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MODELING ERROR IN APPROXIMATE DECONVOLUTION
MODELS∗

ARGUS A. DUNCA† AND ROGER LEWANDOWSKI‡

Abstract. We investigate the asymptotic behavior of the modeling error in 3D periodic Approx-
imate Deconvolution Models, when the order N of deconvolution goes to∞. We consider generalized
Helmholtz filters of order p, then the Gaussian filter. For Helmholtz filters, we estimate the rate of
convergence to zero thanks to energy budgets, Gronwall’s Lemma, and sharp inequalities applied to
the Fourier coefficients of the residual stress. We next explain why the same analysis does not imply
convergence to zero of the modeling error in the case of the Gaussian filter, leaving open issues.
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1. Introduction
Direct numerical simulations of flows from the Navier-Stokes equations (NSE)

ut+∇·(u⊗u)−ν∆u+∇p = f,
∇·u = 0,

u(x,0) = u0(x),
(1.1)

are accurate only for small Reynolds numbers. For large Reynolds numbers, flows
are turbulent and only means or large scales of velocity and pressure fields may be
computed via turbulence models.

The derivation of Large Eddy Simulation (LES) models of turbulent flows follows
an application to the NSE of a low pass filter specified by a convolution kernel G,
leading to the filtered NSE

ut+∇·(u⊗u)−ν∆u+∇p = f+∇·S(u,u),
∇·u = 0,

u(x,0) = u0(x),
(1.2)

where u=G?u is the filtered velocity, p=G?p the filtered pressure, and

S(u,u) =u⊗u−u⊗u (1.3)

is the subfilter scale stress tensor. A modeling process seeks suitable approximations
of S(u,u) in terms of u in the scope of closing system (1.2). This yields, in the end,
an LES model [5, 11, 33].

Most LES models are over-diffusive and tend to underestimate the energy, creating
a subfilter scale region (SFS). The total error committed is the sum of the numerical
error NE and the SFS area [7]. To reduce the SFS area, one may apply a deconvolution
operator to the filter [7, 13, 38, 25, 26].
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Fig. 1.1. From Chow et al. 2005 [7]. American Meteorological Society. Reprinted with per-
mission.

In the case of the simplified Bardina model [3, 24, 6], the deconvolution procedure
is based on the approximation

S(u,u)≈S(u,u) =u⊗u−u⊗u. (1.4)

The approximate deconvolution model (ADM in what follows) is derived from the
simplified Bardina model by changing approximation (1.4) to

S(u,u)≈SN (u,u) =u⊗u−DN (u)⊗DN (u), (1.5)

leading to the ADM system below with solution (uN ,pN ):

∂tuN +∇·(DN (uN )⊗DN (uN ))−ν∆uN +∇pN = f,

∇·uN = 0,

uN (0,x) =u0(x),

(1.6)

where the deconvolution operator DN is given by the formula

DN =

N∑
n=0

(I−G)n. (1.7)

Here, for simplicity, G still denotes the operator associated with the kernel G.
We always have S0(u,u) =S(u,u) and, if ||G||<11, then, for a fixed u,

lim
N→∞

SN (u,u) =S(u,u). (1.8)

The ADMs (1.6) shown above have been introduced by Stolz, Adams, and Kleiser
in a series of papers [2, 39, 40, 37], showing very good performance of the ADM in
the practical tests the above authors have carried out.

Following their work, in the last decade the ADMs have been the focus of in-
tense research, both theoretical as well as computational; see [17, 19, 18, 6, 21, 20,
22, 26, 32, 34, 4, 14, 31]. The ADM class of models has been enlarged to include

1The operator norm is based on natural energy spaces to which the fields belong, which will be
latter specified.
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other deconvolution procedures as well, such as the Tichonov deconvolution method,
[35], Chebishev optimized ADM [23], the continuous deconvolution method [28], or
the multiscale deconvolution method [8]. In the next lines we list some of the mathe-
matical properties of ADMs that have been proved in the above papers as well as the
issues that are investigated in this report.

Existence and uniqueness of a solution to system (1.6) was proved in [9] when G
is the usual Helmholtz filter in the 3D periodic case, and in [4] for more general filters.
More generally, if one can prove existence and uniqueness of a solution to system (1.6)
for any G that satisfies (1.8), it is expected that the sequence (uN ,pN )N∈N converges
to (u,p) = (Gu,Gp), for some solution (u,p) of the NSE [4].

Such convergence results have been proved in [4] in the 3D periodic case, when
G=Gα,p is the generalized Helmholtz filter of order p with p≥3/4, where

Gα,p(x) =
∑
k∈T ?3

eik·x

1+α2p|k|2p
,2 (1.9)

upon proving existence and uniqueness of (uN ,pN ). In Definition (1.9), T3 := 2πZ3/L,
L>0, denotes the size of the computational box and α>0 is the filter’s width, usually
of the same magnitude as the mesh size in a numerical simulation (see [27] for further
discussions). We should not be limited to the usual case p= 1, as will be discussed
later.

In this paper we investigate the remaining issue of the convergence rate of the
modeling error εN =u−uN to 0 in terms of N , as N goes to infinity. Staying within
the 3D periodic framework and the generalized Helmholtz filter of order p (p≥3/4),
we show in this paper that L2 and H1 norms of εN are of order (p(N+1))−1/4p (see
our main result, Theorem 3.1 below).

