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CONVERGENCE OF THE PENALTY METHOD APPLIED TO A
CONSTRAINED CURVE STRAIGHTENING FLOW*

DIETMAR OELZ

Abstract. We apply the penalty method to the curve straightening flow of inextensible planar
open curves generated by the Kirchhoff bending energy. Thus we consider the curve straightening
flow of extensible planar open curves generated by a combination of the Kirchhoff bending energy
and a functional penalizing deviations from unit arc-length.

We start with the governing equations of the explicit parametrization of the curve and derive an
equivalent system for the two quantities indicatrix and arc-length. We prove existence and regularity
of solutions and use the indicatrix/arc-length representation to compute the energy dissipation. We
prove its coercivity and conclude exponential decay of the energy.

Finally, by an application of the Lions-Aubin Lemma, we prove convergence of solutions to a
limit curve which is the solution of an analogous gradient flow on the manifold of inextensible open
curves. This procedure also allows us to characterize the Lagrange multiplier in the limit model as
a weak limit of force terms present in the relaxed model.

Key words. Curve straightening flow, energy dissipation, elastic regularization, curvature flow,
penalty method.
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1. Introduction
On the set of planar, open curves

A:={z€ H*((0,1),R?); byin < |2 < bmax }»

where buyin, bmax € R with 0 < bpin <1 < bpax, we consider the family of gradient flows
generated by the potential

E.l2] = £ [2] + EPM[2]. (1.1)

The potential consists of a functional for the curvature energy

1 |Z”‘2
£0V[2] = / ds, (1.2)
0 2
and of a penalizing potential
en 1 ! !/
Ep [z]::g E(|2']) ds, (1.3)
0
where
lim E(z)= lim FE(x)=o0,
T—bmin T—bmax
EECQ((bminybmax)vR-l-) with E”(;E)ZIQ>O A er(bminybmax), (14)

E'(1)=E(0)=0.
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602 CONVERGENCE OF THE PENALTY METHOD

Hence E=E(z) is a strictly convex C?-function which takes its minimum at z=1.
2

One possible choice is E(z)= %. We use the functional (1.3) to penalize

deviations from unit arc-length with a view to enforce unit arc-length by letting the

scaling parameter € tend to zero.

The gradient flow generated by the functional (1.1) is described by the system

NY
Ozt 2~ (2 B2y £) =o.
s 1E/(|Z€|) =0, (1.5)

b
er%e s=0,1

za(t:0,) :ZI(.),

\Z’\

where z; € A represents the initial datum of the evolution. Here and throughout the
paper ’ denotes derivatives with respect to the arc-length. With respect to this system
the center of mass fol z-ds is a conserved quantity.

We show in this paper that the solution z. converges to a solution of the gradient
flow generated by the Kirchhoff bending energy (1.2) only (cp. [7, 5]) on the set of
open, inextensible curves Ag:={ue H?((0,1),R?):|u'|=1} described by the system

920 +20" —(Nozp) =0,
20 |s=0,1=0,
—A0%'|s=0,1 =0, (1.6)
20| =1,
20(t=0,.)=z7(.).

Here Ao =MXo(t,s) €R is a Lagrange multiplier function determined by the constraint
on the arc-length

|zp| =1. (1.7)

The system (1.5) can be seen as a regularization of the limit system (1.6) which
is treated in detail in [9]. The results of this previous study are summarized in
Section 2. The limit model exhibits analytical properties like long time convergence
at an exponential rate which, as it turns out, can be to a large extent generalized to
the approximating model. As a matter of fact a large part of this study is devoted
to generalizing the findings on energy dissipation and large time convergence. This
provides the necessary a priori bounds to prove compactness to pass to the limit as
e—0.

The system (1.5) can be used as a numerical approximation to the limit model
which has appeared in the modeling of actin-filaments in biological cells (cf. [10, 11]).
Most notably in combination with an augmented Lagrangian approach the penalizing
potential is currently being used in the development of numerical schemes for models
in cellular biophysics.

Furthermore the results of this study provide a characterization of the Lagrange
multiplier Ag in the limit model (1.6) as a weak limit of a sum of forces, namely the
variation of the total energy (1.1) in the direction of the arclength (compare the second
line in (1.12), (4.4), and Theorem 1.5). Hence the variations of both the curvature
functional (1.2) and the penalizing potential (1.3) contribute to the expression for
which we show convergence to the Lagrange multiplier.
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Finally it is also worth mentioning that the present study implies existence of
solutions and long time convergence also for the limit problem, although these results
were obtained directly in a separate study ([9]).

For a short review on existing literature on curve straightening flows we refer to
[9]. Penalization is a popular method in optimization (e.g. [6]) and control theory
(e.g. [3]). One of the few papers we found which studies the application of the penalty
method to a constrained evolution problem is [2], although this is done in a totally
different context.

The whole argument is based on an approach by which we rewrite the system
(1.5) using is based on an approach by which we rewrite the system (1.5) using the
following notation. The symbol b. =b.(t,s) denotes the arc-length

be:=|z], (1.8)

and w: =we(t,s) €R represents the “indicatrix”of the curve z. (e.g. see [8]) so that

!

