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NEW BOUNDS FOR CIRCULANT JOHNSON-LINDENSTRAUSS
EMBEDDINGS∗

HUI ZHANG† AND LIZHI CHENG‡

Abstract. This paper analyzes circulant Johnson-Lindenstrauss (JL) embeddings which, as
an important class of structured random JL embeddings, are formed by randomizing the column
signs of a circulant matrix generated by a random vector. With the help of recent decoupling
techniques and matrix-valued Bernstein inequalities, we obtain a new bound k=O(ε−2 log(1+δ)(n))
for Gaussian circulant JL embeddings. Moreover, by using the Laplace transform technique (also
called Bernstein’s trick), we extend the result to the subgaussian case. The bounds in this paper
offer a small improvement over the current best bounds for Gaussian circulant JL embeddings for
certain parameter regimes and are derived using more direct methods.
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1. Introduction

The Johnson-Lindenstrauss (JL) lemma [6] is by now a standard technique in high
dimensional data processing. The lemma shows the existence, with high probability,
of JL embeddings, or linear maps A∈R

d→R
k (with k<d) which embed a fixed set of

n points {x1 · · ·xn}⊂R
d into Rk with distortion at most ε. The best known embedding

dimension k, as is achieved by, e.g., Gaussian random matrices, is k=O(ε−2 log(n)).
Recently, there is growing interest in analyzing structured random JL embeddings
which, unlike Gaussian random matrices, have fast matrix-vector multiplication rou-
tines. In this paper, we focus on circulant JL embeddings which, as an important class
of such structured random JL embeddings, are formed by randomizing the column
signs of a circulant matrix generated by a random vector. The first result for circulant
JL embeddings might be formulated as follows.

Theorem 1.1. ([4]) Let x1,x2, · · · ,xn be n points in the d-dimensional Euclidean
space R

d. Let ε∈ (0, 12 ) and let k=O(ε−2 log3(n)) be a natural number. Assume that
f is a composition of a k×d random circulant matrix Ma,k with a d×d random
diagonal matrix Dκ, i.e., f(x)=

1√
k
Ma,kDκx. Then with probability at least 2/3 the

following holds:

(1−ε)‖xi−xj‖22≤‖f(xi)−f(xj)‖22≤ (1+ε)‖xi−xj‖22, i,j,=1, · · · ,n. (1.1)

Here, the random circulant matrix Ma,k is defined by a random vector a=
(a0, · · · ,ad−1) whose entries are independent Bernoulli variables or independent nor-
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mally distributed variables. Concretely,

Ma,k=











a0 a1 a2 · · · ad−1

ad−1 a0 a1 · · · ad−2

...
...

...
. . .

...
ad−k+1 ad−k+2 ad−k+3 · · · ad−k











∈R
k×d.

The random diagonal matrix Dκ is

Dκ =











κ0 0 0 · · · 0
0 κ1 0 · · · 0
...

...
...
. . .

...
0 0 0 · · · κd−1











∈R
d×d,

where κ=(κ0,κ1, · · · ,κd−1) is a Bernoulli sequence, i.e., each entry of κ takes the
values +1 or −1 with probability 1/2. Here and thereafter, we will call the mapping
f a (sub)gaussian circulant JL embedding when the random vector a is set as a
(sub)gaussian random vector.

Compared with the standard bound k=O(ε−2 log(n)), Theorem 1.1 only es-
tablished a worse bound k=O(ε−2 log3(n)). Later on, Vyb́ıral [12] improved the
bound to k=O(ε−2 log2(n)) by employing the discrete Fourier transform and sin-
gular value decomposition to deal with the dependence caused by the circulant
structure. Recently, by randomizing the column signs of matrices that have the
Restricted Isometry Property (RIP) [2], Krahmer and Ward [3] further improved
the bound to k=O(ε−2 log(n)log4(d)) which is better than another recent bound
k=O(ε−4 log(n)log4(d)) by Ailon and Liberty [1]. Most recently, Krahmer, Mendel-
son, and Rauhut [7] derived new bounds for the RIP of partial circulant matrices. By
combining these bounds with the connection between RIP and JL in [3], the current
best bound for Gaussian circulant JL embedding reads

k=O(ε−2 log(n)(logd)2(loglogd)2). (1.2)

