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LOW MACH NUMBER LIMIT FOR THE COMPRESSIBLE
MAGNETOHYDRODYNAMIC EQUATIONS IN A BOUNDED
DOMAIN FOR ALL TIME*

CHANGSHENG DOU! AND QIANGCHANG JU#

Abstract. We verify the low Mach number limit of global smooth solutions to the compressible
magnetohydrodynamic equations in a bounded smooth domain in R? with perfectly conducting
boundary is verified for all time, provided that the initial data are well-prepared.
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1. Introduction

Magnetohydrodynamics (MHD) studies the dynamics of compressible quasi-
neutrally ionized fluids under the influence of electromagnetic fields, and has a very
broad range of applications. In the present paper, we consider the flow in a per-
fectly conducting container which is assumed to be a bounded and connected domain
Q CcR? with smooth boundary. We shall study the initial boundary value problem
of the following resistive magnetohydrodynamic equations of a compressible viscous
conducting fluid:

Oyp+div(pu) =0, (1.1)
O(pu) +div(puxu)+ 6%Vp(p) =div(2uD(u)) +AVdivu+(V xH) x H, (1.2)
OH—-Vx(uxH)=-Vx (nVxH), divH=0. (1.3)

Here p, u=(uy,us), and H=(H;,Hs) denote the density, the velocity, and the mag-
netic field of the fluid, respectively, and D(u) = (Vu+Vu')/2. The constants p and
A are the shear and bulk viscosity coefficients of the fluid which satisfy x>0 and
1=+ A>0; the constant 1 >0 is the magnetic diffusivity acting as a magnetic diffusion
coefficient of the magnetic field, and € is the Mach number. The pressure P satisfies

p(p)=ap” (1.4)

in the case of isentropic flows, where a >0 and > 1 are constants.
The initial data for the system (1.1)-(1.3) are prescribed as

p(t=0)=po(x), u(t=0)=up(x), H(t=0)=Ho(x). (L5)

The velocity and the magnetic field are supposed to satisfy the non-slip boundary
condition and the slip boundary condition on the boundary:

u=0 on 09, (1.6)
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662 LOW MACH NUMBER LIMIT FOR THE COMPRESSIBLE MHD EQUATIONS

and
curlH=0, H-n=0 on 09, (1.7)

where curlH=0; Hy — 02 H; and n is the normal vector on 9f2. The condition (1.7)
implies that the container €2 is perfectly conducting ([32]).

Recently, when the non-slip boundary condition (1.6) is replaced by the Navier
slip boundary condition, Jiang and the authors proved in [9] the global existence and
uniqueness of smooth solutions to the system (1.1)-(1.3), and verified the low mach
number limit for all time if the initial data are well-prepared. The aim of the present
paper is to extend the results in [9] to the case that the velocity is supplemented with
the Dirichlet boundary condition (1.6).

The MHD equations have been studied by many applied mathematicians because
of its physical importance, complexity, rich phenomena, and mathematical challenges;
see, for example, [5, 10, 11, 16, 17, 26, 29, 36, 39] and the references cited therein
on the physical background, the well-posedness, and the vanishing viscosity limit.
Recently, Jiang, Ju, Li, and Xin investigated the low Mach number limit of local
smooth solutions to the full MHD equations with heat conductivity in [21, 22] in the
whole space or a torus. The existence of global weak solutions to the MHD equations
was established by [18, 37], while the low Mach number limit was studied in [19, 20].
We remark that the low Mach number limit established in [19]-[22] for the MHD
equations is for the whole space or a torus, and consequently no boundary terms
are involved in uniform a priori estimates. In [19], the authors also considered the
limit for weak solutions in a bounded domain with some additional unusual geometry
conditions.

As for the related compressible Navier-Stokes system (the system (1.1)—(1.3) with
H=0), we also mention that the global smooth small solutions were obtained, for ex-
ample, in [34] for the non-slip boundary condition and in [40] for the Navier slip
boundary condition, while the existence of global large weak solutions was estab-
lished in [13, 24, 25, 30] and others. The corresponding low mach number limit was
investigated extensively in [2, 3, 4, 6, 7, 8, 12, 15, 23, 27, 28, 31, 33, 35], and in the
references cited therein.

In the following, we shall consider the flow with small density variation, i.e.,

p=1+eo.

Applying the usual vorticity identities together with the constraint divH =0, we can
rewrite the problem (1.1)-(1.6) in the form

Opo +div(ou) + ldivu:(), (1.8)
€
1
p(Opu+u-Vu)+ Ep'(l +e0)Vo

1
:uAu+(u+A)Vdivu+(H-V)H—§V|H|2, (1.9)

O:H+ (divu)yH+ (u-V)H— (H-V)u=nAH, divH=0, (1.10)
and the initial and boundary condition are as follows:

o(t=0)=o0¢(z), u(t=0)=up(z), H(t=0)=Hq(x), (1.11)



C. DOU AND Q. JU 663

u=0, on 01, (112)
curlH=0, n-H=0 on 09Q. (1.13)

Thus, the main results of the present paper read as follows.
THEOREM 1.1. Let QCR? be a bounded domain with C* boundary 0. There exists
a positive constant o such that if the initial data og, ug, and Hy satisfy
[1(00, 10, Ho)l[r2 + [ (o, 0, He ) (0) | 1 <, (1.14)
with