To derive this rate of convergence, we first write the equation satisfied by εN , by
subtracting (1.6) from (1.2),

∂tεN +∇·(DNεN ⊗DNuN )−ν∆εN +∇rN =−∇·τN −∇·DNu⊗DNεN , (1.10)

where rN =p−pN , and

τN =u⊗u−DNu⊗DNu (1.11)

is the residual stress. By using successively an energy budget procedure and Gron-
wall’s Lemma, we get an inequality satisfied by the norms of A1/2DNεN , where
A=G−1 (in terms of operators), from which we deduce an inequality satisfied by
the norms of εN itself (see inequality (3.30) below). This inequality highlights the
role played by the L2 norm of the residual stress.

The weakness of this approach is the regularity assumption imposed on the field
u, which is L4(0,T ;H1(Ω)). However, such assumptions are similar to the usual
uniqueness proofs of the NSE.

To conclude, we have to estimate the L2 norm of the residual stress (see inequality
(4.9)). We carry out this calculation by using Fourier series expansions and calcula-
tions outlined in Appendix A, which, although using only elementary real analysis,
are not straightforward and were first deduced and checked using numerical and sym-
bolic computations with Octave and Maxima software packages [10, 1], before being
rigorously proved.

2In terms of operators Gα,p= (I−α2p∆p)−1, where ∆p denotes the p-Laplacian, and Aα,p=
I−α2p∆p=G−1.
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We observe that the rate of convergence slows down as p increases in the range
[1,∞[. Moreover, the resulting bound goes to a constant that only depends on α and
u when p goes to infinity and N remains fixed. This is consistent with the idea that
the larger p, the smoother the filtered fields, enlarging the SFS area. Therefore, one
needs a high order of deconvolution to reconstruct well the resolved scale area for
large values of p.

Then we consider the popular Gaussian filter,

G̃α(x) =

(
6

α2π

)3/2

exp

(
− 6

α2
||x||2

)
, (1.12)

often used in LES. Applying the ADM theory for general abstract filters developed
in [34] we deduce that the ADM is well-posed in the case of the Gaussian filter.
Therefore, one may ask if there is convergence of the model to the filtered NSE when
N→∞, and if yes, then what is the convergence rate?

The theory we develop for Helmholtz filters to determine the convergence rate
of the modeling error in terms of N does not apply to the Gaussian filter because of
the strong convergence of its Fourier modes to zero as the wave number increases,
although this is not evidence that a convergence to zero in some weak sense is never
possible.

Instead, we show that the Gaussian filter can be approximated by

G̃α,m(x) =
∑
k∈T3

(
1+

α2|k|2

24m

)−m
eik·x,3 (1.13)

when m→∞, and we prove that our procedure is still valid for this sequence of filters,
and we derive a bound of order (N+1)−4m for them. This bound goes to a constant
depending on α and u when m goes to infinity for a fixed N . Therefore, we cannot
conclude that the deconvolution process converges to the filtered field (u,p) in the
case of the Gaussian filter. Because of the strong regularization effect of this filter,
we may conjecture that if such a convergence would hold, then it should be very
low. Therefore, the deconvolution process does not seem to be appropriate for the
Gaussian filter. This remains an open issue.

The paper is organized as follows. We first fix the mathematical framework and
recall the results of [4] useful for the remaining sections of the paper. We next detail
how to bound the modeling error in terms of the residual stress for the Helmholtz filter
and its powers. Further on, the L2 norm of the residual stress is estimated by Fourier
series expansions and inequalities presented in the appendix. We finally consider the
Gaussian Filter. We show how to approximate it by the Gα,m’s, (1.13), and how to
estimate the modeling error of the latter.

The paper ends with a series of remarks and open problems, mainly regarding the
typical size of the constants involved in the inequalities (see Subsection 6.1). Indeed,
these constants seem to be physically very large, hinting to some drawbacks of the
method, although we conjecture the optimality of the convergence rate we have found
in terms of N . Therefore, better constants should be achieved, yielding the main
problem left open in our work.

A technical appendix includes key inequalities used to derive estimates of the
residual stress.

3In terms of operators G̃α,m=
(

1− α2

24m
∆
)−m

.
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2. Mathematical framework

2.1. Function spaces. Throughout the paper, ν >0 and α>0 are fixed and
we stay within the periodic case framework. The domain of study is the 3D torus

T3 =R3/T3, where T3 := 2πZ3/L, (2.1)

for some given L>0, which is the size of the computational box. All the fields we
consider have zero mean on T3. Let Hs be the vector field space

Hs=

w= (w1,w2,w3) =
∑
k∈T ?3

ŵke
ik·x :

∑
k∈T ?3

|k|2s|ŵk|2<∞

, (2.2)

equipped with the Hermitian structure defined by the inner product and its associated
norm

(w,v)s=
∑
k∈T ?3

|k|2sŵk · v̂?k, ||w||s=

∑
k∈T ?3

|k|2s|wk|2
 1

2

, (2.3)

where

∀k= (k1,k2,k3)∈T3, |k|2 =k21 +k22 +k23,

and z? denotes the complex conjugate of z. It can be proved (see [29]) that for all
s∈R,

Hs is isomorphic to Hs(T3)3, (Hs)′=H−s, (2.4)

and we denote by

∀(w,v)∈H−s×Hs, −s(w,v)s=
∑
k∈T ?3

ŵk · v̂?k (2.5)

the duality pairing.
Let Hs⊂Hs be the closed subspace of fields valued in R3, characterized by

Hs=

w=
∑
k∈T ?3

ŵke
ik·x∈Hs :∀k∈T ?3 , ŵ?

k = ŵ−k and k ·ŵk = 0

.
One can show (see [29]) that

Hs=

{
w :T3→R3, w∈Hs(T3)3, ∇·w = 0,

∫
T3

wdx=0

}
. (2.6)

2.2. Operators.

2.2.1. The filter. The general Helmholtz filter w=Gα,p ?w is defined by the
Fourier series expansion of the kernel Gα,p:

Gα,p(x) =
∑
k∈T ?3

Ĝke
ik·x, Ĝk =

1

1+α2p|k|2p
. (2.7)
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Viewed as an operator, one has Gα,p= (I−α2p∆2p)−1. Furthermore, given a diver-
gence free field w, w is solution of the PDE problem

−α2p∆pw+w+∇q = w in T3,
∇·w = 0 in T3,

(2.8)

where the Lagrange multiplier q is constant in this case.