Ze

= (cos(we),sin(w;)). (1.9)

EA

The reconstruction of the curve z. from the arc-length b. and the indicatrix w. has to

be done in such a way, that the center of mass of the initial datum Zz; ::fol zrds € R?
is conserved,

o= [ (e s [ (G20 o

Observe also that b.w! and b are both orthogonal components of 2z since

1L /

z z
wl = |ZZ|2 2! and b= |ZZ| 2l
and that the total energy (1.1) can be written as
S P |
Es[z]:/ ((bw) +-() —|—E(b)> ds, (1.10)
o \2 2 €

where w and b are the indicatrix and an arc-length of the curve z, respectively. Also
the initial datum z; will be occasionally written in terms of its indicatrix wy and its
arc-length b7, which allows us to give two alternative expressions for the initial energy:

1, . 1 'n S R |
5ﬁ=/ Lzﬂ—%lﬂéh}hz/ {wmm-+(m)+E@g]@. (1.11)
0 e 02 2 (3

Furthermore, in view of (1.5), we use the following notation for What below will

be shown to be the scalar product of 2/’ — 1E’(|z£|) 7 with IZ’I and Z7 respectively,
namely
1 2,/
re= g (b2wl)’, (1.12)

Ae=b.(w )fw+éyw9.
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The system (1.5) is then equivalent to

Orwe + (r —re(wl)? = MNwl — (Aew )/)(}:0
8t, e reu ) =+ =0, (1.13)
)\ |s 01 ’
we(t—07.) wr(.).
With respect to the energy dissipation equality
d
%ng—DE, (1.14)

this formulation allows us to derive in a straightforward way that the energy dissipa-
tion is given by the two equivalent expressions

2
1 1 1 ! /
DE::/ [(lre 4+ X007+ (= wla) ds:/ (4"’_(8 A= ) ds,
0 0

(1.15)
which will be the main tool for the convergence proof. For later use we introduce a
short notation for the two components of the energy dissipation,

me:=wire+AL and n.i=rl—wl, (1.16)
which allows us to reformulate the system (1.13) as

Opwe = i (wime —nl),

/ /
Otbe =w.n.+ml,

LN =0, (1.17)
we(t=0,.)=wr(.).
In [9] it was shown that the system (1.6) is equivalent to the system
Oywo + wf!" —wEw"” — (wf Ao +2whAy) =0,
N o =y + (k). s,

w67w87)‘0|s:0,1:0’
wo(t:O,.) ZwI(.),

where wg represents the “indicatrix” of the curve zg. It was also shown in this study
that the curvature energy of solutions to system (1.6) decays at an exponential rate
larger or equal to 27% and that limit curves are straight lines.

The paper will be structured as follows. In Section 2 we summarize the results of
[9] as they are used in the present paper.

In Section 3 we derive the system (1.5) and prove that as a result of the usual
construction in the theory of gradient flows and steepest descent flows (cp. [4, 1])
there exists a weak solution z. to the system (1.5).

THEOREM 1.1. If z; €A, then there is z. € H} lochﬂC 2LQHC 801 NLH? such
that z. is a weak solution of (1.5) satisfying

oo pl /
1
/ / {atzs~v+z;’ov”+E/(|z;|) Z‘f ' | dsdt=0 (1.19)
o Jo £ |2¢]
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for allv€C®(R,,C) and z-(t=0,.) = z;. It holds that Oyz. € L?L? with ||0szc|| 212 <
c s tHs +Ls
2&;.

Here and in the sequel we abbreviate the notation of function spaces writing the
subscripts

O; for function spaces on {t€[0,00)}, and
Os for function spaces on {s€[0,1]}.

In Section 4 we rewrite (1.5) obtaining the system (1.13) and prove the following
theorem.

THEOREM 1.2. The solution according to Theorem 1.1 gives a distributional sense
to the system (1.13), i.e. for w. being the indicatriz of z. and b. its arc-length, and
using the notation (1.12), it holds that

oo prl
/ / [<betpy + (rewl +AL) ¢ + (Wi —rl)wlg]dsdt =0, (1.20)
o Jo

/

o} 1 /
/ / [—w58t¢—(ré—Agw;) (f) —(rewl+ L) (stl dsdt=0, (1.21)
0 0 €

€

for all ¢ € H} ,L*NL}H{ , and )\E,w;,wg’|071

that we,b. €CECONLPHY and A.,r.€ L2HY. For every T>0 it also holds that
Wb e L2(0,T;LL) uniformly with respect to e.

=0 a.e. on Ry. Furthermore it holds

Next, in Section 5, we show the formal derivation of the energy dissipation (1.15)
and show that the energy dissipation equation (1.14) is satisfied in a weak sense.

THEOREM 1.3. Let z1 € A, let z. be a solution of problem (1.5) according to Theo-
rem 1.1 and let (we,be,Ae) be the corresponding solution to (1.13) according to Theo-
rem 1.2. Then the energy dissipation equality (1.14) holds weakly in time.

