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ALGORITHMS COMPOSITION APPROACH BASED ON
DIFFERENCE POTENTIALS METHOD FOR PARABOLIC

PROBLEMS∗

YEKATERINA EPSHTEYN†

Abstract. In this work we develop an efficient and flexible Algorithms Composition Approach
based on the idea of the difference potentials method (DPM) for parabolic problems in composite and
complex domains. Here, the parabolic equation serves both as the simplified model, and as the first
step towards future development of the proposed framework for more realistic systems of materials,
fluids, or chemicals with different properties in the different domains. Some examples of such models
include the ocean-atmosphere models, chemotaxis models in biology, and blood flow models. Very
often, such models are heterogeneous systems—described by different types of partial differential
equations (PDEs) in different domains—and must take into consideration the complex structure
of the computational subdomains. The major challenge here is to design an efficient and flexible
numerical method that can capture certain properties of analytical solutions in different domains,
while handling the arbitrary geometries and complex structures of the subdomains. The Algorithms
Compositions principle, as well as the Domain Decomposition idea, is one way to overcome these
difficulties while developing very efficient and accurate numerical schemes for the problems. The
Algorithms Composition Approach proposed here can handle the complex geometries of the domains
without the use of unstructured meshes, and can be employed with fast Poisson solvers. Our method
combines the simplicity of the finite difference methods on Cartesian meshes with the flexibility of the
Difference Potentials method. The developed method is very well suited for parallel computations
as well, since most of the computations in each domain are performed independently of the others.
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1. Introduction

In this work we develop an efficient and flexible Algorithms Composition Approach
based on the idea of the Difference Potentials Method (DPM) for parabolic problems
in composite and complex domains.

Here, a parabolic equation (2.1) serves both as the simplified model, and as the
first step towards future development of the proposed scheme for more realistic sys-
tems of materials, fluids, or chemicals with different properties in the different domains
(or in the different parts of the domains). Some examples of such models include the
ocean-atmosphere models, chemotaxis models in biology, and blood flow models (see
for example [2, 36, 53, 10, 9, 43, 42]).

Numerical approximations and modeling of many physical, biological, and
biomedical problems often deal with heterogeneous models (described by different
types of partial differential equations (PDEs) in different domains), and/or they
have to take into consideration the complex structure of the computational sub-
domains. The major challenge here is to design an efficient and flexible numerical
method that can capture certain properties of analytical solutions in different do-
mains/subdomains (such as positivity, different regularity/smoothness of the solutions
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in the domains/subdomains, etc), while handling the arbitrary geometries and com-
plex structures of the domains. The Algorithms Compositions principle, as well as the
Domain Decomposition idea, is one way to overcome these difficulties while developing
very efficient and accurate numerical schemes for the problems. This methodology can
be used within any discretization for PDEs (such as finite differences, finite volumes,
finite elements, or spectral methods). It provides great opportunities to subdivide
problems into subproblems, and to design the most suitable numerical approximation
for each of them independently. After that, one can compose the problems and algo-
rithms together by imposing some interface conditions. Such schemes can be used for
parallel computations as well, since most of the computations in each subdomain are
performed independently of the others (see for example, [41, 51]).

There is an extensive literature that addresses problems in domains with complex
geometries and interface problems. We will briefly discuss below some established
finite difference methods for such problems. For more detailed review on the subject
the reader can consult for example [25]. The immersed boundary method (IB) was
originally proposed by Peskin to model blood flow in a human heart (see for example
[38, 39]). One of the essential ideas of the IB method is to employ a discrete delta
function to place/spread a singular source to neighboring mesh points. The IB method
is simple and efficient but in most cases is a low-order (first-order) method. The
higher-order (second order) version of the IB method has been recently proposed
in [19]. The IB method has been applied to many problems in computational fluid
dynamics and mathematical biology (see for example [37, 40, 12, 54]), and it has been
parallelized [33].

The immersed interface method (IIM) is designed for interface problems and
problems defined on irregular domains [23, 24, 25]. This method is a sharp interface
method for PDEs that can have discontinuities in the coefficients, the solution and
its derivatives, and it can handle Dirac singularities in the source terms. The IIM
is based on Cartesian meshes with second order or fourth order (for some problems)
accuracy. Standard finite difference or some standard finite element schemes can be
employed as the core discretization in IIM. The IIM modifies these schemes near or
at the interfaces/boundaries through the interface relations so that second order/or
fourth order accuracy can be achieved in the whole domain. However, some of the
difficulties with IIM schemes are the requirement for explicit knowledge of the jump
conditions at the interfaces and boundaries for the development of IIM (in order to
derive the correction terms for the schemes at the mesh points near the interface), and
that the parallelization of IIM is not a trivial task due to global coupling of the solu-
tions in the subdomains. The IIM is used for many problems such as Stefan problems,
incompressible Stokes and Navier-Stokes flow problems, etc. (see for example [25]).
The other sharp interface method is the ghost fluid method (GFM). This method was
originally proposed for the accurate approximation of the boundary conditions for
hyperbolic systems [13], and was later developed in [26] (the convergence was proved
in [27]) for the elliptic interface problems. The GFM is based on a Cartesian grid
finite-difference method. Similar to IIM, the main idea of GFM [26] is to incorporate
the jump conditions into the finite difference scheme. However, the idea of GFM is
to decompose the flux jump in dimension by dimension fashion, which may decrease
the accuracy of the method in some cases. The main advantages of GFM are its
second-order accuracy, simplicity, and ease of implementation. Some shortcomings
of GFM are that fast Poisson solvers cannot be employed with the method, since
the coefficients of the finite difference discretization are modified at the mesh points
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near the boundaries; the GFM may produce only a first-order accurate solution for
more general boundary conditions (for example for mixed boundary conditions). The
GFM has been applied to several problems including the simulation of incompress-
ible flame, incompressible multiphase flows, etc, and it has been applied to complex
domain problems with Dirichlet boundary conditions (see for example [35, 20, 15]).
Let us comment that in [15], the ghost values across the interface were defined us-
ing dimension by dimension extrapolation, and the overall second order accuracy was
achieved for the complex domain problems with Dirichlet boundary conditions (in-
stead of explicit information about the jump conditions across the interface). Also,
based on the ideas from [15], a fourth-order scheme has been developed in [14] for
Dirichlet boundary conditions on domains with complex geometry.

Let us now mention the method based on the integral equations approach. In [30],
the fast and high-order methods were developed for solving Laplace’s and biharmonic
equations on complex domains with smooth boundaries in 2D. The idea of the method
proposed in [30] is to combine integral equations based on the single and double layer
theory with finite difference method to solve Laplace’s equation on a complex domain.
In this method the domain is embedded in a computationally simple region (auxiliary
domain) where a fast Poisson solver can be used on a uniform mesh. The right-
hand side of the original equation is modified appropriately in the auxiliary domain
using the information about the values of the extended solution at the mesh points
near (inside and outside) the original continuous boundary (at the irregular mesh
points). The approximations to the unknown values of the extended solution at these
irregular mesh points are constructed through Taylor expansion and the solution of
the Fredholm integral equation of the second kind. Finally, the approximation of
the solution in the original region is obtained by the use of the fast Poisson solver
in the simple auxiliary domain. Based on these ideas, the method introduced in [30]
avoids the common difficulty with the solution of the integral boundary equations (for
example problems near the original boundary). This approach has been parallelized in
[29, 17]. The method can be accelerated if coupled with a fast multipole method [32].
The possibility of extension to elliptic problems with variable coefficients is mentioned
in [31]. Note that, in general, the methods based on integral equations approaches
are very efficient for homogeneous source terms and for the specific type of boundary
conditions (see also discussion below on Difference Potentials Method and Boundary
Element Method).

Similar to the method in [30], the idea of our method here and in [50, 48] is
to first introduce computationally simple auxiliary domains. After that, the original
domains/subdomains are embedded into simple auxiliary domains (and the auxiliary
domains are discretized using Cartesian meshes). However, compared to the integral
approach in [30], we construct discrete Boundary Equations with projections (discrete
generalized Calderon’s boundary equations with projections) to obtain the values of
the solutions at the points near the continuous boundaries of the original domains (at
the points of the discrete grid boundaries which approximate the continuous bound-
aries from the inside and outside of the domains). Using the obtained values of the
solutions at the discrete grid boundaries, the approximation to the solutions in each
domain/subdomain is constructed through the discrete generalized Green’s formulas.
The main complexity of our approach reduces to the solutions of several simple auxil-
iary problems on structured Cartesian grids, and similar to [30] the solutions of these
auxiliary problems can be combined with fast Poisson solvers. Like the method in
[30], and IIM and GFM, our method (and in general, methods based on Difference
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Potentials Method [49, 34]) preserve the underlying accuracy of the schemes being
used for the space discretization of the continuous PDEs in each domain/subdomain
(here, and in [50, 48], we considered second-order finite difference scheme for the space
approximation). But compared to [30], and to IIM and GFM, our approach is not
restricted by the type of the boundary or interface conditions (as long as the contin-
uous problems are well-posed). Let us mention that the accuracy of our approach is
confirmed by several numerical experiments in the current paper (see Section 5) and
in [50, 48]. The reader can consult [49] for the theoretical convergence study of the
methods based on Difference Potentials.

In this work, we will consider the heat equation (2.5) in a composite domain with
curvilinear smooth boundaries in 2D (even though the proposed framework is general
and can be extended in the future to the arbitrary 1D, 2D, and 3D domains). We
will further develop, as well as numerically test the Algorithms Composition Scheme
proposed originally in [50, 48] for linear elliptic problems. The Algorithms Composi-
tion Approach developed in this paper is an accurate, simple, and robust scheme of
algorithms composition for the numerical approximations of the boundary value prob-
lems in composite and complex domains. The proposed method can handle complex
geometries without the use of unstructured meshes (with the consideration of only
regular Cartesian grids), and can be employed with fast Poisson solvers. Our method
combines the simplicity of the finite difference methods on Cartesian meshes with the
flexibility of the Difference Potentials Method [49].

