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Abstract. The transport and distribution of charged particles are crucial in the study of many
physical and biological problems. In this paper, we employ an Energy Variational Approach to
derive the coupled Poisson-Nernst-Planck-Navier-Stokes system. All of the physics is included in the
choices of corresponding energy law and kinematic transport of particles. The variational derivations
give the coupled force balance equations in a unique and deterministic fashion. We also discuss the
situations with different types of boundary conditions. Finally, we show that the Onsager’s relation
holds for the electrokinetics, near the initial time of a step function applied field.
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1. Introduction and background

The Poisson-Nernst-Planck (PNP) system is one of the most extensively studied
models for the transport of charged particles in many physical and biological prob-
lems, such as free moving electrons in semiconductors [14, 19, 20], fuel cell [21, 25],
ion particles in electrokinetic fluids [3, 12, 15, 18], and ion channels in cell membranes
[2, 6, 22]. Traditionally, the PNP system can be derived by explicit averaging of cor-
related Brownian trajectories [5], while the actual dynamics of charged particles in
water and protein channels are much more complicated [7]. In the continuum descrip-
tion, the PNP system can also be viewed as the consequence of both conservation of
ion distributions and Fick’s law. The limitation of this method is that the specific
interactions of particles are usually ambiguous or totally neglected. The purpose of
this paper is to present an alternative way, an Energetic Variational Approach (En-
VarA) [8], in which a consistent, coupled system of equations can be derived for the
description of charged particles transport. Our approach is motivated by the seminal
work of Lars Onsager [23, 24], that has an attribution to Lord Rayleigh’s 1873 paper
[30].

The general framework of EnVarA is the combination of the statistical physics and
nonlinear thermodynamics. The First Law of Thermodynamics states that the rate of
change of the sum of the kinetic energy K and the internal energy U is equal to the sum

of the rates of change of workW and heat Q, so d(K+U)
dt

= dW
dt

+ dQ
dt

. From the standard
statistical physics, the internal energy U takes into account the particles interactions.
Such interactions can be local, such as hard core interactions and nonlocal, such
as Coulomb electrostatic interactions. The Second Law of Thermodynamics, in the
isothermal case, is given by, T dS

dt
= dQ

dt
+∆, where T is temperature, S is entropy, and
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∆≥0 is entropy production. As a reformulation of the linear response assumption,
this entropy production functional can be represented as the sum of various rates such
as the velocities and the strain rates. By subtracting the Second Law from the First
Law, under the isothermal assumption, we have,

d

dt
(K+U −TS)=

dW

dt
−∆, (1.1)

where F :=U −T S is the Helmholtz free energy, and K+F is the total energy Etotal.
In case no external forces or fields are applied, i.e., dW

dt
=0, the above expression yields

the usual energy dissipation law [8, 9, 26, 27], where the entropy production is the
sole contribution to the dissipation,

d

dt
Etotal+∆=0 ⇔

d

dt
Etotal=−∆. (1.2)

The (Least) Action Principle (LAP) states that the equation of motion for a
Hamiltonian system is the direct result of the variation of the action functional A=
∫ t∗

0

∫

Ω
(K−F)dxdt with respect to the flow map x(t)=x(X,t) (with x(X,0)=X) [1].

In other words, LAP optimizes the action with respect to all trajectories x(t)=x(X,t)

by taking the variation with respect to x, δA=
∫ t∗

0

∫

Ω0
[Fcon] ·δxdXdt, where Fcon is

the conservative force and Ω0 is the Lagrangian reference domain of Ω. In particular,
in equilibrium, we have the condition Fcon=0 for Hamiltonian dynamics.

