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THE HARNACK INEQUALITY FOR SECOND-ORDER ELLIPTIC

EQUATIONS WITH DIVERGENCE-FREE DRIFTS∗

MIHAELA IGNATOVA† , IGOR KUKAVICA‡ , AND LENYA RYZHIK§

Abstract. We consider an elliptic equation with a divergence-free drift b. We prove that an
inequality of Harnack type holds under the assumption b∈Ln/2+δ where δ>0. As an application
we provide a one-sided Liouville’s theorem provided that b∈Ln/2+δ(Rn).
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1. Introduction

In this paper, we consider elliptic equations of the form

−∆u+b ·∇u+au=0 (1.1)

in a domain Ω⊂R
n. Here a(x) is a given function and b(x) is a prescribed divergence

free vector field, i.e., divb=0. The qualitative properties of solutions to elliptic and
parabolic equations in divergence form with low regularity of the coefficients have
been studied extensively, starting with the classical papers of De Giorgi [5], Nash [12],
and Moser [11]. We are mostly interested in the improved regularity for divergence
free drifts b, which arise in fluid dynamics models (cf. [1, 2, 6, 9, 15, 10, 16]).

As can be easily seen from a simple scaling argument, the natural Lebesgue spaces
for the coefficients in the equation for the local regularity theory to hold are a∈Ln/2

and b∈Ln, and, indeed, regularity properties of solutions for the case a∈Ln/2+δ,
where δ>0, and b∈Ln have been known since the work of Stampacchia [14]. It is
well known that a strong divergence free flow may induce better regularity and decay
of solutions of elliptic and parabolic problems by means of improved mixing; see, for
instance, [4] and references therein. It is also known that a divergence free-drift of
critical regularity can still lead to regular solutions [2, 3]. The question we study
in this paper is whether the divergence free condition on b allows one to relax the
regularity assumptions on b given by Stampacchia.

Let us recall some recent results in this direction. In a recent paper [13], Nazarov
and Ural’tseva significantly relaxed the classical regularity assumptions for divergence-
free b by establishing the Harnack inequality and the Liouville theorem for weak

solutions to (1.1) if b belongs to a Morrey space M
n/q−1
q with n/2<q≤n, which lies

between Ln and BMO−1. In [6], Friedlander and Vicol proved the Hölder continuity
of weak solutions to drift-diffusion equations with a drift in BMO−1. In [15], Seregin
et al. established the Liouville theorem and the Harnack inequality for elliptic and
parabolic equations with divergence free drifts b lying in the scale invariant space
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BMO−1. All these spaces share the same scaling properties as Ln and are thus the
natural candidates for good regularity theory.

In the present paper, we establish the Harnack inequality and the one-sided Li-
ouville theorem for Lipschitz generalized solutions to (1.1) when a(x) and b(x) lie in
the space Lq(Ω) with n/2<q≤n, and b is divergence free. Our results also hold for
weak solutions provided that the drift b satisfies certain additional assumptions (cf.
equation (27) in [13]). More precisely, we establish a Harnack-type inequality

sup
y∈BR(x)

u(y)≤C inf
y∈BR(x)

u(y), (1.2)

for all R>0 (see Theorem 2.1), and use this estimate to establish the one-sided
Liouville theorem when a=0 in Theorem 2.3. The constant C in (1.2) depends on
the Lq-norms of a and b, where q>n/2, but not on the solution u. Note that the
Ln/2-norm is not scale invariant: If we set bl(x)=(1/l)b(x/l), then ‖bl‖Ln/2 = l‖b‖Ln/2 .
Because of this, one can not expect the constant C to be independent of R, and,
indeed, the constant given explicitly in Remark 2.2 blows up as R→0.

The paper is organized as follows. In Section 2, we state our main results, Theo-
rems 2.1 and 2.3. The proof is based on two auxiliary results, Lemmas 2.4 and 2.5.
We first show (see Lemma 2.4) that weak solutions of (1.1) are locally bounded by
employing the classical Moser iteration technique. Then, in Lemma 2.5, we derive a
weak Harnack inequality, the proof of which is inspired by the proof of Han and Lin
[8, Theorem 4.15] for elliptic equations without lower-order coefficients. Our main
results, Theorems 2.1 and 2.3, are direct consequences of Lemmas 2.4 and 2.5.

2. The main results

Our first result is the Harnack inequality.

Theorem 2.1 (Harnack inequality). Let u be a nonnegative Lipschitz solution

to the elliptic equation (1.1) in Ω, that is,

∫

Ω

(∂ju)(∂jϕ)+

∫

Ω

bj(∂ju)ϕ+

∫

Ω

auϕ=0

for any Lipschitz function ϕ≥0 in Ω such that ϕ=0 in Ωc. Assume that a∈Lq(Ω),
b∈Lq̄(Ω) for n/2<q,q̄≤n, and that divb=0 in the sense of distributions. Then for

any BR⊂Ω we have

sup
BR

u≤C inf
BR

u. (2.1)

Here C is a constant depending on n, q, q̄, R, ‖a‖Lq(BR), and ‖b‖Lq̄(BR).