Difference Potentials Method (DPM) can be understood as the discrete version of
the method of generalized Calderon’s potentials and Calderon’s boundary equations
with projections in the theory of PDEs. The DPM on its own, or in combination
with other numerical methods, is an efficient tool for the numerical solution of the
interior and exterior boundary value problems in arbitrary domains (see for example
[49, 46, 28, 47, 52, 34, 50, 48, 10, 9]). Viktor S. Ryaben’kii originally introduced
DPM in his Doctor of Science thesis (Habilitation thesis) in 1969. The DPM al-
lows one to reduce uniquely solvable and well-posed boundary value problems into
pseudo-differential boundary equations. In some respect, the difference potentials
method (DPM) is related in spirit to the boundary element method (BEM). The
idea of the BEM (see for example [1, 8]) is to reduce the boundary value problem to
Fredholm-type integral equations with respect to equivalent boundary sources, and
these equations are discretized accordingly. One shortcoming of the BEM is the full
structure of the resulting systems/matrices (as opposed to the sparse nature of the
systems/matrices produced by the finite differences (FD), or finite element methods
(FEM)). Recent progress on fast multipole methods considerably accelerated solu-
tions of such full systems [18]. However, the most serious drawback of BEM methods
is the requirement for the explicit knowledge of the fundamental solution of given
differential operators. This can impose several restrictions on the practical applica-
tions of BEM methods. The essence of the DPM is to transform uniquely solvable
and well-posed boundary value problems into so-called pseudo-differential boundary
equations that do not employ a fundamental solution. Hence, on one hand, the DPM
enjoys geometric flexibility of the BEM. On the other hand, it can be applied to a
wider class of problems than the BEM, and it can have several advantages over the
BEM. We will make a few comments about this below:

Main features and advantages of the DPM (see also Section 2 in this paper and
[49, 34] for more detailed discussion):

(i) The original PDEs (without imposed boundary conditions) are reduced to
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an equivalent system of generalized Calderon’s boundary equations with projections.
These equations are supplemented by the given boundary conditions. Compared to
BEM, DPM does not employ Fredholm equations of the first or second kind;

(ii) The derived Calderon’s problem can be discretized on structured Cartesian
grids. Discrete inverse operators which are introduced in the DPM for the approxi-
mation of the Calderon’s potentials and projections do not contain any singularities
or convolutions. These inverse operators can be obtained using fast numerical calcu-
lations as the solution of the simple and computationally efficient auxiliary problems
[49, 34, 50, 48, 10, 9];

(iii) DPM can treat arbitrary smooth boundaries of the domains, and the bound-
aries do not need to align/conform with the grid - this does not produce any loss of
accuracy. The DPM provides flexibility to handle general boundary conditions in an
efficient and universal way, and the method always produces a well-posed discrete ver-
sion of the problem (if the original continuous boundary value problem is well-posed)
[49, 34, 3]. Note that establishing well-posedness for BEM may not be a trivial task
for problems with general boundary conditions;

(iv) DPM gives flexibility to construct high-order schemes on regular Cartesian
grids for problems with complex geometries [49, 34, 3]. Some of the advantages of
numerical methods on Cartesian grids are that the grid generation for these schemes
is trivial, the design of the high-order numerical methods that satisfy certain stability
properties are usually much more straightforward on regular structured grids, and the
numerical methods on Cartesian meshes are more robust than those of body-fitted
grids;

(v) DPM can approximate both variable coefficients and constant coefficients
problems; the main steps in the construction of the Calderon’s potentials and pro-
jections for variable coefficients and constant coefficients stay essentially the same
[49, 34, 50, 48, 10, 9].

The developed Algorithms Composition Framework combines the above advantages
of the DPM and offers novel flexibility to the DPM (for a more detailed discussion,
see sections 3-6 in this paper, as well as [50, 48]);

(i) the Algorithms Composition Framework is well-suited for heterogenous prob-
lems and complex interface problems, as well as for the development of the adaptive
schemes and domain decomposition approaches;

(ii) our method provides the flexibility to consider a non-difference approximation
of the general boundary and interface (or matching) conditions, which automatically
takes into account the smoothness of the solution. Such self-tuning is impossible, for
example in the difference or finite-element approximations of these conditions;

(iii) the proposed framework can be further developed for the efficient computa-
tion of the solutions in arbitrary domains with arbitrary boundaries and interfaces;

(iv) the numerical schemes, as well as meshes, can be chosen totally independently
for each subdomain domain; the boundaries of the subdomains and interfaces do not
need to conform/align with the grids;

(v) the main complexity of the developed algorithm reduces to the several solu-
tions of simple auxiliary problems on structured Cartesian grids;

(vi) the proposed approach is general and can be developed as a high-order method
(both in time and space: higher than first order in time and higher than second order
in space). For example, by considering high-order methods such as high-order finite
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difference, finite element, or spectral methods for the construction of the discrete
parts of generalized Calderon’s potentials, as well as for the approximations of the
particular solutions to the inhomogeneous equations;

(vii) since the schemes for constructing the solutions in each domain/subdomain
are independent of each other, our approach is very well suited for parallel computa-
tions;

(viii) the proposed method is not restricted to 2D and can be applied to variable
coefficients problems. The method can be generalized to equations not necessarily of
the elliptic/parabolic type as well.

The paper is organized as follows. First, in Section 2 we give some preliminaries
that will be helpful for the introduction of the proposed algorithm. Then, we introduce
the idea of DPM for the parabolic equation in the single domain, and we make an
overview of the important properties of the DPM for the model under consideration
in Section 2.1. In Section 3, we develop the Algorithms Composition Scheme for the
parabolic model in a composite domain using the flexibility of the DPM. In Section 4,
we state the main steps of the proposed algorithm. Finally, we illustrate the flexibility
and performance of the proposed scheme in several numerical experiments in Section
5. Some concluding remarks are given in Section 6, and some technical details about
the algorithm are provided in Appendix A.

2. Preliminaries
In this section, we will introduce some preliminaries that will be helpful for the

discussions in the following sections. We are concerned in this paper with the parabolic
initial and boundary value problem (IVP) in some bounded domain Ω⊂Ω0⊂R

2, and
its neighborhood Ω0 over the time interval [0,T ].

∂u

∂t
+Lu= q, in Ω×(0,T ), (2.1)

l(u)=ψ, on ∂Ω×(0,T ), (2.2)

u|t=0=u0, in Ω. (2.3)

Here, q(x1,x2,t) is the sufficiently regular source function in the domain Ω0 (function
q is originally given on Ω, and extended to the larger domain Ω0), and L is the second
order linear symmetric elliptic differential operator

Lu :=−
2

∑

k,j=1

∂

∂xk

(

akj(x)
∂u

∂xj

)

+a0u, (2.4)

where coefficients a0 and akj are assumed to be sufficiently smooth functions in Ω0,
and akj(x)=ajk(x), (k,j)=1,2 for almost every x := (x1,x2) :=(x,y)∈Ω0. Moreover,

there exists a constant α0>0 such that
∑2

k,j=1akj(x)ξkξj ≥α0|ξ|
2 for each ξ∈R

2,

and for almost every x∈Ω0. The classical example of the above parabolic problem
(2.1) is the heat equation

∂u

∂t
−∆u= q. (2.5)

To simplify the presentation of the ideas, we will be concerned below with the heat
equation (2.5) subject to (2.2)-(2.3). However, let us mention that the same idea can
be extended in a straightforward way to a general parabolic equation (2.1).
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0

Fig. 2.1: Example (a sketch) of the original domain Ω and auxiliary domain Ω0.

Next, at the given time t, we denote by vΓ the Cauchy data of an arbitrary
continuous piecewise smooth function v(x,y,t) defined on Γ and in some of its neigh-
borhoods:

vΓ :=
(

v
∣

∣

∣

Γ
,
∂v

∂n

∣

∣

∣

Γ

)

. (2.6)

Here, ∂
∂n is the inward (with respect to Ω) normal derivative to Γ, and Γ :=∂Ω is a

piecewise smooth boundary of Ω.

Now, in order to introduce our ideas, let us consider model problem (2.5) in
its time-discrete form. Towards this end, we subdivide time interval [0,T ] into Nt

time steps and denote by ti := i∆t, ∆t>0. Setting m := 1
∆t and considering the

Backward Euler method, we obtain below the following time discrete reformulation
of the parabolic equation (2.5) in some domain Ω0.

Let us introduce

L∆t[u
i+1] :=∆ui+1−mui+1, (x,y)∈Ω0, (2.7)

where L∆t denotes the linear elliptic operator applied to ui+1.

We also denote the right-hand side as

Gu
∆t :=−qi+1−mui, (x,y)∈Ω0, (2.8)

where qi+1 := q(x,y,ti+1).

Then the semi-discrete formulation of the model (2.5) is stated as follows:

Find some ui+1 :=ui+1(x,y)≈u(x,y,ti+1) such that

L∆t[u
i+1]=Gu

∆t, (x,y)∈Ω0. (2.9)

Remark 2.1. For each i this is a time-independent elliptic problem.

Let us now introduce the auxiliary problem. For the purposes of the discussion
below, we will suppress for now the explicit dependence on the time level i. We
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place the original domain Ω in the auxiliary domain Ω0⊂R
2: Ω̄⊂Ω0. Next, we will

formulate a discrete in time and continuous in space Auxiliary Problem (AP).

Definition 2.1. For any given sufficiently regular right-hand side G∆t, find F such
that

L∆t[F ]=G∆t, (x,y)∈Ω0, (2.10)

F =0, (x,y)∈∂Ω0, (2.11)

where L∆t is the same linear elliptic operator as in (2.9) and is applied here to F .
Since the auxiliary domain Ω0 can be arbitrary, we can choose it to be a square. The
above (AP) Dirichlet problem is uniquely solvable.

Remark 2.2. This is a continuous in space Dirichlet problem for each fixed time
level.

Let us now construct a potential with a density vΓ. Define the vector function

vΓ := (φ0(s),φ1(s)), (2.12)

where φ0(s) and φ1(s) are two piecewise smooth continuous functions on |Γ| that are
s−periodic with a period of |Γ|, s is the arc length along |Γ|, and |Γ| is the length of
the boundary. Here, the arc length is chosen as a parameter only for definiteness.

Let v(x,y)=vΩ0 be an arbitrary sufficiently smooth function on Ω0 that satisfies
condition (2.11) on ∂Ω0: v|∂Ω0 =0. Assume that its Cauchy data vΓ is defined as
in (2.6) and is equal to the vector function vΓ in (2.12). Then, we can recall the
following definition of the potential PΩΓvΓ below [48, 49].

Definition 2.2. A potential uΩ :=PΩΓvΓ defined on Ω with density vΓ is equal on
Ω to the solution of (AP, Def. 2.1), with the right hand-side G∆t defined as follows:

G∆t :=

{

0, (x,y)∈Ω,
L∆t[v], (x,y)∈Ω0\Ω.

(2.13)

It can be shown that at each time level the above potential uΩ :=PΩΓvΓ is well-
defined: it depends only on Cauchy data (2.12), but is independent of the choice of a
particular function v(x,y) satisfying (2.11) on ∂Ω0 whose Cauchy data coincides with
(2.12). For a more detailed discussion on the potentials with projectors, see [48, 49].