We summarize these JL bounds in table 1.1.

work JL bound

[4] k=O(ε−2 log3(n))

[12] k=O(ε−2 log2(n))

[1] k=O(ε−4 log(n)log4(d))

[3] k=O(ε−2 log(n)log4(d))
[3], [7] k=O(ε−2 log(n)(logd)2(loglogd)2)

Table 1.1. Bounds for Gaussian circulant JL embeddings

1.1. Main results. In this study, we combine the decoupling technique in
[12] with the matrix-value Bernstein inequality in [11] to derive a new and improved

bound k=O(ε−2 log(1+δ)(n)) for Gaussian circulant JL embeddings.
Traditionally, the key step in the JL lemma is to estimate the probability bounds

of P(‖f(x)‖22≥ (1+ε)k) and P(‖f(x)‖22≤ (1−ε)k). The authors in [4] obtained the
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following estimations:

P(‖f(x)‖22≥ (1+ε)k)≤ exp(−c(kε2)1/3) (1.3)

and

P(‖f(x)‖22≤ (1−ε)k)≤ exp(−c(kε2)1/3), (1.4)

where c is an absolute constant. One can see that it is just the power 1/3 making the
bound to be kε2∼ log3(n), i.e., k=O(ε−2 log3(n)). Vyb́ıral [12] improved the right-

hand side of inequalities (1.3) and (1.4) to exp(− ckε2

logn ), and hence directly derived

a better bound k=O(ε−2 log2(n)). Our main result, stated in Theorem 1.2, is more
general and can recover the result in [12] under a strictly weaker constraint on the
number n if d>12. Also, the bound for Gaussian circulant JL embeddings, derived
in Corollary 1.3, offers an improvement over existing bounds.

Theorem 1.2 (Main result). Let k≤d be natural numbers and let ε∈ (0, 12 ). Let
x∈R

d be a unit vector, a=(a0,a1, · · · ,ad−1)∼Nd(0,Id). Assume that f is a composi-
tion of a k×d Gaussian circulant matrix Ma,k with a d×d random diagonal matrix

Dκ, i.e., f(x)=Ma,kDκx. Then with probability at least 1−(d+k)e−
τ logδ n

2 , it holds
that

P(‖f(x)‖22≥ (1+ε)k)≤ exp

(

−c(τ)kε2

logδn

)

(1.5)

and

P(‖f(x)‖22≤ (1−ε)k)≤ exp

(

−c(τ)kε2

logδn

)

, (1.6)

where c(τ)= 1
8τ , δ, and τ are positive parameters.

Remark 1.1. Setting τ =2 and δ=1 in Theorem 1.2 gives c(τ)= 1
16 and

1−(d+k)e−
τ logδ n

2 =1− d+k

n
.

Thus, letting 1− d+k
n ≥ 5

6 , i.e., n≥
√

6(d+k), Theorem 1.2 rederives the inequalities
(3.4) and (3.5) in [12] with an explicit value c= 1

16 , and the condition on n is strictly

relaxed from n≥d to n≥
√

6(d+k) when d>12, since n≥d>
√

6(d+k) for any k<d;
for more details please refer to Lemma 3.1 and the proof of Theorem 1.3 in [12].

The following corollary follows by a union bound over C2
n pairs of points; note

that we have set τ =2 for simplicity.