Remark 2.2. From the proof we can deduce that

C=C(n,q,q̄)

(

1+(R2−n/q‖a‖Lq(BR))
1/(2−n/q)

+(R1−n/q̄‖b‖Lq̄(BR))
1/(2−n/q̄)

)C(n)MR

, (2.2)

where MR=1+R2−n/q‖a‖Lq(BR)+R1−n/q̄‖b‖Lq̄(BR) .

Theorem 2.1 has the following consequence when Ω=R
n.
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Theorem 2.3 (One-sided Liouville’s theorem). Let a(x)≡0 and b(x) be as in

Theorem 2.1. Then any nonnegative Lipschitz solution u to the elliptic equation (1.1)
in R

n is equal to a constant.

We note that [13] provides a two-sided Liouville’s theorem under the same as-
sumptions, that is, the only solutions of (1.1) that are bounded both from above and
from below are constants. However, the one-sided Liouville’s theorem in [13] requires
b to belong to a Morrey space which is in the same scaling class as Ln.

Proof. Without loss of generality, we may assume that u is a nonnegative
Lipschitz solution to (1.1) with infRn u=0. Then for every ε>0, we have infBR

u≤ ε
for any sufficiently large ball BR. By Theorem 2.1, supBR

u≤C infBR
u≤Cε for all

sufficiently large R>0. Observe that the constant C given explicitly by (2.2) depends
on R but remains bounded as R→∞. Therefore, the assertion is established. 2

Theorem 2.1 is an immediate consequence of the following two lemmas that com-
pare supBθR

u and infBθR
u to ‖u‖Lp(BτR) with some small p>0 and 0<θ<τ <1.

Here, for 0<p<1 we still use the notation

‖u‖Lp(B)=

(∫

B

up

)1/p

,

though it is not a norm.

Lemma 2.4. Assume that u is a nonnegative Lipschitz subsolution to the equation

−∆u+b ·∇u+au=0 (2.3)

with a∈Lq(Ω), b∈Lq̄(Ω) for n/2<q,q̄≤n, and divb≤0 in the sense of distributions.

Then for any BR⊂Ω, p>0, and 0<θ<τ <1,

sup
BθR

u≤C

(

1+
(

R2−n/q‖a‖Lq(BR)

)1/(2−γ0)

+
(

R1−n/q̄‖b‖Lq̄(BR)

)1/(2−γ0)
)n/p

×R−n/p‖u‖Lp(BτR), (2.4)

where C=C(n,p,q̄,θ,τ) is a positive constant and γ0∈ (0,2) is such that γ0=n/q̄ for

n≥3 and γ0=(q̄(1/2−1/2∗))−1 for n=2 with 2∗>2q̄/(q̄−1).

Lemma 2.5. Assume that u is a nonnegative Lipschitz supersolution to (1.1) satis-
fying the assumptions of Theorem 2.1. Then for any BR⊂Ω and 0<θ<τ <1 there

exists a small positive number p0=p0(n,q,q̄,θ,τ,R,MR) such that

(∫

BτR

up0

)1/p0

≤C inf
BθR

u, (2.5)

where C=C(n,q,q̄,θ,τ,R,MR) is a positive constant and

MR=1+R2−n/q‖a‖Lq(BR)+R1−n/q̄‖b‖Lq̄(BR).

Proof. [Proof of Theorem 2.1.] We apply Lemmas 2.4 and 2.5, which are valid
for any Lipschitz solution u≥0 to (1.1) and a small number p=p0 as in Lemma 2.5.
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2

The rest of the paper contains the proofs of Lemma 2.4 and Lemma 2.5. Both
lemmas are proved using the Moser iteration, with the general strategy based on the
proof of the Harnack inequality in [8].

3. The proof of Lemma 2.4

Let u be a nonnegative Lipschitz subsolution of (2.3) in Ω, i.e.,

∫

Ω

(∂ju)(∂jϕ)+

∫

Ω

bj(∂ju)ϕ+

∫

Ω

auϕ≤0 (3.1)

for any Lipschitz function ϕ≥0 in Ω such that ϕ=0 in Ωc.
For simplicity of presentation, we assume a=0. Also, we assume without loss of

generality that R=1. The proof consists of a priori estimates which can be made
rigorous as in [7, 8]. First, we obtain an a priori bound on the Lp1 -norm of u on a
smaller ball Br1 , in terms of an Lp2 -norm of u on a larger ball Br2 with r1<r2 but
p1>p2. Then an iterative procedure is used to bring the gap between r1 and r2 to
zero and simultaneously send p1 to infinity.