Next, we treat the dissipation part with the (Maximum) Dissipation Principle
(MDP) [23, 24, 29, 11]. Take the variation with respect to the velocity (rate) in
Eulerian coordinates δ( 12∆)=

∫

Ω
[Fdis] ·δudx, where Fdis is dissipative force. Note

that the factor 1
2 corresponds to the underlying assumption that ∆ is quadratic in

the function u. In particular, Fdis is linear in u, indicating the fact that we can view
MDP as just a reformulation of the linear response assumption of the nonequilibrium
thermodynamics [16]. Such postulations are the key to Onsager’s approach [23, 24],
as realized by Kubo [16] in the more explicit linear response theory.

The final equation of motion, the balance of all forces, includes both conservative
and dissipative components.

The following auxiliary lemma is crucial in the energetic variational derivation of
the system of coupled equations.

Lemma 1.1. Let f satisfy the mass conservation law ft+∇·(uf)=0. If W =
∫

Ω
ω(f)dx and Π(ω)=ωff−ω, then δW =

∫

Ω
∇Π ·δxdx.

Proof. The conservation of mass is equivalent to f(x(X,t),t)= f0(X)
J

, which
is a direct consequence of the identity Ft+u ·∇F =∇uF , where f0(X) is the initial

density, J =detF , F (X,t)= ∂x(X,t)
∂X

is the deformation gradient tensor [9]. Rewrite the

integration in the Lagrangian coordinate system and obtain W =

∫

Ω0

ω
(f0(X)

J

)

JdX.

Taking the variation with respect to flow map x 7→x+εy yields

δW =
d

dε

∣
∣
∣
ε=0

W (x+εy)=
d

dε

∣
∣
∣
ε=0

∫

Ω0

ω
( f0(X)

J(x+εy)

)

J(x+εy)dX

=−

∫

Ω0

ωf

(f0(X)

J

)f0(X)

J2
· tr

(∂X

∂x

∂y

∂X

)

·J2dX

+

∫

Ω0

ω
(f0(X)

J

)

·J · tr
(∂X

∂x

∂y

∂X

)

dX
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=

∫

Ω

−(ωff−ω,∇xỹ)dx=

∫

Ω

(∇(ωff−ω), ỹ)dx, (1.3)

where ỹ(x(X,t),t)=y(X,t). Hence the result holds.

Remark 1.2. The above lemma relates the pressure (the equation of states) to
the free energy density. For given energy dissipation law d

dt
Etotal= d

dt

∫

Ω
ω(f)dx=

−
∫

Ω
f |u|2dx, if ω(f)= cf lnf only contains the Gibbs entropy, i.e. no particle inter-

actions, hence ideal gas, then Π=ωff−ω= cf . In particular, f satisfies ft= c4f ,
which is a simple diffusion equation [8].

If ω(f)=afγ , then Π=ωff−ω=a(γ−1)fγ . In particular, f satisfies ft=
4(a(γ−1)fγ), which gives the diffusion equation in porous media [31].

Next, we use the compressible Navier-Stokes (NS) equations as an example to
illustrate the framework of EnVarA. We start with the kinematic mass conservation,

ρt+∇·(ρu)=0, (1.4)

where ρ is mass density of fluid and u is velocity of fluid. This is equivalent to the

relation ρ(x(X,t),t)=
ρ0(X)

J
, where J =detF , F (X,t)= ∂x(X,t)

∂X
is the deformation

gradient tensor, and ρ0(X) is the initial density [9]. The following energy dissipation
law includes all the physics for these barotropic fluids [28].

d

dt

∫

Ω

(
1

2
ρ|u|2+ω(ρ)

)

dx=−

∫

Ω

[
µ1|∇u|2+µ2|∇·u|

]
dx, (1.5)

where µ1 and µ2 are viscosity constants and ω(ρ) is the Hemholtz free energy density.