Finally in Section 6 we prove coercivity of (1.15) with respect to the total energy
given by (1.1) and (1.10) (a Poincaré type inequality), obtaining the exponential decay
of the energy.

THEOREM 1.4. (Poincaré type inequality) Under the assumptions of Theorem 1.3
there is a constant C' >0 such that

E<E&rexp(—Ct).

Most notably at large times the total energy tends to zero, lim;_, . E. =0.

Finally we obtain the main theorem of this paper in Section 7. It states the
convergence as € — 0 and the consistency with the limit system, i.e. a subsequence of
solutions to the problem (1.13) and (1.5) converges to a solution of (1.18) and (1.6),
respectively.

THEOREM 1.5. Let (we,be,A:) as in Theorem 1.2 be a solution to the system (1.13).
Then there is a subsequence ;— 0 and limit functions (wo,\o) such that

be, —1 in L'((0,7),W}")NLI(0,T),H}) (1<r,g<oo),

we, —wo in LY(0,T),W2")nLY((0,T),H!) (1<r,g<o0),
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me, —whwy +Ny in LILZ,

ne, —wy —wpho in  LIL2

re, »wy in L'((0,T),L2) and rl —uwy in L7L2,

e, =X in LZH},
as €;—0, where we use the following notation for constant functions: 1:[0,00] X
[0,1]—R, z—1 and 0:]0,00] X [0,1] =~ R, 2+—0.

The limit functions wy and Mg satisfy the weak formulation of (1.18) and they

also allow us to reconstruct zo, which is then a weak solution of (1.6).

2. Preliminary and technical results

We cite here some of the results we obtained in [9] for the limit system (1.6) and
the equivalent system satisfied by the indicatrix (1.18). We define the constrained set
of curves

Ao:={z€ H*([0,1],R?):]2/|=1}.

1 1
THEOREM 2.1. Let z; € Ag. Then there are 206HtlJOCLzOC?’QLEQC?’SCEOL?OHSQ
and \g € leoc,tMS such that the pair (29,\o) s a weak solution of (1.6) satisfying

oo pl
/ / (20 0" 4+ 0pz0 - v+ Aoz - v'| dsdt =0 (2.1)
o Jo
for allveCXP(R4,C), 20(t=0,.) =201 and the constraint (1.7) in a pointwise sense
for all t>0 and s€]0,1].
THEOREM 2.2. The solution according to Theorem 2.1 gives a distributional sense to
the system (1.18), i.e. for wgy being the indicatriz of zg and Ao = \g+w'? it holds that
oo pl
/ / [—wodt) —wli’ Y’ — w( (wh)* Y — Aywhtp + Aow(y'| dsdt=0  and (2.2)
o Jo
00 1
/ / [—wo'whd+whwhd +A5e + Ao (wh)?¢] ds dt =0 (2.3)
o Jo

forally e Hy ,LZNLEH , ¢ € L7 Hj , and Xo,w,wi |, , =0 a.e. onRy. Furthermore
it holds that wo € C/*CO with w) € LI°L2NL2H? and Ao € L2H].

THEOREM 2.3.  Let 21 € Ay, let (z0,\0) be a solution of problem (1.6) according
to Theorem 2.1, and let (wg, o) be the corresponding solution to (1.18) according to
Theorem 2.2. The curvature energy can then be equivalently formulated in terms of
zo and in terms of wy as

"1 "1
50::/ f|zg|2ds:/ —(wp)?ds, (2.4)
0 2 0 2

and the curvature energy of the initial datum is given by

1
1
Eor ;:/ 1212 ds. (2.5)
0
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The energy dissipation is then given by

d 1
%Soz—Do with Dy ::/ [(w{)w(’)’—l—)\g)Q—l—(wg’—w('))\o)2] ds, (2.6)
0

in the sense that (2.6) holds weakly in time.

Finally the coercivity of Dy with respect to the curvature energy & (a Poincaré
type inequality) yields the exponential decay of the energy.

THEOREM 2.4.  (Poincaré type inequality) Under the assumptions of Theorem 2.3,
let the energy of the initial datum be given by (2.5), then it holds that

o <& rexp(—2m't),

where again the curvature energy is alternatively given by (2.4).
As a consequence it holds that

||8tonit2Lg:/ Dodt:(.c:oJ. (27)
0

Finally we add here a technical statement which derives from the definition of
the integrand of the punishing potential (1.4) two inequalities that we will use below
in Section 6 and Section 7.

LEMMA 2.5. Let the punishing profile be as defined in (1.4), which implies among
other things that E" (x) > k for all € (bmin,bmax)- Then it satisfies

R

§(x—1) <E(z)< %E (z)?

fOT all x € (bminabmax)-

Proof. If 1<z <bpnax integrate E’(x) >k twice on (1,x) to obtain the first
inequality. For the second inequality use E’(x)>0 to obtain E'(z)E"(x)>kE'(z)
which gives the result after one integration.