Let β≥0 and η(x) be a Lipschitz cut-off in the ball Bτ such that 0≤η(x)≤1.
We use (β/2+1)uβ+1η2γ as a test function in (3.1) to obtain

(

β

2
+1

)∫

(∂ju)∂j(u
β+1)η2γ+

(

β

2
+1

)∫

uβ+1(∂ju)∂j(η
2γ)

+

(

β

2
+1

)∫

bju
β+1(∂ju)η

2γ ≤0. (3.2)

Let w=uβ/2+1 so that ∂jw=(β/2+1)uβ/2∂ju. By (3.2), we get

β+1

β/2+1

∫

|∇w|2η2γ ≤−2γ

∫

w(∂jw)η
2γ−1(∂jη)−

∫

bjw(∂jw)η
2γ . (3.3)

For the first term in the right side we have

−2γ

∫

w(∂jw)η
2γ−1∂jη=γ

∫

w2
(

η2γ−1∆η+(2γ−1)η2γ−2|∇η|2
)

, (3.4)

while for the second

−

∫

bjw(∂jw)η
2γ =

1

2

∫

(∂jbj)w
2η2γ+γ

∫

bjw
2η2γ−1∂jη≤γ

∫

bjw
2η2γ−1∂jη, (3.5)

as divb≤0. Therefore, we get

∫

|∇w|2η2γ ≤
β/2+1

β+1
γ

∫

w2
(

η2γ−1∆η+(2γ−1)η2γ−2|∇η|2
)

+
β/2+1

β+1
γ

∫

bjw
2η2γ−1∂jη. (3.6)

Next, set γ0=n/q̄. Then, as q̄ >n/2, we have γ0∈ (0,2) and, in addition

1

q̄
+

γ0
2∗

+
2−γ0
2

=1 (3.7)
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for n≥3 where 2∗=2n/(n−2). If n=2 then we may choose 2∗>2q̄/(q̄−1) arbitrarily
and γ0=(q̄(1/2−1/2∗))−1 so that γ0∈ (0,2) and (3.7) are also satisfied.

Let γ=1/(2−γ0) so that γγ0=2γ−1. Then, by Hölder’s inequality we have
using (3.7)

∫

bjw
2η2γ−1∂jη≤

∫

|bj ||wη
γ |γ0 |w|2−γ0 |∂jη| (3.8)

≤‖b‖Lq̄‖wηγ‖γ0

L2∗ ‖w|∇η|1/(2−γ0)‖2−γ0

L2 ,

as 0≤η≤1. By the Gagliardo-Nirenberg inequality, this leads to

∫

bjw
2η2γ−1∂jη≤

1

2
‖∇(wηγ)‖2L2 +C‖b‖

2/(2−γ0)
Lq̄ ‖w|∇η|1/(2−γ0)‖2L2 . (3.9)

By (3.6), (3.4), and (3.9), we obtain

∫

|∇(uβ/2+1ηγ)|2≤C

∫

uβ+2η2γ−1|∆η|+C

∫

uβ+2η2γ−2|∇η|2

+C‖b‖
2/(2−γ0)
Lq̄ ‖uβ/2+1(∇η)1/(2−γ0)‖2L2 . (3.10)

By Sobolev embedding used in the left side of (3.10), we get

‖uβ/2+1ηγ‖L2χ ≤C

(∫

uβ+2η2γ−1|∆η|

)1/2

+C

(∫

uβ+2η2γ−2|∇η|2
)1/2

+C‖b‖
1/(2−γ0)
Lq̄ ‖uβ/2+1(∇η)1/(2−γ0)‖L2 , (3.11)

where χ=n/(n−2) if n≥3 and χ>2 is arbitrary if n=2. Now, let η∈C∞
0 (Ω) be

such that η≡1 in Bri+1
, η≡0 in Bc

ri , |∇η|≤C/(ri−ri+1), and |∆η|≤C/(ri−ri+1)
2.