Corollary 1.3. Let x1,x2, · · · ,xn be n points in the d-dimensional Euclidean space
R

d. Let ε∈ (0, 12 ) and let k=O(ε−2 log(1+δ)(n)) be a natural number, where δ>0.
Assume that f is a composition of a k×d Gaussian circulant matrix Ma,k with a
d×d random diagonal matrix Dκ, i.e., f(x)=

1√
k
Ma,kDκx. Then with probability at

least 2
3

(

1−(d+k)e− logδn
)

, the following holds:

(1−ε)‖xi−xj‖22≤‖f(xi)−f(xj)‖22≤ (1+ε)‖xi−xj‖22, i,j,=1, · · · ,n. (1.7)
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Remark 1.2. Compared with the current best bound (1.2), Corollary 1.3 only
offers an improved bound for a relatively small non asymptotic range of n. In fact,
in order for the stated probability to be positive, we derive that log(d+k)< logδ(n)
and hence log(d)< logδ(n). On the other hand, we need logδ(n)≤ log2(d) to have an
improved estimate over (1.2). Therefore, for the parameter regimes satisfying

log(d)< logδ(n)≤ log2(d),

Corollary 1.3 indeed offers an improved bound k=O(ε−2 log(1+δ)(n)) for Gaussian
circulant JL embedding. However, once n is sufficiently large that log2(d)≤ logδ(n),
the derived bound in Corollary 1.3 becomes increasingly worse than (1.2). In other
words, the bound (1.2) is asymptotically stronger than that in Corollary 1.3.

1.2. Extension. We generalize the main result to the case of subgaussian
circulant JL embedding by borrowing the Laplace transform technique (also called
Bernstein’s trick). Here X is a subgaussian random variable with constant η referring
to E[exp(tX)]≤ exp(ηt2) for some η>0. We only discuss the case of η≤1/2, which
includes many types of random circulant matrices we are interested in. An important
type is the Bernoulli circulant matrix. In fact, if X is a Bernoulli random variable,
then E[exp(tX)]= 1

2 exp(t)+
1
2 exp(−t)=cosh(t)≤ exp( 12 t

2). So the Bernoulli random
variable X is subgaussian with η= 1

2 . For the subgaussian case, we have the following
results.

Theorem 1.4. Let k≤d be natural numbers and let ε∈ (0, 12 ). Let x∈R
d be a

unit vector, and choose a subgaussian vector a=(a0,a1, · · · ,ad−1) having a uniform
subgaussian constant η>0. Assume that f is a composition of a k×d subgaussian
circulant matrix Ma,k with a d×d random diagonal matrix Dκ, i.e., f(x)=Ma,kDκx.

Then with probability at least 1−(d+k)e−
τ logδ n

2 it holds that

P(‖f(x)‖22≥ (1+ε)k)≤ exp

(

−c(θ,η,τ)kε2

log2δn

)

(1.8)

and

P(‖f(x)‖22≤ (1−ε)k)≤ exp

(

−c(θ,η,τ)kε2

log2δn

)

. (1.9)

Here, c(θ,η,τ)=θ( 1
2τη −4θ) is some absolute constant, where 0<θ<min{1, 1

8ητ } and

δ,τ >0 are fixed parameters, the number n needs to be set big enough such that 2θε
logδn

<

1
2 , and the subgaussian constant η obeys 1

2
1−β2

1+β2 ≤η≤ 1
2 with β= θε

τ log2δn
< 1

2 .

Again, the following corollary follows by a union bound over C2
n pairs of points

and setting τ =2.

Corollary 1.5. Let x1,x2, · · · ,xn be n points in the d-dimensional Euclidean space
R

d. Let ε∈ (0, 12 ) and let k=O(ε−2 log1+2δn) be a natural number, where δ is a fixed
positive parameter. Assume that f is a composition of a k×d subgaussian circu-
lant matrix Ma,k with a d×d random diagonal matrix Dκ, i.e., f(x)=

1√
k
Ma,kDκx.

Assume that the subgaussian constant η obeys 1
2
1−β2

1+β2 ≤η≤ 1
2 , where β= θε

log2δn
<1,

0<θ<min{1, 1
16η}, and n is big enough such that 2θε

logδn
< 1

2 . Then with probability at

least 2
3

(

1−(d+k)e− logδ(n)
)

the following holds:

(1−ε)‖xi−xj‖22≤‖f(xi)−f(xj)‖22≤ (1+ε)‖xi−xj‖22, i,j,=1, · · · ,n. (1.10)
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Remark 1.3. The bound k=O(ε−2 log1+2δn) is independent of the parameters
η, β, and θ. These parameters are used to bound the subgaussian constant. In other
words, the conclusion in Corollary 1.5 only applies to some special subgaussian cases.