Remark 2.3. The potential uΩ :=PΩΓvΓ can be viewed as the modification [45]
of the Calderon potential [4]. However, in comparison to the Calderon potential, the
potential PΩΓvΓ admits a finite-dimensional constructive approximation by Difference
Potentials [49, 10, 9], as will be illustrated below in Section 2.1.

2.1. Scheme based on the difference potentials. We will develop our Algo-
rithms Composition Approach based on the idea of the Difference Potentials Method
(DPM) [49, 48, 50, 10, 9]. Difference Potentials Method (DPM) can be viewed as
the method of building and computing the discrete parts of the modified Calderon’s
potentials (see for example [49, 28, 47, 52, 50, 48, 10, 9] and the Introduction).

We will present in this section the necessary preliminaries and some overview of
the numerical scheme based on the difference potentials for the single arbitrary domain
Ω∈R

2. This discussion will be important for the development of our approach for
the composite/complex domain Ω∈R

2, which we will present in sections 3-5.
At this point, let us assume that we consider (2.5) in some domain Ω—an arbitrary

bounded domain in R
2 with the boundary ∂Ω. First, let us introduce some preliminary
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γ

Ω

+
M

Ω

=

M

M

0 −

Fig. 2.2: Example (a sketch) of the auxiliary domain Ω0, original domain Ω; the
example of some points (xj ,yk) in the set γ: the points which are outside Ω are from
γex, the points which are inside Ω are from γin∈M .

notations and definitions that will be used in this section. Denote ΠSRvR as the
extension operator of function v from set/domain R to the set/domain S, πS as the
restriction operator to the set/domain S, wS :=πSw as the restriction of function w
to the set/domain S, and χS as the characteristic function of the set S.

Next, we introduce here the auxiliary fully discrete problem. Let us place the
original domain Ω in the auxiliary domain Ω0⊂R

2. The choice of the domain Ω0

should be convenient for the computations, so we will choose it to be a square, and
we will introduce a Cartesian mesh for Ω0, with points xj = j∆x, yk=k∆y (k,j=
0,±1, ...). Let us assume for simplicity that ∆x=∆y :=h. Let us also define a five-
point stencil Nj,k with its center placed at (xj ,yk) to be the set of the following points:
Nj,k :={(xj ,yk),(xj±1,yk),(xj ,yk±1)}.

In addition, we also introduce point sets M :=M+ := (xj ,yk)∈Ω to be the set of
all points (xj ,yk) that belong to the interior of the original domain Ω. We now define
N :=N+ :={

⋃

j,kNj,k|(xj ,yk)∈M} to be the set of all points covered by five-point
stencils when center point (xj ,yk) of the stencil goes through all the points of the set
M . Note that the points in the set N will be both inside and outside of the original
domain Ω.

Now, let us introduce the grid boundaries: γex :=γex=N\M is the exterior grid
boundary layer for domain Ω, γin :={(xj ,yk)|(xj ,yk)∈M :Nj,k 6⊂M} is the interior
grid boundary layer for domain Ω (in other words, this is the set of all the nodes
(xj ,yk) in M for which stencil Nj,k is not the subset of M : Nj,k contains nodes
outside of M , but the center point (xj ,yk) of the stencil Nj,k belongs to M). Define
γ :=γex∪γin to be the narrow set of nodes that surrounds the continuous boundary
∂Ω; see figure 2.2.

Next, we construct the auxiliary set M1 by completing the set N to a rectangle,
and adding one extra layer of grid points to each side of the rectangle, hence N ⊂M1.
Also, as before, define N1 :={∪j,kNj,k|(xj ,yk)∈M

1}, and finally, let us introduce
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γ1 :=N1\M1.
We can now introduce the space approximation of (2.9) and consider the fully

discrete version of equation (2.5). Therefore, the computed quantity will be the point
values uj,k(t)≈u(xj ,yk,t). We denote by uij,k the computed uj,k(t

i): uij,k :≈uj,k(t
i)

at the discrete time level ti := i∆t, with time step ∆t. Additionally, we denote by
∆j,k the discrete Laplacian obtained using second order central difference formulas
for the x and y variables, and by

L∆t,h[u
i+1] :=∆j,ku

i+1−mui+1
j,k , (xj ,yk)∈Ω0. (2.14)

Finally, we denote by gu,

gu :=guj,k=−qi+1
j,k −muij,k, (2.15)

where, as before, qi+1
j,k ≡ q(xj ,yk,ti+1) is the value of the source function q(xj ,yk,t) at

ti+1.
Thus, the fully discrete finite-difference based version of the parabolic equation

(2.5) is as follows:
Find some ui+1 which satisfies

L∆t,h[u
i+1] :=gu, (xj ,yk)∈Ω0. (2.16)

Again, as in Section 2, we will suppress for now the explicit dependence on the
time level i for the clarity of the discussion. Based on a central finite difference
approximation (2.16), we will now formulate the fully discrete analog of the auxiliary
problem (AP), Definition 2.1 in Section 2 the Discrete Auxiliary Problem (DAP):

Definition 2.3. For the given grid function g, find the solution of the scheme f such
that:

L∆t,h[f ]=g, (xj ,yk)∈M1, (2.17)

f =0, (xj ,yk)∈γ
1, (2.18)

where, as before in (2.14), L∆t,h[f ]≡∆j,kf−mfj,k. We note that the ((DAP), Def-
inition 2.3) is well defined for any right hand side g, i.e. it has a unique solution f
defined on the set N1.

Also, it should be noted that the solution of ((DAP), Definition 2.3) can be
efficiently computed using the Fast Fourier Transform (FFT) with the appropriate
choice of the auxiliary set M1.

We now introduce a linear space Vγ of all the grid functions vγ defined on γ,
similar to [48, 10, 9, 49]. We will extend by zero the value of vγ to other points of the
grid N1. Let us now recall the following definition.

Definition 2.4. A Difference Potential [48, 10, 9, 49] with the given density vγ ∈Vγ
is the grid function u :=PNγvγ defined on the set N , which coincides (on the set N)
with the solution of ((DAP), Definition 2.3) when the right hand-side is defined as
follows:

g :=

{

0, (xj ,yk)∈M,
L∆t,h[vγ ], (xj ,yk)∈M1\M.

(2.19)
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The Difference Potential can be viewed as the discrete analog of the modified
potential of Calderon’s type, or as the discrete analog of the space-continuous poten-
tial, Definition 2.2 in Section 2 (similar to Definition 2.4, the definition of Difference
Potential can be extended by considering the set M1\M as the “interior” set, and set
M as the “exterior” one, [49]). Here, PNγ denotes the operator that constructs the
difference potential u=PNγvγ from the given density vγ ∈Vγ . The operator PNγ is
the linear operator of density vγ , and it can be easily constructed (see for example
[10, 9, 49]). Again, for our problem, L∆t,h[vγ ]≡∆j,kvγ−m(vγ)j,k.

As in the space-continuous case, (Definition 2.2, Section 2), the concept of the
difference potential is well-defined at each time level due to the following result.

Theorem 2.5. The difference potential PNγvγ depends only on vγ ∈Vγ , but is inde-
pendent of the choice of the function v defined on N1 (satisfying condition (2.18) on
γ1 :v=0,(xj ,yk)∈γ1), and coinciding with vγ on γ: v|γ ≡Trγv=vγ .

Let us recall the proof for the reader’s convenience (for the general proof and
discussion, see [49, 50, 48]).

Proof. Let us define the sets N+ :=N , Ω− :=Ω0\Ω, M− := (xj ,yk)∈Ω−, and
N− :={

⋃

j,kNj,k|(xj ,yk)∈M
−}. Recall that, πN+ denotes the restriction operator

to the set N :=N+, ΠN1γvγ is the arbitrary extension vγ to N1, and χM− is the
characteristic function of set M−.

Let us notice now that the difference potential, Definition 2.4, can be represented
in the following operator form:

u=PN+γvγ =πN+L−1
∆t,h[χM−L∆t,h[vγ ]],

where vγ is extended by zero outside of set γ to N1\γ. Now, let us represent the
arbitrary function z defined on N1, such that z=ΠN1γvγ , as the sum of the three
terms

z=χN1\N+z+χN1\N−z+vγ .

Notice that for the first term χM−L∆t,h[χN1\N+z]=L∆t,h[χN1\N+z], and for the sec-
ond term χM−L∆t,h[χN1\N−z]=0. From this we obtain that

πN+L−1
∆t,h[χM−L∆t,h[χN1\N+z]]=πN+L−1

∆t,h[L∆t,h[χN1\N+z]]=0.

Hence, the only remaining contribution to the potential u is the contribution from
the third term:

u≡PN+γvγ =πN+L−1
∆t,h[χM−L∆t,h[vγ ]].

Next, let us recall [10, 9, 49] and define another operator Pγ :Vγ →Vγ as the
trace (or restriction) of the Difference Potentials PNγvγ on the grid boundary γ:
Pγvγ :=TrγPNγvγ =PNγvγ |γ . We now state an important theorem for the further
development of our scheme (see for example [49, 48]). The details of the general proof
can be found in [49].

Theorem 2.6. At each time level ti+1, the density vγ ∈Vγ is the trace of some
solution
u :=uN ∈N : vγ =TrγuN ≡uγ to the homogeneous equation

L∆t,h[u]=0, (xj ,yk)∈M (2.20)
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if and only if we have

Qγvγ :=vγ−Pγvγ =0, (xj ,yk)∈γ. (2.21)

Moreover, the solution uN defined on the set N can be reconstructed from its boundary
value vγ using the formula u :=PNγvγ .

Remark 2.4. It can be shown that Pγ is the projector, hence Vγ = ImPγ⊕KerPγ .

Thus, Theorem 2.6 implies that the problem of finding a unique solution to (2.20)
subject to the appropriate approximation of the boundary conditions on ∂Ω denoted
by l(u)=ψ, in other words the problem

L∆t,h[u]=0, (2.22)

l(u)=ψ, (2.23)

is equivalent to the problem of finding the unique density function vγ ≡uγ from the
system of the Boundary equations

Qγvγ =0, (2.24)

l(PNγvγ)=ψ. (2.25)

After that, at each time level the solution uN to (2.22)-(2.23) is reconstructed from
uN =PNγvγ .

Remark 2.5. Let us note that the equation (2.24) can be viewed as the generalized
Poincaré-Steklov interface equation.

From the above discussion and, in particular, from Theorem 2.6 and from (2.24)
- (2.25), the next result follows.