Then we have

‖uβ/2+1‖L2χ(Bri+1
)≤

C

ri−ri+1
‖uβ/2+1‖L2(Bri

)

+
C

(ri−ri+1)1/(2−γ0)
‖b‖

1/(2−γ0)
Lq̄(Bri

) ‖uβ/2+1‖L2(Bri
). (3.12)

The main point of (3.12) is that, since χ>1, we have a bound on a higher norm of
u on a smaller ball in terms of the lower norm of u on a larger ball. We now apply
the estimate (3.12) iteratively on pairs of balls Bri+1

⊂Bri , and also let βi→+∞.
More precisely, we choose βi=2(χi−1) and ri=θ+(τ−θ)2−i for i=0,1,2, . . . , so
that ri−ri+1=(τ−θ)2−(i+1). We obtain

‖u‖L2χi+1 (Bri+1
)

≤

(

C2i+1

τ−θ
+

(

C2i+1

τ−θ
‖b‖Lq̄(Bri

)

)1/(2−γ0)
)1/χi

‖u‖L2χi (Bri
)

≤C1/χi

2(i+1)/(γ1χ
i)

(

(τ−θ)−1+
(

(τ−θ)−1‖b‖Lq̄(Bri
)

)1/(2−γ0)
)1/χi

‖u‖L2χi (Bri
),

(3.13)
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where γ1=min{2−γ0,1}. By iteration, letting i→+∞, we conclude that the estimate
(2.4) holds for p≥2.

Now, let p∈ (0,2). We have just shown that

sup
Bθ

u≤C
(

(τ−θ)−1+
(

(τ−θ)−1‖b‖Lq̄(Bτ )

)1/(2−γ0)
)n/2

‖u‖L2(Bτ )

≤C
(

(τ−θ)−1+
(

(τ−θ)−1‖b‖Lq̄(Bτ )

)1/(2−γ0)
)n/2

‖u‖
1−p/2
L∞(Bτ )

‖u‖
p/2
Lp(Bτ )

, (3.14)

which leads to

sup
Bθ

u≤
1

2
‖u‖L∞(Bτ )+C

(

(τ−θ)−1+
(

(τ−θ)−1‖b‖Lq̄(Bτ )

)1/(2−γ0)
)n/p

‖u‖Lp(Bτ ).

A standard iteration argument (cf. [8, Lemma 4.3]) then implies

sup
Bθ

u≤C
(

(τ−θ)−1+
(

(τ−θ)−1‖b‖Lq̄(Bτ )

)1/(2−γ0)
)n/p

‖u‖Lp(Bτ ), (3.15)

and the proof of Lemma 2.4 is complete. 2

4. Proof of Lemma 2.5

We assume without loss of generality that R=1. The proof is similar in spirit to
that of Lemma 2.4: We obtain an a priori bound and use it iteratively.

Let u be a nonnegative Lipschitz supersolution to (1.1). We assume without loss
of generality that u>0, and consider v=1/u. The function v satisfies

−∆v+b ·∇v−av≤0 in Ω, (4.1)

or equivalently

∫

(∂jv)(∂jϕ)+

∫

bj(∂jv)ϕ−

∫

avϕ≤0 (4.2)

for any function ϕ∈C∞
0 (Ω) such that ϕ≥0 in Ω. By Lemma 2.4, it follows that for

any 0<θ<τ <1 and p>0, we have

sup
Bθ

v≤C‖v‖Lp(Bτ ) (4.3)

with C=C(n,p,q,q̄,τ,θ,M1). Therefore, we have

inf
Bθ

u≥
1

C

(∫

Bτ

u−p

∫

Bτ

up

)−1/p(∫

Bτ

up

)1/p

. (4.4)

We claim that there exists p0>0 such that

∫

Bτ

u−p0

∫

Bτ

up0 ≤C (4.5)

with a constant C=C(n,q,q̄,τ,M1), which would finish the proof of Lemma 2.5.
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Reduction to an exponential bound. In order to prove (4.5) for some suffi-
ciently small p0>0, denote

(logu)Bτ
=

1

|Bτ |

∫

Bτ

logu,

and set

w=logu−(logu)Bτ
. (4.6)

We shall show that there exists p0>0 such that
∫

Bτ

ep0|w|≤C, (4.7)

where C=C(τ), which in turn implies (4.5). Indeed, if we assume that (4.7) holds,
then

∫

Bτ

ep0(logu−(logu)Bτ )≤C (4.8)

and
∫

Bτ

e−p0(logu−(logu)Bτ )≤C. (4.9)

Therefore, we have e−p0(logu)Bτ

∫

Bτ
ep0 logu≤C and ep0(logu)Bτ

∫

Bτ
e−p0 logu≤C. Mul-

tiplying these two inequalities then leads to (4.5).