If byin < <1 integrate instead on (z,1) and use —E'(z) > 0. ad

3. Existence of solutions
The definition of the curvature energy (1.2) and the notation used in (1.10) imply
that

1 1 1
/ ()2 ds <2572 £V[), / (H)2ds<26™[z], and / |22 ds <26 2],
0 0 0
(3.1)
We introduce the time step approximation scheme

7%=z, and Z?Eargminw:[ojl]HR{ET(Zg_l)[w]—I—SE[w}}, (3.2)

€

where 7> 0 is the constant size of the time steps, n=0,1,... is the index of the respec-
tive time step, and

R /|w 7
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LEMMA 3.1.  For any given u € A there are constants C1 >0 and Co >0 such that

& (w)[w] +E[w] = Cr||wl 2 = Ca.

Proof. Here we use (3.1) and the fact that the norm |||w||| :=||w]||z2 + ||0ssw]| 2
is equivalent to the usual norm in H2. O

LEMMA 3.2, Let 7>0 and ZI' € A. Then £ is weakly lower semicontinuous and
EPN and &, are weakly continuous with respect to the H?(0,1)%-topology.

Proof.  Weak lower semicontinuity is a consequence of the convexity of £°"V.
The integrand of &£, only depends on w in a Lipschitz continuous way. Since due to
Lemma 3.1 and embedding into C! there is a § >0 such that by, +0 < [w'| < bmax — 0,
the same is true for EP with respect to w’. The result is therefore a consequence of
the compact embedding of H?(0,1) in C1([0,1]). 0

This proves the existence of a sequence (Z7),—o 1,... defined by (3.2) with Z" € H2.
Approximations of the solution of the continuous problem are then defined by linear
interpolation and by piecewise constant extension:

Ze7(t,8):=Z2(s)+ (£ —n) (207 (s) = Z2(s)),
Z2M(t,s):=2Z2(s), for nt <t <(n+1)r.
22 (t,s) =21 N(s),

LEMMA 3.3.  For every fized finite T >0, Z. , € H*((0,T),L*(0,1)) uniformly in 7.
Proof. The variational principle (3.2) implies that

1
/ {217 (Zg—Zg—l)2 ds+E&.[ZM <& (7277 1. (3.3)
0

As a consequence it holds that
1 n n n n
N2 = 2 oy < €127 - (27 (3.4)

Since the time derivative of Z, ; is piecewise constant, taking the sum n=0,1,...,m—1
in (3.4) where m=[T/7] implies

m—1
mT 1 n n
/O 10 Ze 71720,y = — D120 = 22720,y < 26cle), (35)
n=0
completing the proof. 0

This result sets the stage for passing to the limit in the approximate solutions.

LEMMA 3.4. For every fized finite T >0,

lim 7, . =z € L ((0,7); H?(0,1)) NC™/8 ([0,77;¢*([0,1])) N H* ((0,T); L*(0,1)),

(restricting to subsequences) where the convergence is strong in C([0,T];C*([0,1])),
weak in H" ((O,T);LQ(O,l)), and weak* in L ((O,T);HQ(O,l)). The piecewise con-
stant approzimations Z2¢ and ZM% converge to z strongly in L> ([0,77;C*([0,1]))
and weakly* in L> ((0,T); H*(0,1)).
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Proof. The inequalities (3.3) and (3.1) imply that (Z.,); is bounded in
L™ ((O,T);H 2(0,1)) uniformly with respect to 7, which already shows the weak™
convergence. The weak convergence is a consequence of the previous lemma since the
inequality (3.5) for T'— oo implies that

10e2e|72 12 < 2Ec[1]. (3.6)

Another consequence is that Z. , is uniformly bounded in C%'/2 ([0,T];L%(0,1)). The
interpolation inequality

1—2a)/4 34+2a)/4
lellere oy < ellull ) ull o o™,

for 0<a<1/2, can then be used together with the H2(0,1)-bound to obtain
122 #(t2) = Ze 2 (t1)  ere o,y < cxfta — ta| 7295,

completing the convergence proof for Z., by an application of the Arzela-Ascoli
theorem. The convergence results for Zg}f and Z7"  are straightforward
consequences. 0

This implies Theorem 1.1 due to the following argument.

Proof. (Proof of Theorem 1.1.) By construction the variational equation of
(3.2),

0E(Z2) (22 u(t, ) +6E(Z2)[ 22 u(t,) =0,

holds for a test function v € C°(R4,C°) and nT <t <(n+1)r. With the definitions

of Z. -, Z;’lf, and ZI'7" this can be written as

new

! 2 2 asZﬁT
/ 07w v 0+ 0221 - 0204 = E (105225 ) === 90| ds =0.
0 ' ‘8 Z T ‘

After integration with respect to ¢, we pass to the limit. Note that the weakly conver-
gent terms 92Z2°% and 0;Z. , occur only linearly, and that all other terms converge
strongly. 0

4. Indicatrix representation
As mentioned above, r. and A., which are defined in (1.12), are two components
of 2! = 1E/(|2, \)ﬁ, namely

1 o z/i Z/L
ro— IH—*EI 2 Ve Ze ’ 4.1
(- ringn) =i -y
" i Zé Z:: " Zé 1o
AE: Ze 77E(‘Zs)|z/‘ '|Z/|:Zs |Z/|7EE(|Z€) (42)
€ € €