/oodxzo and l4+eoqg>m  for some constant m >0, (1.15)
Q

and the compatibility conditions
ug=Hy -n=curlHy=0, on 02

hold, then for any €€ (0,e1] where 0<e; <1 is some constant, the initial boundary
value problem (1.8)-(1.13) admits a unique solution (o,u,H) in Q x RY satisfying

ccC(RT;H?), (u,H)eCR";H*)NL*(RT;H?),
o € C(RT;HY), (u,Hy) eC(RTHYNLA(RT; H?),

where RT =[0,4+00). Furthermore, it holds that

S (lo ()l 22 + | (W, H) (8)[| 1 + || (o0, e, Hy ) (5)]| 2) <O, VEieRY, (1.16)

where C' is a positive constant independent of €.

THEOREM 1.2.  Let the assumptions in Theorem 1.1 be satisfied, and let (u,H) be the
global solution established in Theorem 1.1. Assume the initial data (ug,Ho) — (vo,Bo)
as €0 in L*(Q). Then (u,H)— (v,B) in C(R{_;L?(R)) as e—0, and there exists

a function P(x,t) such that (v,B,P) is the unique smooth solution of the following
initial boundary value problem for the incompressible magnetohydrodynamic equations:

1
vt+v-Vv+VP:uAv+B~VB—§V|B\2, divv =0,
B,+v-VB—-B-Vv=nAB, divB=0,

with initial and boundary conditions

v(z,0)=vo(z), B(z,0)=Bg(z), €,
v=0, B-n=curlB=0 on 99.

In the next section we shall prove theorems 1.1 and 1.2. Roughly speaking, the-
orems 1.1 and 1.2 are proved based on the uniform estimates of solutions in Sobolev
norms which do not depend on time ¢ and the Mach number e. As mentioned above,
compared with the Cauchy or spatially periodic problem, the presence of boundary
here gives rise to some difficulties involved with controlling the boundary terms, in
particular for the low Mach number limit. Moreover the techniques used in [9] for slip
boundary conditions are not adequate for this case. To overcome such difficulties, the
crucial step is to get the H?-estimates of divu near the boundary, for which we shall
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adopt the local isothermal coordinates introduced in [38, 40]. This strategy has also
been used in [3, 23] to study the low Mach limit of the compressible Navier-Stokes
system with non-slip boundary condition. Compared with [3, 23], we need new tech-
niques to get the estimates of magnetic field near the boundary. One key observation
is that AH = —mcurlH, with m =(0,—01)t and curlu= 9, Hy — 92 H;. Another is
that the boundary condition (1.13) is in fact a “complementary boundary condition”
in the sense of Agmon, Douglis, and Nirenberg, thus the classical theory for elliptic
system is available for the magnetic field.

REMARK 1.3. When the domain € is three dimensional, the boundary condition
(1.7) takes the form

nx (VxH)=0 on 9.

For this case, we cannot apply directly the arguments in the present paper to get the
uniform estimates of solutions, and we leave this problem for future work. On the
other hand, in three dimensions when H satisfies the non-slip boundary condition, we
can also obtain similar results as in theorems 1.1 and 1.2 by modifying the arguments
in the present paper.

Before ending this section, we give the notations used throughout this paper. We
use the letter C' (or Cys) to denote various positive constants independent of € (or to
emphasize the dependence on §). For simplicity, we denote by H™ and ||-||g= the
standard Sobolev space H™(f2) and its norm, by L? and ||-||z» the Lebesgue space
L?(Q) and its norm.

2. Proof of Theorem 1.1 and Theorem 1.2

To prove Theorem 1.1, we first establish the local existence for the problem (1.8)—
(1.13) with an arbitrary but fixed e. Assume that the assumptions in Theorem 1.1 are
satisfied. Then modifying the arguments in [38], one can show that there exists a T* >
0 such that for T'<T* the problem (1.8)—(1.13) admits a unique solution satisfying

oeC((0.T),H?), (u,H)eC((0,T],H*)NL*(0,T;H°),
o, €C([0,T),H"), (u;,Hy)cC([0,T],HYNL*(0,T;H?).

In the proof, it is important to note that the boundary conditions (1.13) are “com-
plementing” boundary conditions in the sense of Agmon-Douglis-Nirenberg [1]. This
fact can be verified as in [1]. Therefore the regularity theory of elliptic systems can
be used in the proof. We omit the details of the proof of the local existence here.

To extend the local solution globally in time, we shall establish a differential
inequality which provides us the uniform estimates of solutions for both time and the
Mach number. Suppose that (o,u,H) is the local solution to the initial boundary
value problem (1.8)—(1.13) in Q% (0,T), for 0<T <oo. Moreover, we assume that
1/e<p=1+eoc <c for some constant ¢ > 1.

First, we obtain from the continuity equation (1.8) and the boundary condition

u=0 that
/Uda::/ogdx:O.
Q Q

LEMMA 2.1. For the solution to (1.8)—(1.13), we have
1d

5 77 VP (Wellze + I veulzz + [HZ2) +v0(l[ullZ + [HZ:)
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<Cllull (o7 + 1H[I7), (2.1)

where vy and C' are positive constants independent of €.