An L2-bound for w. We now prove (4.7). First, we establish bounds on the
L2-norm of w. The function w satisfies

|∇w|2≤−∆w+b ·∇w+a in B1. (4.10)

Fix τ ∈ (0,1), and let (1+τ)/2≤ r1<r2≤1. Also, let η∈C1
0 (Ω) with 0≤η≤1 be a

cutoff such that η≡1 on Br1 , η≡0 on Bc
r2 , and |∇η|≤C/(r2−r1). Multiplying (4.10)

by η2 and integrating over B1, we obtain
∫

B1

|∇w|2η2≤2

∫

B1

(∂jw)η(∂jη)+

∫

B1

bj(∂jw)η
2+

∫

B1

aη2

≤2‖η∇w‖L2‖∇η‖L2 +

∫

B1

bj(∂jw)η
2+‖a‖Lq‖η2‖Lq′ , (4.11)

where 1/q+1/q′=1. Integrating by parts in the drift term and using divb=0 gives

∫

B1

bj∂jwη
2=−2

∫

B1

bjwη∂jη≤2‖b‖Lq̄‖wη‖Lq̄′ ‖∇η‖L∞ , (4.12)

where 1/q̄+1/q̄′=1. By the Gagliardo-Nirenberg inequality, we have

‖wη‖Lq̄′ ≤C‖wη‖1−α
L2 ‖∇(wη)‖αL2 , (4.13)

with α=n/2−n/q̄′ if q̄′≥2 and α=0 otherwise. Using Young’s inequality and

‖∇(wη)‖αL2 ≤C‖η∇w‖αL2 +C‖w∇η‖αL2 , (4.14)
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we obtain
∫

B1

bj∂jwη
2≤

1

4
‖η∇w‖2L2 +C‖b‖

2/(2−α)
Lq̄ ‖wη‖

(2−2α)/(2−α)
L2 ‖∇η‖

2/(2−α)
L∞

+C‖b‖Lq̄‖wη‖1−α
L2 ‖w∇η‖αL2‖∇η‖L∞ . (4.15)

From (4.11) and (4.15), it follows that

‖η∇w‖2L2 ≤
1

2
‖η∇w‖2L2 +

C

(r2−r1)2

+
C

(r2−r1)2/(2−α)
‖b‖

2/(2−α)
Lq̄ ‖wη‖

(2−2α)/(2−α)
L2

+
C

(r2−r1)1+α
‖b‖Lq̄‖w‖L2 +C‖a‖Lq . (4.16)

Absorbing the factor ‖η∇w‖2L2 and using Young’s inequality, we get

‖∇w‖2L2(Br1
)≤

1

2
‖w‖2L2(Br2

)+
C

(r2−r1)2+2α
‖b‖2Lq̄ +C‖a‖Lq +

C

(r2−r1)2

≤
1

2
‖w‖2L2(Br2

)+
CM1

(r2−r1)2+2α
, (4.17)

where M1=1+‖a‖Lq(B1)+‖b‖2Lq̄(B1)
. Now, since

∫

Bτ

w=0,

by the Poincaré inequality and (4.17), we obtain

‖∇w‖2L2(Br1
)≤

1

2
‖∇w‖2L2(Br2

)+
CM1

(r2−r1)2+2α
(4.18)

for all (1+τ)/2≤ r1<r2≤1, which implies (cf. [8, Lemma 4.3])

∫

B(1+τ)/2

|∇w|2≤CτM1, (4.19)

where the constant Cτ depends on τ ∈ (0,1). Also, since (1+τ)/2≥ τ , we conclude by
the Poincaré inequality

∫

B(1+τ)/2

w2≤C

∫

B(1+τ)/2

|∇w|2≤CτM1. (4.20)

Bounds on the higher norms of w. Next, we need to estimate
∫

Bτ
|w|β for

all β≥1. As in the proof of Lemma 2.4 the idea is to bound first the higher norms of
w on smaller balls in terms of the lower norms of w on larger balls and then use the
iteration process.

We multiply (4.10) by |w|2βη2γ and integrate over B1 in order to obtain

∫

B1

|w|2β |∇w|2η2γ ≤2β

∫

B1

|w|2β−2w|∇w|2η2γ+2γ

∫

B1

|w|2β(∂jw)η
2γ−1(∂jη)
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−
2γ

2β+1

∫

B1

bj |w|
2βwη2γ−1(∂jη)+

∫

B1

a|w|2βη2γ . (4.21)

Here we utilized divb=0 and ∂j |w|=w∂jw/|w|. For the first term on the right side
of (4.21) we use

2β|w|2β−1≤
1

4
|w|2β+(8β)2β , (4.22)

while for the second

2γ

∫

B1

|w|2β(∂jw)η
2γ−1(∂jη)

≤
1

4

∫

B1

|w|2β |∇w|2η2γ+Cγ2

∫

B1

|w|2βη2γ−2|∇η|2. (4.23)

This leads to
∫

B1

|w|2β |∇w|2η2γ ≤C(8β)2β
∫

B1

|∇w|2η2γ+Cγ2

∫

B1

|w|2βη2γ−2|∇η|2

+
Cγ

β+1

∫

B1

|b||w|2β+1η2γ−1|∇η|+C

∫

B1

|a||w|2βη2γ . (4.24)

Let τ ≤ r<R≤ (1+τ)/2. We now choose a cutoff η∈C1
0 (Ω) with 0≤η≤1 such that

η≡1 on Br, η≡0 on Bc
R, and |∇η|≤C/(R−r). By (4.17), we have for the first term

on the right side of (4.24)