Hence the system (1.5) can be written as
RN /
e (refin) (e
20 re, Ae . =0, (4.3)
ze(t=0,.)=2z1(.).
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The definitions in (1.12) are motivated by the variation of & as formulated in (1.10),

! 1
dEc|w,b)(6w,db) :/ (b2w’((5w)'—|—b(w')26b+b'(5b'—|— 5E’(b)(Sb) ds
0

! 1
= [/ 8w +b'6b] , + / — (%) bw+ (b(w’)2 b+ gE’(b)) dbds.
0

Replacing the variations of the indicatrix and of the arc-length by dw=2'"+-§2'/|2/|?
and 0b=2z'-9z'/|Z’|, respectively, we obtain

J_ 1
55&52:[( = |+b'|z|>'5zl]
0

oo (50 s (v 20 s

which motivates the definitions (1.12). The boundary terms in (4.4) also suggest that
we replace the boundary condition z/|s=¢,1 =0 by w.,b.|s=0,1 =0.

LEMMA 4.1.  Let zr €A and let z. be a weak solution to problem (1.5) according
to Theorem 1.1. Then there is w. ecf’l/gcgngoH; such that we is an indicatriz of

Ze. Furthermore it holds that b, ECE’l/SCSﬁLfOH; and (ze,we,be) constitute a weak
solution of (4.3) satisfying

s li
/ / {@za v+ biw ’( ZE/ ’)
o Jo |2L]

+ (el 250
for allveCXP(Ry,CP).

Proof. The regularity of z. according to Theorem 1.1 allows us to identify

wEGC?’l/SCSOLfOHSl up to an additive constant which is a multiple of 27r. The
regularity of b, is due to its definition and the result of Theorem 1.1. The rest of the
statement is then a consequence of the discussion above. 0

!

% +b/( e )/}dsdt:() (4.5)

|22

LEMMA 4.2 (Regularity, a-priori estimates). Let (ze,ws, Ac) be a weak solution
of (4.3) in the sense of Lemma 4.1, where we use the notation (1.12). Then it holds
that re € L2L°, wlr. € L?L2, A\, ELQLOo WA €LIL2, rLe L2L2, and \.€ L7L?. It

s 7 s 7

also holds that
/ / . X wlre)?| dsde =9y 2

Proof. First note that fos Oyze € L2 since
2

0o s oo 1 2 oo 1
/ / Osze ds dtﬁ/ (/ |8tzs|ds) dtg/ / |0z |2 dsdt <2&;
0 0 0o 0 0 0 0

by (3.6). We go back to the integrated version of (4.3),

s Z/J_ Z/
£ £ p—
fo Orze ds—+r, B —)\E—lzél =0,
w’ b” =0,

b
€ Es 0,1

Z€<t:O,) :ZI(.),
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where w’,b. =0 is an equivalent notation for z/ =0, and obtain

s=0,1

Z/L s
L// Oizeds=—r. an / Osze ds= A,
‘Zs| 0 |

which implies 7. € L2L%° and A, € L?L°.
Moreover we find that

o) 1 oS} 1
Aew! ) dsdt < AP [ (WP dsdt
( 5 L [

0 0 0 = Jo

<2802, / Il dt < (261232, (4.6)
0

where we used (3.1). This computation and an analogous one for w’.r. imply
WA €L?L? and Wlir.eLL% (4.7)

We write the weak formulation (4.5) of problem (4.3) after two integrations by
parts,

//<atzs (:lg|> <A8|zé>l>'vd8dt

pan oAt P 1
—|—/ [—ralz’s'v—k v bowl ZE -y b E ’] dt=0, (4.8)
0 0

4 Tl EA el

for all veCP(R4,CX).
1L
The uniform estimates we obtained allow us to set v= %qﬁ for a test function
€ ,00) % [0,1]) and to obtain [ = t%-iqﬁ—!—r'd)—)\ew’d) dsdt=0.

$»eD(([0 0,1]) and to obtain [;° [ [Ohzc - ¢+ /
é%‘ ¥ with ¢ € D([0,00) x [0,1]), we conclude by an anal-
ogous computation [;* fol [&zs . %w —wlre— )\’ew} dsdt=0. Due to (3.6) and (4.7),
this implies

Specializing (4.8) for v=

/1L /
2 2
|;—I|-8tzg+r;—/\5w2:0 a.e. and |zf Opze —wlre —A.=0 a.e., (4.9)
1> £

hence r. € L2L? and \. € L?L2. Finally (4.9) implies

// ()\/errs)]dsdt
//[( >2+(|zi|' >2]d8dt|5tzsllim. (4.10)

d
Using this result we also get insight into regularity of higher derivatives of w. and
be.

LEMMA 4.3 (Regularity of higher derivatives). Let (zc,we,Ac) be a weak solution
of (4.3) in the sense of Lemma 4.1. Then it holds for every T >0 that the family
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{we} is uniformly bounded in L*(0,T;W31(0,1)) and that the family {b.} is uniformly
bounded in L*(0,T;W?21(0,1)). It also holds that b!" € L*>(0,T;L}), but not uniformly
with respect to €.