By LAP and Lemma 1.1, we obtain the conservative force

Fcon=−(ρ(ut+u ·∇u)+∇Π(ρ)) , (1.6)

with Π(ρ)=ωρρ−ω being the pressure. By MDP, the dissipative force is

Fdis=−(∇·(µ1∇u)+∇(µ2∇·u)) . (1.7)

Finally, the total force balance gives the Navier-Stokes equation,

ρ(ut+u ·∇u)+∇Π(ρ)=∇·(µ1∇u)+∇(µ2∇·u). (1.8)

The conservative force corresponds to the compressible Euler equation, while the
dissipative force corresponds to the Stokes equation. Navier-Stokes equation can be
viewed as a hybrid model combining these two independent systems.

In this paper, we use the EnVarA to derive the electrokinetic systems by consid-
ering the interactions of particles in the dissipation part and the corresponding energy
law. The outline of paper is as follows. In Section 2, we present the derivation of
the electrokinetic system, Poisson-Nernst-Planck-Navier-Stokes(PNP-NS) system, by
using the EnVarA; in Section 3 we focus on the energy law of the PNP-NS system
with different types of boundary conditions; the Onsager relation is proved in Section
4; the conclusion is given in Section 5.
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2. Derivation of electrokinetic system using EnVarA

Ion transport in solutions by nature is a multiscale-multiphysics system. With
the macroscopic hydrodynamics description, the microscopic dynamics takes account
of diffusion and convection as well as electrostatics. The cross scale coupling can
be modeled in the general EnVarA framework. The total energy includes all of the
equilibrium physics included in system:

Etotal=

∫

Ω

ρ

2
|u|2dx

︸ ︷︷ ︸

macroscopic

+

[

KBT
(

nln
n

n∞
+p ln

p

p∞

)

+
ε

2
|∇φ|2

]

︸ ︷︷ ︸

microscopic

dx, (2.1)

where ρ is the mass density of fluid, u is the macroscopic velocity of fluid, KB is
the Boltzmann constant, T is the absolute temperature, n∞(p∞) is the characteristic
negative(positive) charge distribution, n(p) is negative (positive) charge distribution,
the dielectrics of solution is chosen to be the constant ε, and φ is electric potential.
The first term is the macroscopic kinetic energy of the solution fluids. The second
and third terms are the thermo-fluctuations (Gibbs entropy) of the ion species. The
last term is the electro energy.

In the macroscopic scale, we consider the fluid to be incompressible, i.e. ∇·u=
0. At the same time, we observe the following kinematic conservation of charge
distributions:

nt+∇·(nun)=0, pt+∇·(pup)=0, (2.2)

where un and up are the effective velocities of negative and positive charges, respec-
tively. Gauss’s law yields the Poisson equation

−ε4φ= ze(p−n), (2.3)

where z is valence of ion and e is the charge for one electron. Equivalently, the
potential φ can be given by the Green’s kernel G(x,y) in the form of

φ(x)= ze
1

ε

∫

Ω

G(x,y)(n−p)(y)dy. (2.4)

By substituting (2.4) into (2.1), the energy can be written in the following form:

Etotal=

∫

Ω

ρ

2
|u|2dx+

∫

Ω

KBT
(

nln
n

n∞
+p ln

p

p∞

)

dx

+
ze

2ε

∫

Ω

(p−n)(x)

∫

Ω

G(x,y)(n−p)(y)dydx, (2.5)

where the last term, the electrostatic energy, represents the nonlocal Coulomb inter-
actions.

In order to take into account the more detailed interactions of particles, we fur-
thermore consider the dissipation functional ∆ as a sum of three parts, which are all
quadratic in terms of the ‘rates’, the velocities,

∆=

∫

Ω

[
KBT

Dn

n|un−u|2+
KBT

Dp

p|up−u|2+η|∇u|2
]

dx, (2.6)

whereDn (Dp) is the diffusion constant of negative (positive) ions and η is the viscosity
of fluid. The first and second terms represent the friction between particles and the
solvents. The last term is the friction caused by the viscosity of the solutions.
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Now we begin to use the EnVarA to derive the electrokinetic system. In this
case, there are three flow maps corresponding to three velocities fields, u, un, up:
macroscopic flow map x(X,t), negative charge map xn(X,t), and positive charge map
xp(X,t), respectively. For map xn, Lemma 1.1, Remark 1.2, and the variation yield

