 44].
Consider SDE systems of the form

{

dxt=
[
ǫ−1f1(xt,yt)+f0(xt,yt)

]
dt,

dyt= ǫ−2a(xt,yt)dt+ǫ
−1β(xt,yt)dBt,

(1.15)

where Bt is a standard Brownian motion in R
d. The variable xt∈R

d is a slow process
that evolves according to an ODE with a fast random coefficient yt∈R

n. Under
some ergodicity, smoothness, and growth assumptions, xt can be approximated by an
effective equation of the form

dXt=F (Xt)dt+b(Xt)dBt, (1.16)

where F and b can be expressed as averages with respect to the fast process yt with Xt

fixed [38, 39]. One of the interesting consequences of (1.16) is that if the dynamics of yt
is mixing1, then the effective diffusion b(x) may be non-zero even if yt is deterministic,
i.e., β=0. For details and examples, see [17, 23, 26, 27, 35, 36, 39].

Many oscillatory dynamics are not mixing, even though for fixed xt the fast
dynamics is ergodic on a low-dimensional invariant manifold. In Section 3 we show
that the method of formal asymptotic expansions gives the correct vanishing effective
diffusion coefficient, i.e., the effective slow dynamics is deterministic. Furthermore,
the method reproduces the correct effective drift.

1.3. Numerical methods. The above discussion on applying averaging
kernels across different time scales motivates a numerical method which applies our
previous two-scale HMM algorithms [3, 4, 5] hierarchically to multiple (>2) timescale
systems. We consider the time scales O(ǫ2), O(ǫ), and O(1) and assume that both
the ǫ and ǫ2 scales are oscillatory.

The HMM to be constructed should evaluate the effective rate of change of x(t).
For three-scale problems this requires averaging over the O(ǫ2) as well as the O(ǫ)

1Loosely speaking, mixing means that for any two possible states of yt, the occurrence of the
states is independent if a sufficient amount of time t is given. For the precise definition and properties,
see [45].
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scale oscillations, thus obtaining a numerical approximation for the effective equation.
See [6] for further details.

The hierarchical HMM structure is illustrated in figure 1.1. The downward point-
ing arrows depict the determination of an initial condition for a lower, fast scale from
data in an upper tier working on a slower time scale. The upward pointing arrows
from 2nd tier to 1st tier and 1st tier to 0th tier relate the evaluation of averages with
respect to s2 and s1, respectively. Below we describe in detail the equations solved in
each tier.

Let ηi and hi denote the range of integration and step size used in the i-th tier,
respectively. A chosen ODE solver in the 2nd tier numerically approximates the full
ODE at the initial time tn,m=nh0+mh1.

x′2= ǫ
−1f1(x2,ǫ

−1t,ǫ−2t)+f0(x2,ǫ
−1t,ǫ−2t), x2(tn,m)=X1,

in a time segment t∈ [tn,m−η2,tn,m+η2] where X1(tn,m;X0(tn)) is an approximation
of x(t) at tn,m obtained from the 1st tier. Denote the solution by x2(t;X1) and let

F1(tn,m;X1)=Kη2
∗
(
ǫ−1f1(x2(·;X1),ǫ

−1·,ǫ−2·)+f0(x2(·;X1),ǫ
−1·,ǫ−2·)

)
.

The 1st tier numerically approximates the effective ODE for the O(ǫ) scale,

x′1=F1(t;X1), x1(tn)=X0,

in the time interval t∈ [tn−η1,tn+η1] where X0(tn) is an approximation of x(t) at
tn=nh0 obtained from the 0th tier. Denote the solution x1(t;X0) and let

F0(tn;X0)=Kη1
∗F1(·).

Finally, the 0th tier numerically approximates the effective ODE for the O(1) scale,

x′=F0(x), x(0)=x0,

in t∈ [0,η0]= [0,T ].

0th tier

1st tier

2nd tier

Fig. 1.1. An illustration of a three scale algorithm.

1.4. Generalizing from (1.6) to (1.5). In the following, we explain heuristi-
cally why the numerical method described above, which was motivated by the simple
model (1.6), may be applied to a more general case (1.5) in which the fast and inter-
mediate dynamics is periodic. Further generalizations to quasi and almost periodic
systems are discussed in Section 5. As an analogy to the action-angle coordinates for
mechanical systems, z and y can be considered as periodic angle-like coordinates with
periods of order ǫ2 and ǫ, respectively. In other words, we explicitly assume that z(t)
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consists of a fast O(ǫ2) oscillation which is super-imposed on a slower O(ǫ) oscillation
and a slow O(1) drift. Similarly, y(t) is an intermediate O(ǫ) oscillation which is
super-imposed on a O(1) drift. More precisely, recall the equation for z in (1.5),

z′= ǫ−2h̃2(x,y,z).

On an O(ǫ2) time interval both x and y are, to leading order in ǫ, constant. Hence,
z(t) is oscillatory and satisfies an ODE of the form

z′= ǫ−2h̃2(x(t0),y(t0),z)+ǫ
−1h̃1(x(t0),y(t0),z)+O(1).

This implies that the solution, z(t), can be generally written as

z(t)= z̃(t,ǫ−1t,ǫ−2t), (1.17)

where z̃(s0,s1,s2) is quasi-periodic in s2. Similarly, recall the equation for y in (1.5),

y′= ǫ−1g̃1(x,y,z)+ g̃0(x,y,z).

Substituting in (1.17) and using the O(ǫ2) periodicity of z, y can be approximated by
an averaged equation on a time segment of length O(ǫ). The averaged equation takes
the form

ȳ′= ǫ−1ḡ1(x,ȳ)+ ḡ0(x,ȳ).

Hence, the solution of y(t) can be written as

y(t)= ỹ0(t,ǫ
−1t)+ǫỹ1(t,ǫ

−1t,ǫ−2t)+O(ǫ2), (1.18)

where ỹ0(s0,s1) is quasi-periodic in s1, and ỹ1(s0,s1,s2) is quasi-periodic in s2. Sub-
stituting (1.17) and (1.18) into the equation for x in (1.5) yields the simplified form
(1.6).

Finally, we note that HMM only requires integration on reduced time segments.
Specifically, computing an approximation of the effective equation for x only requires
solving for y on time segments of length O(ǫ). Similarly, computing an approximation
of the effective equation for y only requires solving for z on time segments of length
O(ǫ2). Thus (1.17) and (1.18) are consistent with the requirements of the iterated
kernel, nested HMM scheme. Furthermore, the form in which the microscopic scales
are given—either (1.5) or (1.6)—is not important for the HMM scheme to yield a
converging approximation of the the averaged equation for the slow variable x. The
only requirement is that all integrators across all time scales are stable. We conclude
that the tiered HMM scheme can be applied to the full three-scale problem (1.5).

Further evidence on the applicability of the nested-HMM framework to the general
(1.5) comes from Section 3, which considers formal asymptotic expansions applied
directly to (1.5).

1.5. Layout. The layout of the paper is as follows. Section 2 details a proof
of Theorem 1.1 using the tools of averaging theory. In Section 3, the same result
is derived using formal asymptotic expansions to singular perturbations of SDEs in
which the white noise is turned off. Even though this method does not constitute a
rigorous proof, its scope applies to the general system given in singular perturbation
form (1.5). Section 4 proves that the effective dynamics of (1.6) can be approximated
using convolution with respect to averaging kernels which are applied iteratively to
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the different time scales. The methods can be used in a numerical HMM scheme as
described above. The HMM scheme suggests that the basic idea of iterated averag-
ing can be applied in more general settings. Such generalizations are discussed in
Section 5. A few examples of such generalizations are presented in Section 6. We
conclude in Section 7.

2. A theory of iterated averaging

In this section we prove Theorem 1.1, which generalizes an averaging theorem for
long time scales due to van der Burgh [40, 43]. Further generalizations are discussed
in Section 5.

2.1. Basic estimate. As before, let x(t) solve

x′= ǫ−1f1(x,ǫ
−1t,ǫ−2t)+f0(x,ǫ

−1t,ǫ−2t), x(0)=x0, (2.1)

where f1(x,s1,s2) and f0(x,s1,s2) are sufficiently smooth and 1-periodic in s1 and s2.
It is further assumed that the solution x(t) exists, is unique and remains bounded
independent of ǫ for a time segment [0,T ] independent of ǫ. When 〈f1〉2=0, then
x(t) can be approximated by a slow trajectory, and then our goal is to derive an
approximate ODE for such a trajectory. As usual, by slow we mean that the first
derivative of a time-dependent function is bounded independent of ǫ.

We consider two functions w(t) and y(t). Let w(t) solve

w′=h(w(t),ǫ−1t,ǫ−2t)+f0(w(t),ǫ
−1t,ǫ−2t), w(0)=x0, (2.2)

where h is defined by

h(x,s1,s2)=(∇xf1)φ(x,s1,s2)−
∂φ

∂s1
(x,s1,s2),

φ(x,s1,s2)=

∫ s2

0

f1(x,s1,τ)dτ.

(2.3)

Note that for fixed x, h(x,s1,s2) and φ(x,s1,s2) are 1-periodic in s1 and s2.