Proposition 2.7. At each time level ti+1, the approximation uN to the solution u
of the (IVP) problem (2.5), (2.2) - (2.3) in domain Ω can be obtained as

uN =PNγvγ+ ūN , (2.26)

l(v+ ū)=ψ, (2.27)

where ūN is the approximation of any particular solution to the inhomogeneous
equation (2.5) in Ω̄, at the given time level ti+1. PNγvγ is the difference potential
in Ω̄ at the same time level ti+1, with a density vγ that satisfies equation (2.24):
Qγvγ =0. Equation (2.27) denotes the approximation of the boundary condition
l(u)=ψ on ∂Ω, and the representation of the boundary conditions in the form (2.27)
can be viewed as the consequence of the equality (2.26) and (2.24) (projected on the
continuous boundary). Finally, define ūγ :=Trγ ūN .

Remark 2.6. Let us mention that in (2.26), we can consider any particular solution:
Let ūN be some solution to L∆t,h[ūN ]=gu,(xj ,yk)∈M . We extend the solution
arbitrarily to N1, and we will apply the operator L∆t,h to the extended solution ūN1 .
Hence, we will get the right-hand side of the equation L∆t,h[ūN1 ]=g, which coincides
on M with gu.

For example, we can construct the particular solution ūN as follows.
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Definition 2.8. Define, ū to be the solution f of the auxiliary problem (DAP, Def.
2.3) with the right hand-side defined as

g :=

{

gu, (xj ,yk)∈M,
g̃u, (xj ,yk)∈M

1\M,
(2.28)

where gu is given in (2.15) and g̃u is some extension of gu to M1\M . Set ūN :=πN ū.
This point will be discussed in more details in Section 5.

Remark 2.7. Finally, let us comment briefly about the accuracy in space of the
approximation uN =PNγ

vγ+ ūN in (2.26)-(2.27), to the solution u of (2.5), (2.2) -
(2.3). One would expect that the solution uN will converge to the continuous solution
u in the discrete Hölder norm of order q+ε (with the arbitrary 0<ε<1), with the
rate O(hp−ε) as h→0. Here, p is the order of the accuracy of the approximation of
the continuous differential operator L∆t by the discrete operator L∆t,h (we assume
that the boundary condition (2.2) is approximated by (2.27) with the same or a higher
order than p). Hence, for the central finite difference scheme that is discussed here, we
will expect the O(h2) rate in the maximum norm in space. For a more detailed and
general discussion, and the proof of the accuracy of the (DPM) method, the reader
can consult [49, 34].

Remark 2.8. Let us emphasize that one could develop any other numerical approx-
imation in space (such as high-order finite difference, finite-volume, finite element, or
spectral methods) for (2.1) within the presented framework of the potentials and of
the difference potentials. For our goals in this paper, however, we will consider the
second order finite-difference approximation for the model equation (2.5).

3. Algorithms composition approach based on the difference potentials
method

We will now develop and numerically test the Algorithms Composition Approach
for the parabolic model (2.5), (2.2)-(2.3).

Ω

Γ

Ω
Ωδ

1

2

Fig. 3.1: Sketch of domain Ω with boundary ∂Ω, two subdomains Ω1, Ω2, and the
interface Γ.

We start the introduction of the scheme and the illustration of the ideas by
considering the system (2.5), (2.2) - (2.3) (or formulation (2.9) in its time-discrete
form) in some composite domain Ω. Ω is an arbitrary bounded domain in R

2 with
boundary ∂Ω, and consists of two disjoint subdomains Ω1 and Ω2, Ω=Ω1∪Ω2, Γ=
Ω1∩Ω2, with piecewise smooth boundaries Γ1 :=∂Ω1∪Γ and Γ2 :=∂Ω2∪Γ (see figure
3.1). We would like to also emphasize that the two subdomains are considered here
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only for the simplicity of the presentation. The discussed idea can be extended in a
straightforward way to multiple subdomains or composite domains.

Our goal at each time level ti+1 is to find an approximations to ui+1 in domain
Ω:

ui+1
Ω :=

{

ui+1
Ω1

,(x,y)∈Ω1,

ui+1
Ω2

,(x,y)∈Ω2,
(3.1)

where ui+1
Ωp

(here p=1,2) are the solutions to (2.9) in each subdomain Ωp:

L∆t[u
i+1
Ωp

]=G
uΩp

∆t , (x,y)∈Ωp, and (p=1,2). (3.2)

The solution ui+1
Ω is subject to the appropriate boundary conditions on the boundary

∂Ω of the original domain,

l(ui+1
Ω )=ψi+1, (3.3)

and to the interface conditions on the interface boundary Γ, which we will select to
be the following:

lΓ(u
i+1
Ω1

,ui+1
Ω2

) :=

{

ui+1
Ω1

=ui+1
Ω2

, (x,y)∈Γ,

∇ui+1
Ω1

·nΓ=β∇u
i+1
Ω2

·nΓ, (x,y)∈Γ.
(3.4)

Here, nΓ is a unit outward normal vector to the interface boundary Γ (with respect
to Ω1). To develop our idea, we will consider the difference potentials scheme (2.26) -
(2.27) from Section 2.1 (which uses Backward Euler in time and central finite difference
space discretization) as the fully discrete approximation of (2.5), (2.2) - (2.3) in each
subdomain Ωp, and we will build an algorithm for the approximation of ui+1

Ω in (3.1)
based on the algorithms composition idea. As before, we will remove below the explicit
dependence on time for the clarity of the presentation.

First, as we have done in (Section 2.1) for the single domain Ω, we will introduce
auxiliary difference problems for each subdomain Ωp,(p=1,2): we will place each of
the original subdomains Ωp in the auxiliary domains Ω0

p⊂R
2,(p=1,2). As before,

the choice of each domain Ω0
p should be convenient for computations, and the choice

of these auxiliary domains do not need to depend on each other. Again, for each
subdomain, we will proceed in a similar way as we did in (Section 2.1). For each Ω0

p

we will introduce, for example, a Cartesian mesh (again the choice of the meshes for
the auxiliary problems in each subdomain can be totally independent. The choice
for each subdomain is based on the considerations of the efficiency and simplicity
of the resulting discrete problems). After that, all the definitions, notations, and
properties introduced in (Section 2.1) extend to each subdomain Ωp in a direct and
straightforward way.

The cornerstone of our approach is the following proposition, which is a conse-
quence of Proposition 2.7 in Section 2.1 for a single domain.

Proposition 3.1. At each time level ti+1, the fully discrete approximation uNp
to

the solution uΩp
, (p=1,2) in (3.2) - (3.4) is obtained as

uNp
=PNpγp

vγp
+ ūNp

, (3.5)

l(vΓ1
+ ūΓ1

,vΓ2
+ ūΓ2

)=ψ, (3.6)

lΓ(vΓ1
+ ūΓ1

,vΓ2
+ ūΓ2

)=φ, (3.7)
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where ūNp
is the approximation of the particular solution to the inhomogeneous

equation (2.5) in each subdomain Ωp at the given time level ti+1. PNpγp
vγp

is the

difference potential with a density vγp
in each domain Ωp at the same time level ti+1.

Expressions in (3.6)-(3.7) denote the approximations of the boundary and interface
conditions, respectively, on the continuous boundaries ∂Ω1 and ∂Ω2, and interface
boundary Γ (in other words on the boundaries Γ1 and Γ2). Denote ūγp

=Trγp
ūN .

The construction of (3.6)-(3.7) will be discussed in more detail in Section 3.2. The
density/trace vγp

in the equation (3.5) ranges over the solution of the Boundary
Equation on each discrete grid boundary set γp:

Qγp
vγp

≡vγp
−Pγp

vγp
=0; (3.8)

see (2.24) in Section 2.1. However, there are multiple solutions (vγ1
,vγ2

) to (3.8), and
as before, the unique pair of the densities/traces vγ1

∈Vγ1
and vγ2

∈Vγ2
will satisfy

the above Boundary Equation (3.8), as well as the boundary and interface conditions
(3.6) - (3.7).

3.1. System of boundary equations: weak formulation. At each time
level, the unique pair of the densities/traces(vγ1

,vγ2
)≡ (Trγ1

vN1
,T rγ2

vN2
)∈Vγ1

×Vγ2

of the approximation (3.5)-(3.7) is the unique solution to the Boundary Equation (3.8),
subject to the boundary and interface conditions (3.6) - (3.7). There are different
ways to solve (3.8) subject to (3.6) - (3.7). One possibility is to directly consider the
original formulation (3.8) and employ finite difference approximation of the boundary
and interface conditions (3.6) - (3.7) (see for example [10, 49] for more details on
this approach). However, to avoid the difficulties associated with the finite difference
approximations of (3.6) - (3.7) in arbitrary domains, we will take advantage of the
weak formulation of (3.8) and the spectral approximation of the Cauchy data.

To define a weak formulation, let us first introduce the discrete norm for the space
of grid functions vγp

∈Vγp
. Similar to [48], we will consider the following norm:

||vγp
||2Vγp

:=h
[

∑

|vν |
2+α

∑

∣

∣

∣

vν1+1,ν2
−vν

h

∣

∣

∣

2

+α
∑

∣

∣

∣

vν1,ν2+1−vν
h

∣

∣

∣

2]

, (p=1,2).

(3.9)
Here, the sum is extended over all ν := (ν1,ν2)∈γp for the first term in (3.9), over all
ν := (ν1,ν2) that, together with (ν1+1,ν2), belong to γp in the second term of (3.9),
and over all ν := (ν1,ν2) that, together with (ν1,ν2+1), belong to γp in the third
term of (3.9). α is a nonnegative coefficient which will be defined in the numerical
experiments.

Remark 3.1. The norm (3.9) is the discrete analog of the continuous norm for the
Cauchy data vΓp

∈VΓp
:

||vΓp
||2VΓp

:=

∫

Γp

[

|v0p(s)|
2+α

(∣

∣

∣

dv0p(s)

ds

∣

∣

∣

2

+ |v1p(s)|
2
)]

ds. (3.10)

Let us introduce ṽΓp
∈ ṼΓp

as a finite dimensional approximation of the continuous

Cauchy data vΓp
∈VΓp

: ṽΓp
:≈vΓp

, and ṼΓp
as the finite dimensional subspace of VΓp

.
The details on the construction of the approximation ṽΓp

will be presented in Section
3.2. Finally, let us also make the following definition.