Fn−con=
δA

δxn

=
δ

δxn

[
∫ t∗

0

(∫

Ω

ρ

2
|u|2dx−

∫

Ω

KBT
(

nln
n

n∞
+p ln

p

p∞

)

dx

−
ze

2ε

∫

Ω

(p−n)(x)

∫

Ω

G(x,y)(n−p)(y)dydx

)

dt

]

=−(KBT∇n−zen∇φ)=−n∇µn, (2.7)

where µn :=
δ
δn

Etotal=KBT (1+lnn)−KBT lnn∞−zeφ is the chemical potential for
negative charge distribution n(x,t).

Using MDP, we calculate the variation of 1
2∆ with respect to the velocity un to

get the dissipative force

Fn−dis=
δ

δun

(1

2
∆
)

=
KBT

Dn

n(un−u). (2.8)

The total force balance for negative charge yields (including (2.7) and (2.8))

nun=nu−
Dn

KBT
n∇µn. (2.9)

Substituting (2.9) into (2.2), the mass conservation of negative charge is

nt+∇·(un)=∇·

(

Dn∇n−
ze

KBT
Dnn∇φ

)

. (2.10)

Similarly for positive charge, we can get

pup=pu−
Dp

KBT
p∇µp, (2.11)

pt+∇·(up)=∇·

(

Dp∇p+
ze

KBT
Dpp∇φ

)

, (2.12)

where µp :=
δ
δp
Etotal=KBT (1+lnp)−KBT lnp∞+zeφ is the chemical potential for

positive charge distribution p(x,t). In the absence of the flow field u, equation (2.10)
(2.12) with the Poisson equation (2.3) give the PNP system.

As for the macroscopic flow map x(X,t), considering the incompressible condition,
we use a 1-parameter family of volume preserving diffeomorphisms to perform the

variation, i.e. function xε such that x0=x, and dxε

dε

∣
∣
∣
ε=0

=y, and for any ε : det ∂xε

∂X
=

1, which in fact leads to a divergence free condition for y(X,t)= ỹ(x(X,t),t), i.e.
∇x · ỹ=0. For LAP, we use the variations xε of x as described above and with y
satisfying y(X,0)=y(X,t∗)=0 for any X ∈Ω0. We can calculate the variation of
action functional:

d

dε

∣
∣
∣
ε=0

A(xε)=
d

dε

∣
∣
∣
ε=0

∫ t∗

0

∫

Ω0

1

2
ρ0(X)|xε

t |dXdt

=

∫ t∗

0

∫

Ω0

−ρ0(X)(xt)t ·ydXdt=

∫ t∗

0

∫

Ω

−ρ(x,t)(ut+u ·∇xu) · ỹdxdt. (2.13)
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Hence by Weyl’s decomposition or Helmholtz’s decomposition, for some Π1∈W 1,2(Ω),
we have

−ρ(x,t)(ut+u ·∇xu)=∇xΠ1. (2.14)

By MDP and incompressible constrain, we obtain the following equation of motion
for the dissipative part:

−η4u+
KBT

Dn

n(u−un)+
KBT

Dp

p(u−up)=∇Π̃2, (2.15)

where Π̃2 is the Lagrange multiplier of incompressible constrain.
Substitute (2.9) and (2.11) into above formula and let Π2=Π̃2−KBT∇n−

KBT∇p,

∇Π2=−η4u−(n−p)ze∇φ. (2.16)

Then using the force balance, (2.14) and (2.16) yield

ρ
(∂u

∂t
+(u ·∇)u

)

=η4u−∇Π+(n−p)ze∇φ, (2.17)

with Π=Π1−Π2. The last term is the Lorentz force induced by the charges in
the fluids. It is the reaction to the convected term in (2.10) and (2.12), which is
consistent with Newton’s Third Law. Combining (2.3), (2.10), (2.12), (2.17), and
incompressibility, we get the coupled Poisson-Nernst-Planck-Navier-Stokes (PNP-NS)
system:







nt+∇·(un)=∇·
(

Dn∇n− ze
KBT

Dnn∇φ
)