Remark 1.4. Although our main result can be extended to the subgaussian case,
we have to admit that the bound k=O(ε−2 log1+2δ(n)) in Corollary 1.5 is weaker
than (1.2) due to the factor log2δ(n) and the implicit requirement log(d)< logδ(n) in
the probability bound. However, our analysis is more direct than that in [7] and our
bound is comparable to (1.2) when the number of points n is approximately the same
as the ambient dimension d.

2. Proof of Theorem 1.2
In this section, we will prove Theorem 1.2 by showing that for any fixed unit

vector x, f(x)=Ma,kDκx has the concentration property. We divide the proof of
Theorem 1.2 into three steps. Since the random matrix Ma,kDκ couples the random
vectors a and κ together, the first step decouples these two random vectors so that
we can apply some existing concentration results to them separately. The second
step estimates the spectral norm of random matrix Y whose randomness is from the
Bernoulli random vector κ. By using the special structure of the random matrix Y , we
deduce a tighter and more general estimate than that from [12]. Our derivation relies
on the matrix-valued Berstein inequality in [11]. The last step is a direct application
of the concentration of quadratic function to the Gaussian random vector a.

Step 1: Decoupling. We define the matrix

Y =











x0κ0 x1κ1 x2κ2 · · · xd−1κd−1

x1κ1 x2κ2 x3κ3 · · · x0κ0

...
...

...
. . .

...
xk−1κk−1 xkκk xk+1κk+1 · · · xk−2κk−2











∈R
k×d.

Then it holds that

‖f(x)‖22=‖Ma,kDκx‖22=‖Y a‖22.

Let Y =UΣV T be the singular value decomposition of Y . Since Y ∈R
k×d, we take

matrices U ∈R
k×k,V ∈R

d×k to be real orthogonal matrices [5]. Thus b=V T a is a
k−dimensional vector of independent Gaussian variables. Hence,

‖Y a‖22=‖UΣV T a‖22=‖UΣb‖22=‖Σb‖22=
k−1
∑

j=0

|λj |2b2j ,

where λj ,j=0,1, · · · ,k−1 are the singular values of Y , and bj =
∑d−1

i=0 Vijai. Let µj =
|λj |2. Then

‖µ‖1=
k−1
∑

j=0

|uj |=
k−1
∑

j=0

|λj |2=‖Y ‖2F =k, (2.1)

where ‖Y ‖F is the Frobenius norm of Y , and the last identity is due to the fact that
x∈R

d is a unit vector.
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Step 2: Spectral estimate. While the analysis of the decoupling process in
the first step closely follows from Vyb́ıral [12], the estimate of the spectral norm of Y
is quite different. We begin with the following lemma [11].

Lemma 2.1 (Matrix-valued Bernstein inequality). Consider a finite sequence
{Bi} of fixed matrices with dimension d1×d2, and let {ξi} be a finite sequence of
independent standard normal variables or symmetrical Bernoulli variables. Then, for
all t≥0,

P{‖
∑

i

ξiBi‖≥ t}≤ (d1+d2)e
−t2/2σ2

, (2.2)

where
σ2 :=max{‖

∑

i

BiB
T
i ‖,‖

∑

i

BT
i Bi‖}.

To apply this lemma to our case, we define two d×d permutation matrices

P =















0 0 0 · · · 0 1
1 0 0 · · · 0 0
0 1 0 · · · 0 0
...
...
...
. . .

...
...

0 0 0 · · · 1 0















∈R
d×d and C=















1 0 0 · · · 0 0
0 0 0 · · · 0 1
0 0 0 · · · 1 0
...
...
...
. . .

...
...

0 1 0 · · · 0 0















∈R
d×d.