From now on, we write G instead of Gα,p, and we denote in the same way the
kernel and the operator. For all s≥0, G defines an isomorphism,

G :


Hs −→ Hs+2p

w=
∑
k∈T ?3

ŵke
ik·x −→ w=

∑
k∈T ?3

Ĝkŵke
ik·x, (2.9)

and we set A=G−1, characterized by its kernel

A(x) =
∑
k∈T ?3

Âke
ik·x, Âk = 1+α2p|k|2p. (2.10)

Notice that if w∈Hs, then w∈Hs+2p and the restriction of G to Hs, still denoted
by G, is an isomorphism that maps Hs onto Hs+2p.

2.2.2. The deconvolution operators. Let DN denote the Van Cittert
deconvolution operator, characterized by the kernel

DN =
∑

0≤n≤N

(I−G)n=
∑
k∈T3

D̂N,ke
ik·x,

where

D̂N,k =

N∑
n=0

(
α2p|k|2p

1+α2p|k|2p

)n
= (1+α2p|k|2p)ρN,p,k,

ρN,p,k = 1−
(

α2p|k|2p

1+α2p|k|2p

)N+1

.

(2.11)

The following holds [4]:

1≤ D̂N,k≤N+1, ∀k∈T3, (2.12)

D̂N,k≈ (N+1)
1+α2p|k|2p

α2p|k|2p
, for large |k|, (2.13)

lim
|k|→+∞

D̂N,k =N+1, (2.14)

D̂N,k≤ (1+α2p|k|2p) = Âk, ∀k∈T3, (2.15)

where Âk is defined by (2.10). We deduce the following from (2.12) and (2.14).

Lemma 2.1. Given a real number s≥0, the operator DN is an isomorphism over Hs,
such that 1≤||DN ||≤N+1. Moreover, the subspace of divergence free fields Hs is
stable under the action of DN .
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2.3. Former results. This section presents some results proved in [4] with
regard to the system

∂tuN +∇·(DN (uN )⊗DN (uN ))−ν∆uN +∇pN = f,

∇·uN = 0,

uN (0,x) =u0(x).

(2.16)

Throughout the paper, we assume that u0 and f satisfy

u0∈H0, f ∈L2([0,T ],H−1(T3))3, (2.17)

and α>0 is fixed.

Definition 2.2 (Regular Weak solution). We say that the couple (uN ,pN ) is a
“regular weak solution” of the system (2.16) if and only if the three following items
are satisfied:

1. Regularity

uN ∈L2([0,T ];H1+p)∩C([0,T ];Hp), (2.18)

∂tuN ∈L2([0,T ];H0), (2.19)

pN ∈L2([0,T ];H1(T3)), (2.20)

2. Initial data

lim
t→0
‖uN (t,·)−u0‖Hp

= 0, (2.21)

3. Weak Formulation

∀v∈L2([0,T ];H1(T3)3), (2.22)∫ T

0

∫
T3

∂tuN ·v−
∫ T

0

∫
T3

DN (uN )⊗DN (uN ) :∇v

+ν

∫ T

0

∫
T3

∇uN :∇v+

∫ T

0

∫
T3

∇pN ·v=

∫ T

0

∫
T3

f ·v.
(2.23)

Theorem 2.3. ([4]) Assume p≥3/4. Problem (2.16) has a unique regular weak
solution. Moreover, when p≥1,

∂tuN ∈L2([0,T ],Hp−1), pN ∈L2([0,T ],Hp(T3)). (2.24)

Theorem 2.4. ([4]) Assume f ∈L2([0,T ]×T3)3. There exists a weak dissipative
solution of the NSE (1.1)

(u,p)∈
[
L2([0,T ],H1)∩L2([0,T ],H0)

]
×L5/3([0,T ]×T3)

such that from the sequence (uN ,pN )N∈N, one can extract a sub-sequence (still denoted
(uN ,pN )N∈N) such that

uN→u

weakly in L2([0,T ],H1+p(T3)3)∩L∞([0,T ],Hp),

strongly in Lr([0,T ];Hp(T3)3), ∀1≤ r<+∞,

pN→p weakly in L2([0,T ];H1(T3))∩L5/3([0,T ];W 2p,5/3(T3)).

(2.25)
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3. The estimate of the modeling error

3.1. The regularity assumption and the main result. Let (uN ,pN )
be the solution of Problem (2.16). We assume that the limit (u,p) = (Gu,Gp) of
(uN ,pN )N∈N satisfies the regularity assumption

u=Au∈L4(H1).4 (3.1)

By the Sobolev Embedding Theorem, we deduce

u∈L4([0,T ]×T3). (3.2)

Because (u,p) is the solution of the NSE, one has

∆p=−∇·(∇·(u⊗u))+∇· f , (3.3)

which yields in the periodic case

p∈L2([0,T ]×Ω), (3.4)

and we derive from the NSE

∂tu∈L2([0,T ],H−1). (3.5)

Our main result is as follows.