Notation 2.1. We use the notation (∇xf1)φ(x,s1,s2) for the multiplication of φ by

the derivative of f1 with respect to x, and both are evaluated at (x,s1,s2).

Let y(t) solve

y′=G(y,ǫ−1t), y(0)=x0, (2.4)

where G is given by

G(y,s1)=〈h(y,s1,s2)〉2+〈f0(y,s1,s2)〉2. (2.5)

We will show that for t∈ [0,T ], there exist nonnegative constants C0 and C1, inde-
pendent of ǫ, such that

|x(t)−w(t)|≤C0ǫ and |w(t)−y(t)|≤C1ǫ.

Thus, we conclude by the triangle inequality for t∈ [0,T ] that

|x(t)−y(t)|≤Cǫ.

We denote a generic positive constant by C whose value may change between expres-
sions but is independent of ǫ.
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Lemma 2.1. The solutions x(t) and w(t) defined above satisfy

|x(t)−w(t)|≤ ǫCe(Lf0
+Lh)t

for t∈ [0,T ] and T >0 which is independent of ǫ. Lf0 and Lh are Lipschitz constants

for f0 and h, respectively.

Proof. From (2.1) and (2.2), integrating with respect to time yields that

x(t)−x0=
∫ t

0

ǫ−1f1(x(τ),ǫ
−1τ,ǫ−2τ)dτ+

∫ t

0

f0(x(τ),ǫ
−1τ,ǫ−2τ)dτ,

w(t)−x0=
∫ t

0

h(w(τ),ǫ−1τ,ǫ−2τ)dτ+

∫ t

0

f0(w(τ),ǫ
−1τ,ǫ−2τ)dτ.

This leads to

|x(t)−w(t)|≤

∣

∣

∣

∣

∫ t

0

ǫ
−1

f1(x(τ),ǫ
−1

τ,ǫ
−2

τ)−h(w(τ),ǫ−1
τ,ǫ

−2
τ)dτ

∣

∣

∣

∣

+Lf0

∫ t

0

|x(τ)−w(τ)|dτ.

(2.6)

where Lf0 is a Lipschitz constant for f0. We will show that the first integral in (2.6)
is bounded by

Lh

∫ t

0

|x(τ)−w(τ)|dτ+O(ǫ),

where Lh is a Lipschitz constant for h. Then, we have

|x(t)−w(t)|≤ (Lf0 +Lh)

∫ t

0

|x(τ)−w(τ)|dτ+O(ǫ).

It follows from Gronwall’s inequality that

|x(t)−w(t)|≤ ǫCe(Lf0
+Lh)t.

To this end, let n denote the largest integer such that ǫ2n≦ t. We first consider
∫ 1

0
ǫ−1f1dτ .

∫ t

0

ǫ−1f1(x(τ),ǫ
−1τ,ǫ−2τ)dτ

=

n−1∑

j=0

∫ ǫ2(j+1)

ǫ2j

ǫ−1f1(x(τ),ǫ
−1τ,ǫ−2τ)dτ+

∫ t

ǫ2n

ǫ−1f1(x(τ),ǫ
−1τ,ǫ−2τ)dτ.

Because f1 is bounded and 0≤ t−nǫ2<ǫ2, the last term is O(ǫ). Denoting tj = ǫ
2j

and using the periodicity of f1 in s2, each term in the sum can be written as

ǫ

∫ 1

0

f1(x(tj+ǫ
2s),ǫ−1tj+ǫs,s)ds. (2.7)

By the fundamental theorem of calculus, we write

x(tj+ǫ
2s)=x(tj)+

∫ tj+ǫ2s

tj

x′(τ)dτ
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=x(tj)+

∫ tj+ǫ2s

tj

[
ǫ−1f1(x(τ),ǫ

−1τ,ǫ−2τ)+f0(x(τ),ǫ
−1τ,ǫ−2τ)

]
dτ

=x(tj)+

∫ tj+ǫ2s

tj

ǫ−1f1(x(τ),ǫ
−1τ,ǫ−2τ)dτ+O(ǫ2), (2.8)

because f0 is bounded independent of ǫ. After the substitution of (2.8) into (2.7) and
using a Taylor expansion of f1(x(tj+ǫ

2s),ǫ−1tj+ǫs,s2) around s=0 while keeping s2
fixed,

ǫ

∫ 1

0

f1(x(tj+ǫ
2s),ǫ−1tj+ǫs,s)ds

= ǫ

∫ 1

0

{

f1(x(tj),ǫ
−1tj ,s)+

(
∫ tj+ǫ2s

tj

x′(τ)dτ

)

∇xf1(x(tj),ǫ
−1tj ,s)

+ǫs
∂f1
∂s1

(x(tj),ǫ
−1tj ,s)

}

ds+O(ǫ3)

=

∫ 1

0

(
∫ tj+ǫ2s

tj

f1(x(τ),ǫ
−1τ,ǫ−2τ)dτ

)

∇xf1(x(tj),ǫ
−1tj ,s)ds

+

∫ 1

0

ǫ2s
∂f1
∂s1

(x(tj),ǫ
−1tj ,s)ds+O(ǫ3).

where we used the fact that 〈f1〉2=0. Hence, for ǫ−1
∫ t

0
f1dτ ,

ǫ−1

∫ t

0

f1(x(τ),ǫ
−1τ,ǫ−2τ)dτ

=
n−1∑

j=0

[
∫ 1

0

(
∫ tj+ǫ2s

tj

f1(x(τ),ǫ
−1τ,ǫ−2τ)dτ

)

∇xf1(x(tj),ǫ
−1tj ,s)ds

+

∫ 1

0

ǫ2s
∂f1
∂s1

(x(tj),ǫ
−1tj ,s)ds

]

+O(ǫ1). (2.9)

Next, changing of variables to s= ǫ−2τ in
∫ t

0
hdτ gives

∫ t

0

h(w(τ),ǫ−1τ,ǫ−2τ)dτ

=

n−1∑

j=0

[
∫ tj+1

tj

(
∫ ǫ−2τ

0

f1(w(τ),ǫ
−1τ,v)dv

)

∇xf1(w(τ),ǫ
−1τ,ǫ−2τ)dτ

−
∫ tj+1

tj

∫ ǫ−2τ

0

∂f1
∂s1

(w(τ),ǫ−1τ,ṽ)dṽdτ

]

+O(ǫ2)

=

n−1∑

j=0

[∫ j+1

j

ǫ2
(∫ s

j

f1(w(ǫ
2s),ǫs,v)dv

)

∇xf1(w(ǫ
2s),ǫs,s)ds

−
∫ j+1

j

ǫ2
(∫ s

0

∂f1
∂s1

(w(ǫ2s),ǫs,ṽ)dṽ

)

ds

]

+O(ǫ2).
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Changing variables back to τ = ǫ2v in the first integral and ṽ= τ in the second integral,

∫ t

0

h(w(τ),ǫ−1τ,ǫ−2τ)dτ

=

n−1∑

j=0

[
∫ j+1

j

(
∫ ǫ2s

tj

f1(w(ǫ
2s),ǫs,ǫ−2τ)dτ

)

∇xf1(w(ǫ
2s),ǫs,s)ds

−ǫ2
∫ j+1

j

∫ s

0

∂f1
∂s1

(w(ǫ2s),ǫs,τ)dτds

]

+O(ǫ2). (2.10)

We need to compare (2.9) and (2.10). Note that w′(t) is bounded independent of ǫ
and that τ ∈ [j,j+1],

{

w(ǫ2s)=w(τ)+O(ǫ2s−τ)=w(τ)+O(ǫ2),

w(ǫ2s)=w(ǫ2j)+O(ǫ2s−ǫ2j)=w(tj)+O(ǫ2),
(2.11)

and

{

ǫs= ǫ−1τ+O(ǫ),

ǫs= ǫ−1tj+O(ǫ).
(2.12)

Therefore, the first integration in (2.10) can be written as

∫ j+1

j

(
∫ ǫ2s

tj

f1(w(τ),ǫ
−1τ,ǫ−2τ)dτ

)

∇xf1(w(tj),ǫ
−1tj ,s)ds+O(ǫ3)

=

∫ 1

0

(
∫ tj+ǫ2s

tj

f1(w(τ),ǫ
−1τ,ǫ−2τ)dτ

)

∇xf1(w(tj),ǫ
−1tj ,s)ds+O(ǫ3),

which has the same form of the first term in (2.9) with an O(ǫ3) error.

Now compare the second integrals. Applying integration by parts to the second
term in (2.9) and 〈∂f1∂s1

〉=0 give

∫ 1

0

ǫ2s
∂f1
∂s1

(x(tj),ǫ
−1tj ,s)ds

=

[

ǫ2s

∫ s

0

∂f1
∂s1

(x(tj),ǫ
−1tj ,τ)dτ

]1

s=0

−ǫ2
∫ 1

0

∫ s

0

∂f1
∂s1

(x(tj),ǫ
−1tj ,τ)dτds

=−ǫ2
∫ 1

0

∫ s

0

∂f1
∂s1

(x(tj),ǫ
−1tj ,τ)dτds. (2.13)

On the other hand, in (2.10) using (2.11) and (2.12),

−ǫ2
∫ j+1

j

∫ s

0

∂f1
∂s1

(w(ǫ2s),ǫs,τ)dτds=−ǫ2
∫ j+1

j

∫ s

0

∂f1
∂s1

(w(tj),ǫ
−1tj ,τ)dτds+O(ǫ3)

=−ǫ2
∫ 1

0

∫ s

0

∂f1
∂s1

(w(tj),ǫ
−1tj ,τ)dτds+O(ǫ3).