Proof. Throughout this section we denote the inner product in L?(£2) by

f,g):= fgdx.
< ’ > /Q
By taking ((1.8),])’(1)0>7 we see that

1d /(1

f—H\/p’(l)UH%Q—m/wVde:—p’(l)/adiv(au)deC’Hu||H1||a||%11.

2 dt € 0 Q

Integrating by parts and using the boundary condition (1.12) , one gets
f/Q(div(2uD(u))+)\Vdivu)~ud9c:/Q(2u\D(u))\2+>\(divu)2)dxzfyo||u||%,1

for some constant o >0. Thus, we take ((1.9),u) to derive that

1d /(1
3 aplvauler Z8 [ u Vot taolul,
Q

€
(1) —p/'(1
Q € Q
<C(l[ull g o7+ allm [ F0).-

((H~V)H—%V|H|2)udx

To deal with the magnetic field equations, we denote m =(0,—01). Then, the
equation (1.10) can be written as

OH+ (divu)H + (u-V)H — (H-V)u = —pcurlcurlH. (2.2)
Taking ((2.2),H) and using (1.13), we find that
1d
2dt
<Ol o L] -

|H||72 +n||curlH||7 . z/ﬂ[(divu)H+(u-V)H— (H-V)uHdx

Putting the above estimates together and keeping in mind that
[F [l <ClIVF|| 2 <C(||divF ||z + [[curlF]| 2), (2.3)

for any vector F € H(Q) with F-n=0, we obtain the estimate (2.1). 0
The momentum equation (1.9) can be written as an inhomogeneous Stokes system
with non-slip boundary condition:

"(1)V
_pruy PV

‘(1) —p(1 1
szU—F)\Vdivu—p(ut—kau)—i—(H-V)H—§V\H|2,

divu=divu,

u|aQ:0.
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Thus we utilize the standard estimates ([14]) of the steady Stokes problem to
obtain the following lemma.

LEMMA 2.2. There exists a constant C >0, such that

g .
Fall s + 11 572 < CCloll + hallFn aliFrs + [V aellZe + v Fe + [ ),

(2.4)
and
[ulls + o7 <CUlo g2 + alF allFs + [ Vuel|7 + ([ dival Ze + B F ) H ).
(2.5)

Since the boundary condition (1.13) is also a “complementary boundary con-
dition” in the sense of Agmon, Douglis, and Nirenberg [1], the classical theory for
elliptic equations yields the following lemma.

LEMMA 2.3. There exists a constant C >0, such that
[H[[3s < CUHL[Fr + l[al[Fr H ) Fs + 1E] 2 [ullps)- (2.6)

Now, we have to derive the estimates of the first order temporal and spatial
derivatives of (o,u,H).
LEMMA 2.4. For the solution to (1.8)—(1.13), we have

L LT A)||divul|? 1H|?

2 [l et Wdiva 2 -+ pflenrl

d
43 [ pundet VDo + [
Q

<O(luellzp + el l[allF + ol zn ol lall a8l g [ g allg). - (2.7)

Proof.  First, differentiating (1.9) with respect to ¢ and multiplying the resulting
equations by u in L2, integrating by parts and using the boundary condition (1.12),
we deduce that

].d 2 . 2 d/ p/(l)/
—— 2 A)lld 2 — d -ud
. [l Va2 + (et V) tival 3 )}+dt [ punde+ =2 | Vo uds

/ _
:/ [Mva]t'udx—l—/(pu%—p(ut~Vu—|—u~Vut))-ud$
0 Q

1
+/(H-VH—§V|H|2)t~udx
Q
<O(l[well 22+ llaell e llall Fe +Noell o ol all s+ Hell g [ e [l o).

We apply ((1.8),p'(1)o¢) and ((2.2),H;) to infer that

(1 '
WD+ [ divads <Clonlolm ullu
Q
and
d
g%chrlHHQLQ—&-HHtHQLQ:/(Hdivu+u-VH—H~Vu)~thx (2.8)
Q

<Cllufl g [H g [[He ||,
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respectively. Summing up the above estimates and using the boundary condition
(1.12) again, we obtain the lemma. |

LEMMA 2.5. For the solution to (1.8)—(1.13), we have

d .
S IVollE <Cs(llo e + [ullf [allfs + 1V 7z + [ dival 7.

(2.9)
+[H s [ H 7)) +0l[ul7s, 0<d <1
Proof.  First, we take V(1.8) to get that
1
Vo +Vdiv(ou)+ -Vdivu=0. (2.10)
€

We perform ((2.10),Vo) to obtain that

Ld

2dt||Va||2Lg:—/Q((u-V)VU+Vu-VU—i—VUdivu—i—anivu)~Vadx

—1 Vdivu-Vodzx
€Ja
2
HEH + 8| Vdivul2s,
€ llr2
(2.11)

<C(lullzllolz + 1 Vdivual| p2[|o]F2) +Cs

for some 0 <d < 1.
We differentiate (1.8) twice with respect to  to have

1
V20, +(u-V)V2i6+2V(u-V)Vo+V3(u-V)o+ V3 (odiva) + Ev%uvu: 0. (2.12)

Taking ((2.12),VZ0) and using Sobolev’s and Young’s inequalities, one obtains

1d Vi |2
5 192012 <olulid + Cslo i+ ||~ ). (2.13)
for some 0 <0 <1.
Combining (2.11) and (2.13) with (2.4), one gets the estimate (2.9). 0

LEMMA 2.6. For the solution to (1.8)—(1.13), we have

d
%(”\/pl(l)at”%? +lv/puel| 7z + I Hel|72) +v2 ([l 7 + [Jcur He[|72)

< Cs(lloellz (laellZs + fullz + l[alfn +lolize + o)
+Cs ([l [Fp [l + IEL 0 [P+ [ |20) + Celol|7e + 0l ullFa, (2.14)

where 0<d <1, and 5 is a positive constant independent of €.