Theorem 3.1. Let εN =u−uN be the modeling error, and assume that (3.1) holds.
Then we have

||εN (t,·)||20 +α2p||εN (t,·)||2p+ν
∫ t
0
(||∇εN (s,·)||20 +α2p||∇εN (s,·)||2p)ds

≤ 8C2α
ν(2p(N+1))1/2p

||u||4L4(H1)
e

27
2ν3
||u||4

L4(H1) .
(3.6)

where C is a universal constant, obtained as a product of Sobolev constants.

3.2. Modeling error and residual stress. Let εN and τN be the modeling
error and the residual stress defined by

εN = u−uN ,
τN = u⊗u−DNu⊗DNu.

(3.7)

The equation satisfied by εN is derived by subtracting (2.16) from the filtered NSE
(1.2). Expressing the right hand side in terms of τN , we obtain

∂tεN +∇·(DNεN ⊗DNuN )−ν∆εN +∇rN =−∇·τN −∇·(DNu⊗DNεN ), (3.8)

where rN =p−pN .
The aim of this section is to estimate εN in terms of τN . One may try to

estimate first A1/2D
1/2
N εN rather than εN , because the natural multiplier to get

an energy balance from equation (3.8) is ADNεN , and formally (∂tεN ,ADNεN ) =

(d/2dt)||A1/2D
1/2
N εN ||0. Once A1/2D

1/2
N εN is estimated, we derive bounds for εN

(Corollary 3.1 below) by comparing the norms of the various operators.

4For simplicity, we use the notation L4(H1) instead of L4([0,T ],H1).
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Theorem 3.2. The following inequality holds for all N >0 and t≥0:

||A1/2D
1/2
N εN (t, ·)||20 +ν

∫ t

0

||A1/2D
1/2
N εN (s,·)||21ds

≤ 2

ν
e

27
2ν3
||u||4

L4(H1)

∫ t

0

||τN (s,·)||20ds.
(3.9)

Proof. The proof is based on an energy equality satisfied by A
1
2D

1
2

NεN , to which
one applies Gronwall’s Lemma. To do so, we use ADNεN as a multiplier in (3.8), and
then integrate by parts.

The proof is divided into three steps. In the first one, we check that ADNεN
is appropriate as a test function. Next, we perform integrations by parts. In the
last step, we apply a standard interpolation inequality in order to apply Gronwall’s
Lemma.

Step 3.i. Consistency of the procedure. We check the regularity of A1/2D
1/2
N εN

and each factor in equation (3.8) one by one, beginning with εN . The regularity
assumption (3.1) combined with the regularization effect (2.9) of the operator G gives
u∈L4([0,T ],H1+2p). Therefore we have, from (2.19),

εN ∈L2([0,T ],H1+p)⊂L2([0,T ],H1+p). (3.10)

Applying Lemma 2.1 combined with (2.9), we get

ADNεN ∈L2([0,T ],H1−p). (3.11)

We now prove that each factor in equation (3.8) is in

L2([0,T ],Hp−1) = (L2([0,T ],H1−p))
′

(see Subsection 2.1). For simplicity, we write things as

(2.19) + (3.5)
+ (2.24)

}
⇒
{
∂tεN ∈L2([0,T ],H0) if 3/4≤p≤1,
∂tεN ∈L2([0,T ],Hp−1) if p≥1.

(3.12)

When 3/4≤p≤1, H0 ↪→H0 ↪→Hp−1, and when p≥1, Hp−1 ↪→Hp−1. In all cases,

∂tεN ∈L2([0,T ],Hp−1). (3.13)

Similarly,

(2.20) + (3.4)
+ (2.24)

}
⇒
{
∇rN ∈L2([0,T ]×T3)3 if 3/4≤p≤1,
∇rN ∈L2([0,T ],Hp−1(T3)3) if p≥1,

(3.14)

which yields

∇rN ∈L2([0,T ],Hp−1). (3.15)

From the embedding H1 ↪→H1, we deduce

(3.10)⇒∆εN ∈L2([0,T ],Hp−1). (3.16)

Furthermore, as (u,p) is a dissipative solution to the NSE, u∈L∞([0,T ],H0). There-
fore u∈L∞([0,T ],H2p), and by Lemma 2.1 we get

DNu∈L∞([0,T ],H2p), (3.17)
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from which we conclude

(2.18) + (3.17)
+ Lemma 2.1

}
⇒DNεN ∈L∞([0,T ],Hp). (3.18)

Because p≥3/4, we deduce from the Sobolev Embedding Theorem Hp ↪→L4(T3)3

that

(3.17) + (3.18)
+ (2.9)

}
⇒∇·(DNεN ⊗DNuN )∈L∞([0,T ],H2p−1). (3.19)

Similarly,

∇·(DNu⊗DNεN )∈L∞([0,T ],H2p−1). (3.20)

Finally, u∈L∞([0,T ],H0) combined with (3.2) and properties of G and DN given
above, yields

∇·τN ∈L2([0,T ],H2p−1). (3.21)

Bringing together all of these results, we conclude that if

AN =∂tεN +∇·(DNεN ⊗DNuN )−ν∆εN +∇rN +∇·τN +∇·(DNu⊗DNεN ),

then AN ∈L2([0,T ],Hp−1). Therefore, the duality pairing p−1(AN ,ADNεN )1−p is well
defined, which makes consistent the multiplication of equation (3.8) by ADNεN . In
what follows, we omit the subscripts when writing duality pairings.