(2.14)
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Thus, it is shown that (2.13) and (2.14) are different up to an O(ǫ3) error. Putting
all estimates together and noting n=O(ǫ−2), we conclude that
∣
∣
∣
∣

∫ t

0

ǫ−1f1(x(τ),ǫ
−1τ,ǫ−2τ)−h(w(τ),ǫ−1τ,ǫ−2τ)dτ

∣
∣
∣
∣
≤Lh

∫ t

0

|x(τ)−w(τ)|dτ+O(ǫ),

(2.15)
where Lh is a Lipschitz constant for the function h. Substituting (2.15) into (2.6)
yields the desired estimate.

The following lemma gives an estimate of how much w(t) and y(t) can be apart
in 0≤ t≤T .
Lemma 2.2. Let w(t) and y(t) be defined as above. Then the following estimate holds:

|w(t)−y(t)|≤ ǫCeLGt, (2.16)

for some constant C>0 which is independent of ǫ, where LG is a Lipschitz constant

for G.

Proof. Consider w′−y′. Using (2.2) and (2.4) we have

w′−y′=f0(w,ǫ−1t,ǫ−2t)−〈f0〉2(y,ǫ−1t)+h(w,ǫ−1t,ǫ−2t)−〈h〉2(y,ǫ−1t)

=[G(w,ǫ−1t)−G(y,ǫ−1t)]+z(w,ǫ−1t,ǫ−2t),

where

G(w,s1)=〈h(w,s1,s2)〉2+〈f0(w,s1,s2)〉2,
z(w,s1,s2)=[f0(w,s1,s2)−〈f0〉2(w,s1)]+[h(w,s1,s2)−〈h〉2(w,s1)].

Note that for fixed w and s1, z(w,s1,s2) is 1-periodic in s2 with a zero average,
〈z〉2=0. Integrating to the time t yields that

w(t)−y(t)=
∫ t

0

[G(w(τ),ǫ−1τ)−G(y(τ),ǫ−1τ)]dτ+r(t;ǫ),

where r(t;ǫ)=
∫ t

0
z(w(τ),ǫ−1τ,ǫ−2τ)dτ . Taking absolute values,

|w(t)−y(t)|≤
∫ t

0

∣
∣G(w(τ),ǫ−1τ)−G(y(τ),ǫ−1τ)

∣
∣dτ+ |r(t;ǫ)|.

Letting LG denote a Lipschitz constant for G,

|w(t)−y(t)|≤LG

∫ t

0

|w(τ)−y(τ)|dτ+ |r(t;ǫ)|. (2.17)

In order to evaluate r(t;ǫ), let n denote the largest integer such that ǫ2n≤ t. We have

r(t;ǫ)=
n−1∑

j=0

∫ ǫ2(j+1)

ǫ2j

z(w(τ),ǫ−1τ,ǫ−2τ)dτ+

∫ t

ǫ2n

z(w(τ),ǫ−1τ,ǫ−2τ)dτ. (2.18)

Because z is bounded and 0≤ t−nǫ2<ǫ2, the last term is O(ǫ2). As in the proof of
Lemma 2.1, denoting tj = ǫ

2j and using the periodicity of z in s, each term in the sum
can be written as

ǫ2
∫ 1

0

z(w(tj+ǫ
2s),ǫ−1tj+ǫs,s)ds.
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Expanding in ǫ yields

ǫ2
∫ 1

0

z(w(tj),ǫ
−1tj ,s)ds= ǫ

2
[
〈z〉2(w(tj),ǫ−1tj)+O(ǫ)

]
=O(ǫ3).

Therefore,

r(t;ǫ)=O(nǫ3)=O(ǫ). (2.19)

Substituting into (2.17) yields

|w(t)−y(t)|≤LG

∫ t

0

|w(τ)−y(τ)|dτ+O(ǫ).

A use of Gronwall’s inequality concludes the proof of Lemma 2.2.

2.2. Proof of Theorem 1.1. Lemmas 2.1 and 2.2 imply that

sup
0≤t≤T

|x(t)−y(t)|≤ ǫC, (2.20)

where y(t) is the solution of

y′=G(y,ǫ−1t), y(0)=x0,

with

G(y,s1)= 〈h(y,s1,s2)〉2+〈f0(y,s1,s2)〉2,

h(y,s1,s2)=(∇xf1)φ−
∂φ

∂s1
,

φ(y,s1,s2)=

∫ s2

0

f1(y,s1,τ)dτ.

(2.21)

Because the right hand side of G(y,s1) is periodic in s1, we are in a position to apply
the two-scale averaging theorem [40], integrating out the intermediate O(ǫ) time scale.
Noting that because φ is 1-periodic in s1, ∂φ/∂s1 is also periodic and has zero average
with respect to s1. This leads to an averaged equation for y(t):

ξ′=F (ξ), ξ(0)=x0, (2.22)

where

F (ξ)= 〈(∇xf1)φ(ξ,s1,s2)〉12+〈f0(ξ,s1,s2)〉12,

and we have

sup
0≤t≤T

|y(t)−ξ(t)|≤ ǫC. (2.23)

Combining (2.20) with (2.23) completes the proof of Theorem 1.1.

Remark 2.2. It is not difficult to generalize this result to systems with non-
commensurate and widely separated frequencies.
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3. Formal asymptotic expansions

In this section we analyze the multiscale structure of a system using the operator
formalism firstly developed by Papanicolaou et al. as a formal asymptotic expansion
for singular perturbations of SDEs [10, 38]. This approach has been further generalized
and applied to many different problems, for example, in [35, 39, 44]. For the case
of Hamiltonian dynamics, including integrable periodic systems, a rigorous version
of formalism is presented in [21, 22] and references therein. The derivation in this
section is formal; nonetheless, it is instructive and provides intuitive explanation for
Theorem 1.1.

3.1. Stochastic differential equations. For completeness, we begin by
reviewing singular perturbation expansions of SDEs. The resulting effective equations
are then considered in the case in which all diffusion coefficients are formally set to
zero.

Consider SDE systems of the form

{

dxt=
[
ǫ−1f1(xt,yt)+f0(xt,yt)

]
dt,

dyt=ǫ
−2a(xt,yt)dt+ǫ

−1β(xt,yt)dBt,
(3.1)

where xt∈R
d is a slow process that evolves according to an ODE with a fast random

coefficient yt∈R
n. We assumed that β(x,y)βT (x,y) is uniformly positive definite in

R
d×R

n. Furthermore, we assume that for fixed xt the dynamics of yt is ergodic on an
invariant set Σx with a unique invariant measure dµx. The expectations with respect
to the invariant measures are denoted 〈·〉y, in which the x dependence is suppressed.
A necessary condition for x to be slow is that 〈f1〉y =0. Otherwise, x exhibits non-
trivial dynamics on the O(ǫ) time scale. It is well known that under some suitable
conditions on (3.1), x(t) satisfies an effective SDE that is independent of ǫ,

dXt=F (Xt)dt+b(Xt)dBt, (3.2)

where F and b can be expressed as averages with respect to the fast process y(t) with
X fixed [10, 38, 39, 44]. We begin with a brief overview of the relevant results of [38].
For details the reader is referred to [39] and references therein.

The backwards equation that governs the evolution of a probability density, φ, of
the initial conditions

{

∂tu=Lu,
u(0,x,y)=ϕ(x,y),

where L, the generator of (3.1), can be written as

L= ǫ−2L2+ǫ
−1L1+L0,

L0=f0 ·∇x,

L1=f1 ·∇x,

L2=a ·∇y+
1

2
ββT :∇y∇T

y ,

(3.3)

where A :B denotes formally the trace of the matrix ABT . Next, consider a formal
asymptotic expansion of u in ǫ

u(t,x,y)=u0(x)+ǫu1+ǫ
2u2+ . . . ,
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where we assumed that the leading order term u0 only depends on the slow process.
Substituting into the backwards equation yields

L2u0=0, (3.4)

L2u1=−L1u0, (3.5)

L2u2=∂tu0−L1u1−L0u0. (3.6)

The leading order equation (3.4) is automatically satisfied because u0 only depends
on x. Let L∗

2 be the L2 adjoint of L2, and assume that the Null space of L∗
2 is a one

dimensional subspace, spanned ρx, the density of the invariant measure dµx.
2

Applying the Fredholm alternative, equation (3.5) has a solution if f1∇xu0 is
perpendicular to the Null space of L∗

2. In other words, the projection of f1∇xu0 on
Null L∗

2 should vanish. This projection amounts to averaging with respect to the
invariant measure of y (at fixed x), which is also equivalent to taking the standard L2

inner product in Σx with ρ. This yields the condition

〈f1(x,y)〉y =0,

which implies the reasonable requirement that the average of f1 vanishes. Otherwise,
x oscillates with large amplitudes on the ǫ time scale and thus cannot be approximated
by a slow variable. Then, (3.5) has a unique solution such that 〈u1〉y =0. We formally
write

u1=−L−1
2 [L1u0].