Proof. For the proof we use the definitions in (1.12). It holds that w! = ﬂ&,
hence

Hw;,”Lz(&T;Li)Sb (IIrellp20,m522) + 2002 20,752 1wl 20,7522 ) »

min

which is uniformly bounded due to Lemma 4.2 and Lemma 4.1.
Furthermore the definition of r. in (1.12) also implies that w
3bLw!) /b.. Hence we estimate

n__

/ 17,0
€ Te— 2bsws -

| 21 0.7:21) < bintn (Hré 210,01y + 2107 | 220,700 |z | 22 0,7 120
S A e 4 PPty

<boin (\/:FHT; |22 0,7522) +516Z || L2 0,7 L)

1’
wg ||L2<0,T;Lz>> ;

which is uniformly bounded due to the result above.
Observe that due to Lemma 3.1 and embedding into C! there is a § >0 such that
bmin +0 < |2L| < bmax — 0. Hence, using b =b.(w.)? — -+ L E’ (b), we conclude that

1
¥z 0:rn Sboacllolzorny T 2AMellzoran +2, | max, F@
(4.11)

is bounded due to Lemma 4.2 and Lemma 4.1. This bound is not uniform with respect
to €, but can be replaced by a uniform one using the following computation.
Integrating the definition of A\. against E’(b.) we obtain

1 1
1
/)\EE’(bE)déz/ [bg(wg)QE’(bg)+b’62E”(b5)+EE'(bE)z ds.
0 0

This implies the inequality
! 1 / 2 5~ ! / N2 1/ ~ 1\2 1
EE (be) dSS/ ()‘EE (be) —be(wl)°E (bs))dSSH)‘s_ba(Ws) L2 | E"(be) | L2
0 0

Hence we conclude that

1

I (b2 < Ae =be(wl)? [l 2, (4.12)
which allows us to replace (4.11) by

16211 20,7521y < bmax Wl ll L2 (0,7:02) + 2l Ae L L2 (0,73 12) + 1 Xe = be (W)l 2 (0,752.2)

which is uniformly bounded due to the results of Lemma 4.2 and Lemma 4.1.
Furthermore the definition of A, in (1.12) also implies that b7 =b.(w.)?+
2b-wlw! — AL+ 2 E" (b.)b.. Hence we estimate

18211 L1 0,1y NBEN 21 (0.7:2.20) (WD) (| Lo 0.7:L1) + 2bmax W 172 0,7,y
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—‘r”)\/ ||L1((] T'L2)+1||b/||L1(O T;L1) max E”(.’E),
N sl g T binin+0<w<bmax—06
which is bounded due to the result above, but not uniformly with respect to e. 0

Next we will derive the governing equations for the quantities w. and b, making
use of the following identities:

Y ! ,Z’L Z/l 4 o
Z ) i and (=) =—w 2 413
(z/|) ) TR (4.13)

which hold for a curve z with sufficient regularity and its indicatrix w. We take
formally the derivative of the evolution equation in (4.3) and evaluate explicitly all of
the derivatives, obtaining

Z/L Z/
8152; + (7"2/ - (AEw;)/) |ZE/ | - (T;w; - /\Ewg) Zf|
g g
Z’ Z/J_
— (N +(rlwl)’) |Zf‘ — ()\'E’w;+r;wf) ‘;| =0. (4.14)
£ £

We multiply by z/1/|2/|? and 2./|z.| and use yw. =0z, 2Lt /|2L|? and O;b. = 0,2. -
zL/|2L] to obtain (1.13).

We present the proof of Theorem 1.2, which collects the regularity statements
of lemmas 4.1, 4.2, and 4.3 and justifies the above computation in the distributional
sense.

Proof. (Theorem 1.2.) We start with a weak solution of (4.3) satisfying (4.5)
and (4.8) respectively for all veC®(Ry,CS°) according to Lemma 4.1. The boundary
integrals imply that w’,b.,Ac,7¢|, , =0 a.e. on R,.

erver

|o,1
We choose a regularizing sequence 7y, with suppn, C B(0,1/k) CR? and set v=
nk(t—t,5—s) for (£,5) € Uy with Uy :=[1/k,00) x (1/k,1—1/k), obtaining

SL ! 2\
&gzg,k—i—(ml;') *nk—<)\8;> *n =0,
£ €

i
’ 1L

where 2 :=z.*n,. We omit the tilde and integrate against — (i?’“lcp+ |ZZ,E'°21/J>
e,k e,k

with ¢,9 € D(R; % [0,1]) and k large enough such that Uy, covers the support of both
test functions,

/
1
o ()
k €,
!
24\ 22\ 1
() e () om) (e e
5 € e,k
Z l Z4H\ 22\ ZL ), I
/ —Oize - | 5= | — <7"5€/) *nk—<)\5f> kM |- | ——¢ | dsdt=0.
Uk Ze,kl |Z&‘| |ZE| ‘Ze,k|
(4.15)