Let S=(Ik 0k×(d−k)). By multiplying matrix S at the left-hand side of an arbi-
trary matrix, one obtains its first k rows as a new rectangular matrix with dimension
k×d; thus the matrix Y can be written in the form

Y =

d−1
∑

i=0

κixiSP
iC,

d−1
∑

i=0

κiBi, (2.3)

where the random matrix Bi=xiSP
iC. Now, we estimate the spectral norm of ran-

dom matrix Y by using Lemma 2.1.

Lemma 2.2. Let Y be defined as before. Then it holds that

P{‖Y‖≥ t}≤ (d+k)e−t2/2. (2.4)

Proof. By Lemma 2.1, we only need to show that

max
{∥

∥

∥

d−1
∑

i=0

BiB
T
i

∥

∥

∥,
∥

∥

∥

d−1
∑

i=0

BT
i Bi

∥

∥

∥

}

=1,

where Bi=xiSP
iC. In fact, on one hand,

d−1
∑

i=0

BiB
T
i =

d−1
∑

i=0

x2
iSP

iCCT (Pi)TST =

d−1
∑

i=0

x2
i Ik, (2.5)

where we have employed the property QT =Q−1 for every permutation Q, SST = Ik,
CCT = Id, and Pi(Pi)T = Id. Since x is a unit vector, we get

∑d−1
i=0 BiB

T
i = Ik, which

implies ‖∑d−1
i=0 BiB

T
i ‖=1. On the other hand,

d−1
∑

i=0

BT
i Bi=

d−1
∑

i=0

x2
iC

T (Pi)TSTSPiC (2.6a)
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=
d−1
∑

i=0

x2
iC

T (Pi)T
(

Ik 0
0 0

)

PiC (2.6b)

�
d−1
∑

i=0

x2
i Id= Id. (2.6c)

Thus, ‖
∑d−1

i=0 B
T
i Bi‖≤1. This completes the proof.

Taking t=
√
τ logδ/2n with δ,τ being positive parameters in the probability in-

equality (2.4), we have the estimation

‖µ‖∞=‖λ‖2∞=‖Y‖2≤ τ logδn (2.7)

with probability at least 1−(d+k)e−
τ logδ n

2 . From (2.1) and (2.7),

‖µ‖2≤
√

‖µ‖1‖µ‖∞≤
√

τk logδn (2.8)

holds with probability at least 1−(d+k)e−
τ logδ n

2 .

Step 3: Concentration. To finish the proof, we need the following concentra-
tion result [8], which is also the main tool employed in [4, 12].

Lemma 2.3. Let Z=
∑s

i=1αi(a
2
i −1), where the ai are independent identically

distributed (i.i.d.) normal variables and αi are nonnegative numbers. Then for any
t>0,

P(Z≥2‖α‖2
√
t+2‖α‖∞t)≤ exp(−t), (2.9)

P(Z≤−2‖α‖2
√
t)≤ exp(−t). (2.10)

Now, let us complete the proof. First, we have

P(‖Y a‖22≥ (1+ε)k)=P

(

k−1
∑

j=0

µj(b
2
j −1)≥ εk

)

. (2.11)

Denote Z=
∑k−1

j=0 µj(b
2
j −1); then we need to estimate P(Z≥kε). By the estimation

(2.9) in Lemma 2.3, we get

P(Z≥2‖µ‖2
√
t+2‖µ‖∞t)≤ exp(−t). (2.12)

Using (2.7) and (2.8), we derive

P(Z≥2

√

τkt logδn+2τt logδn)≤ exp(−t). (2.13)

Setting t= c(τ)kε2

logδn
with c(τ)= 1

8τ , we have

2

√

τkt logδn+2τt logδn=
(

√
2

2
+

ε

4

)

kε≤kε. (2.14)

Thus, we finally get

P(Z≥kε)≤ exp
(

− c(τ)kε2

logδn

)

, (2.15)

which shows (1.5). The inequality (1.6) can be proved in the same manner by invoking
the estimation (2.10) in Lemma 2.3.



702 CIRCULANT JL EMBEDDINGS

3. Proof of Theorem 1.4
For the subgaussian case, we provide a direct proof by using the Laplace transform

technique. First, we need the following lemma.