Applying again the Fredholm alternative, equation (3.6) also has a solution if the
RHS is perpendicular to the Null space of L∗

2, i.e.

〈∂tu0−L1u1−L0u0〉y =0.

Substituting in L0, L1, and u1 we obtain

∂tu0=F (x)∇xu0+B(x) :∇x∇xu0, (3.7)

where

F (x)= 〈−f1 ·∇xL−1
2 [f1]+f0〉y,

B(x)= 〈−f1L−1
2 [f1]〉y.

(3.8)

We identify (3.7) as the backwards equation associated with the effective SDE (3.2)
and 2B(x)= b(x)b(x)T .

If ββT is uniformly positive, then inverting L2 amounts to solving a uniformly
elliptic cell problem

[a ·∇y+
1

2
ββT :∇y∇y]r(x,y)=f1(x,y), (3.9)

with appropriate boundary conditions, e.g., periodic on a torus. The equation indeed
has a unique solution; see [39] for further details.

2The assumptions holds for the case of ergodic rotations on a torus in which we are interested.
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3.2. Periodic ODEs. We now formally set β=0 and consider a case in
which for fixed x the dynamics of y is periodic. Hence, we can think of y as an fast
oscillator. Assume that a(x,y) is uniformly positive in R

d×R
n, infx∈Rd,y∈Rn |a(x,y)|>

0. Loosely speaking, this means that the system remains highly oscillatory at all times.
Therefore, for fixed x trajectories are closed loops and the invariant set Σx is a one-
dimensional manifold in R

d that depends on the initial y and on x. The invariant
measure dµx, which is supported on Σx is absolutely continuous with respect to the
Lebesgue measure on Σx. The ergodic assumption holds with respect to the same
manifold and measure. A rigorous treatment of this problem is beyond the scope
of this manuscript. For two-scale systems the reader is referred to [21, 22] and the
references therein.

Instead, we continue formally trying to identify the effective equation for xt. The
main difference between the periodic and the stochastic cases can be seen from two
complementary points of view. First, as a dynamical system, the fast process in the
SDE (3.1) is mixing (for fixed x). This is no longer the case with periodic systems
which are ergodic but not mixing. Second, as a homogenization problem, because
ββT =0 the cell problem (3.9) is no longer elliptic.

For fixed x, consider the periodic solution of

dζ

dt
=a(x,ζ(t)),

with a suitable initial condition on Σx. The period is denoted τx. ζ(t) transverses the
exact periodic trajectory of y(t) and with the correct invariant measure. Therefore,
averages with respect to dµx can be written as the time average over a single period
of ζ:

〈h(x,y)〉y =
1

τx

∫ τx

0

h(x,ζ(t))dt=
1

τx

∫

Σx

h(x,ζ(t))
1

a(x,ζ(t))
dζ.

Furthermore, recall the hierarchy of operators (3.3). Substituting β=0, L2 takes the
form

L2=a(x,y) ·∇y.

We note that, for any y∈Σx, L2 is the directional derivative of ζ along the tangent
direction to Σx and that |L2ζ| is inversely proportional to the density of dµx:

L2h(x,y)=a(x,y) ·∇yh(x,y)=
d

dt
h(x,ζ(t))

∣
∣
∣
∣
ζ(t)=y

.

This implies that the inverse of L2 can be described in terms of integration with
respect to time along the trajectory of ζ(t):

H(x,y)=L−1
2 h(x,y)=

∫ t(y)

0

h(x,ζ(s))ds+C(x),

where t(y) is the unique time in which ζ(t)=y within one period of ζ. Following the
Fredholm alternative, we pick the unique inverse that is perpendicular to Null L∗

2,
i.e., we require

〈H(x,y)〉y =
1

τx

∫ τx

0

H(x,ζ(t))dt=0.
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This fixes the constant

C(x)=− 1

τx

∫ τx

0

∫ t

0

H(x,ζ(s))dsdt.

In particular, we recognize that L−1
2 [f1]=φ as given by

φ(x,y)=

∫ y

0

f1(x,τ)dτ−
〈∫ y

0

f1(x,τ)dτ
〉

y
, (3.10)

so that 〈φ〉y =0. Substituting into (3.8) yields

F (x)= 〈−f1 ·∇xφ+f0〉y,
B(x)= 〈−f1φ〉y.

(3.11)

In order to identify (3.11) with the averaged equation (2.22), we need a simple
lemma.

Lemma 3.1. Let h(s) denote an S-periodic function with zero average and let H(s)
be an anti-derivative of h, H ′=h. Then,

∫ S

0

h(s)H(s)ds=0. (3.12)

Proof. First, we note that because h(s) has zero average,
∫ S

0
h(τ)dτ =0, its

anti-derivative is also S-periodic:

H(S+s)=H(0)+

∫ S+s

0

h(τ)dτ =H(s).

Then, using integration by parts,

∫ S

0

h(s)H(s)ds=
[
H2(s)

]S

0
−
∫ S

0

H(s)h(s)ds.

The first term on the right vanishes, which proves (3.12).

Because φ is the anti-derivative of f1, an immediate consequence is that B(x)=
−〈f1(x,y)φ(x,y)〉y =0. Hence, the effective dynamics of xt are deterministic. More
precisely, the variance of the stochastic perturbation is of order ǫ. Furthermore,

0=∇x〈f1(x,y)φ(x,y)〉y = 〈∇xf1(x,y)φ(x,y)〉y+〈f1(x,y)∇xφ(x,y)〉y.

We conclude that the effective drift and diffusion coefficient can be written as

F (x)= 〈(∇xf1)φ+f0〉y,
B(x)=0.

(3.13)

Thus, we obtain the consistent form of the effective drift as proven by Theorem 1.1.
Note that because the fast process in (3.1) contains only O(ǫ2) time scale, ∂φ

∂s1
=0 in

(2.21).
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4. Iterated averaging with multiple kernels

The goal of this section is to generalize the framework of averaging kernels studied
in [2, 3, 4, 5, 20] to include three or more time scales. In particular, we prove that
averaging of three scale oscillatory problems can be approximated via convolution
with respect to kernels with known support, differentiability properties and moments.
Let Kp,q denote the space of normalized Cq functions, supported on [−1,1], that have
p vanishing moments, i.e.,

∫

[−1,1]

K(t)trdt=

{

1, r=0,

0, 1≤ r≤p.
(4.1)

Recall that for η>0, Kη(t) denotes a rescaling of K as Kη(t)=η
−1K(η−1t).

We will have an error estimate for approximating the double average 〈f〉12 with
two convolutionsKη1

∗ [Kη2
∗f ]. Applied to the RHS of (1.6), the convolution approxi-

mates F (ξ) of Theorem 1.1. The proposition below establishes the accuracy of iterated
averaging with multiple kernels under the scaling condition ǫ2≪η2≪ ǫ≪η1≪1.

Proposition 4.1. Let K ∈K
p,q and f0,f1∈Cmax{q,p+1}. Then, for K ∈K

p,q, there
exists a constant C>0 such that

∣

∣Kη1 ∗{Kη2 ∗
(

ǫ
−1

f1+f0
)

(·)}(t)−F (ξ(t))
∣

∣≤C

(

ǫ2q−1

η
q
2

+
ǫq

η
q
1

+
η
p+1
2

ǫp+2
+η

p+1
1

)

max
j=0...q

||K(j)||1

(4.2)

for some constant C>0, where F is given by (2.21) as in Theorem 1.1, K(j)(·)
denotes the j-th derivative of K, and || · ||1 is the L1 norm.

Throughout, C denotes a generic positive constant whose value may change be-
tween expressions.

4.1. Estimation of the effective force. Let f :Rn+1→R denote a scalar
function of the vector argument (x,s1,s2, · · · ,sn) and 1-periodic in s1, · · · ,sn. To be
consistent with previous notation, averaging with respect to sk is respectively denoted
by

〈f〉k=
∫ 1

0

f(x, · · · ,sk, · · ·)dsk, k=1,2, · · · ,n. (4.3)

Motivated by the averaging techniques in [2], we approximate 〈f〉n using a kernel.
First let us prove the following lemma.

Lemma 4.1. If f(t,s1,s2, · · · ,sn)=a(t,s1,s2, · · · ,sn−1)b(sn), where n∈N, b(sn+1)=

b(sn),
∫ 1

0
b(sn)dsn=0, a∈Cq(Rn), and max

0≤j≤q
||a(j)||∞≤M , then for any K ∈K

p,q and

η=O(ǫk), k>n−1,

∣
∣Kη ∗f(·,ǫ−1·,ǫ−2·, · · · ,ǫ−n·)

∣
∣≤CM

(
ǫn

η

)q

max
j=0...q

||K(j)||1.