Proof. Taking (0:(1.8),p'(1)0:), we get

1d (1
—||\/p’(1)at||2L2+p7( )/Utdivutdac
Q

2 dt €
= —p/(l)/ (u-Voi+u;-Vo+odiva+ odivug)orde
Q

<O([[uellp +lalF) + Csllolzn +lloelm),



668 LOW MACH NUMBER LIMIT FOR THE COMPRESSIBLE MHD EQUATIONS

for some 0 < § <1, while taking ((1.9);,u;) and using the boundary conditions (1.12),
we find that
P’

1d .
g IVA e+ P+ et Vvl + 22 [ Vo uda

(1) —p'(1
_ / [w%} oy / (petty + - Vit p(u- V),
Q € t Q
1
+§V(\H\2)t—Ht-VH—H~VHt]~utd:v
§5llutllfq1+Ca(\Iotllél(ll(ut,VU)II%z+\\ull‘}p)JrllutIIipIIuHip

[ EL 3 [H ) + el 3,

for some 0 <9 < 1.
Differentiating (2.2) with respect to ¢, we obtain that

Htt +diVutH+diVth +uy- VH +u- VHt - Ht -Vu—H- Vut
—
= —ncurlcurl Hy. (2.15)

Taking ((2.15),H;) and using the boundary conditions (1.13), for some 0<d <1, one
has that
Ld
2dt
= —/ (diVutH+diVth +uy- VH+U VHt - Ht -Vu—H- Vut) th.’L'
Q

1L 12 + 7| curlHL |17

<O(lluellF + IVl Z2) + Co (I HL i [P + L1 20)-

Hence, by choosing § appropriately small, we obtain the estimate (2.14). 0

Putting the estimates (2.1), (2.5), (2.6), (2.7), (2.9), and (2.14) together in an
appropriate way, we prove the following lemma.

LEMMA 2.7. There exists a constant C >0 such that

S0(t) +o(t) < CWo (1) (@o(1) +03(0)) + divul s,

where
Do (t) =[u72 +[|Vull72 + [[dival |72 + [|vVpu 72 + lo]|72 + [ Vo |7
+||0t||2L2+HHH%z+||VHH%2+||HtHiz+/pUt-udl‘»
Q

Wo(t) =lulfs + uelif +llolze +lloelZs + 1l 7 + [ H] Zs.

It is clear that the crucial step is to estimate ||divu/|%,.. As in [38, 3, 23], we shall
obtain the interior and boundary estimates of ||divul|%., respectively. Let us begin
with the interior estimates. Let xo € C§°(Q2).

LEMMA 2.8. For the smooth solution (o,u,H) to the system (1.8)-(1.13), we have

1d 1 d .
> Ixov/PVullZ: + 1AObn X0V lZz +ullxoVullZ: +Allxo Vdivu|z.
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<o(llullZrs +loliF) + Csllol i + lallz lulFs + [Vl + a7
HIVal e ([l Ze + Vol e [l Ze + [l s [l F -+ [H]F0). (2.16)

for some 0 <6< 1.

Proof. By taking ((2.10),x3p'(1)Vo) +((1.9), —xZAu), we eliminate the singular
terms to obtain that

1d

2dt

<- / ((u-V)Vo+VuVo + Vodiva+oVdiva)xap' (1) Vodz
Q

1 d .
Ix0v/pVull72 + P (D IxoVallZs +ullxoVull7: +Allxo Vdivul|7

+/QXOVXOpuIVUI2+XonOp|Vu\2—x%quVu-Vu
—2x0VxoVup(u; +u-Vu) —exiVuVe(u; +u-Vu)dr
+/Q2X0VX0Vu(uAu—,uV2u)+[(H-V)H—%VHQ]ngudm
<6(llulls +llolizr) + Cs(llollzn + lullZ lullfs + 1 VallZ: + w7
HIVulfellulfe + [ Volgalluel > + ulls lallz: + ).