Definition 3.2. Let ΠγpΓp
be the operator that, to every vΓp

≡ (v0p(s),v
1
p(s)) from

the space of continuous Cauchy data VΓp
, assigns vγp

from the space of the discrete
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densities Vγp
, (p=1,2):

vγp
=ΠγpΓp

vΓp
. (3.11)

Moreover, we have from Definition 3.2 that for ṽΓp
∈ ṼΓp

, we can define ṽγp
∈Vγp

to be

ṽγp
:=ΠγpΓp

ṽΓp
. (3.12)

The exact form of the operator ΠγpΓp
will be given in (3.22) - (3.23) in Section 3.2 as

well.
Therefore, the weak formulation of the Boundary Equations (3.8) subject to (3.6)-

(3.7) is formulated as follows.

Definition 3.3. At each time level, find (ṽΓ1
,ṽΓ2

)≡ (ũΓ1
,ũΓ2

)∈ ṼΓ1
× ṼΓ2

that min-
imizes the functional

||l(ṽΓ1 + ˜̄uΓ1 ,ṽΓ2 + ˜̄uΓ2)−ψ||
2
Φ+ ||lΓ(ṽΓ1 + ˜̄uΓ1 ,ṽΓ2 + ˜̄uΓ2)−φ||

2
Φ+

2∑

p=1

||QγpΠγpΓp ṽΓp ||
2
Vγp

,

(3.13)

where || · ||Φ is the Hilbert norm, ṼΓ1
and ṼΓ2

are finite dimensional subspaces of
VΓ1

and VΓ2
, respectively, and (˜̄uΓ1

, ˜̄uΓ2
) are the finite dimensional approximations

of (ūΓ1
,ūΓ2

) (it is a pair of the Cauchy Data of the particular solution (ūN1
,ūN2

)).
This finite dimensional approximation is discussed in Section 3.2.

Therefore, at each time level, the unique pair of the densities/traces (vγ1
,vγ2

)∈
Vγ1

×Vγ2
of the approximation (3.5)-(3.7) to the solution (3.1) of (2.5), (2.2)-(2.3) in

the composite domain Ω is obtained as the following approximation:

(vγ1
,vγ2

)≈ (ṽγ1
, ṽγ2

)=(Πγ1Γ1
ṽΓ1

,Πγ2Γ2
ṽΓ2

). (3.14)

3.2. System of boundary equations: Discretization of the Cauchy data.
As before, we will assume that the solution is given at a fixed time level and we

will suppress the explicit dependence on time for the clarity of the presentation.

1. As we already showed in sections 3 - 3.1, at each time level, the problem of
finding the approximation to the unique solution uΩ := (uΩ1

,uΩ2
) of the model

(2.5), (2.2) - (2.3) in composite domain Ω≡Ω1∪Ω2 reduces to the problem of
finding the unique pair of the densities/traces (vγ1

,vγ2
)≡ (uγ1

,uγ2
)∈Vγ1

×Vγ2

(3.14). This pair of the densities/traces satisfies the generalized Poincaré-
Steklov interface equations (3.8), as well as the boundary and interface con-
ditions (3.6) - (3.7).

2. After that, the approximation of the solution (uΩ1
,uΩ2

) of (2.5), (2.2)-(2.3) in
Ω̄ is reconstructed from the approximated densities (ṽγ1

, ṽγ2
)∈Vγ1

×Vγ2
using

the pair of difference potentials (PN1γ1
ṽγ1

,PN2γ2
ṽγ2

); see equation (3.5).

In order to solve for the unknown densities/traces in Step 1 above, we will consider
a weak formulation Definition 3.3, Section 3.1, and we will employ a spectral approach
for the approximation (3.14) of (vγ1

,vγ2
) as elaborated below.

Consider a set of basis functions on the curve boundaries Γ1 and Γ2:

φ1(s), ...,φL(s) and φ
?
1(s), ...,φ

?
L(s), (3.15)
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where s is the arc length and L is the total number of the basis functions. We will
consider here the same basis functions on all parts of the boundaries, although in
general the basis functions can be selected differently for the different parts of the
boundaries. In general, this choice will depend on the smoothness of the boundary of
the domains and on the smoothness of the solution.

Next, we will assume that for every sufficiently smooth single-valued periodic
function f(s) defined on the boundaries Γ1 and Γ2, the sequence

εL := min
u0
p`

,u1
p`

∫

[|f(s)−
L
∑

`=1

u0p`φ`(s)|
2+ |f ′(s)−

L
∑

`=1

u1p`φ
?
` (s)|

2]ds (3.16)

tends to zero with increasing L: limεL=0 as L→∞.
Therefore, we will employ the following approximation to construct finite-

dimensional ṽΓp
∈ ṼΓp

:

ṽΓp
:=

(

L
∑

`=1

u0p`φ`,

L
∑

`=1

u1p`φ
?
`

)

, (3.17)

that discretize the elements vΓp
∈VΓp

from the space of continuous Cauchy Data on
the boundary Γp, p=1,2:

vΓp
:= (v0p(s),v

1
p(s)), (3.18)

and we have

ṽΓp
:≈vΓp

. (3.19)

In (3.17), φ`≡ (φ`,0) is the set of basis functions for the first component of the Cauchy
data v0(s), and φ?` ≡ (0,φ?` ) is the set of basis functions for the second component of
the Cauchy data v1(s), `=1, ...L. In our numerical experiments, we will consider the
same set of basis functions for both components φ`≡φ

?
` . The coefficients (u0p`,u

1
p`)

with p=1,2 and `=1, ...L, are the unknown expansion coefficients that need to be
determined.

To obtain the approximation of the discrete densities/traces vγp
,(p=1,2) at the

points (xj ,yk)∈γp, we will consider the following Taylor expansion:

vγp
≡vNp

(xj ,yk)|γp
=v0p(sj,k)+dj,kv

1
p(sj,k)+O(d2j,k). (3.20)

Here, sj,k is the value of the arc length s at the point where the continuous boundary
Γp intersects the normal constructed from the point (xj ,yk)∈γp to Γp. The parameter
dj,k is the shortest distance from (xj ,yk)∈γp to the intersection point sj,k of the
normal with Γp. dj,k is taken with the plus sign if (xj ,yk)∈Ωp, and with a minus sign
if (xj ,yk) /∈Ωp; see figure 3.2. Thus, we have

vγp
≈v0p(sj,k)+dj,kv

1
p(sj,k). (3.21)

Let us recall the operator ΠγpΓp
, from Definition 3.2, that assigns vγp

, (p=1,2) to
every vΓp

≡ (v0p(s),v
1
p(s)) from the space of continuous Cauchy data. We will construct

such an operator ΠγpΓp
according to the above Taylor formula (3.21), hence

vγp
≈ ΠγpΓp

vΓp
, (3.22)
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Ω

d j*,k*

sj*,k*

(j*,k*)

γ
ex

γ
in

Fig. 3.2: Example (a sketch) of the geometry with the curve boundary Ω; point (x?j ,y
?
k)

is in the set γex∈M , dj∗,k∗ is the distance from this point to the boundary of the
domain Ω, and sj?,k? is the corresponding arc length.

ΠγpΓp
vΓp

:=v0p(sj,k)+dj,kv
1
p(sj,k). (3.23)

For example, if vΓp
=(v0p(s),0), then we have that ΠγpΓp

vΓp
=v0p(sj,k). Similarly,

if vΓp
=(0,v1p(s)), then the action of the operator ΠγpΓp

is given as ΠγpΓp
vΓp

=
dj,kv

1
p(sj,k). Thus, we have the following finite-dimensional approximation for the

discrete density vγp
∈Vγp

:

vγp
≈ ṽγp

=ΠγpΓp
ṽΓp

=

L
∑

`=1

(

u0p`(ΠγpΓp
φ`)+u

1
p`(ΠγpΓp

φ?` )
)

, (p=1,2), (3.24)

where ṽγp
is as defined previously in (3.12), Section 3.1.

It follows that the approximation of the density/trace vγp
is the function of the

unknown coefficients u0p` and u1p` which need to be determined. Once the expansion

coefficients u0p` and u
1
p` are obtained, the density ṽγp

≈vγp
≡uγp

is reconstructed using
formula (3.24).

3.3. System of boundary equations: Discrete variational formulation.
As we showed in Section 3, densities/traces (vγ1

,vγ1
) range over the solutions of the

Boundary Equation (3.8) on each discrete grid boundary set (γ1,γ2). Therefore, using
the above approximation (3.24) for vγp

in the system of Boundary Equations (3.8),
we will obtain the system of linear equations with |γp| equations for 2L unknowns
u0
p := (u0p1, ...,u

0
pL), u

1
p := (u1p1, ...,u

1
pL):

B0
pu

0
p+B

1
pu

1
p=0, (p=1,2). (3.25)

Here, |γp| is the total number of points in the set γp (p=1,2) and (u01`,u
1
1`), (u

0
2`,u

1
2`)

are the unknown expansion coefficients of (ṽΓ1
,ṽΓ2

) (3.19). Matrices B0
p and B1

p are
defined as B0

p := (b0
p1, ...,b

0
pL) and B

1
p := (b1

p1, ...,b
1
pL). Here, columns b0

p` and b1
p` are

|γp| dimensional vectors whose components are computed as the values at the points
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of the set |γp| of the grid functions Qγp
[ΠγpΓp

φ`] and Qγp
[ΠγpΓp

φ?` ], respectively. For
more a detailed discussion on the computation of these matrices please see Appendix
A.

Notice that the linear system (3.25) will be the overdetermined linear system since
we have to have |γp|>L for the accurate resolution of the density vγp

. Finally, let us
define

Gp(ṽΓp
) := ||Qγp

[ΠγpΓp
ṽΓp

]||2Vγp
= ||B0

pu
0
p+B

1
pu

1
p||

2
Vγp

, (p=1,2). (3.26)

Therefore, at each time level ti+1 we have the following discrete variational for-
mulation of (3.13).

Definition 3.4. Find the unique weak solution pair (ṽΓ1
,ṽΓ2

)∈ ṼΓ1
× ṼΓ2

for which
the constants (u01`, u

1
1`) and (u02`, u

1
2`) with `=1, ...,L minimize the functional

||l(ṽΓ1
+ ˜̄uΓ1

,ṽΓ2
+ ˜̄uΓ2

)−ψ||2Φ+ ||lΓ(ṽΓ1
+ ˜̄uΓ1

,ṽΓ2
+ ˜̄uΓ2

)−φ||2Φ+

2
∑

p=1

Gp(ṽΓp
).