Making use of the regularity results in Theorem 1.1 it holds that zék — 2z, and, as a
consequence, also w, , — w. uniformly on compact subsets of R x [0,1], where we i is
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the indicatrix of z. ; satisfying 2. ; /[2L ;| = (cos(wek),sin(we ). Using these results

we perform integrations by parts with respect to s and ¢ with the expressions in (4.15)
that involve 0;z. ) and pass to the limit, obtaining

2! !
/U —8tze,;€-(|;<p> dsdt= / atzek B |<pdsdt
k £
// |z€k\8tgodsdt—>// —b:Orpdsdt as k— oo,
Uy

and

!
1
/ —OZe k- z;lk | dsdt= / atzsk z’l T Ydsdt
Uy |Z5’k;| k}|

// Opwe ¥ ds dtf// —we ;O ds dt
Uk Uk

—>/ /—weaﬂ/zdsdt as k— o0,
o Jo

where we used that 0w, = 0¢2. szkﬁ Making use of the the fact that 2z €
? ? e,k

L*L? by Theorem 1.1 and 7.,\. € L?L? by Lemma 4.2, we now pass to the limit
k — oo in the remaining expressions of (4.15) and conclude that

/L

z z
L /[”58“/’ (il ety i)
E 8 €
2o, Y
. — dsdt=0
( z|°"6|z'|+|zg|<|zg TR
00 1 AN / / 1L
) Re z z z
b.0 -\ E—rw'g—/\w’€>
//[ T ( I PR P R PT
AN
-(Z, , ’) ds dt=0.
FIRE

This implies (1.20), (1.21) where every term is well defined by Lemma 4.2, and where
we allow for ¥, ¢ in function spaces in which test functions are densely contained. O

5. Energy dissipation
Observe that the formal time derivative of the total energy as formulated in (1.10)

is given by

d

1
@@:/(w%@%+&@@ms
0

Now test the first equation in (1.13) formally against (b2w.) =b.r., obtaining

1 1
/ b wl oW’ ds = / [— (r)? = r2(Wl)? = Nwlre +wl Aol | ds,
0 0
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and the second one in (1.13) against A., which yields

1 1
/ A\Opb ds— / [ e — (rew! )AL — (X2 — (wl)2(A)?] ds.
0 0

Take the sum to conclude the energy dissipation equality (1.14) on a formal level.
This can be made rigorous by stating that (1.14) holds weakly in time (Theo-
rem 1.3).

Proof. (Theorem 1.3.) Here the problem is that we cannot directly set ¢ in (1.21)
equal to b.r., since its time derivative cannot necessarily be interpreted as a function.
Therefore we regularize with respect to ¢ using a sequence of mollifiers (nx)g=1,2,...
with suppn, C [-1/k,1/k].

For £ >1/k we denote by we j(,s) := (we %, i) (£,5) = [ we(t,s)ne(f—t) dt the reg-
ularized version of w. and evaluate (1.21) using v (t,s) =ng(t—1) (b?’kw;k)’(f,s). The
time integral becomes part of the convolution and we find the following expression,
which holds pointwise for every ¢ >1/k:

1
1
/ [8tws,k (b?,kw;,k)’ - ((T:: _)‘Ew;) b) *t Mk (bs,kTs,k)/
0 (5

/ !
wE

b
+ ((7’2 —Awl) b;) k¢ Mk be kTe b — <(Tsw;+>\'5) -
£

) *t Mk bs,krs,k ds=0.
€

Observe that we write the convolution of various expressions and 7 explicitly
using the symbol *,. Furthermore, setting ¢ =m;(t —t) A (¢,s) in (1.20) where A, =
bs,k(wé,k)z - blel,k: + %El (be k)

1
/ [04be i Ae e+ (1wl + ML) i AL o+ (WA — 7L wl) s i Ac k] ds =0.
0

We omit the tildes, take the sum of the two equations above, and integrate against
the test function in time ¥ € D(Ry ), obtaining

oo 1 1
O:/ fatﬁss,ﬁﬂ/ [((r; —Aewh) ) *4¢ Mk (bsykrs,k)/
1/k 0 be

WI

b/
+ (— (rl = A-wp) b% + (rewl +A%) b6> *¢ M be ke ko
€ €

—|—(7‘Ew;—|—/\’5)*tnk)\’57k—|—((w;/\5—r;)w;)*tnk)\&k]ds]dt vV ot>1/k, (5.1)

where & :fol [% (wfk b?,k+(b/e,k)2) + %E(bsk)] ds and k is large enough so that
supp¥ C [1/k,00). Next we use the fact that all the convolved terms like w ;, 77 ;,

(re(wWl)?) ¢, ete. converge strongly in L7, L? to their original counterparts, which
is illustrated in more detail in the proof of Theorem 4 in [9]. Hence we pass to the

limit as k— oo in (5.1), obtaining

/Oooatﬁé’adtZ/ooo [79/01 l((ré—)\ewé);) (bere)’
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!/
—|—(—(r;—)\ )b2 (rew! +)\’)b5)brg
+(rewl +A0) AL+ ((Wide =l wl) Ac }ds} dt ¥ t>1/k

oo 1
:/ 19/ [(réfx\gw;)2+(rsw;+/\’s)2}dsdt v >0,
0 0

which is a weak in time formulation of (1.14).
The second equivalent formulation in (1.15) is then a consequence of the following
computation

1 2\ ’ 2t 2\ ’
- (L) ) = ( (o)
D EIRNT

AR / 1L
1 Ze 1 e Ze
= A A
Gﬂ@*szTgﬂg+€€|0

= (rL A+ Al + (AL —rewl)?,

which concludes the proof. 0

6. Long time convergence
One of the main tools in this section will be the fact that the best constant in the

Poincaré-type inequality
1 1
/ ’U2dSSC/ v ds (6.1)
0 0

for v € H}((0,1)) is given by the reciprocal value of the first eigenvalue of the differ-
ential operator v in that space, C'=1/m2.