1]
LEMMA 2.9. For the smooth solution (o,u,H) to the system (1.8)-(1.13), we have

1d . .
Sl VP (DxoV2a 22 + Ixov/eVullz2) + pllxol V2ullZe + (42 Ixo V2divul 2

< Cs(|[uelFa llo 7 +lallF l[ullFe + ol lallFe +[[ullF o) 3
ol 7z + 1l Fz + B[l 52) +([allFs +[lolFe), (217)
for some 0 <6< 1.
Proof. By taking ((2.12),x2p'(1)V?0), we get that

1d

1
—— p'(l)xg|V20|2dx+f/p’(l)xgv2divuv20dz
2dt Q €

Q
o / 2 |V2(f|2 / 2 2 2 / 272
= P (1)X0u-V72 +2p'(1)xgVu-V(Vo)Vio+Vu-Vop' (1)x;Veo
o
+(VoVdivu+ VZodivu+ o V3divu) -p’(l)X(Q)VQVQJ}da?
<|lulFs +Cslollze, (2.18)

for some 0 < <1. We differentiate (1.9) with respect to = twice to have that

1
PO V2u+p(u-V)Viu+ gvz(va)
=—2eVoVu; —2V(pu) - VVu—eViou; — V2(pu)-Vu

p (YW= e)

: va) +pAV2u+ (4 A V2Vdiva

+V2H-V)H+2V(H-V)VH+ (H-V)V?H - %V?’(HQ). (2.19)
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By taking ((2.19),x2V?u) and integrating by parts, one deduce that
1d
2dt o,
2073 202 1;
—l—/ uxoVou+ (p+A)xgVadivude
Q

1
X%p\V2u|2dx—f/p’(l)xgvzdivuvzadaﬁ
€Ja

<dllullZs +Collluel o + lallf falFs + ol [l 7
+||uH§pIIUII§12+IIUII%2+IIHII?p+IIHII‘}fz)Jr/p’(l)QXonOV2uV20dx
Q

< Cs(uellFpllollz +[lalfn ulZs +llole [ulZs +llalfs oz
Hlo ke + ullze + 18 g2) +6(ulFs + o). (2.20)

We sum up (2.18) and (2.20) and eliminate the singular terms to obtain that

1d :
5 71 VP (WxoV20allZ: +[Ixov/pV2ullZe) + plxo VPl Zz + (14 A) [xo VZdivul[Z:
< Cs(lwellZ ol + [l F lalFs + lolze ullZs + TallZ ol
Ho ke + ullze + 18 32) +6(ulFs + o ]72). (2.21)
0

Now, we derive the boundary estimates by the method of local coordinates. We
proceed essentially as in [23], but we need to deal carefully with the terms involving the
magnetic field. For completeness, we elaborate the local coordinates as follows. First,
one constructs the local coordinates by the isothermal coordinates A(y) to derive an
estimate near the boundary (see also [38]), where

Ao+ Ay >0.

We cover the boundary 9 by a finite number of bounded open sets W* C R? k=
1,2,---, L, such that for any x € W*knQ,

o =M (p,1) =N () +rn(A(9)), (2.22)

where A\¥(y) is the isothermal coordinate and n is the unit outer normal to 9.
Without confusion, we will omit the superscript k in each W* for simplicity. The

orthonormal system corresponding to the local coordinates can be constructed as
Ap
e1:=———, ea:=n(A). (2.23)
Al

A straightforward calculation gives

Jomdet 2% >0,

A(p,r)
for sufficiently small » and .J € C?. We set the unknowns in local coordinates
R(t,y):=p(t,A(y)), U(t,y):=u(t,Ay)), V(t,y):=H(t Ay)).

Because the main difficulty of the boundary estimates lies in the dealing with
singularity terms, it is enough that we only rewrite the equations (1.8), (1.9) in
[0,T] x © which include the singularity terms, where Q:=A~1(WNQ), as

1 ) . )
Rt+galleUJ:f(alleR)UJfR(alleUj), (224)
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/
. . ) 1
(1+6R)(UZ+UJaijkUZ)+p E )akkaR

=par; Dy (ai; DyUY) + (+ N)ayi Dy (a;; DU
. p'(1)—p'(1+€R)

€

akkaR—l—VjaijkVi—aikaVjVj, (2.25)
with initial and boundary conditions
(RaUaV)(t:O7x):(R07U07‘/0)7 (226)
U(t,z)=0, on 0%, (2.27)

where a;; is the (i,7)-th entry of the matrix Jac(A™1) g—g. Clearly, a;; is a C*-

function, and it is easy to see that

2 2
ZanaZj:Wz:L Zﬂblj@jzo- (2.28)
Jj=1 J=1

This localized system has the following properties (see also [38, 23]).

PROPOSITION 2.10.  D;(Ja;;) =0, for j=1,2; <D,U=0, ¢<D,D:U =0 on 9 in the
tangential directions 7,6 =1, where ¢ € C§°(A~1(W)).

Note that
IDy Ul o) SCIVaull o), 103Ul L) <CVaullwrr), 1<p<oo. (2.29)

We remark that the above inequalities apply to R and V', too.
In view of the interpolation || -||3,2 <6l -||3;s + Cs| - ||+, the boundary estimate of
|\V2divu||L%(Lz) can be reduced to the estimate of

t
| [ 3?03 a0y,
0 JQ

where x is a C§° (A~ (W))-function.
LEMMA 2.11. (R,U) satisfy the estimate

d %
i |, eR)DG U+ 1D R dy

+H/ szaijkgTUiaszlgTUider(M+/\)/JX2aka§TUialjngTUjdy
Q Q

V202
<o (Il + e + ||| ) +Collulid + ol + ol luel %
ol a3 s + Il (o= + o)
o VBRI L R 30)). (2.30)

Proof. We apply De, to (2.25); with &, T being the tangential directions to o
to get that

’
. 4 , 1
(1+ER)D§TUZ+(1+6R)Ujaijk§TUl+p E )DgT(akkaR)
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=uD¢r(a; Dy (ai; DU")) + (14 N) Der (ag; Dy (ar; D,U7))
— [Der(1+€R)U} + De(1+€R)D,Uf + D, (1+€R) DU}
+ Der ((1+€R)U?)ar; DU+ De((1+€R)U?) D, (ax; DiUY)
+D7((1+€eR)U?) De(ar; DyU")]
P'(1)—p'(1+eR)
€

+DET< akkaR) + Der(VZap; Dy V' —ay D VIVY).