Lemma 3.1. If X is subgaussian with constant η>0 and Xi∼X are i.i.d., then

E[exp(λW 2)]≤ 1√
1−4ηλ

, (3.1)

where W =
∑k−1

i=0 Xiβi with βi∈R satisfying
∑k−1

i=0 β
2
i =1. Moreover, define ϕ(λ)=

logE[exp(λ(W 2−1))]. Then it holds that

ϕ(λ)≤ 8η2λ2

1−4ηλ
, for λ<

1

4η
and η≤ 1

2
. (3.2)

Proof. For the proof of the first part, see [9]. Here we only show the second
part. Using the estimate of bound E[exp(λW 2)] in (3.1) and the conditions λ< 1

4η

and η≤ 1
2 , we calculate

ϕ(λ)≤−1

2
log(1−4ηλ)−λ (3.3a)

=2ηλ−λ+

∞
∑

m=2

2m−1 (2ηλ)
m

m
(3.3b)

≤
∞
∑

m=2

2m−1 (2ηλ)
m

m
=

∞
∑

m=2

8η2λ2(4ηλ)m−2

m
(3.3c)

≤
∞
∑

m=2

8η2λ2(4ηλ)m−2=
∞
∑

m=0

8η2λ2(4ηλ)m (3.3d)

=
8η2λ2

1−4ηλ
, for λ<

1

4η
and η≤ 1

2
, (3.3e)

which completes the proof.

We divide the proof of Theorem 1.4 into two parts.

Part A: Proof of probability inequality (1.8). Similar to the argument in
the proof of Theorem 1.2, we need to estimate

P

(

k−1
∑

j=0

µj(b
2
j −1)≥ εk

)

, (3.4)

where bj =
∑d−1

i=0 Vijai is not a Gaussian variable but a linear combination of subgaus-
sian variables, i.e., each bj has the form of W in Lemma 3.1. So we cannot directly
invoke Lemma 2.2. Here we use the Laplace transform technique to complete the
proof. We derive that

P

(

k−1
∑

j=0

µj(b
2
j −1)≥ εk

)

=P(exp
(

k−1
∑

j=0

λµj(b
2
j −1)

)

≥ exp(λεk)), for λ>0 (3.5a)

≤ inf
λ>0

E
[

exp
(

∑k−1
j=0 λµj(b

2
j −1)

)]

exp(λεk)
(3.5b)
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= inf
λ>0

∏k−1
j=0 E[exp(λµj(b

2
j −1))]

exp(λεk)
(3.5c)

≤ inf
0<λµj<1/4η

∏k−1
j=0 exp(ϕ(λµj))

exp(λεk)
, (3.5d)

where (3.5b) follows from the Markov inequality, (3.5c) follows from the independence
of bj , and (3.5d) is due to the additional restriction of λ and the expression of ϕ(·).
Denote f(λ)= 8η2λ2

1−4ηλ ; then it is a monotonically increasing function since its derivative

is positive. Moreover ‖µ‖∞≤ τ logδn with probability at least 1−(d+k)e−
τ logδ n

2 from
(2.8). Thus, together with Lemma 3.1 we have

ϕ(λµj)≤f(λµj)≤
8η2λ2τ2 log2δn

1−4ηλτ logδn
, for j=0, · · · ,k−1. (3.6)

With this uniform bound and a tighter restriction of λ, we continue to estimate the
probability inequality (3.5d) and get

P

(

k−1
∑

j=0

µj(b
2
j −1)≥ εk

)

≤ inf
0<λ<1/4ητ logδn

exp

(

8kη2λ2τ2 log2δn

1−4ηλτ logδn
−λεk

)

. (3.7)

Take λ= θε
2ητ log2δn

, where θ is a positive parameter and ε obeys 0<ε<1/2. In order to

satisfy the constraint 0<λ< (4ητ logδn)−1, one needs to require that 0<θ<1. Now,
using this special choice of λ, we get an upper bound

P

(

k−1
∑

j=0

µj(b
2
j −1)≥ εk

)