(8β)2β
∫

B1

|∇w|2η2γ ≤ (8β)2β
∫

B(1+τ)/2

|∇w|2≤Cτ (8β)
2βM1. (4.25)

On the other hand, for the left side of (4.24), we use

∣

∣∇(|w|β+1ηγ)
∣

∣

2
≤2γ2|w|2β+2η2γ−2|∇η|2+2(β+1)2|w|2β |∇w|2η2γ . (4.26)

Hence, we obtain
∫

B1

∣

∣∇(|w|β+1ηγ)
∣

∣

2
≤Cγ2

∫

B1

|w|2β+2η2γ−2|∇η|2+C(β+1)2(8β)2βM1

+Cγ2(β+1)2
∫

B1

|w|2βη2γ−2|∇η|2

+Cγ(β+1)

∫

B1

|b||w|2β+1η2γ−1|∇η|

+C(β+1)2
∫

B1

|a||w|2βη2γ . (4.27)

For the third term on the right side we utilize

(β+1)2|w|2β ≤
(β+1)2β+2

β+1
+

(

|w|2β
)(β+1)/β

(β+1)/β
≤ (8β)2β+ |w|2β+2, (4.28)

which gives

Cγ2(β+1)2
∫

B1

|w|2βη2γ−2|∇η|2
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≤C(8β)2βγ2

∫

B1

η2γ−2|∇η|2+Cγ2

∫

B1

|w|2β+2η2γ−2|∇η|2

≤
C(8β)2βγ2M1

(R−r)2
+Cγ2

∫

B1

|w|2β+2η2γ−2|∇η|2, (4.29)

as M1≥1. The last two terms in (4.27) are estimated as follows. First, we have

∫

B1

|a||w|2βη2γ =

∫

B1

|a|(|w|β+1ηγ)2β/(β+1)η2γ/(β+1)

≤‖a‖Lq‖|w|β+1ηγ‖
2β/(β+1)

L2βq′/(β+1) , (4.30)

where 1/q+1/q′=1. Now, we use the Gagliardo-Nirenberg inequality

‖|w|β+1ηγ‖L2βq′/(β+1) ≤C‖|w|β+1ηγ‖1−α
L2 ‖∇(|w|β+1ηγ)‖αL2 (4.31)

with α=n/2−n/(2βq′/(β+1)) if 2βq′/(β+1)≥2, and α=0 otherwise. Note that by
the assumption q>n/2 we have α<1. If α>0 we obtain by Young’s inequality

∫

B1

|a||w|2βη2γ ≤C‖a‖Lq‖|w|β+1ηγ‖
2(1−α)β/(β+1)
L2 ‖∇(|w|β+1ηγ)‖

2αβ/(β+1)
L2

≤

(

1

(2(β+1))2αβ/(β+1)
‖∇(|w|β+1ηγ)‖

2αβ/(β+1)
L2

)(β+1)/αβ

+C
(

(2(β+1))2αβ/(β+1)‖a‖Lq‖|w|β+1ηγ‖
2(1−α)β/(β+1)
L2

)(β+1)/(β(1−α)+1)

. (4.32)

If α=0 the same inequality holds with the first term on the far right side omitted.
As α∈ [0,1) and 2αβ/(β+1)≤2, this implies

∫

B1

|a||w|2βη2γ ≤
1

(2(β+1))2
‖∇(|w|β+1ηγ)‖2L2

+C(β+1)2α1‖a‖α1

Lq‖|w|
β+1ηγ‖α2

L2 . (4.33)

Here we denoted α1=(β+1)/(β(1−α)+1) and α2=2β(1−α)/(β(1−α)+1). Ob-
serve that α1≥1 and α1 is smaller than a constant independent of β, while 0<α2<2
with α2→2 as β→∞.

For the last remaining term in (4.27), we have

Cγ(β+1)

∫

B1

|b||w|2β+1η2γ−1|∇η|

=Cγ(β+1)

∫

B1

|b|
(

|w|β+1ηγ
)(2β+1)/(β+1)

ηγ/(β+1)−1|∇η|. (4.34)

Let us choose γ=β+1. Then, the above expression becomes

Cγ(β+1)

∫

B1

|b|
(

|w|β+1ηγ
)(2β+1)/(β+1)

|∇η|

≤C(β+1)2‖b‖Lq̄‖|w|β+1ηγ‖
(2β+1)/(β+1)

L(2β+1)q̄′/(β+1)‖∇η‖L∞ , (4.35)
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where 1/q̄+1/q̄′=1. Once again we apply the Gagliardo-Nirenberg inequality