Then by multiplying the above identity by Jx?D¢,U® and integrating in Q, one de-
duces that

1d , ‘(1 .
3 ~JX2(1+6R)\D57U’|2dy+I¥/~JXQDgT(aMDkR)DgTUZdy
Q Q

+p / IX?ak; DrerU'ar; Dig, U'dy + (pu+A) / Ix*ay; DierU' ayj Dig- U7 dy
Q Q
1 ) )
:5[Dk(JXZakj)(l+eR)U7|DgTUZ\2dy
Q
+/QJXZDgTUi(Dfu+eR)DTU;'+DT(1+eR)D5U;+D57(1+eR)Ug')dy

+/QJX2D§TUi[D5((1JrER)Ujakj)Dkq—UiJrDT((l+€R)Ujakj)Dk5Ui

+ Der (14 €eR)U ay;) DU dy
- /Q aj De; U [uDy(Jx2ay;) Dig- U +v Dy (I x?ag:) Die- U7]

+ Deray;[uDiU Dy (Jx?arj Der U+ (u+N) DyU? Dy (Jx2ayi De, U')]dy
+ /Q IX*De,U{ plar; Di(Dgar; Dy U+ Dyay; DicU")

—i—DgaijkT(alleUi) —i—DTaijkg(alleUi) —&—DgTaijk(alleUi)]
+ (4 A){ari Dy (Deay; Di-U? + Dyag; Dy U7 )
+ Deayi Dy (a;; DiU?) 4 Dy ag; Die (ar; DiU?) + Derayi Dy (ai; DiU?)] }dy

. '(1)—p'(1+€eR
O €

ai; D R)dy

7
+/~ IX*DerU' Der (VVar; DV = ai Dy VIV )dy = > E;,
Q

i=1
where each term on the right-hand side can be estimated by Gagliardo-Nirenberg’s
and Young’s inequalities as follows:
|B1| < CllullFe <dl|ull7s + CsllullZ,
|Eo| < C|[V2ul| o [lo]| o el < IV ull 1 | Vol 22 Vo el
<llulls + CsllollF 17

|Bs| < C|Vol s |[ull o< V2l 22 [ V2ul o + C [Vl 2 [ V2ul s [ V2 e,

+C V20|l 2 [[ul| s [ Vul o< [ V2ul o +C ||V o[ s [ Vu] < [ V]| 22 [ Vu s,

<dl[ullfs +Csllolzzllull 3 [ulls,



C. DOU AND Q. JU 673
|Ea|+|Es| < Cllul g2 |ull s <6l[all3s + Csllul 71,
and

| Be| < C|IV2ul 16|Vl L6 Vol 2+ ClIVul| 2|0 || o | V0| 2
+C|V2ul s [ Vol o llo )| L= V2o |l 2 + C V2l s [| Vo | 16 [ V0| 2,
<6l iz + Csllullzs (loli2 +lloll),
|E7| <CVul| s (| VH] 2| VH s + [ H]| s [ VP H]| £2).
< 6]lull3z + Cs (B[ [ H 7 + |13 [[H s ).
We remark here that in the above estimate of Eg, we have used integration by parts in

order to deal with the presence of third-order derivatives of R. Therefore, we conclude
that

1d , ‘(1 .
-4 JX2(1+6R)|D57U’\2dy+m / Jx*Der (ay; Dy R) D, U'dy
2dt Ja € Ja

+M[ JX2ak:jDk€‘rUialle£TUidy+(M+)‘)/:JX2ak:ka§TUialle£‘rUjdy
Q Q

<o(|[ullFs +llollz) + Cs(lulld +llollelulZ +lloliZ: [ull )l

s (lollze + ol 32) + (P [P + ) ). (2.31)

In order to eliminate the singular term on the left-hand side of (2.31), we argue,
similarly to the above procedure, to find that

1d

/ 1 ‘

€ Ja
P D (30 DerlU7 Des R— [ De (1) DU + Dy (a1) Dy U
= | = (DX a1;) Der U? Der R~ [De (1) Dir U? + D (a1;) Dig
Q
+ Der(ai;) DiU?)Jx? Der R— Jx? D U7 [Dg (1) Dy R

+Dr (i) Dig R+ Der(aij) DiR] dy — / P (1)Ix* Der (a;; DiRU?) De; Rdy
Q

3
—/p’(l)JX2DgT(RalleUj)DETRdy =1,
Q i=1

where the terms I; can be bounded as follows, using Sobolev’s inequality and Lemma
Vo L%

2.2:
2
n=<CIv2ule (|2 L+ (<2 L) <o(|F2] L+ Il ) + Csliuli,
L <C(|Vu 2= [ V2032 + 1Vl s V2ull s [ V20 | 12) < l[ull3s + Csllo [ 42,
L <C(|Vull 1= V20|22 + 11Vl 1| V2ull 15 | V20 | 2 + llo | = | VPu] 12| V20 1)
<6l[ull3s +Csllo | 4=