Proof. Let K̃η(x,y)=Kη(x−y)a(y,ǫ−1y,ǫ−2y, · · · ,ǫ−n+1y).

|Kη ∗f |=
∣
∣
∣
∣

∫

K̃η(t,s)b(ǫ
−ns)ds

∣
∣
∣
∣
≤ ǫnq

∫ ∣
∣
∣∂qyK̃η(t,s)b

[q](ǫ−ns)
∣
∣
∣ds,
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where b[j](t)=
∫ t

0
b[j−1](s)ds−

∫ 1

0

∫ t

0
b[j−1](s)dsdt and ||b[j](t)||∞≤||b||∞. For the ker-

nel part,
∫ ∣
∣
∣∂qyK̃η(t,s)

∣
∣
∣ds

=

∫
∣
∣
∣
∣
∣
∣

∑

k1+k2+···+kn+1=q

(
q

k1,k2, · · · ,kn+1

)

·(−η−1)k1 ·K(k1)
η (t−s)

·
n∏

i=1

1

ǫki+1(i−1)
∂
ki+1

i a(s,ǫ−1s,ǫ−2s, · · · ,ǫ−n+1s)

∣
∣
∣
∣
∣
ds

≤ C

ηq
max
j=0...q

||a(j)||∞ max
j=0...q

||K(j)||1,

where

(
q

k1,k2, · · · ,kn+1

)

is the multinomial coefficient and defined by q!
k1!k2!···kn+1!

.

Lemma 4.2. For r=(r1,r2, · · · ,rn)∈Z
n
+ an ordered n-tuple of nonnegative integers,

assume ∂rf(t,s1, · · · ,sn) is continuous and bounded by Cf for r=0, · · · ,σ, and σ≥1. 3

Then, for any K ∈K
p,q and η=O(ǫk) with k>n−1, there exists C>0 such that

∣
∣Kη ∗(f(·,ǫ−1·,ǫ−2·, · · · ,ǫ−n·)−〈f〉n)

∣
∣≤C

(
ǫnq

ηq
+

ησ

ǫ(n−1)σ

)

max
j=0...q

||K(j)||1. (4.4)

Proof. Let

g(t,s1,s2, · · · ,sn)=f(t,s1,s2, · · · ,sn)−〈f〉n .

g is 1-periodic with respect to si and ∂
rg(t,s1,s2, · · · ,sn) are continuous and bounded

for r∈Z
n
+, |r|=0, · · · ,σ. In considering

Kη ∗g=
∫ t+η

t−η

Kη(t−sn) ·g(sn,ǫ−1sn,ǫ
−2sn, · · · ,ǫ−nsn)dsn,

we expand g(sn,ǫ
−1sn,ǫ

−2sn, · · · ,ǫ−(n−1)sn,t) around sn=0 while keeping t fixed. We
denote by ∂xi

g the partial derivative with respect to the i-th component of g.

g(sn,ǫ
−1sn,ǫ

−2sn, · · · ,ǫ−nsn)

=

σ−1∑

j=0

1

j!

[
n∑

i=1

sn
ǫi−1

∂xi

]j

g(0, · · · ,0,ǫ−nsn)

+
1

σ!

[
n∑

i=1

sn
ǫi−1

∂xi

]σ

g(µ1,ǫ
−1µ2, · · · ,ǫ−n+1µn,ǫ

−nsn)

where (µ1,µ2, · · · ,µn) is in the open line segment joining ~0 and (sn,ǫ
−1sn, · · · ,ǫ−n+1sn)

in R
n. The key idea consists of in writing the expansion as a sum of two parts.

Without loss of generality, we set t=0 and write Kη ∗g as I1+I2, where

I1=

σ−1∑

j=0

∫ η

−η

Kη(−sn) ·
1

j!

[
n∑

i=1

sn
ǫi−1

∂xi

]j

g(0, · · · ,0,ǫ−nsn)dsn,

3|r|= r1+r2+ ···+rn and ∂r =(∂x1)
r1 (∂x2 )

r2 ···(∂xn )
rn .
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I2=

∫ η

−η

Kη(−sn) ·
1

σ!

[
n∑

i=1

sn
ǫi−1

∂xi

]σ

g(µ1,ǫ
−1µ2, · · · ,ǫ−n+1µn,ǫ

−nsn)dsn.

By using Lemma 4.1, I1 is estimated by

|I1|≤C
(ǫn

η

)q

· max
j=0...q

||K(j)||1 ·
σ−1∑

j=0

1

j!

[
n∑

i=1

η

ǫi−1

]j

.

Finding the leading order term in the summation, I2 is estimated by

|I2|≤C
( η

ǫn−1

)σ

sup
t,s1,s2,···,sn

sup
|r|=σ

|∂rf(t,s1, · · · ,sn)| · ||K||1

Putting these estimates together, we find that there exists a positive constant C such
that

|Kη ∗g|≤C
(
ǫnq

ηq
+

ησ

ǫ(n−1)σ

)

max
j=0...q

||K(j)||1.

We now compare the iterated averaging of (1.6) with the averaged equation (1.9).
Before we move on to the next step, we simplify our notation of the forces by writing
f(t,ǫ−1t,ǫ−2t) instead of f(x(t),ǫ−1t,ǫ−2t). This is possible because, after solving (1.6)
at the 1st tier, x(t) is known up to a prescribed accuracy ∆. Theorem 4.3 shows that
the error between x and x1 (solution of the 1st tier) is O(∆).

Theorem 4.3. Let x1(t) denote an approximation of x(t) in the 1st tier using a two-

scale HMM in the time interval t∈ [tn−η1,tn+η1]. Given 0<ǫ<ǫ0 and a prescribed

accuracy ∆, there exists C>0 such that

sup
t∈[tn−η1,tn+η1]

|x(t)−x1(t)|≤C∆. (4.5)

Proof. By considering the 1st and 2nd tiers as the two-scale HMM solver, we
generalize the error analysis discussed in [3, 20]. We denote the order of accuracy,
step size and length of integration in i-th tier by mi, hi, and ηi respectively.

At the 1st tier, the global accuracy of integrating the original ODE (1.6) to time
η1(≪ ǫ) is given by

Cmax

{

η1h
m1

1

ǫm1
,
η1η2h

m2

2

h1ǫ2m2+1
,
η1ǫ

2q

h1η
q+1
2

}

for some C>0. The errors from each evaluation at the 2nd tier accumulate by taking
h−1
1 η1 steps. Thus we can balance the required accuracy ∆ with different sources

of errors. Note that the maximal possible accuracy is ∆= ǫ2 because this error is
introduced by simulating the averaged equation instead of the original equation.

Next, by iterated use of Lemma 4.2, we show that 〈f(t,s1,s2)〉12 is well approxi-
mated by Kη1

∗ [Kη2
∗f ](t).

Lemma 4.4. Let f0(t,s1,s2) be 1-periodic in s1 and s2. For r=(r1,r2)∈Z
2
+, assume

that ∂rf0(t,s1,s2) is continuous and bounded for |r|=0, · · · ,σ, and σ≥1. Then, for
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any K ∈K
p,q and suitable choice of η1, η2 such that ǫ2≪η2≪ ǫ≪η1≪1, there exists

a constant C>0 such that

∣
∣Kη1

∗
[
Kη2

∗
(
f0(·,ǫ−1·,ǫ−2·)−〈f0(t,s1,s2)〉12

)
(·)
]
(t)
∣
∣

≤ C

(
ǫ2q

ηq2
+
ǫq

ηq1
+
ησ2
ǫσ

+ησ1

)

max
j=0...q

||K(j)||1.

Proof. Let

g(t,s1,s2)=f0(t,s1,s2)−〈f0〉12 (t). (4.6)

Note that 〈g〉12=
∫ 1

0

∫ 1

0
(f0(t,s1,s2)−〈f0〉12)ds2ds1=0 and that g(x,s1,s2) is 1-

periodic with respect to s1, s2 and ∂rg(x,s1,s2) is continuous and bounded for
r∈Z

2
+, |r|=0, · · · ,σ. Iterated convolution with two kernels yields

Kη1
∗
[(
Kη2

∗g(·,ǫ−1·,ǫ−2·)
)
(·)
]
(t)

=

∫ t+η1

t−η1

Kη1
(t−s1)

[∫ s1+η2

s1−η2

Kη2
(s1−s2) ·g(s2,ǫ−1s2,ǫ

−2s2)ds2

]

︸ ︷︷ ︸

=I1(s1)

ds1.

We iterate the argument in Lemma 4.2. First, there exists C>0 such that

∣
∣I1(s1)−〈g〉2 (s1,ǫ−1s1)

∣
∣≤C

(
ǫ2q

ηq2
+
ησ2
ǫσ

)

max
j=0...q

||K(j)||1. (4.7)

Recalling that 〈g〉12=0,

I1= I1−〈g〉2 (s1,ǫ−1s1)+〈g〉2 (s1,ǫ−1s1)−〈g〉12 . (4.8)

Thus
∣
∣
∣
∣

∫ t+η1

t−η1

Kη1
(t−s1) ·I1ds1

∣
∣
∣
∣

=

∣
∣
∣
∣

∫ t+η1

t−η1

Kη1
(t−s1)

(
I1−〈g〉2 (s1,ǫ−1s1)+〈g〉2 (s1,ǫ−1s1)−〈g〉12

)
ds1

∣
∣
∣
∣

≤C
(
ǫ2q

ηq2
+
ησ2
ǫσ

)

max
j=0...q

||K(j)||1+
∣
∣
∣
∣

∫ t+η1

t−η1

Kη1
(t−s1)

(
〈g〉2 (s1,ǫ−1s1)−〈g〉12

)
ds1

∣
∣
∣
∣
.