=−∇·Jn,

pt+∇·(up)=∇·
(

Dp∇p+ ze
KBT

Dpp∇φ
)

=−∇·Jp,

−ε4φ= ze(p−n),
ρ(∂u

∂t
+(u ·∇)u)=η4u−∇Π+(n−p)ze∇φ,

∇·u=0.

(2.18)

Finally in this section, we verify the following theorem satisfied by the derived coupled
PNP-NS system (2.18).

Theorem 2.1. With the isothermal assumption and vanishing boundary conditions,
the system (2.18) satisfies the following energy dissipation law:

d

dt
Etotal=

d

dt

[∫

Ω

(
ρ

2
|u|2+KBT

(

nln
n

n∞
+p ln

p

p∞

)

+
ε

2
|∇φ|2

)

dx

]

=−

∫

Ω

[
Dn

KBT
n|∇µn|

2+
Dp

KBT
p|∇µp|

2+η|∇u|2
]

dx

=−

∫

Ω

[
KBT

Dn

n|un−u|2+
KBT

Dp

p|up−u|2+η|∇u|2
]

dx

=−∆. (2.19)

Conversely, if we choose the action functional as

A=

∫ t∗

0

∫

Ω

ρ

2
|u|2dx−

∫

Ω

KBT
(

nln
n

n∞
+p ln

p

p∞

)

dx−
ε

2
|∇φ|2dx,
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and the dissipation functional as (2.6), then by the (Least) Action Principle and the
(Maximum) Dissipation Principle, under the kinematic assumption of distribution
(conservation law) (2.2) and the Poisson equation, we can obtain the Poisson-Nernst-
Planck-Navier-Stokes system (2.18).

Proof. That the energy law gives the PNP-NS system is shown by the above
derivations. By adding the first equation multiplied by µn, second equation multiplied
by µp, and fourth equation multiplied by u together, and using the weak form of the
Poisson equation, we can get the energy law.

Remark 2.2. Some more complicated models can be derived by including more
coupling terms for particle interactions in the total energy Etotal, such as

1. In [8, 10], it is shown that, by EnVarA, a modified model can be derived nat-
urally for ion particles with finite size effects, through adding the interaction
term Erepulsion=

∑N
i=1

∑N
j≥i

1
2

∫

Ω
Ψi,j(|x−y|)ci(x)cj(y)dxdy to the total en-

ergy, where ci, cj mean different species of ions, and Ψi,j(|x−y|)=
εij(aj+ai)
|x−y|12

is the Lennard-Jones (LJ) potential for ith and jth ions located at x and y
with the radii ai, aj , respectively.

2. If we add Esurface= ze
∫

Ω
(p−n)Ψs to the total energy, we can derive the

surface potential trap model [32] to describe the electrokinetics induced by the
interface of solid and solution, where Ψs is a surface potential only depending
on the properties of the material.

3. Boundary conditions

In electrokinetics, most physically interesting properties arise from different
boundary conditions [4, 17, 33]. These boundary conditions represent the interac-
tions between particles in the bulk solutions and the particles in or near the bound-
ary [32]. The interactions can also be included into the energy functionals. As in the
previous sections, we assume the non-flux boundary condition Jn ·ν=Jp ·ν=0 for
charge density, with ν being out normal vector, and the nonslip boundary condition
u=0 for velocity. We will focus on the boundary effect of potential φ which plays an
important role in electrodynamics. For the three different boundary conditions, the
PNP-NS system has the following theorem.