Vo
€

Hence, we have

lﬂ "(1). T+ 2 2 _p'(l) 2 ) i
P'(1)JIX°|DerR|°dy———= [ Jx*Der(ariDrR) D¢ U'dy
2 dt O € QO
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€

(|22 i) + ol + ol (2.32)

Combining (2.31) with (2.32), one deduces the estimate (2.30). ad

Next we turn to the estimate of the derivatives in the normal direction. According
to the idea in Valli’s paper [38], we will deal with the components of higher-order
derivatives in the normal direction to 9. Taking ag; as in (2.25), we get that

/
, 1
(2044 \) D (ay; DU7 ) — QDQR
=(1+eR) (U +U’ay; DrU")ag;

(1)=p'(1+€eR . . )
_p( )—p'(1+e )D2R+(aikaVJV]—V]aijkVZ)a%
€

+ (D2 (ai; DU ) = ayjaz; Dy(ai; D,UY)). (2.33)
After a straightforward calculation, we see that
/,L(DQ (alleUj) — akjagka (alleUi))
:/,(,(DgangQUj —|—D2a7jD7—Uj+a7—jD2-,—Uj —anggagjagiDQUi
— CLTjCLQiD-,—G,lleUi — Cl-,—jagjagiDgTUi — agjagiDgaTjDTUi)

for 7,6 =1, which does not include the second-order normal derivative DyoU.
First, we take the first-order derivative of (2.33) with respect to y, (7=1), then
multiply by Jx?Dy2(a;;DU7) in L*(Q) to get that

2p

A . ‘(1 .
; /JX2\DTz(aUDlUJ)\2dy—¢€)/~DTQRDTQ(aUDlUJ)dy

Q Q
<C(IVol|slull7e + I Vallisllulis|VulFe + lullzn + 1 Vull3e[ Va7

HlullZe [IV*ulZ2 + IV Ze [Vollis + oL V2o 22 + [ VHI s | VEL Zs
+IIHIIQLwIIVQHIIQLﬁHUII?p+/QJX2|DrgyU|2dy)
<C(llollz=IValZe + ol lall o TallZ + el + alZ

+||u||%1\|u||%3+IIUII%2+IIHII?pIIHH%B)+C/QJX2|DfsyU\2dy- (2.34)

Correspondingly, we apply D;2 to (2.24) and multiply the resulting identity by
P’ (1)Jx?D.2R in L?(£2) to obtain that

Pl(l) d/ 2 2 p/(l)/
hal D 2/
5 3t QJX| 2 R|"dy + < s

JX*DroRDo(ai; DyU?)dy

:—/p’(1)JX2DT2[(alleR)Uj + R(a;; DU )| Do Rdy
Q

<dllullZs +Cs(llollz= +llollz loliZ:)- (2.35)
Combing (2.34) with (2.35), we obtain the following lemma.

LEMMA 2.12. There ezists a small § >0 such that R and U satisfy

d ,
7 ~JXZ\DTQR\%zer/JXZ\DTQ(ULUDIUJ)\%zy
Q Q
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<C(lloll IV ullZe + o7 ulZ lalFe + lullF + lalZ -+l zs alls
+HUH‘}12+IIHH%nIIHIIZ}Is)+C/QJx2\DTsyUI2dy
+ol[ullZs +Cs(llollzz +lloll lloliz)-

Second, we need to estimate || Dag(a;; D;UY) [ 12(@) to close the estimate for divu. We
apply D to (2.33) to get

p'(1)
€
=D3<(1 —&—eR)agi)(UZ + U]aijkUZ)

(2u+)\)D22(alleUj) —

Do R

4 : , '1)—p'(1+eR
+(1+€R)a2i(D2U§+D2(UjaijkUl))—Dz(p() pe( < )D2R)

+ Do [(air DxVIVI —Viay; DV )ag| 4+ O(1) (Do, U? + DU 4+ DyUY).
Multiplying the above identity by Jx?Das(a;;D;U7?) in L? (Q), we see that

20+ A

. (1 .
/~JX2|D22(alleU7)|2dy—Z¥/~JXQDQQRDgg(alleUJ)dy
Q Q
<ClolilIVuellFz + ol hal F lallFe + luedl 3+ lal 3

+||uH?pIIUII?{erIIUII‘}Jz+||H||?{1IIHII%Is)+C/§2Jx2lesrUl2dy~ (2.36)

Meanwhile, we apply Dip to (2.24) and multiply the resulting identity by
p'(1)Jx?Da2R in L?(€) to obtain that

(1) d
2 dt

/(1 )
/~ JX2|D22R|2dy+p—£ ) / JX?Daa RDas(ay; DyU?)dy
Q Q

=—/p'(l)JXZDzﬂ(aszlR)Uj+R(aszlUj)]Dzszy
Q

<dllullZs +Csllollzz +lloll loliZ)- (2.37)
Then, we add (2.36) to (2.37) to obtain the following.