(4.9)
Second, define ĝ(ŝ1,s1)= 〈g〉2(ŝ1,ǫ−1s1)−〈g〉12. Hence, ĝ(ŝ1,s1) is 1-periodic in the
second variable and the average over s1 is zero. A second application of Lemma 4.2
yields existence of C2>0 such that

∣
∣
∣
∣

∫ t+η1

t−η1

Kη1
(t−s1)ĝ(ŝ1,s1)ds1

∣
∣
∣
∣
≤C2

(
ǫq

ηq1
+ησ1

)

max
j=0...q

||K(j)||1. (4.10)

Hence, we can find a positive constant C such that

∣
∣Kη1

∗
[
Kη2

∗
(
f0(·,ǫ−1·,ǫ−2·)−〈f0(t,s1,s2)〉12

)
(·)
]
(t)
∣
∣

≤ C

(
ǫ2q

ηq2
+
ǫq

ηq1
+
ησ2
ǫσ

+ησ1

)

max
j=0...q

||K(j)||1.
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This concludes the proof of the theorem.

Recall the three scale problem (1.6) and its averaged equation (1.9):

x′= ǫ−1f1(x,ǫ
−1t,ǫ−2t)+f0(x,ǫ

−1t,ǫ−2t), x(0)=x0,

ξ′= 〈(∇xf1)φ(ξ,s1,s2)〉12+〈f0(ξ,s1,s2)〉12, ξ(0)=x0.

Key to the following theorem is the vanishing of 〈f1(x(t),s1,s2)〉2.
Theorem 4.5. Let f1(x(t),s1,s2) be 1-periodic in s1 and s2, and have a zero average

with respect to s2. For r=(r1,r2)∈Z
2
+, assume ∂rf1(x(t),s1,s2) are continuous and

bounded for |r|=0, · · · ,σ+1, and σ≥1. Then, for any K ∈K
p,q and ǫ2≪η2≪ ǫ≪

η1≪1, the following estimate holds:

∣
∣Kη1

∗
[
Kη2

∗
(
ǫ−1f1(x(·),ǫ−1·,ǫ−2·)−〈h〉12 (ξ)

)
(·)
]
(t)
∣
∣

≤C
(
ǫ2q−1

η2q
+
ǫq

ηq1
+

ησ2
ǫσ+1

+ησ−1
1

)

max
j=0...q

||K(j)||1,

where

h(ξ,s1,s2)=(∇xf1)φ(ξ,s1,s2),

φ(ξ,s1,s2)=

∫ s2

0

f1(ξ,s1,τ)dτ.

Proof. We begin with the first convolution Kη2
∗(ǫ−1f1−〈h〉12). Lemma 2.1

allows ones to write x(t) as

x(t)=w(t)+ǫψ(t)+ǫφ(t), (4.11)

where ψ(t)=ψ(w(t),ǫ−1t,ǫ−2t), φ(t)=φ(w(t),ǫ−1t,ǫ−2t), and ψ(t) is bounded inde-
pendent of ǫ.

Kη2
∗
(
ǫ−1f1−〈h〉12

)
(s1)

=

∫ s1+η2

s1−η2

Kη2
(s1−s2) ·

(
ǫ−1f1(w(s2)+ǫψ(s2)+ǫφ(s2),ǫ

−1s2,ǫ
−2s2)−〈h〉12

)
ds2

=I1+I2+O(ǫ),

where we set

I1=

∫ s1+η2

s1−η2

Kη2
(s1−s2) ·

(
ǫ−1f1(w(s2)+ǫψ(s2),ǫ

−1s2,ǫ
−2s2)

)
ds2,

I2=

∫ s1+η2

s1−η2

Kη2
(s1−s2) ·

(
∇xf1(w(s2)+ǫψ(s2),ǫ

−1s2,ǫ
−2s2)φ(s2)−〈h〉12

)
ds2.

(4.12)
Each term in the integrations is estimated in a similar way. Before we move on, recall
from Theorem 4.3 that we identify f1(x(s2),ǫ

−1s2,ǫ
−2s2) with f1(s2,ǫ

−1s2,ǫ
−2s2).

In (4.12), this simplification is also allowed because by solving the 1st and 2nd tier,
we know x(t) over [t−η1,t+η1], and thus w(t)+ǫψ(t) as well. First, applying Lemma
4.2 to I1 with 〈f1〉2=0 yields

|I1|≤
(
ǫ2q−1

ηq2
+

ησ2
ǫσ+1

)

max
j=0...q

||K(j)||1. (4.13)
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Second, for I2, we now return to consider convolving with Kη1
and Kη2

. Note that
〈h〉12 is a function of ξ(·). Theorem 1.1 yields that

sup
0≤t≤T

|w(t)−ξ(t)|≤ sup
0≤t≤T

(|w(t)−x(t)|+ |x(t)−ξ(t)|)≤Cǫ.

Then we have 〈(∇xf1)φ−〈h〉12〉12=0+O(ǫ), and this allows us to use Lemma 4.4
and thus to get an estimate for |Kη1

∗I2(·)|:

|Kη1
∗I2(·)|≤ C

(
ǫ2q

ηq2
+
ǫq

ηq1
+
ησ2
ǫσ

+ησ1

)

max
j=0...q

||K(j)||1. (4.14)

Because we differentiate f1 with respect to x, ∂r∇xf1 ·φ are continuous and bounded
for |r|=0, · · · ,σ. Putting estimates (4.13) and (4.14) together, Theorem 4.5 follows.

We conclude this section by proving Proposition 4.1, which is the cornerstone of
our numerical method.

Proof. (Proposition 4.1) The RHS of the estimate in Theorem 4.5 dominates that
of Lemma 4.4. Therefore, having p (<σ) vanishing moments yields (4.2).

Remark 4.2. Theorem 1.1 is only valid up to times T independent of ǫ. However,
in special cases in which additional cancellation or self averaging occurs, iterated
averaging with kernels may give an consistent approximation for the effective behavior
of ODEs for longer time intervals.

5. Generalizations

This paper is focused on three scale problems modeled by

x′= ǫ−1f1(x,ǫ
−1t,ǫ−2t)+f0(x,ǫ

−1t,ǫ−2t), x(0)=x0,

restricting 〈f1〉2=0. However, the discussions at the preceding sections suggest several
possible generalizations.

5.1. Almost-periodic dynamics. The three-scale averaging theorem can be
generalized to include dynamics in which the fast O(ǫ2) or O(ǫ) time scales are not
necessarily periodic but rather ergodic on a torus. The periodicity of s2 is only taken
into account when evaluating the remainder term r(t;ǫ) in (2.18). In the case of a
torus, r(t;ǫ) can be written as a finite sum of periodic functions whose periods are
incommensurate. Thus, estimate (2.19) still holds. A similar generalization can be
obtained for almost-periodic functions whose spectrum is bounded away from zero;
see, for example, [13, 40].

5.2. The 3-tier HMM using slow charts. In the proof of Theorem 1.1, as
well as while applying the expansion formalism, it was necessary to assume that the
average of the singular O(ǫ−1) part in x′ vanishes, 〈f1〉2=0. Nonetheless, it can be
shown that the estimate of Section 2.1 does hold, but only on a short time segment
of O(ǫ) length, i.e.

sup
0≤t≤ǫT

|x(t)−ξ(t)|=O(ǫ).

In addition, the HMM procedure which utilizes the iterated averaging estimate indi-
cates that in fact, in order to generate a consistent approximation of a slow variable,
one only needs to evaluate its derivative on a short time segment of order ǫ. Then, if
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the dynamics on the intermediate O(ǫ) is again oscillatory (i.e. periodic or as above),
additional averaging on the ǫ time scale may average this divergence out. This self
averaging property can be captured by the iterated averaging procedure.

To this end, we first need to define slow variables. Formally, slow variables of a
dynamical system involving three or more time scales are defined as below [6].

Definition 5.1. A smooth time dependent function α : [0,T ] 7→R is said to evolve on
the ǫk time scale in [0,T ] for some integer k and for 0<ǫ≤ ǫ0, if there exists a smooth

function β : [0,T ] 7→R and constants C0 and C1 such that

sup
t∈[0,T ]

∣
∣
∣
∣

d

dt
β(t)

∣
∣
∣
∣
≤C0ǫ

−k and sup
t∈[0,T ]

|α(t)−β(t)|≤C1ǫ.

Definition 5.2. A function ξ(x) is said to evolve on the ǫk time scale along the
trajectories of (1.6) in [0,T ] if the time dependent function ξ(x(t;ǫ,x0)) evolves on the

ǫk time scale in [0,T ]. For brevity, we will refer to variables that evolve on the ǫ0 time

scale as slow.