(3.27)

Here, ˜̄uΓp
is equal to ˜̄uΓp

:=
(

∑L
`=1 ū

0
p`φ`,

∑L
`=1 ū

1
p`φ

?
`

)

, and the coefficients

(ū0p`,ū
1
p`) are obtained using the values of the particular solution ūNp

at the points

of the set γp, in other words using ūγp
≈ΠγpΓp

˜̄uΓp
. The values ūγp

are known values
since the particular solution ūNp

is constructed as the solution of the simple auxiliary
problem ((DAP, Definition 2.3), Section 2.1) (for more details see the Remark 2.6 and
Definition 2.8 after Proposition 2.7 in Section 2.1, as well as the discussion in Section
5). Formulation (3.27) is the well-known least-square problem.

4. Algorithm
In this section, we will give brief summary of the important steps of the Algorithms

Composition Scheme for the model problem (2.5), (2.2) - (2.3) in the composite domain
Ω̄=Ω̄1∪ Ω̄2. As derived in sections 3.1 - 3.3, our algorithm will be based on the discrete
variational formulation (3.27). Let us note a few important points of the method we
developed. Firstly, the order of the operations of the proposed framework does not
increase with the choice of the numerical discretization used with it. Moreover, the
overall complexity of the method reduces to the several solutions of simple auxiliary
problems on regular Cartesian meshes (no need for the generation and storage of
the unstructured meshes; no need for the design of the schemes on the unstructured
meshes). Finally, the selection of the auxiliary problems and meshes for each domain
Ωp is totally independent of each other, and is done based on the idea of the simplicity
and efficiency of the resulting numerical scheme.

We have the following steps at each time level:

1. Construct a discrete functional Gp(ṽΓp
)≡||B0

pu
0
p+B

1
pu

1
p||

2
Vγp

for each domain

Ωp,(p=1,2). This functional is the weak formulation of the Boundary Equa-
tion (3.8) (note that the minimum of Gp(ṽΓp

) gives an approximation to the
Cauchy data of the general solution to the homogeneous equation in each
subdomain).
To build Gp(ṽΓp

):

• Select the auxiliary domain (denoted here as Ω0
Gp

), and place the origi-
nal domain Ωp into the auxiliary domain for the computation and con-
struction of Gp(ṽΓp

), (p=1,2). The choice of the auxiliary domain Ω0
Gp
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should be convenient for computation, so we will choose it to be a square.
Select a 2np ×2np Cartesian mesh for each of the auxiliary domains Ω0

Gp
,

with np being a positive integer and (p=1,2).

• Recall that ṽΓp
∈ ṼΓp

is the finite dimensional approximation of the con-
tinuous Cauchy data vΓp

∈VΓp
(see formula (2.6) in Section 2, as well

as (3.19) in Section 3.2), and it is constructed using the set of the basis
functions φ`(s) for the first component of the Cauchy data, as well as the
set of the basis functions φ?` (s) for the second component of the Cauchy

data (formula (3.17), Section 3.1) : ṽΓp
:=

(

∑L
`=1u

0
p`φ`,

∑L
`=1u

1
p`φ

?
`

)

.

• Construct matrices B0
p and B1

p for each domain. This construction re-
duces to the computation of the difference potentials (or to the solution
of the simple auxiliary problems).

Remark 4.1. If the time step will not change during the simulations,
and if the geometry, the grid, and the system of basis functions (3.15)
will not depend on time, then it will suffice to precompute matrices B0

p

and B1
p once and to store them.

See the details in Section 3.3 and in Appendix A.

2. Next, choose the new auxiliary domain (denoted as Ω0
ūp
) and place the original

domain Ωp into the auxiliary domain for the computation of the particular
solution ūNp

,(p=1,2). As before, the choice of the auxiliary domain Ω0
ūp

should be convenient for computation, so we will choose it to be a square.
Select a 2mp ×2mp Cartesian mesh for the auxiliary domain Ω0

ūp
, where mp is

a positive integer. Find any particular solution ūNp
,(p=1,2) as the solution

of the simple auxiliary problem (see Remark and see Definition 2.8 after
Proposition 2.7 in Section 2.1, as well as the discussion at the beginning of
Section 5). After that, calculate their Cauchy data on Γp,(p=1,2).

3. Solve the joint discrete variational problem: find Cauchy data ṽΓp
∈ ṼΓp

,(p=
1,2) that minimizes the functional (3.27) in Section 3.3:

||l(ṽΓ1 + ˜̄uΓ1 ,ṽΓ2 + ˜̄uΓ2)−ψ||
2
Φ+ ||lΓ(ṽΓ1 + ˜̄uΓ1 ,ṽΓ2 + ˜̄uΓ2)−φ||

2
Φ+

2∑

p=1

Gp(ṽΓp).

Remark 4.2. Let us note that if the Dirichlet to Neumann map is well
defined for the problem, then one can solve the overdetermined linear sys-
tem (3.25) for the unknowns u1

p := (u1p1, ...,u
1
pL) in terms of u0

p := (u0p1, ...,u
0
pL)

using the least squares method:

B0
pu

0
p+B

1
pu

1
p=0, (p=1,2).

This step can be viewed as the construction of the Dirichlet to Neumann
map: to each set u0

p assign a set u1
p that minimizes Gp(ṽΓp

). In this case,
the general solution in each Ωp will be approximated by a difference potential
whose density will depend only on u0

p.

4. Using the obtained Cauchy data ṽΓp
, construct ṽγp

≈ΠγpΓp
ṽΓp

, Section 3.2.
After that, extend the computed densities ṽγp

from the grid boundaries γp to
the interior of each domain Ωp by computing difference potentials PNp

ṽγp
in

each domain Ωp.
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At each time level reconstruct the desired approximation to the model (2.5),
(2.2) - (2.3) in the composite domain Ω̄ using the discrete generalized Green’s
formula:

uNp
=PNpγp

ṽγp
+ ūNp

, (p=1,2)

(see Proposition 3.1 and equation (3.5) in Section 3).

Remark 4.3. Let us emphasize the important flexibility of the algorithm to
choose different auxiliary domains Ω0

Gp
and Ω0

ūp
for the computations of the

projection and of the particular solution. This provides an opportunity to
consider different grids and combine different discretizations if necessary.

5. Numerical examples
In this section, we demonstrate the performance of the proposed Algorithms Com-

position Approach on several test problems. In the numerical experiments below, we
consider the set of the basis functions on Γp,(p=1,2) that is defined as

φp,1(s)=1, φp,2(s)=cos
( 2π

|Γ|
s
)

, φp,3=sin
( 2π

|Γ|
s
)

, ...

φp,2N (s)=cos
( 2π

|Γ|
N s

)

, φp,2N+1=sin
( 2π

|Γ|
N s

)

. (5.1)

We assume that the sets φ≡φ? in the numerical examples below. In all of the tests,
we will consider the heat equation (2.5) in the composite domain Ω̄≡ Ω̄1∪ Ω̄2 as
our model problem. Here, the heat equation serves as a simplified model for more
realistic systems of materials, fluids, or chemicals with different properties in different
parts of the domains (for example, the ocean-atmosphere models, chemotaxis models,
or blood flow models [2, 36, 43, 42]). We consider equation (2.5) with the known
analytical expressions for the exact solutions. This allows us to study the errors in
the approximate solutions that will depend on the size of the auxiliary domains, mesh
sizes, total number of the basis functions on Γp, etc.

Similar to [48], we will first define three functions:

u(1)(x,y) :=cos(x)cos(y), (5.2)

u(2)(x,y) :=sin(c1x)sin(c2y)P5(ρ/0.9), (5.3)

and

u(3)(x,y) :=max
( 1−ρ2

1+4ρ2
,0
)

. (5.4)

Here, the Cartesian coordinates (x,y) of points are related to their polar coordinates
(r,θ) as (x,y)=(rcos(θ),rsin(θ)). The interface boundary Γ≡Γ2 of the domain Ω2

is parametrically defined in polar coordinates (r,θ) by the relation r(θ)≡ rΓ(θ)=1+
0.22sin(kθθ), where kθ is the parameter. ρ= r/rΓ(θ) in (5.3) - (5.4). See figures 5.1 -
5.4 for the examples of the domains that are used in the numerical tests below.

The function P5(x) is continuous, identically equal to 1 for x≤0, vanishes for
x≥1, and, on the interval 0≤x≤1, it is a unique ninth-degree polynomial whose
derivatives up to the fourth order vanish at the endpoints of 0≤x≤1:

P5(x) :=







1,x≤0,
1−126x5+420x6−540x7+315x8−70x9,0≤x≤1,
0,x≥1.

(5.5)
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Let us note that due to the multiplier P5(ρ/0.9), the function u(2) (5.3) vanishes
outside of Ω2 and in a neighborhood of Γ≡Γ2. At the same time, u(2) exhibits strong
oscillations deep inside Ω2.
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Fig. 5.1: Test Problem 1: Example of the auxiliary domain Ω0, domains Ω1 and Ω2

and the boundary Γ of the domain Ω2; parameter kθ=0.
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Fig. 5.2: Test Problem 2: Example of the auxiliary domain Ω0, domains Ω1 and Ω2

and the boundary Γ of the domain Ω2; kθ=2.

5.1. First example. In the first example, we will construct our test problem
with the analytical solution

u(x,y,t)=

{

e−tuΩ1
(x,y)= e−tu(1), (x,y)∈Ω1,

e−tuΩ2
(x,y)= e−t(u(1)+u(2)), (x,y)∈Ω2,

(5.6)

with c1= c2=16 in the formula (5.3). Thus, the solution u(x,y,t) will exhibit strong
oscillations inside the domain Ω2, but none in the domain Ω1. We consider four test
problems, figures 5.1 - 5.4 with kθ=0 in the Test Problem 1, figure 5.1; kθ=2 in the
Test Problem 2, figure 5.2; with kθ=3 in the Test Problem 3, figure 5.3; and with
kθ=5 in the Test Problem 4, figure 5.4.
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Fig. 5.3: Test Problem 3: Example of the auxiliary domain Ω0, domains Ω1 and Ω2

and the boundary Γ of the domain Ω2; kθ=3.
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Fig. 5.4: Test Problem 4: Example of the auxiliary domain Ω0, domains Ω1 and Ω2

and the boundary Γ of the domain Ω2; kθ=5.