Theorem 3.1. If n, p satisfy Jn ·ν=Jp ·ν=0, and u=0 on the boundary ∂Ω, then

1. if φ=φ0(x), i.e. Dirichlet boundary condition, then PNPNS satisfies the
energy law:

d

dt
Etotal=

d

dt

[∫

Ω

ρ

2
|u|2+KBT

(
nln

n

n∞
+p ln

p

p∞

)
+

ε

2
|∇φ|2

]

dx

=−

[∫

Ω

Dn

KBT
n|∇µn|

2+
Dp

KBT
|∇µp|

2+η|∇u|2dx

]

+ε

∫

∂Ω

∂φ

∂ν
φ0dx;

(3.1)

2. if ∂φ
∂ν

= σ0(x)
ε

, i.e. Neumann boundary condition, then PNPNS satisfies the
energy law:

d

dt
Etotal=

d

dt

[∫

Ω

ρ

2
|u|2+KBT

(
nln

n

n∞
+p ln

p

p∞

)
+

ε

2
|∇φ|2

]

dx

=−

[∫

Ω

Dn

KBT
|∇µn|

2+
Dp

KBT
|∇µp|

2+η|∇u|2dx

]

+

∫

∂Ω

σ0φdx;
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(3.2)

3. if φ+ζ ∂φ
∂n

=φ0(x), i.e Robin boundary condition, then PNPNS satisfies the
energy law:

d

dt
Etotal=

d

dt

[∫

Ω

ρ

2
|u|2+KBT

(
nln

n

n∞
+p ln

p

p∞

)
+

ε

2
|∇φ|2+

ε

2ζ

∫

∂Ω

|φ|2dx

]

=−

[∫

Ω

Dn

KBT
|∇µn|

2+
Dp

KBT
|∇µp|

2+η|∇u|2dx

]

. (3.3)

Remark 3.2.

1. When φ on the boundary is a Robin boundary condition, as time approaches
infinity, (3.3) means ∇µn=∇µp=∇u=0. Considering the boundary con-
dition, this yields Jn=Jp=u=0, which means there is no fluid flux in the
time limit. Then we can derive a Charge Conservation Poisson Boltzmann
(CCPB) equation [17, 32]

−ε4φ= zen∞V

(
β exp(−zeφ/KBT )

∫

Ω
exp(−zeφ/KBT )dx

−
αexp(zeφ/KBT )

∫

Ω
exp(zeφ/KBT )dx

)

as the time limit of the PNPNS system, where α= n0

n∞

and β= p0

n∞

with
n0 (p0) being the initial negative (positive) ion distribution.

2. In the ion transport process, most of time an extra field is added to the domain
to generate the electrodynamics phenomena. When there is an external filed
added to the PNPNS system, there will be an extra term

∫

Ω
(p−n)Ψdx added

to the total energy in Theorem 3.1, where −∇Ψ is the extra electric field
[13, 32].

4. Onsager’s relation in cylindrical situation

The coupling between the flow field and the electric field gives arise to all the
important properties and applications of the electrokinetic fluids. For instance, when
the fluid-solid interface is charged, the application of an electrical voltage difference
can induce a fluid flow. This effect is known as electroosmosis (EO). Conversely, the
application of a pressure gradient can generate, besides fluid flow, a voltage difference
that is called the streaming potential (SP). The EO and SP coefficients are not inde-
pendent. They are related by the well-known Onsager’s reciprocal relation [23, 24],
which dictates that the electric current density Je and the fluid current density Jf be
linearly related to the voltage gradient ∇φ and the pressure gradient ∇Π:

[
Je

Jf

]

=−

[
L11 L12

L21 L22

][
∇φ
∇Π

]

, (4.1)

where L11 is the electrical conductivity and L21 is the hydrodynamic permeability.
In literature [33], the proportional matrix is treated as symmetric and attributed to
Onsager’s relation. Onsager’s reciprocal relation, the microscopic reversibility [23, 24],
is a stability condition. It is manifested by specific coupling effects in different physical
settings. In (4.1), it is a reformulation of the fact that Lorentz force and the transport
of charge are action and reaction.