‖|w|β+1ηγ‖L(2β+1)q̄′/(β+1) ≤C‖|w|β+1ηγ‖1−ᾱ
L2 ‖∇(|w|β+1ηγ)‖ᾱL2 (4.36)

with ᾱ=n/2−n/((2β+1)q̄′/(β+1)) if (2β+1)q̄′/(β+1)≥2 and ᾱ=0 otherwise.
Thus, by Young’s inequality, we have

Cγ(β+1)

∫

B1

|b|
(

|w|β+1ηγ
)(2β+1)/(β+1)

|∇η|

≤C(β+1)2‖b‖Lq̄‖|w|β+1ηγ‖
(1−ᾱ)(2β+1)/(β+1)
L2

×‖∇(|w|β+1ηγ)‖
ᾱ(2β+1)/(β+1)
L2 ‖∇η‖L∞

≤
1

4
‖∇(|w|β+1ηγ)‖2L2 +

C(β+1)2ᾱ1

(R−r)ᾱ1
‖b‖ᾱ1

Lq̄‖|w|
β+1ηγ‖ᾱ2

L2 . (4.37)

Here we denoted ᾱ1=(2β+2)/(2β(1− ᾱ)+2− ᾱ) and ᾱ2=2(2β+1)(1− ᾱ)/(2β(1−
ᾱ)+2− ᾱ). Note that, as in (4.31), we have ᾱ1≥1 and ᾱ1 is less than a constant
independent of β, while 0<ᾱ2<2, and ᾱ2→2 when β→∞.

Putting together (4.27), (4.29), (4.31), and (4.37), we obtain

‖∇(|w|β+1ηγ)‖2L2(BR)≤
C(β+1)2

(R−r)2
‖|w|β+1‖2L2(BR)+

C(β+1)2(8β)2βM1

(R−r)2

+C(β+1)2α1+2‖a‖α1

Lq(BR)‖|w|
β+1‖α2

L2(BR)

+
C(β+1)2ᾱ1

(R−r)ᾱ1
‖b‖ᾱ1

Lq̄(BR)‖|w|
β+1‖ᾱ2

L2(BR). (4.38)

Using Sobolev embedding, we may rewrite (4.38) in the form

‖|w|β+1‖2L2χ(Br)
≤

C(β+1)2κM α̃
1

(R−r)ᾱ1+2

(

‖|w|β+1‖2L2(BR)+(8β)2β

+‖|w|β+1‖α2

L2(BR)+‖|w|β+1‖ᾱ2

L2(BR)

)

(4.39)

where κ=max{α1+1,ᾱ1}, α̃=max{α1,ᾱ1/2}, and χ=n/(n−2) if n≥3 and χ>1 if
n=2. The estimate (4.39) is analogous to (3.12): A higher norm of w on a smaller
ball is bounded in terms of a lower norm of w on a larger ball.

The case 0≤β<1. We now show that (4.39) remains valid for 0≤β<1 by
considering two separate cases: 0≤β<1/2 and 1/2≤β<1. The estimates obtained
here are similar to the ones already derived for β≥1, and we point out only the main
steps.

First, for 0≤β<1/2, we use as a test function (|w|2+1)β−1w2η2γ for (4.10) in
order to obtain

∫

B1

w2|∇w|2

(|w|2+1)1−β
η2γ ≤C

∫

B1

w|∇w|2

(|w|2+1)1−β
η2γ+2γ

∫

B1

w2∂jw

(|w|2+1)1−β
η2γ−1∂jη

+Cγ

∫

B1

|b|(|w|2+1)β+1/2η2γ−1∂jη

+

∫

B1

|a|(|w|2+1)β−1w2η2γ (4.40)
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where for the drift term we also utilized divb=0 and

∫

bj∂jw(|w|
2+1)β−1w2η2γ =

∫

bj∂jφη
2γ =−2γ

∫

bjφη
2γ−1∂jη (4.41)

with φ(x)=
∫ x

0
(y2+1)β−1y2dy≤C(x2+1)β+1/2. Now, since w≤ (|w|2+1)1−β for 0<

β<1/2, we have by (4.19)

∫

B1

w|∇w|2

(|w|2+1)1−β
η2γ ≤

∫

B1

|∇w|2η2γ ≤CM1. (4.42)