Step 3.ii. Energy equality. Because all the operators we consider are self adjoint,
the following holds (see [30]):

(∂tεN ,ADNεN ) =
d

2dt
||A 1

2D
1
2

NεN ||
2
0,

(−∆εN ,ADNεN ) = ||A 1
2D

1
2

NεN ||21.
(3.22)

Furthermore, because ADNεN has zero divergence, (∇rN ,ADNεN ) = 0. Finally, as
the operators commute with the differential operators,

(∇·(DNεN ⊗DNwN ),ADNεN ) = (A−1∇·(DNεN ⊗DNwN ),ADNεN )
= (A−1∇·(DNεN ⊗DNwN ),ADNεN ) = (∇·(DNεN ⊗DNwN ),DNεN )
= ((DNwN ·∇)DNεN ,DNεN ) = 0,

(3.23)

because DNwN has zero divergence. Finally, arguing as in (3.23) to eliminate the bar
in the integrals of the right hand side, we get

d

2dt
||A 1

2D
1
2

NεN ||
2
0 +ν||A 1

2D
1
2

NεN ||
2
1 = (τN ,∇DNεN )−((DNεN ·∇)DNu,DNεN ).

(3.24)
Step 3.iii. Bounds and Gronwall’s Lemma. We bound each term of the right

hand side of (3.24) one by one. From the Cauchy-Schwarz inequality combined with
Young inequality, we get

|(τN ,∇DNεN )|≤ 1

ν
||τ ||20 +

ν

4
||DNεN ||21. (3.25)
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In the same way, by using the Ladyzhenskaya’s inequality [41] we obtain

|((DNεN ·∇)DNu,DNεN )|≤ ||DNεN ||2L4 ||DNu||1
≤||DNεN ||

1
2
0 ||DNεN ||

3
2
1 ||DNu||1.

(3.26)

The symbol of DNG is equal to ρN,p,k∈ [0,1] (see (2.11)). Therefore, we have
||DNu||1≤||u||1. By Young’s inequality combined with (3.26), we obtain

|((DNεN ·∇)DNu,DNεN )|≤ 27

4ν3
||u||41||DNεN ||20 +

ν

4
||DNεN ||21. (3.27)

We deduce from (2.15) that the symbol of DN is less than the symbol of A1/2D
1/2
N ,

which leads to

||DNεN ||0≤||A
1
2D

1
2

NεN ||0, (3.28)

regardless of N . Combining (3.24), (3.25), (3.26), and (3.28) yields

d

dt
||A 1

2D
1
2

NεN ||
2
0 +ν||A 1

2D
1
2

NεN ||
2
1≤

2

ν
||τ ||20 +

27

2ν3
||u||41||A

1
2D

1
2

NεN ||
2
0. (3.29)

Inequality (3.9) results from inequality (3.29) thanks to a standard generalization of
Gronwall’s Lemma [12].

Corollary 3.1. The modeling error εN satisfies

||εN (t,·)||20 +α2p||εN (t,·)||2p+ν

∫ t

0

(||∇εN (s,·)||20 +α2p||∇εN (s,·)||2p)ds

≤ 2

ν
e

27
2ν3
||u||4

L4(H1)

∫ t

0

||τN (s,·)||20ds,
(3.30)

for all N >0 and t≥0.

Proof. Let v=
∑
k∈T3

v̂ke
ik·x∈Hp. We observe that

||A 1
2 v||20 =

∑
k∈T3

(1+α2p|k|2p)|v̂k|2 = ||v||20 +α2p||v||2p. (3.31)

We first take v =D
1/2
N εN in (3.31). By using (2.12), which yields the general formal

inequality ||w||s≤||D1/2
N w||s, we deduce that

||εN ||20 +α2p||εN ||2p≤||A1/2D
1/2
N εN ||20. (3.32)

We next take v =∂iD
1/2
N εN in (3.31), which yields

||∇εN ||20 +α2p||∇εN ||2p≤||A1/2D
1/2
N εN ||21. (3.33)

We deduce (3.30) from (3.9) thanks to (3.32) and (3.33).



768 MODELING ERROR IN APPROXIMATE DECONVOLUTION MODELS

4. Residual stress and rate of convergence
Now that we have shown that the modeling error εN is driven by the L2 norm

of the residual stress τN , involving the L4(H1) norm of u, it remains to estimate the
L2 norm of τN , which is what we aim to carry out in this section. The framework,
assumptions and notations are those of Section 3.

In what follows, Ss denotes the Sobolev constant5 in the embedding Hs ↪→
Ls

?

(T3)3. To begin, we show the following result.

Lemma 4.1. The following inequalities hold true:

||τN ||0≤2C ||u(t, ·)||1 ||u−DNu||1/2, (4.1)

||u−DNu||21/2≤
α

(2p(N+1))1/2p
||u||21, (4.2)

where C=S1S1/2.6

Proof. Step. 4.i. Proof of (4.1). We write τN as

τN = (u−DNu)⊗u+DNu⊗(u−DNu). (4.3)

Therefore, combining Hölder’s inequality with 1/3+1/6 = 1/2 for conjugation and the
Sobolev inequality ||w||L6 ≤S1||w||1, we get

||τ ||0≤2S1||u||1||u−DNu||L3(T3)3 , (4.4)

To estimate ||u−DNu||L3(T3)3 , we use the embedding of H1/2 into L3(T3)3 to obtain

||u−DNu||L3(T3)3 ≤S1/2||u−DNu||1/2, (4.5)

hence (4.1) follows by combining (4.4) and (4.5).

Step. 4.ii. Proof of (4.2). We deduce from (2.11) that

||u−DNu||21/2 =
∑
k∈T3

(
α2p|k|2p

1+α2p|k|2p

)2(N+1)

|k||ûk|2. (4.6)

We apply the technical inequality (A.6) proved in Appendix A below, with x=αp|k|p,
a= 2p(N+1)>1, which yields(

α2p|k|2p

1+α2p|k|2p

)2p(N+1)

≤ αp|k|p√
2p(N+1)

. (4.7)

We raise both sides of (4.7) to the power 1/p, multiply the result by |k||ûk|2 and get(
α2p|k|2p

1+α2p|k|2p

)2(N+1)

|k||ûk|2≤
α

(2p(N+1))1/2p
|k|2|ûk|2, (4.8)

hence (4.2) follows from (4.6).