≤ exp

(

− kε2

log2δn

(

θ

2ητ
− 2θ2

1− 2θε
logδn

))

. (3.8)

For any fixed parameter δ, let n be big enough such that 2θε
logδn

< 1
2 . Then the upper

bound can be relaxed to

P

(

k−1
∑

j=0

µj(b
2
j −1)≥ εk

)

≤ exp

(

− kε2

log2δn

( θ

2ητ
−4θ2

)

)

. (3.9)

Let c(θ,η,τ)=θ( 1
2ητ −4θ); then it is a positive constant depending on parameters

θ,η,τ if θ< 1
8ητ . Thus, the probability inequality (1.8) holds.

Part B: Proof of probability inequality (1.9). In the following, we will show
that the inequality (1.9) can be obtained in the same manner under the additional

parameters constraint 1
2
1−β2

1+β2 ≤η≤ 1
2 where β= θε

τ log2δn
< 1

2 . Our aim is to estimate

P

(

k−1
∑

j=0

µj(1−b2j )≥ εk
)

. (3.10)

Define a new function

φ(λ)= logE[exp(λ(1−W 2))], (3.11)
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where the random variable W is defined as in Lemma 3.1. Applying the Laplace
transform technique and using the new function above, we get

P

(

k−1
∑

j=0

µj(1−b2j )≥ εk
)

≤ inf
λ>0

E[exp(
∑k−1

j=0 λµj(1−b2j ))]

exp(λεk)
(3.12a)

≤ inf
0<λµj<1/4η

∏k−1
j=0 exp(φ(λµj))

exp(λεk)
. (3.12b)

If we could prove the inequality

φ(λ)≤ 8η2λ2

1−4ηλ
, when 2λη=β<

1

2
and

1

2

1−β2

1+β2
≤η≤ 1

2
, (3.13)

where β= θε
τ log2δn

, then we can prove (1.9) as Part A because setting λ= θε
2τη log2δn

,

ϕ(λ) and φ(λ) take the same upper bound. Now, let us show inequality (3.13) as
follows:

φ(λ)≤−1

2
log(1+4ηλ)+λ (3.14a)

=−1

2

∞
∑

m=1

(−1)m−1 (4ηλ)
m

m
+λ (3.14b)

=
1

2

∞
∑

m=1

(4ηλ)m

m
−

∞
∑

m≡1(mod2)

(4ηλ)m

m
+λ (3.14c)

=

∞
∑

m=2

2m−1 (2ηλ)
m

m
+2ηλ−

∞
∑

l=1

(4ηλ)2l−1

2l−1
+λ, (3.14d)

where (3.14a) follows from the first part of Lemma 3.1. From (3.3c) to (3.3e), it holds
under the condition λη< 1

4 that

∞
∑

m=2

2m−1 (2ηλ)
m

m
≤ 8η2λ2

1−4ηλ
. (3.15)

Denote g(λ)=
∑∞

l=1
(4ηλ)2l−1

2l−1 . Then

g(λ)=

∞
∑

l=1

2
22l−2

2l−1
(2ηλ)2l−1≥2

∞
∑

l=1

(2ηλ)2l−1=
4ηλ

1−4η2λ2
, (3.16)

where the inequality follows from that 22l−2

2l−1 ≥1 for every positive number l. Hence, it

suffices to show 2ηλ− 4ηλ
1−4η2λ2 +λ≤0, or equivalently to show β− 2β

1−β2 +
β
2η ≤0 since

2λη=β. After a simple calculation, one needs 1
2
1−β2

1+β2 ≤η, which is just the assumed

condition. Thus, the inequality (3.13) holds and hence the estimate (1.9) follows.

Remark 3.1. The condition on the subgaussian constant 1
2
1−β2

1+β2 ≤η is only required

in estimating (1.9). Such a requirement can guarantee that inequality (3.13) holds
and hence gives us a uniform probability estimates. If one gives up the uniform
expressions in (1.8) and (1.9), then the condition may be relaxed. We leave the
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possible improvements of the lower bound on the subgaussian constant open for further
investigations.
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