The 3-tier HMM using slow variables shares a similar strategy described in Sec-
tion 1.3, which implements a recursive two-level solver, but the fast oscillations we
need to average over are not explicitly given. As [3], with the need for identifying
hidden slow variables, we approximate an averaged equation for slow variables by
time averaging the microscopic evolution using a suitable kernel. Recall that because
the time scales O(ǫ2), O(ǫ1), and O(1) are considered, we need to identify three sets
of variables which evolve on each time scale respectively.

Suppose we obtain such a coordinate system using, e.g., the method described
in [6]. We denote this system of coordinates ξ=(ξ0,ξ1,ξ2), where ξi=(ξ1i , . . . ,ξ

di

i )

are the variables evolving on the ǫi time scale, and
∑2

i=0di=d. One should take the
coordinates of ξ as slow as possible, i.e., if φ evolves on both ǫ0 and ǫ1 time scales,
then φ∈ ξ0. In terms of the new coordinates the ODE system takes the form

ξ′0= ǫ
−1f1(ξ0,ξ1,ξ2)+f0(ξ0,ξ1,ξ2), 〈f1〉2=0,

ξ′1= ǫ
−1g1(ξ0,ξ1,ξ2)+g0(ξ0,ξ1,ξ2), 〈g1〉2>C1>0,

ξ′2= ǫ
−2h2(ξ0,ξ1,ξ2),

(5.1)

where 〈·〉2 denotes averaging with respect to the invariant measure for ξ2 on fixed ξ0
and ξ1 and C1 is independent of ǫ, i.e., 〈g1〉2 is bounded away from 0 independent of ǫ.
Note that (5.1) is of a form similar to (1.5). We assume that no resonances, passage
through resonances, or turning points exist as these may cause hidden slow variables
and the decomposition of states into time scales may not be trivial, as discussed in
[6, 32].

Then outline of the 3-tier HMM with slow variables is as follows. For simplicity of
notation, we suppress the superscript in ξi. As before, we denote the discretized time
tn,m=nh0+mh1 and tn=nh0. We concentrate on the forward Euler and a symmetric
kernel.

1. Determination of slow variables:
Find a coordinate system ξ(x)=(ξ0(x),ξ1(x),ξ2(x)) where ξi are the variables
evolving on the ǫi time scale; see [6] for details. Set n=0.

2. Multilevel evolution:
• (0th tier) At t= tn, set X̃0=x1,0=xn.
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(a) (1st tier) For m=0 to k (=η1/h1),
set t= tn,m=nh0+mh1,

i. (2nd tier) Solve the full ODE (1.6) in t∈ [tn,m−η2,tn,m+η2]

with initial conditions X̃0.
ii. (2nd tier) Force estimation in O(ǫ1) scale: approximate ξ′i(tn,m),

i=0,1 by

〈ξ′i〉η2
(tn,m)=(Kη2

∗ξ′i)(tn,m). (5.2)

(b) (1st tier) x1,m+1=x1,m+h1δx1, where δx1 is the least squares so-
lution to the linear system

δx1 ·∇ξi= 〈ξ′i〉η2
, (5.3)

for all i=0,1. Redefine X̃0=x1,m+1.

(c) End FOR

(d) (1st tier) Force estimation in O(1) scale: approximate ξ′0(tn) by

〈ξ′0〉η1
(tn)=Kη1

∗(〈ξ′0〉η2
(·))(tn). (5.4)

• (0th tier) xn+1=xn+h0δx0, where δx0 is the least squares solution to
the linear system

δx0 ·∇ξ0= 〈ξ′0〉η1
. (5.5)

Set X̃0=xn+1.

3. n=n+1 and repeat 2.

A rigorous proof of Section 5.2 is beyond the scope of the current paper. However,
we refer the reader to [2, 3] for designing multiscale algorithms that compute the
effective behavior of two-scale highly oscillatory dynamical systems by using slow
variables. A related example is presented in Section 6.2.

5.3. Stochastic effects. The theory of asymptotic expansions and the nested-
HMM integrators approach can be extended to a setting in which the intermediate
scale is stochastic. In fact, the only requirements for applying the numerical method
1.3 is that the fastest O(ǫ2) scale is oscillatory - thus ensuring that the effective slow
scale is deterministic, and that the intermediate O(ǫ) time scale is ergodic. Consider
(5.1). If the dynamics of ξ1 is stochastic, then, on the O(1) time scale averaging
with kernels needs to be replaced by an alternative method such as stochastic HMM
[17, 44]. Such an example is presented in Section 6.3.

6. Numerical examples

In this section, we numerically apply the iterated HMM approach described in
Section 1.3 to deterministic and stochastic systems with three scales. A basic example
which has the form of (1.6) is studied in Section 6.1. Following that, we concentrate on
examples which demonstrate the applicability of our method to the generalizations
discussed in the previous section. The classical example of two coupled harmonic
oscillators in resonance is illustrated in Section 6.2. In this example, one of the slow
variables has formally unbounded derivatives as ǫ→0, but it evolves on the ǫ0 time
scale due to a zero-average of ǫ−1 term. Section 6.3 is a deterministic example for the
generalization discussed in Section 5. The period of the fast oscillator on the O(ǫ2)
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time scale changes according to the ǫ scale variable. Lastly, an interesting stochastic
system whose period of the fastest oscillator changes randomly on the ǫ scale is given
in Section 6.4.

Our multiscale algorithm is constructed as a family of multilevel (>2) solvers
which resolve the different time scales and use kernels to estimate the effective force
of the slower scales. In sections 6.1 through 6.3, we use a symmetric C∞ kernel. We
see that for a smooth kernel the computational cost is independent of ǫ; see [6] for
discussions about accuracy and efficiency. In the stochastic example 6.4, a K

2,7 kernel
is used.

6.1. Example 1. We begin with a simple example of a three-scale system,
which is similar to (1.12)

x′= ǫ−1
[
xsin(ǫ−2t)+cos(ǫ−2t)sin2(ǫ−1t)

]
+cos2(x)+cos(ǫ−1t), x(0)=1. (6.1)

Applying Theorem 1.1 to (6.1), we have an averaged equation for x(t),

x̄′=1/4+cos2(x̄), x̄(0)=1. (6.2)

The different three-time scales of (6.1) are illustrated in figures 6.1 and 6.2. The
solution x(t) undergoes small-amplitude fast oscillations around the slow trajectory
over the interval [0,10]. As proved in sections 2 and 4, the 3-tier HMM approximates
x̄(t), which remains close (of order ǫ) to the slow trajectory of x(t). We apply an
exponential kernel Kexp∈K

1,∞([−1,1]); see [3, 4, 20] for details. In figure 6.2, we
compare the results of 3-tier HMM with both x̄(t) and x(t) obtained by the explicit
Runge-Kutta 4th order method. HMM is about 12 times faster than RK4 applied
to (6.1) directly with the step size h= ǫ2/5. The computational effort of HMM is
independent of ǫ once ηi and hi are fixed. However, for classical numerical methods
moving from ǫ=10−3 to ǫ=10−4 multiplies the computational effort by 100.

ǫ=10−3 ηi hi Method Kernel

2nd tier 18ǫ2 ǫ2/5 RK4 Kexp∈K
1,∞([−1,1])

1st tier 18ǫ ǫ1/5 RK2 Kexp∈K
1,∞([−1,1])

0th tier 10 1/3 RK2 -

Table 6.1. (Section 6.1) Parameters for the 3-tier HMM of example 1.

6.2. Example 2. Consider the following system describing two coupled har-
monic oscillators in resonance [6]:







x′1 =−ǫ−2y1+ǫ
−1y22−3x1x

2
2,

y′1 = ǫ−2x1+y1/2,

x′2 =−
(
ǫ−2+ǫ−1

)
y2−x2,

y′2 =
(
ǫ−2+ǫ−1

)
x2−y2+2x21y2,

(6.3)

with initial conditions (x1(0),y1(0),x2(0),y2(0))=(0,1,0,1). As depicted in figure 6.3,
all four state variables oscillate with a period which is of the order of ǫ2. Hence, x1,
y1, x2, and y2 evolve on the ǫ2 time scale.
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Fig. 6.1. (Section 6.1) The dynamics of (6.1) on the (Left) ǫ2 time scale and (Right) ǫ1 time
scale (ǫ=10−3). Plots are obtained by RK4 with h= ǫ2/100.
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Fig. 6.2. (Section 6.1) The dynamics of (6.1) on the ǫ0 time scale. x(t) and x̄(t) are represented
by a full line where both are almost indistinguishable. The results of 3-tier HMM are indicated by
circles.

In order to find a slow coordinate system, we change to polar coordinates (xi,yt) 7→
(Ii,ϕi), i=1,2 and introduce a polynomial variable θ that describes the 1:1 resonance
between the oscillators:

I1=x
2
1+y

2
1 ,

I2=x
2
2+y

2
2 ,

θ=x1x2+y1y2,

cosϕ1=x1/
√

I1.