5The constants S1 and S1/2 do not depend on L. One can prove that S1≤ (16+3/π)1/3; see
[29]. Unfortunately, we do not know a numerical bound for S1/2, although it is likely that such a
bound may be found in the literature

6Inequalities (4.1) and (4.2) both hold at any fixed time t∈ [0,T ], which is not indicated here to
simplify the notations.
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Corollary 4.2. The following estimate holds for all t∈ [0,T ]:

||τN (t,·)||20≤
(2C)2α

(2p(N+1))1/2p
||u(t,·)||41. (4.9)

Inequality (4.9) results from (4.2) combined with (4.1).

Summarizing: (3.30)+(4.9)⇒

||εN (t,·)||20 +α2p||εN (t,·)||2p+ν

∫ t

0

(||∇εN (s,·)||20 +α2p||∇εN (s,·)||2p)ds

≤ 8C2α

ν(2p(N+1))1/2p
||u||4L4(H1)

e
27
2ν3
||u||4

L4(H1) ,
(4.10)

for all N >0 and t≥0.

5. The case of the Gaussian filter

5.1. Framework. In the scale space analysis (see A. Witkin [43]), structures
are represented as families of their averages on different length scales. Furthermore,
in the scale-space theory such families should fulfill certain scale-space axioms. In
this respect, the generic (most used) scale-space is the linear Gaussian scale-space in
which the smoothed family is obtained by convolving the structure under study with
the Gaussian kernel [42, 15].

In the context of LES, Gaussian filtering has been used for flow representations
at different length scales starting with the Bardina model [3], being one of the most
popular filters appearing in the LES literature.

The Gaussian filter is specified by its kernel,

G̃α(x) = G̃(x) =

(
6

α2π

)3/2

exp

(
− 6

α2
||x||2

)
, (5.1)

where we omit the subscript α for simplicity. It can be shown (see [36]) that

G̃(x) =
∑
k∈T3

G̃ke
ik·x, where G̃k =e−

α2|k|2
24 . (5.2)

Let s≥0 and q≥s. There exists a constant C such that

∀k∈T ?3 , G̃k|k|q≤C|k|s. (5.3)

Therefore,

∀s≥0, ∀u∈Hs, ∀q≥s, G̃u∈Hq. (5.4)

Let u be given such that ∀k∈T ?3 , |ûk|= |k|−1−q 6= 0 (q≥0). Such a vector field u
belongs to Hq, but it can be easily checked that G̃−1 /∈Hs for any s. This is why the
theory above regarding the Helmholtz filters fails in this case, because it is based on
the fact that G defines an isomorphism between the Hs spaces.

However, the ADM may be considered for the Gaussian filter, and the resulting
model yields a well posed problem [34]. Moreover, we shall show in what follows that
it can be approximated in some sense by a sequence of operators which fall within the
framework of the theory presented above.
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5.2. Approximation of the Gaussian filter. We note that for all k∈T ?3
fixed,

G̃k = lim
m→

G̃m,k, where G̃m,k =

(
1+

α2|k|2

24m

)−m
. (5.5)

Let G̃m denote the kernel

G̃m(x) =
∑
k∈T3

(
1+

α2|k|2

24m

)−m
eik·x, (5.6)

which corresponds to the operator, still denoted by G̃m,

G̃m=

(
1− α2

24m
∆

)−m
. (5.7)

In a sense that needs to be specified, the sequence (G̃m)m∈N converges to G̃. To be
more specific, we have the following result.

Lemma 5.1. For all k∈T ?3 ,

|G̃k−G̃m,k|≤
2

m
.7 (5.8)

Proof. We prove in Appendix A the technical inequality (A.7):

∀x≥0, ∀m≥1,

∣∣∣∣(1+
x

m

)−m
−e−x

∣∣∣∣≤ 2

m
.

We deduce inequality (5.8) upon replacing in this inequality x by
α2|k|2

24
.

The following corollary is straightforward.

Corollary 5.2. For all u∈Hs,

||G̃u−G̃mu||s≤
2

m
||u||s. (5.9)

In other words, there is a weak star convergence of the sequence of operators
(G̃m)m∈N to the Gaussian filter G̃ in Hs (s≥0).

5.3. Powers of the second order filter. In what follows we put, for m
fixed,

µ2 =
α2

24m
, (5.10)

and we denote by Hm the mth power of the second order Helmholtz operator

Hm= (I−µ2∆)−m. (5.11)

7This estimate is uniform in k, but unfortunately we cannot conclude from this the normal
convergence of the kernel sequence (G̃m)m∈N because the series 1/m is not convergent.
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Estimating the modeling error that corresponds to Hm yields estimates that corre-
spond to Gm. The theory developed above regarding the Helmholtz operators applies
to the operator Hm. Indeed, let

Ĥm,k =
1

(1+µ2|k|2)m
(5.12)

be the symbol of Hm. Using the scalar inequality 1+xm≤ (1+x)m≤2m−1(1+xm)
for positive x, we get

1

2m−1(1+µ2m|k|2m)
≤ Ĥm,k≤

1

1+µ2m|k|2m
. (5.13)

Using results of [4] (Section 6), we deduce from (5.13) that the ADM corresponding
to Hm has a unique regular weak solution (uN ,pN ), in the sense of Definition 2.2
with p=m. Furthermore, this sequence of solutions converges to some solution (u,p)
of the filtered NSE when N goes to infinity. In the next theorem we estimate εN
corresponding to the new filter Hm.