LEMMA 2.13. There exists a small constant 6 >0 such that R, and U satisfy

d .
p ~JX2|D22R|2dy+[JX2|D22(alleUJ)|2dy
Q Q

<C(llolze IV uellzz + ol lalF FalFe + el Z + all
+||u||?{1||u||i13+||0||j*qz+||H||%pHHHiszC/QJx?IDzzTUde
+0l[ulls +Cs(llollze + llo |z llolle)-

Third, we have to estimate the rest of the terms in the third-order normal derivatives.
As in [38], we introduce the following Stokes problem in the original coordinates in
the region WNQ:

—u[(xD-U) o A1+ 2Oy, (YD, R)o A=Y = Fy,
div,[(xD,U) oA"Y = F, (2.38)
(xD-U)oA"1=0, ond(WNQ),
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where

Fi=xD,((1+€eR)U} + U ay; DU — (114 N)ag; Dy (a;; DU7))
(1) —p'(1+€R)

€

+XDT(p akkaR+VjaijkVi—aikaVjVj)
. . 1
+O0(1) (DU + Dy U+ EDkR),
F;=0(1)(D.U’ + DU + D, U7).

Due to the regularity theory for the Stokes system (in [14]), one deduces

/WmQ |A1(XDTU)OA71|2dxSC(||F1H2L2(WQQ) + HF2H§11(W09))~

By virtue of the above inequality, and the fact that [i, o |A:(xD-U)o A~ ?dx is
equivalent to

2 2 2
/ IS s (Y ay Du(x D)) Py
Q =1

i=1k=1
2
= [ 1Y awsa; DurUPdy+0(1) [ (D,UF+1D,,U)dy,
G kl=1 Q
and
2 2 2
Do, U = Z (Zakjalj)DklrU_ Z ZakjaljDleUa
ki=1 j=1 1<k 1<1j=1

which follows from (2.28), we infer that
/ X3 Do UPdy <C(IFL 2 oy + 1Bl o)
e / D2\ Denc Py + Cs [ Va2 + 6lulZs.  (2.39)
Q

By Holder’s inequality and the interpolation inequality, we get that

2
)

+C(lollzz [ Vael 2 +llo e Tal o llullFe + lluel 7+ a7
+llall allZs + ol + IE s )
<ollullZs +Cs(llullF + ol VallZz + ol [allF [l Fe + el 2

+lall allZs + ol e + [ 1), (2.40)

Vo
1113 <C (Jrallfy + lalige +|| =

where we have used the H?-estimate of the Stokes system, i.e.,

Vo2 .
alis +[| <2, <C ol + Il il + I 7wel3 + ldival3).

As for the estimate of Go, it is easy to see that

G2 1% g5||u|\§{3+05||Vu||iz+c/ JX?| Dyr (ar; DU dy. (2.41)
Q
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Substituting (2.40) and (2.41) into (2.39), we obtain

/{2 I D2 U dy <Cs([[ullp + o7 [V ael 2o + ol al 3wl Ze + el 7
+{lulF s + llolze + 1H 0 ] s )

JFC/~ IX* (| Dery | +|Dar (i, DyUY)[*)dy + 0| |ul| s (2.42)
Q

In view of lemmas 2.11-2.13 and the estimate (2.42), we have thus shown the following
estimate in the normal direction.

LEMMA 2.14. Denote
‘I’x(t):/JXQ((1+GR)|D£rUi|2+|D£TR\2+|D72R|2+|D22R|2)(t)dy,
Q
‘I’x(t):/JX2(|Dy£TU|2+|DT2(a1leUj)|2+\D22(alleUj)|2+|D227U|2)(f)dy~
Q

Then we have

d

V202
2 (1) + @ (1) <6 (lula + oz +|| =2 )+ Cs(Irallys + el + ol
o2 e s + o sl + e

Hllallzs (loliFe + ol ) + (B + P ] )

for some 0<d < 1.

DEFINITION 2.15.
(t) =2y + |l 2s + 012 + lon]12
B2+ 2 + / pg - uds + [V,
D (1) =l + e 2+ 1013 + o 12 + L2 + L s,

where 1 is a large enough constant and |[V?u]|tan is the L?>-norm of the second-order
derivatives of u except the normal components to OS).

Combining lemmas 2.1, 2.7-2.9 with Lemma 2.14, choosing € and § small enough,
and transforming the local coordinates into the usual ones, we finally conclude that

d
g\ll(t)—HI)(t) <co®(t) (T (t)+T3(1)), (2.43)
where ¢y > 1 is a constant independent of e.

Now, employing (2.43), and following the analysis in [38], we obtain the following
uniform estimate.

LEMMA 2.16. Suppose ¥(0) <S/(2¢co) for some B € (0,1/2], where cq is the same as
in (2.48). Then there is an €1 >0 such that for any € € (0,€1], we have ¢ <1+eoc<c
for some ¢>1, and ¥ (t) < B/(2¢co) for all t€[0,T].

Now, recalling the definition (2.15) of W¥(¢), we can use the uniform a priori
estimate established in Lemma 2.16 to continue the local solution (o,u,H) globally in
time by applying the standard extension techniques (see, for example, [40]), and obtain
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therefore a global solution. Furthermore, we can employ the uniform estimate given
in Lemma 2.16 and Arzela-Ascoli’s theorem to easily show the strong convergence of
(o,u,H) to the solution of the corresponding incompressible magnetohydrodynamic
equations as € — 0. This completes the proof of Theorem 1.1 and Theorem 1.2.
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