The corresponding time derivatives are

I ′1=2ǫ−1x1y
2
2−6x21x

2
2+y

2
1 ,

I ′2=−2I2+4x21y
2
2 ,

θ′= ǫ−1(x2y
2
2+y1x2−x1y2)+(−0.5y1y2−x1x2−3x1x

3
2+2x21y1y2),

ϕ′
1= ǫ

−2.
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It appears as if (I1,I2,θ,ϕ1) is a chart in which ϕ1 evolves on the ǫ2 time scale, I1
and θ evolve on the ǫ time scale, while I2, which has a bounded derivative, evolves
on the O(1) scale. The dynamics of the three slow variables I1, I2, and θ on the O(ǫ)
scale is depicted on the right in figure 6.3. The figure suggests that both I1 and I2
are practically constant on the ǫ scale. Indeed, it can be shown that the average of
x1y

2
2 on any segment of length O(ǫ) and larger is of order ǫ2. Therefore, the ǫ−1 term

in I ′1 has a zero average. As a result, the averaged I ′1 is bounded independent of ǫ
and I1 evolves on the O(1) time scale, rather than the expected O(ǫ).

The time evolution of I1 and I2 on the slowest O(1) time scale is depicted in
figure 6.4. In addition, the figure shows the results of the 3-tier HMM integrator
described in Section 1.3. We refer to the solver integrating the ǫi scale as the i-th tier.
The step-size and length of integration of the i-th tier are denoted hi, ηi, respectively.
The HMM algorithm approximates the slow O(1) dynamics using macroscopic steps
which are independent of ǫ. The integration is done using a fourth order method (in
the macroscopic step size) and its efficiency is essentially independent of ǫ. Simulation
parameters are detailed in table 6.2.

ǫ=10−3 ηi hi Method Kernel

2nd tier 70.1ǫ2 ǫ2/10 RK4 Kexp∈K
1,∞([−1,1])

1st tier 70.1ǫ1 ǫ1/10 RK4 Kexp∈K
1,∞([−1,1])

0th tier 10 1/3 RK4 -

Table 6.2. (Section 6.2) Parameters for the 3-tier HMM of Example 2.
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1

t

Fig. 6.3. (Section 6.2) The dynamics of (6.3) on the (Left) ǫ2 time scale and (Right) ǫ1 time
scale. ǫ=10−3.

6.3. Example 3. Consider the following deterministic system describing two
coupled fast harmonic oscillators and a slow dependent mode:







x′1=−ǫ−2(1+0.5siny2)x2+(1−z)(x21+x22)
−1
x1,

x′2= ǫ
−2(1+0.5siny2)x1,

y′1=−ǫ−1y2−0.5(1+x21−z)y1,
y′2= ǫ

−1y1,

z′=−(1+0.5x21)z+y
2
2 ,

(6.4)
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Fig. 6.4. (Section 6.2) The dynamics of (6.3) on the ǫ0 time scale. Plus signs are results of
the 3-tier HMM.

with initial conditions (x1(0),x2(0),y1(0),y2(0),z(0))=(1,0,1,1.5,0.5). The system
describes two coupled harmonic oscillators (x1,x2) and (y1,y2) with O(ǫ2) and O(ǫ)
periods, respectively. However, the period of the fastest O(ǫ2) oscillator depends on
y2 and is therefore changing on the slower ǫ scale. Figure 6.5 (Left) demonstrates
the different period of x1 and x2 over 2.5×10−7 duration with ǫ=10−4. This is
an example for the first generalization suggested in Section 5 in which the fastest
oscillation exhibits non-trivial dynamics of the intermediate ǫ scale.

The system admits three slow variables that evolve on the ǫ0 scale: z, and the
square amplitudes of the harmonic oscillators, I1=x

2
1+x

2
2 and I2=y

2
1+y

2
2 . A numer-

ical algorithm for identifying polynomial slow variables is described in [3]. Hence, we
have a coordinate system (ξ0,ξ1,ξ2) in which ξi evolves on the ǫi time scale:

ξ0={I1,I2,z},
ξ1={y2},
ξ2=ϕ∈S1.

As before, we refer to the solver integrating the ǫi scale as the i-th tier. The step-
size and length of integration of the i-th tier are denoted hi, ηi, respectively. The
dynamics of the slow variables I1, I2, and z, as well as the 3-tier HMM approximation
is depicted in figure 6.5 (Right). See table 6.3 for simulation parameters.

ǫ=10−4 ηi hi Method Kernel

2nd tier 75.1ǫ2 ǫ2/10 RK4 Kexp∈K
1,∞([−1,1])

1st tier 75.1ǫ1 ǫ1/10 RK2 Kexp∈K
1,∞([−1,1])

0th tier 10 1/2 RK2 -

Table 6.3. (Section 6.3) Parameters for the 3-tier HMM of Example 3.
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6.4. Example 4. Consider the following system in which a fast harmonic
oscillator has a randomly changing period:







dx1=−(ǫ−2(1+0.5siny)x2+x1(1−z))dt,
dx2= ǫ

−2(1+0.5siny)x1dt,

dy=−ǫ−1ydt+ǫ−1/2zdBt,

dz=−((1+x21)z−y)dt,

(6.5)

with initial conditions: (x1(0),x2(0),y(0),z(0))=(2,0,1,1). In this example, (x1,x2)
is a harmonic oscillator with an O(ǫ2) period. However, the period changes randomly
through a random variable y which is an Ornstein–Uhlenbeck process evolving on
the O(ǫ1) time scale. The system has two slow variables that evolve on the O(ǫ0)
scale: z and I1=x

2
1+x

2
2. Thus, we find a coordinate system; ξ0={I1,z}, ξ1={y},

and ξ2=ϕ∈S1 in which ξi evolve on the O(ǫi) scale.
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Fig. 6.5. (Section 6.3) (Left) The period of the fastest O(ǫ2) oscillator is changing on the
slower ǫ scale. (Right) The dynamics of (6.4) on the ǫ0 time scale. Plus signs: 3-tier HMM. Solid
line: a reference solution using the RK4 method with step size h= ǫ2/50. HMM runs about 1150
times faster. ǫ=10−4.

ǫ=10−4 ηi hi Method Kernel

2nd tier 50ǫ2 ǫ2/10 semi-implicit Euler K2,7∈K
2,7([0,1])

1st tier 50ǫ1 ǫ1/10 Euler K2,7∈K
2,7([0,1])

0th tier 10 1/10 RK2 -

Table 6.4. (Section 6.4) Parameters for the 3-tier HMM of Example 4.

In order to demonstrate that the effective dynamics of z and I1 is indeed deter-
ministic, figure 6.6 (Left) shows the standard deviations of I1 and z as a function of
ǫ. As expected, it is of order

√
ǫ.

Figure 6.6 (Right) compares the results computed by the proposed HMM with
those by the semi-implicit Euler method [33]. The sample averages of I1 and z against
t are plotted with a solid line (Euler) and plus signs (HMM). We estimate the errors of
the method by comparing the standard deviation of sample paths. Taking ǫ=10−4,
for the semi-implicit Euler, we take 1,000 paths over [0, 4] and decrease step size
until the desired accuracy is reached, (max{σ(I1)}+max{σ(z)})/2=0.1. This requires
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Fig. 6.6. (Section 6.4) (Left) o-markers are max
t∈[0,4]

{σ(I1)}. x-markers are max
t∈[0,4]

{σ(z)}. The

dashed line is a guide for the eye with slope 1/2. (Right) The evolution of the slow variables in
Example 3. Plus signs: HMM. The solid line is a reference solution calculated as explained in the
text.

h= ǫ2/100. For the 3-tier HMM, we compute 100 independent paths with h0=0.5 and
calculate the standard deviation for each. The kernel was constructed from Chebyshev
polynomials to have exactly seven continuous derivatives and two vanishing moments:

K2,7(t)=4157010χ[0,1](t)(42t
2−44t+11)t8(t−1)8,

where χ[0,1] is the characteristic function of the interval [0,1]. HMM pa-
rameters are shown in table 6.4. With these parameters, HMM achieves
(max{σ(I1)}+max{σ(z)})/2=0.025. Even if HMM has four times less standard de-
viation, it runs about 1,000 times faster than the semi-implicit Euler. In addition,
we note that the dominant error of 3-tier HMM comes from h0 and decreases with
smaller h0.

7. Summary

We developed an iterated averaging theory for oscillatory dynamical systems in-
volving three widely separated time scales and the relevant multiscale method for
computing the effective behavior. In such multiple time scale problems, we identified
a new type of slow variables which do not have formally bounded derivatives. The
effective behavior for such variables are studied intensively in two ways: one is a
formal approach via the tools of averaging theory, and the other involves homogeniza-
tion techniques based on singular perturbation expansions and consequent matching
of variables. We showed that the results of the developed averaging theory can be
efficiently approximated computationally via convolutions of the dynamical system’s
solutions with a smooth compactly supported kernel. With the developed averaging
strategies, we proposed an HMM which is built hierarchically from our previously
developed HMMs for two-scale problems. Several numerical examples were presented
that demonstrate the efficacy of the proposed algorithms.
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