Theorem 5.3. Let εN =u−uN be the modeling error corresponding to Hm, and
assume that (3.1) still holds. Then we have 8

||εN (t,·)||20 +µ2m||εN (t,·)||2m+ν
∫ t
0
(||∇εN (s,·)||20 +µ2m||∇εN (s,·)||2m)ds

≤ 8C2µm1/2

ν(4(N+1))1/2m
||u||4L4(H1)

e
27
2ν3
||u||4

L4(H1) .
(5.14)

Proof. Thanks to (5.13), one can copy line by line proofs of Theorem (3.2) and
Corollary (3.1) and derive

||εN (t, ·)||20 +µ2m||εN (t,·)||2m+ν
∫ t
0
(||∇εN (s,·)||20 +µ2m||∇εN (s,·)||2m)ds

≤ 2
ν e

27
2ν3
||u||4

L4(H1)
∫ t
0
||τN (s,·)||20ds.

(5.15)

It remains to estimate ||τN (s,·)||20. Step 4 in the proof of Lemma 4.1 can be reused,
so that (4.5) still holds in this case. Therefore, we only have to bound

||u−DNu||21/2 =
∑
k∈T ?3

(
1− 1

(1+µ2|k|2)
m

)2(N+1)

|k||ûk|2, (5.16)

where as usual u=
∑

k∈T ?3
ûke

ik·x. We apply the technical inequality (A.2) proved in

Appendix A below, with x=µ|k|, a= 2(N+1)>1, m≥1. We obtain(
1− 1

(1+µ2|k|2)
m

)2(N+1)

≤
√
mµ

(4(N+1))1/2m
|k|. (5.17)

We multiply the result by |k||ûk|2 and get(
1− 1

(1+µ2|k|2)
m

)2N+2

|k||ûk|2≤
√
mµ

(4(N+1))1/2m
|k|2|ûk|2, (5.18)

8The constant C is as in Theorem 3.1, inequality (3.9); see also Lemma 4.1.
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hence

||u−DNu||21/2≤
√
mµ

(4(N+1))1/2m
||u||21, (5.19)

which yields by (4.5),

||τ ||20≤
4C2
√
mµ

(4(N+1))1/2m
||u||41, (5.20)

giving (5.14) thanks to (5.15).

5.4. Passing to the limit. From the results of Subsection 5.3, we deduce
thanks to the relation (5.10) that the ADM associated to the filter specified in Sub-
section (5.3) has a unique solution (uN,m,pN,m) which converges to some solution
(um,pm), of the filtered NSE, by assuming that (um,pm) satisfies the regularity as-
sumption (3.1).

Let εN,m=um−uN,m denote the corresponding modeling error. Thanks to
(5.14), we obtain9

||εN,m(t, ·)||20 +α2m(24m)−m||εN,m(t,·)||2m+ν

∫ t

0

(||∇εN,m(s,·)||20

+α2m(24m)−m||∇εN,m(s,·)||2m)ds

≤ 2C2α

ν(4(N+1))1/2m
||u||4L4(H1)

e
27
2ν3
||u||4

L4(H1) . (5.21)

Without any convergence result regarding the ADMs associated to the Gaussian filter
(5.1) when N goes to infinity, we cannot consider the corresponding modeling error,
and therefore take the limit in (5.21) when m goes to infinity. Nevertheless, we
observe that for a fixed N , the right hand side of (5.1) converges, as m→∞, to some
C=C(ν,α,u,C), which does not depend on N . We can only deduce a bound for the
sup limit of the terms in the right hand side.

6. Conclusions and open problems

6.1. Typical size of the constants. The main estimate (3.6) we get in
the paper yields the rate of convergence to zero of the modeling error in the case of
Helmholtz filter of order p. The bound involves a constant of the form

κ=
1

ν
||u||4L4(H1)

e
27
2ν3
||u||4

L4(H1) . (6.1)

The number N of iterations required to reduce substantially the SFS area is driven
by the size of the constant κ.

This constant involves gradients of the true velocity of the fluid, which may be
very large. For instance, in some turbulent boundary layer, one may observe flows for
which ∇u is of order 3.104 s−1 in layers of thickness about 10−1 m. For such an air
layer at 50◦ (that can be considered as incompressible) of width and length equal to
1 m, over a time range of 1 s, with ν≈20.10−6 m2s−1, we find

κ≈1010
28

m4s−2,

9For simplicity, we use µm1/2≤α/4 instead of (5.10).



A. A. DUNCA AND R. LEWANDOWSKI 773

which is a very huge constant. Therefore, even if the resolution would be of order α=
10−18 m, to fully solve such a flow, the number of iteration N required to substantially
reduce εN is so large that the deconvolution algorithm seems not suitable for practical
simulations, which is in contradiction with results of [38], suggesting that very few
iterations are sufficient to significantly reduce the SFS area.

The rate of convergence as (p(N+1))−1/4p comes from estimating norms of the
residual stress τN involved in the equation for εN , whereas the constant κ considered
above comes from Gronwall’s Lemma, which is known to lead to non optimal results.
This yields the conjecture that the rate of convergence we found is optimal, which is
not the case of the constant, that might be substantially improved. This conjecture is
motivated by results in [38], already mentioned, and other practical simulations using
high accuracy methods, such as pseudospectral methods, where people typically take
N= 5 to 7 [16].

Furthermore, there is also the question on how the regularity assumption u∈
L4(H1) could be weakened.