We select u(x,y,t) in (5.6) to be the exact solution for the heat equation (2.5), we
set time step dt=1.e−6 for all tests in Section 5.1, we use discrete norm (3.9) with
α=0.5, and we consider time interval [0,0.01]. In all experiments in this section, we
will choose the auxiliary domains

Ω0
G1

≡Ω0
ūN1

:= [−2,2]× [−2,2],

for the construction of G1(ṽΓ1
), as well as for the computation of the particular

solution ūN1
in Ω1 (note that these auxiliary domains Ω0

G1
and Ω0

ūN1
will coincide

with the boundaries of the domain Ω1; see figures 5.1 - 5.4). At the same time, we
will select the auxiliary domain

Ω0
G2

=[−1.6,1.6]× [−1.6,1.6]

for the construction of the G2(ṽΓ2
), and we will choose the auxiliary domain

Ω0
ūN2

=[−1.7,1.7]× [−1.7,1.7]
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for the approximation of the particular solution ūN2
in Ω2. We will use the same

Cartesian meshes

2n1 ×2n1 ≡2n2 ×2n2 with n1≡n2=9

for the auxiliary domains Ω0
G1

and Ω0
G2

in the tables 5.2 - 5.9. We will select Cartesian
mesh

2m1 ×2m1

(hence, h1 :=4/2m1) for the approximation of the particular solution ūN1
in Ω0

ūN1
, as

well as the Cartesian mesh

2m2 ×2m2

(hence, h2 :=3.4/2m2) for the computation of the particular solution ūN2
in Ω0

ūN2
; see

tables 5.1 - 5.9.
To compute the particular solution ūN1

in Ω0
ūN1

, we make the smooth extension

g̃u∈Ω0
ūN1

\Ω1 of the right-hand side gu=−qi+1−uiΩ1
(see Definition 2.8) outside of the

domain Ω1 (in other words we smoothly extend to the entire auxiliary domain/square
Ω0, see figures 5.1 - 5.4). Similarly, to compute the particular solution ūN2

in Ω0
ūN2

, we

make smooth extension of the right-hand side gu=−qi+1−uiΩ2
outside of the domain

Ω2 to the auxiliary domain Ω0
ūN2

. We compute the L2(L∞) (tables 5.2 - 5.10) and

L∞(L∞) (tables 5.1 - 5.10) errors respectively:

L2(L∞) :=
(

Nt
∑

i=0

∆t(max
(x,y)

|uicalc−u
i
exact|)

2
)1/2

,

and

L∞(L∞) := max
(i=0,...,Nt)

(

max
(x,y)

|uicalc−u
i
exact|

)

.

Let us first make a few important remarks about the accuracy of the Algorithms
Composition Framework and validate the developed approach for problems with com-
plex interfaces. We will select a suitable problem and test the accuracy of the developed
approach against the accuracy of the numerical method on the single and geometrically
simple domain. In the current paper we combined the proposed Algorithms Compo-
sition Framework with second-order central finite difference scheme in space and first
order Backward Euler scheme in time: the backward-centered scheme. (However, the
developed algorithms composition approach is general. Future research will include
the development of the higher-order space and time discretization within the proposed
Algorithms Composition Framework; see Section 6 for a more detailed discussion.)
Therefore, the obtained spatial accuracy is limited by the accuracy of the second order
finite difference scheme. Let us illustrate this point, first using theoretical estimates
and then numerically. The complex interface test problem (5.6) which we consider
in this section can be viewed as the classical solution (without complex interface) to
the heat equation (2.5) in the square domain Ω≡ [−2,2]× [−2,2]. Hence, the solution
(5.6) to (2.5) can be computed approximately by using a standard backward-centered
finite difference scheme for the heat equation on the single and simple square domain
Ω≡ [−2,2]× [−2,2]. Thus we can test the accuracy of our Algorithms Composition
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Framework against the accuracy of the “single domain computations”. Moreover, one
would expect that the accuracy of the problem (5.6) with the complex interface will
be limited by the accuracy of “single domain computations”. Let us recall as well
that the theoretical error L∞(L∞) of the backward-centered finite difference scheme
in the square domain with Dirichlet boundary conditions is given as

max
0≤i≤Nt

max
0≤j,k≤Ns

|u((jh,kh),i∆t)−U i
jk|≤ cT (∆t+h

2), (5.7)

where c=max{(||∂
4u

∂x4 ||L∞(Ω̄×[0,T ])+ ||∂
4u

∂y4 ||L∞(Ω̄×[0,T ]))/12, ||
∂2u
∂t2 ||L∞(Ω̄×[0,T ])/2},

u((jh,kh),i∆t) is the exact solution at the discrete points of the space and time
mesh, and U i

jk is the approximate solution obtained by the standard backward-
centered scheme. If we now take the smallest mesh size h≈0.0033 (which was used
as the smallest mesh size in the problems with complex interfaces below), then by
performing rough estimates using formula (5.7) and the expression for the analytical
solution (5.6), we can show that the best accuracy that can be achieved by the
backward-centered finite difference scheme on the single and geometrically simple
domain Ω≡ [−2,2]× [−2,2] is about O(10−4)−O(10−5) (note that the second order
continuous piecewise-linear finite element method will result in an error with a
similar range). Therefore, our results in tables 5.1 - 5.10 (as well as the results in
tables 5.11 - 5.12, and table 5.13) below will be limited by the second order space
accuracy. We illustrate this point numerically below as well; see table 5.1.

For the experiment in table 5.1 we used the settings as described above except in
the last two rows of the table: 2n1 ×2n1 ≡2n2 ×2n2 with n1≡n2=10 for the auxiliary
domains Ω0

G1
and Ω0

G2
, and the time step was set to dt=8.e−7 (instead of 1.e−6)

to avoid the influence of the time discretization error. The notations in table 5.1 are
as follows: “Finite Difference” stands for the “single domain computations” approach
when the solution to the problem (5.6) is viewed as the classical solution (without
complex interface) to the heat equation (2.5) in the square domain Ω≡ [−2,2]× [−2,2],
and the backward-centered finite difference scheme on the single and geometrically
simple domain Ω≡ [−2,2]× [−2,2] is used to approximate the solution numerically.
The mesh h0 is used everywhere in the domain Ω≡ [−2,2]× [−2,2] for the computation
in this “single domain computations”. “Algorithms Composition Framework” in table
5.1 is used when we consider (5.6) as the complex interface problem. Meshes with
h1 and h2 are used for the computations of the particular solutions ūN1

∈Ω1 and
ūN2

∈Ω2, respectively, in the Algorithms Composition Framework. We consider test
Problem 3 with 2L=42 in this experiment with complex interface problem. The
notation “ —//—” in table 5.1 is used to denote the same value as in the above row.

We see that the accuracy of our Algorithms Composition Framework for complex
interface problem (5.6) does not differ from the accuracy of the “single domain com-
putations”. Moreover, table 5.1 illustrates an important flexibility of the Algorithms
Composition Framework—different meshes can be used in different subdomains, and
the same accuracy is achieved using a much coarser mesh (with bigger size of h) in the
regions/subdomains of the problems where solutions exhibit smaller gradients. This
feature of our method is very important for the future development of the adaptive
schemes/simulations for heterogenous problems, as well as for parallel computations.

Next, let us continue with more accuracy tests of Algorithms Composition Frame-
work using different curves as the interfaces below (see tables 5.2 - 5.9). We again
observe a second order convergence for the space discretization for all four test prob-
lems from tables 5.2 - 5.9. Also, there is not much difference in the results when
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we change the total number 2L of the basis functions for the approximation of the
Cauchy data from 2L=42 in table 5.1 to 2L=22 and 2L=30 in tables 5.2 - 5.9. This
is explained by the low dimension of the spaces of the Cauchy data uΓ (2.6) of the
exact solution u.

Finally, in the last Table 5.10 in this Section, we again consider the Test Problem
3 with 2L=22, but we fix the mesh size m1=7 for the construction of the particular
solution ūN1

in the domain Ω0
ūN1

, and we only vary the mesh sizem2. The accuracy of
the results is not affected in comparison to the results presented in tables 5.2-5.9 with
m1=m2 (this is similar to the performance of Algorithms Composition Framework
that is illustrated in table 5.1). Again, this is expected due to the highly oscilla-
tory behavior of the solution (5.6) in the subdomain Ω2, and hence computations
of the solution in the subdomain Ω2 require finer/smaller mesh sizes. This example
again illustrates the advantage of our algorithms composition approach since we have
flexibility to use different meshes in the different parts of the domain, and to solve
problems independently in each domain. This makes the numerical scheme much more
computationally efficient and very suitable for adaptive and parallel computations.

“Algorithms Composition Framework” “Finite Difference”

m1 m2 h1 h2 L∞(L∞) error of u(x,y) h0 L∞(L∞) error of u(x,y)
6 8 0.0625 0.0133 0.00387 0.0133 0.00388
8 8 0.0156 0.0133 0.00387 0.0133 —//—
7 9 0.0312 0.0066 0.00097 0.0066 0.00097
9 9 0.0078 0.0066 0.00097 0.0066 —//—
8 10 0.0156 0.0033 0.00024 0.0033 0.00024
10 10 0.0039 0.0033 0.00024 0.0033 —//—

Table 5.1. Comparison of the L∞(L∞) errors for the “Algorithms Composition Framework”
(with complex interface: Test Problem 3, kθ =3, number of the basis functions 2L=42;) and “Clas-
sical Approach” (without complex interface) as functions of the mesh size.

L2(L∞) error of u(x,y) Ratio L∞(L∞) error of u(x,y) Ratio
7 0.00130 0.01523
8 0.00032 4.06 0.00382 3.99
9 0.00008 4.00 0.00096 3.98

Table 5.2. Errors as functions of the mesh size m1=m2; number of the basis functions 2L=22;
kθ =0, Test Problem 1.

L2(L∞) error of u(x,y) Ratio L∞(L∞) error of u(x,y) Ratio
7 0.00130 0.01523
8 0.00032 4.06 0.00382 3.99
9 0.00008 4.00 0.00096 3.98

Table 5.3. Errors as functions of the mesh size m1=m2; number of the basis functions 2L=30;
kθ =0, Test Problem 1.

5.2. Second example. As the second test problem we will again consider
the heat equation (2.5), but with the exact solution given below:

u(x,y,t)=

{

100tuΩ1
(x,y)=100tu(1), (x,y)∈Ω1,

100tuΩ2
(x,y)=100t(u(1)+u(2)), (x,y)∈Ω2.

(5.8)
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L2(L∞) error of u(x,y) Ratio L∞(L∞) error of u(x,y) Ratio
7 0.00131 0.01534
8 0.00033 3.97 0.00389 3.94
9 0.00008 4.13 0.00097 4.01

Table 5.4. Errors as functions of the mesh size m1=m2; number of the basis functions 2L=22;
kθ =2, Test Problem 2.

L2(L∞) error of u(x,y) Ratio L∞(L∞) error of u(x,y) Ratio
7 0.00131 0.01534
8 0.00033 3.97 0.00389 3.94
9 0.00008 4.13 0.00097 4.01

Table 5.5. Errors as functions of the mesh size m1=m2; number of the basis functions 2L=30;
kθ =2, Test Problem 2.