Onsager’s reciprocal relation has many forms in different settings. Here we take
the axisymmetric cylinder coordinate for low Reynolds number situations with con-
stant initial values, i.e. p(·,0)=p0, n(·,0)=n0 as an example. Then the PNP-NS



S. XU, P. SHENG, AND C. LIU 787

system is simplified to be the Poisson-Nernst-Planck-Stokes (PNP-S) system. If an
extra field Ez and a pressure drop ∂π

∂z
are added in the z direction, then the velocity

uz satisfies

∂Π

∂z
−µ

[
1

r

∂

∂r

(

r
∂uz

∂r

)]

=(p−n)ze(−
∂φ

∂z
+Ez), (4.2)

with uz(r=a)=φ(r=a)=0 . At the initial several steps, ∂φ
∂z

, ∂p
∂z

, ∂n
∂z

, and ∂uz

∂z
are

small and negligible. Then we can get

uz =
εEzφ

µ
+

a2−r2

4µ

(

−
∂Π

∂z

)

. (4.3)

The fluxes for the negative and positive charges in z direction are

Jn=−

(

Dn

∂n

∂z
−Dn

ze

KBT

(∂φ

∂z
−Ez

)

n

)

=−
ze

KBT
nDnEz, (4.4)

Jp=−

(

Dp

∂p

∂z
+Dp

ze

KBT

(∂φ

∂z
−Ez

)

p

)

=
ze

KBT
pDpEz. (4.5)

The total electric current in the z direction is the sum of the current carried (trans-
ported) by the flow field u and the current due to the electric field,

Je=

∫ L

−L

∫ a

0
2(p−n)zeuzrdrdz+

∫ L

−L

∫ a

0
2ze(Jp−Jn)rdrdz

2La2

=Ez

[
ε

µa2

∫ a

0

rze(p−n)dr+
z2e2

KBT
Ez(Dpp0+Dnn0)

]

+
(

−
∂Π

∂z

) 1

2µa2

∫ a

0

(p−n)ze(a2−r2)rdr. (4.6)

The fluid flux in z direction is

Jf =

∫ L

−L

∫ a

0
2uzrdr

2La2
=

2εEz

µa2

∫ a

0

φrdr+
(

−
∂Π

∂z

) 1

2µa2

∫ a

0

(a2−r2)rdr.

We may write the Onsager relation as
[
Je
Jf

]

=

[
L11 L12

L21 L22

][
Ez

−∂Π
∂z

]

, (4.7)

where we have introduced the function forms of the coefficients,

L12=
1

2µa2

∫ a

0

rze(p−n)(a2−r2)dr, L21=
2ε

µa2

∫ a

0

φrdr. (4.8)

But by the Poisson equation, L12 can be rewritten as

L12=−
ε

2µa2

∫ a

0

(a2−r2)
(1

r

∂φ

∂r
+

∂2φ

∂r2

)

rdr

=−
ε

2µa2

[

(−a2φ(0)+2

∫ a

0

φrdr)+(a2φ(0)−

∫ a

0

6rφdr)

]

=
2ε

µa2

∫ a

0

rφdr=L21, (4.9)

which gives the symmetric property of the matrix.
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5. Conclusion

In this paper, we derive the electrokinetic system for ion transport in solutions by
using an Energy Variational Approach. Taking into consideration of particles interac-
tions in both the free energy functional and the dissipation functional, we obtain the
Poisson-Nernst-Planck-Navier-Stokes system. We can extend our theory to include
more detailed description of the solutions, such as the finite size effects of the charged
particles and various boundary effects. Since the boundary conditions of the poten-
tial play an important electrokinetic role, we also present the boundary effects to the
energy law. The energy laws with an external electric field under different bound-
ary conditions of potential are also obtained. A short demonstration of Onsager’s
relation is presented for the Poisson-Nernst-Planck-Stokes system under a cylinder
axisymmetric coordinate.
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