Remark 6.1. Let denote κ̃ the optimal constant, and let ε0 be a given accuracy
threshold. Observe that

N = 1+
1

p
e−pLog(κ̃−1ε0)

is the number of iterations necessary to achieve the required accuracy. This number
is minimal when p=pc,

pc=− 1

Log(κ̃−1ε0)
,

which might be less than 1. This is why p= 1 may not be the optimal choice.

6.2. Gaussian filter. The issue of convergence of ADM in the case of the
Gaussian filter also remains. We conjecture that the convergence holds, but in a very
weak sense as yet undefined, according to Corollary 5.2.

Appendix A. This technical appendix aims to provide two general inequalities
that have been used in the proof of the estimate (4.9).

Theorem A.1. The scalar inequality(
1− 1

(1+x)m

)a
≤ mx

m
√
a

(A.1)

holds true for any x≥0, a,m≥1.

Proof. We apply the Lagrange intermediate formula to the left hand side above
(as a function of x) on [0,x] and obtain the equivalent inequality

a

(
1− 1

(1+x)m

)a−1
1

(x+1)m+1
≤ 1

m
√
a

for any x≥0, a,m≥1.

We make the substitution y= 1
1+x ∈ (0,1) and the inequality becomes

(1−ym)
a−1

ym+1≤a−1−1/m
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for any y∈ (0,1), a,m≥1.

The left side above as a function of y has maximum value on (0,1) equal to(
am−m
am+1

)a−1(
m+1
am+1

)m+1
m

.

Therefore we need to show that(
am−m
am+1

)a−1(
m+1

am+1

)m+1
m

≤a−1−1/m

for a,m≥1.

Now let z= 1/m∈ (0,1]. The inequality becomes(
a−1

a+z

)a−1(
1+z

1+z/a

)1+z

≤1

for any a≥1, z∈ (0,1].

Let f be the function defined by the natural log of the left hand side above, i.e.

f(a) = ln

((
a−1

a+z

)a−1(
1+z

1+z/a

)1+z
)
.

The derivative of f is

f ′(a) = ln(a−1)− ln(z+a)+
1+z

a
.

The second derivative is

f ′′(a) =− (z+1)(az−z−a)

a2(a−1)(z+a)
.

Obviously, because a≥1 and z∈ [0,1),

f ′′(a)≥0.

We conclude that the first derivative is increasing, therefore

f ′(a)≤ lim
a→∞

f ′(a) = 0.

Therefore f ′ is negative, so f is decreasing. It follows that

f(a)≤ lim
a→1

f(a) = 0.

We conclude that f(a)≤0, which proves the inequality.

Corollary A.2. The scalar inequality(
1− 1

(1+x2)m

)a
≤
√
mx

2m
√

2a
(A.2)

holds true for any x≥0, a,m≥1.
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Proof. In the previous inequality we replace x with x2 and get(
1− 1

(1+x2)m

)a
≤mx

2

m
√
a

(A.3)

for any x≥0, a,m≥1.
Replace in this inequality a with 2a, but still keep a≥1 (but works for a≥1/2)

to get (
1− 1

(1+x2)m

)2a

≤ mx2

m
√

2a
(A.4)

for any x≥0, a,m≥1.
Now extract the square root of both sides to find(

1− 1

(1+x2)m

)a
≤
√
mx

2m
√

2a
. (A.5)

Remark A.1. Setting m= 1 in the previous inequality gives(
x2

1+x2

)a
≤ x√

a
(A.6)

for any x≥0, a≥1.

The following inequality will be used to approximate the Gaussian filter with a
power of the second order Helmholtz filter and calculate the accuracy of this approx-
imation.

Theorem A.3. The scalar inequality∣∣(1+x/n)−n−e−x
∣∣≤ 2

n
(A.7)

is valid for any real x≥0 and any integer n≥1.

It is well-known that as a function of n (and fixed x≥0) the expression

(1+x/n)−n

is decreasing and converges to e−x as n→∞.
Therefore, the left hand side in (A.7) can be written as∣∣(1+x/n)−n−e−x

∣∣= (1+x/n)−n−e−x=e−nln(1+x/n)−e−x=e−nln(1+y)−e−ny,

where y=x/n≥0 .

Applying the intermediate value theorem of Lagrange (corresponding to the func-
tion ξ→e−nξ) to the last term above we get that

e−n ln(1+y)−e−ny =ne−nξ(y− ln(1+y))

for some ξ∈ [ln(1+y),y]. Here we used ln(1+y)≤y for y≥0. Because e−nξ≤
e−n ln(1+y), we further have that

e−n ln(1+y)−e−ny≤ne−n ln(1+y)(y− ln(1+y)) =n(1+y)−n(y− ln(1+y)) (A.8)
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for any real y≥0 and integer n≥1

The term y− ln(1+y) appearing in the last term in the inequality above is esti-
mated as

0≤y− ln(1+y)≤ y
2

2

for any real y≥0

Going back to inequality (A.8) we finally have

e−n ln(1+y)−e−ny≤n(1+y)−n
y2

2
.

We replace y=x/n and obtain(
1+

x

n

)−n
−e−x≤n

(
1+

x

n

)−n x2

2n2
=x2

(
1+

x

n

)−n 1

2n
.

But, as pointed out before, for any fixed x the function n→ (1+x/n)−n is de-
creasing, so we have that, for n≥2,(

1+
x

n

)−n
≤
(

1+
x

2

)−2
≤ 4

1+x2
.

Therefore, for n≥2,(
1+

x

n

)−n
−e−x≤x2

(
1+

x

n

)−n 1

2n
≤ 4x2

1+x2
1

2n
≤ 2

n
.

For n= 1 the left hand side of (A.7) becomes

(1+x)−1−e−x≤ (1+x)−1 +e−x≤2

for any x≥0, so the inequality (A.7) is valid for n= 1 as well.
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