L2(L∞) error of u(x,y) Ratio L∞(L∞) error of u(x,y) Ratio
7 0.00131 0.01540
8 0.00033 3.97 0.00387 3.98
9 0.00008 4.13 0.00097 3.99

Table 5.6. Errors as functions of the mesh size m1=m2; number of the basis functions 2L=22;
kθ =3, Test Problem 3.

L2(L∞) error of u(x,y) Ratio L∞(L∞) error of u(x,y) Ratio
7 0.00131 0.01540
8 0.00033 3.97 0.00387 3.98
9 0.00008 4.13 0.00097 3.99

Table 5.7. Errors as functions of the mesh size m1=m2; number of the basis functions 2L=30;
kθ =3, Test Problem 3.

L2(L∞) error of u(x,y) Ratio L∞(L∞) error of u(x,y) Ratio
7 0.00138 0.01588
8 0.00035 3.94 0.00398 3.99
9 0.00009 3.89 0.0010 3.98

Table 5.8. Errors as functions of the mesh size m1=m2; number of the basis functions 2L=22;
kθ =5, Test Problem 4.

L2(L∞) error of u(x,y) Ratio L∞(L∞) error of u(x,y) Ratio
7 0.00138 0.01588
8 0.00035 3.94 0.00398 3.99
9 0.00009 3.89 0.0010 3.98

Table 5.9. Errors as functions of the mesh size m1=m2; number of the basis functions 2L=30;
kθ =5, Test Problem 4.
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L2(L∞) error of u(x,y) Ratio L∞(L∞) error of u(x,y) Ratio
7 0.00131 0.01540
8 0.00033 3.97 0.00387 3.98
9 0.00008 4.13 0.00097 3.99

Table 5.10. Errors as functions of the mesh size m2; m1=7 is fixed. number of the basis
functions 2L=22; kθ =3, Test Problem 3.

L2(L∞) error of u(x,y) Ratio L∞(L∞) error of u(x,y) Ratio
8 0.00001 0.00020
9 2.5e−6 4.0 0.00005 4.0

Table 5.11. Errors as functions of the mesh size m1=m2; number of the basis functions
2L=22; kθ =3, α=0.5, Test Problem 3.

We consider here c1= c2=4 in (5.3). The function u(2) is much less oscillatory now
than the one in Section 5.1.

As before, we set the time step dt=1.e−6 for all tests in Section 5.2, and we
consider the same time interval [0,0.01]. Here, for the construction of the G1(ṽΓ1

),
as well as for the computation of the particular solution ūN1

, we will choose the same
auxiliary domains (as in Section 5.1)

Ω0
G1

≡Ω0
ūN1

:= [−2,2]× [−2,2].

However, we will select the auxiliary domain

Ω0
G2

=[−1.5,1.5]× [−1.5,1.5]

for the construction of the G2(ṽΓ2
), and we will consider the auxiliary domain

Ω0
ūN2

=[−1.6,1.6]× [−1.6,1.6]

for the computation of the particular solution ūN2
. We will use the Cartesian meshes

2n1 ×2n1 ≡2n2 ×2n2 with n1≡n2=10

for the domains Ω0
G1

and Ω0
G2

, and we will select two different discrete norms (3.9),
with α=0.5 and α=1.0, for the construction of the G1(ṽΓ1

) and G2(ṽΓ2
). The results

are reported in table 5.11 (α=0.5) and in table 5.12 (α=1.0). As demonstrated, the
results are not affected by the choice of α. The errors that are reported in tables 5.11
- 5.12 are smaller than the ones in tables 5.2 - 5.9. This is again expected due to
the less oscillatory behavior of the function u(2) in (5.8), and due to the choice of the
auxiliary problems.

Remark 5.1. In the numerical experiments presented in Section 5.1 and Section
5.2 we observed the overall second order convergence of the scheme in space. Let us
note that according to the general theoretical results for a second order differential
operator approximated by a discrete one with a second order accuracy [44] (see also
[49]), one would need to consider a Taylor expansion in (3.20) with the derivative
of order 2+2=4 to maintain a second order accuracy of the approximation of the
continuous potential by a difference potential. However, it is also established that in
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L2(L∞) error of u(x,y) Ratio L∞(L∞) error of u(x,y) Ratio
8 0.00001 0.00020
9 2.5e−6 4.0 0.00005 4.0

Table 5.12. Errors as functions of the mesh size m1=m2; number of the basis functions
2L=22; kθ =3, α=1.0, Test Problem 3.

L2(L∞) error of u(x,y) Ratio L∞(L∞) error of u(x,y) Ratio
7 3.3e−5 0.00051
8 8.3e−6 3.97 0.00013 3.92
9 3.1e−6 2.68 4.2e−5 3.10

Table 5.13. Errors as functions of the mesh size m1=m2; number of the basis functions
2L=22; kθ =0, α=0.5, Test Problem 1.

reality this condition can be relaxed (see for example [34] and formula (3.20) in this
paper). We believe that the choice of the norm in the variational formulation (3.13)
plays an important role for the obtained convergence of our method in the considered
numerical tests.

5.3. Third example. As the third test problem we will again consider the
heat equation (2.5), but with the exact solution given below:

u(x,y,t)=

{

e−tuΩ1
(x,y)= e−tu(1), (x,y)∈Ω1,

e−tuΩ2
(x,y)= e−t(u(1)+u(2)+1.5u(3)), (x,y)∈Ω2.

(5.9)

We consider here c1= c2=1 in (5.3). This test problem (5.9) is more challenging since
β(s) 6=1 in the interface conditions (3.4) and it will be calculated as

β(s)=
∂uΩ1

∂n

(∂uΩ2

∂n

)−1

. (5.10)

As before, we set the time step dt=1.e−6 for the test in Section 5.3, and we
consider the same time interval [0,0.01]. Here, for the construction of the G1(ṽΓ1

),
as well as for the computation of the particular solution ūN1

we will choose the same
auxiliary domains (as in the sections 5.1 - 5.2)

Ω0
G1

≡Ω0
ūN1

:= [−2,2]× [−2,2].

Also, for the construction of the G2(ṽΓ2
) we will select the auxiliary domain

Ω0
G2

=[−1.6,1.6]× [−1.6,1.6],

and for the computation of the particular solution ūN2
we will consider the auxiliary

domain

Ω0
ūN2

=[−1.7,1.7]× [−1.7,1.7].

For the domains Ω0
G1

and Ω0
G2

, we will use the Cartesian meshes

2n1 ×2n1 ≡2n2 ×2n2 with n1≡n2=10,
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and we will select the discrete norm (3.9) with α=0.5 for the construction of the
G1(ṽΓ1

) and G2(ṽΓ2
). The results are reported in table 5.13. For this Test Problem

(5.9) we observe that the convergence of our scheme drops. This could be explained by
the jump in the normal derivative of the solution (5.9) at the interface, by the accuracy
limitations of the considered second order finite difference space discretization (used
away from the interface), by the choice of the extension operator (formula (3.23)),
as well as by the first order time discretization scheme used in this paper within the
Algorithms Composition Framework. As the part of the future research, this result
will be improved by considering different time and space discretization within the
developed approach, as well as different choices of the extension operators.

6. Concluding remarks
In this work, we developed an efficient and flexible Algorithms Composition

Framework based on the idea of the difference potentials method (DPM) for parabolic
problems in composite domains. We illustrated the accuracy, efficiency, and flexibility
of our method with several numerical examples. Here, the parabolic equation served
as the simplified model, and the first step towards future development of the pro-
posed scheme for more realistic models of materials, fluids, or chemicals with different
properties in different domains.

In this work we considered and tested our approach only on the geometries with
smooth curvilinear boundaries. In the future, we plan to extend the proposed method
to problems in domains with arbitrary smooth boundaries and with boundaries with
corners. In this respect, the choice of the different basis functions (3.15) for different
parts of the boundaries, as well as the question of the efficient linear solvers for the
scheme (3.13) will be investigated with the goal of designing even more efficient and
accurate methods.

Other future investigations will include the extension and further development of
the proposed scheme to problems in physics and biology (see for example [10, 9, 53, 43,
42], [2, 5, 6, 21]), as well as the development of the space discretization based on the
high-order finite difference methods (see for example [34]), finite-volume methods (see
for example [22], [7, 10, 9]), finite element methods (see for example [11]), and spectral
methods [16] within the proposed algorithms composition framework. Higher-order
time discretization schemes will be studied as well.
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Appendix A. Matrix computation for system of boundary equations.
As we discussed in Section 3.3 using the approximation (3.24) for vγp

in the system of
Boundary Equations (3.8), we obtain the system of linear equations (3.25) with |γp|
equations for 2L unknowns u0

p := (u0p1, ...,u
0
pL), u

1
p := (u1p1, ...,u

1
pL):

B0
pu

0
p+B

1
pu

1
p=0, (p=1,2).
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Once again, |γp| is the total number of points in the set γp (p=1,2) and (u01`,u
1
1`),

(u02`,u
1
2`) are the unknown expansion coefficients of (ṽΓ1

,ṽΓ2
) (3.19). Matrices B0

p

and B1
p are defined as B0

p := (b0
p1, ...,b

0
pL) and B1

p := (b1
p1, ...,b

1
pL). Columns b0

p` and

b1
p` of these matrices are |γp| dimensional vectors. The components of the vectors are

computed as the values at the points of the set |γp| of the grid functions Qγp
[ΠγpΓp

φ`]
and Qγp

[ΠγpΓp
φ?` ], respectively. These values of the grid functions

Qγp
[ΠγpΓp

φ`]≡ΠγpΓp
φ`−PNγp

[ΠγpΓp
φ`]

and

Qγp
[ΠγpΓp

φ?` ]≡ΠγpΓp
φ?` −PNγp

[ΠγpΓp
φ?` ]

are known and obtained by constructing 2L difference potentials. Recall that the dif-
ference potential uNp

=PNγp
vγp

(Definition 2.4, Section 2.1) can be easily constructed
in general. The operator PNγp

is the linear operator of the density vγp
. Here, the

difference potential

PNγp
[ΠγpΓp

φ`], or PNγp
[ΠγpΓp

φ?` ]

is constructed by solving the simple auxiliary problem ((DAP), Definition 2.3), with
the right-hand side given in (2.19), where density vγp

is set to

vγp
:=ΠγpΓp

φ`? , for (xj ,yk)∈γp, (A.1)

or to

vγp
:=ΠγpΓp

φ?`? , for (xj ,yk)∈γp, (A.2)

with fixed `? that takes the values from 1 to L. Let us note that for the detailed
discussion on the general construction of the difference potential, one may refer to
[49, 10].
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