For the second term on the right side of (4.40), we get

2γ

∫

B1

w2∂jw

(|w|2+1)1−β
η2γ−1∂jη

≤
1

2

∫

B1

w2|∇w|2

(|w|2+1)1−β
η2γ+Cγ2

∫

B1

w2η2γ−2|∇η|2

(|w|2+1)1−β

≤
1

2

∫

B1

w2|∇w|2

(|w|2+1)1−β
η2γ+

CM1

(R−r)2
, (4.43)

where we used (|w|2+1)1−β ≥1 and (4.20). Since

|∇((|w|2+1)(β+1)/2ηγ)|2

≤2γ2(|w|2+1)β+1η2γ−2|∇η|2+2(β+1)2(|w|2+1)β−1w2|∇w|2η2γ ,

this leads to

∫

B1

|∇((|w|2+1)(β+1)/2ηγ)|2≤C

∫

B1

(|w|2+1)β+1η2γ−2|∇η|2+
CM1

(R−r)2

+C

∫

B1

|b|(|w|2+1)β+1/2η2γ−1∂jη

+C

∫

B1

|a|(|w|2+1)β−1w2η2γ . (4.44)

Using estimates similar to (4.33) and (4.37) for the last two terms, and Sobolev’s
inequality for the left side of (4.44), we obtain

‖(|w|2+1)(β+1)/2‖2L2χ(Br)

≤
CM α̃

1

(R−r)ᾱ1+2

(

‖(|w|2+1)(β+1)/2‖2L2(BR)+1

+‖(|w|2+1)(β+1)/2‖α2

L2(BR)+‖(|w|2+1)(β+1)/2‖ᾱ2

L2(BR)

)

,

(4.45)

where α̃, α2, and ᾱ2 are defined as above. Hence, we conclude (4.39) for 0<β<1/2.

Finally, if 1/2≤β<1, we use as a test function (|w|2+ε)β−1w2η2γ for (4.10).
Then, we proceed exactly as in the case of β≥1. We conclude (4.39) by letting ε→0.
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The iteration process. Next, we consider the iteration process. Let βi=χi−1
and ri= τ+(1−τ)/2i+1 for i=0,1,2, . . . . From (4.39), we get

‖|w|χ
i

‖2L2χ(Bri+1
)≤Cχ2κi2(ᾱ1+2)(i+2)M α̃

1

(

‖|w|χ
i

‖2L2(Bri
)+(8χi)2χ

i

+‖|w|χ
i

‖α2

L2(Bri
)+‖|w|χ

i

‖ᾱ2

L2(Bri
)

)

≤Cχ2κi2(ᾱ1+2)(i+2)M α̃
1

(

‖|w|χ
i

‖2L2(Bri
)+(8χi)2χ

i
)

(4.46)

for all i=0,1,2, . . . . For the second inequality in (4.46) we also used α2,ᾱ2≤2, so
that ‖w‖α2

Lp ≤1+‖w‖2Lp and ‖w‖ᾱ2

Lp ≤1+‖w‖2Lp . Taking 1/(2χi) power on both sides
of (4.46) gives

‖w‖L2χi+1 (Bri+1
)

≤C1/(2χi)χκi/χi

2(ᾱ1+2)(i+2)/(2χi)M
α̃/(2χi)
1

(

‖w‖L2χi (Bri
)+8χi

)

. (4.47)

This leads to the inequality

‖w‖L2χi+1 (Bri+1
)≤ (CM1)

α̃/(2χi)(2χ)κ(i+2)/χi
(

‖w‖L2χi (Bri
)+8χi

)

(4.48)

for all i=0,1,2, . . . , since α̃≥1 and ᾱ1+2≤2κ.
Note that if a sequence Yi satisfies Yi+1≤Ci(Yi+χi) with Ci≥1 and

∏∞
i=1Ci≤ K̄,

then we have by induction

Yi≤C1C2 . . .Ci−1



Y0+
i
∑

j=1

χj−1



≤ K̄

(

Y0+
χi

χ−1

)

≤C(Y0+χi) (4.49)

for all i=0,1,2, . . . . Thus, we obtain

‖w‖L2χi+1 (Bri+1
)≤CM

C(n)
1

(

CM1+χi+1
)

≤CM
C(n)
1 χi+1 (4.50)

for all i=0,1,2, . . . , as
∑i

j=1 j/χ
j ≤C.

Finally, for any β≥1 there exists i∈{0,1,2, . . .} such that

2χi≤β+1≤2χi+1. (4.51)

Thus, we have

(∫

Bτ

|w|β+1

)1/(β+1)

≤C‖w‖L2χi+1 (Bri+1
)≤CM

C(n)
1 (β+1). (4.52)

Therefore, for all β≥1, we obtain

∫

Bτ

(p0|w|)
(β+1)

(β+1)!
≤pβ+1

0

(

CM
C(n)
1 e

)(β+1)

≤
1

2(β+1)
(4.53)

by taking

p0=
1

2CM
C(n)
1 e

. (4.54)
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By (4.20), we also have

∫

Bτ

|w|≤C

(∫

Bτ

w2

)1/2

≤CM1, (4.55)

which gives (4.53) for β∈ [0,1] as well. It follows from (4.53) that (4.7) holds, and
therefore the proof of the lemma is complete. 2
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