As a first step in proving coercivity of D, with respect to &, we find the following
lemma.

LEMMA 6.1. Let & be the total energy defined in (1.1) and (1.10), respectively, and
let r. and A; be as defined in (1.12). Then there is a constant C1 >0 such that

& <Cy (Hrellif + ||)‘5||%§>

Proof. 'We will treat the three different expressions in (1.10) separately. First

observe that
1 1t ) b2 1
/(bgwg)Qdég—z/ (bewl)')? di < Pmax / r2 s,
0 ™ Jo ™ 0

which immediately implies that

/112 b2 ! 2 gz
lwl]|72 < ;Z;X /Oreds. (6.2)

min

Next we use the definition of A in (1.12), which we multiply by (b — 1) obtaining
—(be = 1) < (be —1)Az+be(w])? since (b—1)L1E’(b.) >0, as E is convex and takes its
minimum at z=1. We integrate, and using b.(0) =b.(1) =0 we obtain
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1 1
[rds< [ [0 0a b ds
0 0

< max(bmax — 1,1 = buin) [ e[| 22 + bumax [ w2 ]| Z2- (6.3)

Finally, to obtain a control on fol LE(b.) ds, we use Lemma 2.5 and (4.12), which
imply that

1 /
IE (Bo)ll7e < ellhe = be(wl)?IIZz

’

The fact that w! = "==2=“= allows us to estimate

S
”“’Q”QL*:” [ uas
0

2
< o (el + 4B Bt 22) <

min

2
< w7
LOO

2 _
o (el + 80,2, EL)32), (6.4)
where we used (3.1). In summary, now using Lemma 2.5, we obtain

1]. ~ 1 11 / 2 7~ 1 1\2112
. gE(bE)ngﬂ . EE (bs) d$§ﬂ€||)\sfb5(wg) ||L2

1 1
<e— (IMelze +bhaxll (@W0)?l172) <e= (IAelZe + bhaxllwt 12 w2 72)

1 -
<o (INellZe + 26050 Er a1 ) (6.5)

Now apply the inequalities (6.2), (6.3), and (6.5) combined with (6.4) to the total
energy as formulated in (1.10) to obtain the result. 0

We finally conclude the exponential decay of the energy formulated in Theo-
rem 1.4.

Proof. (Theorem 1.4.) We start with the result of Lemma 6.1 and obtain

1
Ssgcl/o (12 +22) ds
1 s 2 ’ 2
1
-C m %e m_ e N d
(i) (=g e o
1 712
1 z
-C = e | d
= 2p | as
Cr [t 1 AR C
1 " / 1
<& [(r- 2o ) | as=So, 66

where we used (1.15). As a consequence, the energy dissipation D, is coercive with
respect to the energy and and the following Poincaré-type inequality holds:

D./E.>72/C, (6.7)
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which implies directly the result. ]

As an immediate consequence of Theorem 1.4 we obtain the following refined
bounds.

COROLLARY 6.2. Using the definitions in (1.16) we have
10122135 2 = e 22 2 + limell3 2 = €. (6.8)
As a consequence it holds that
Imellpere <VEL  lnell 22 < VEI-
We also obtain sharper bounds on the following quantities:

I7ell 2o s IXell 2 poe < VET,
lwAell g2 g2 s lwirell pare <V2ErbLi,,  and
||)‘/HL2L27 Hre||L2L2<\[gIb &r.

Inll’l

Proof. Integrate (1.14) with respect to time and combine it with (4.10). Using
this result we go again through the estimates in the proof of Lemma 4.2. O

7. Convergence as € —0
LEMMA 7.1. Let (we,be,Ae) be a solution to (1.13) according to Theorem 1.2. Then
there is wo such that w. —wq in LY((0,T),W?7(0,1))NL((0,T),H(0,1)), 1<r,qg<
00.

Proof. 'We obtain the strong convergence of w. by an application of the Lions-
Aubin Lemma as formulated in [12]. On the one hand, using (1.17), observe that the
family of distributions {9;w.} is uniformly bounded in L(0,T;H~1((0,1))) as

1 /
v v
(Opwe,v) 1 :/0 [ne (be - bgb'g) +mawgbal ds
1 1 ol
) el B [
n 0 brnm 0

for all ve HE((0,1)). This implies
sup

T
/0 verp  vllmg
1 Tt v
<sup ——— / /|n5|v'|dsdt+” 2z //|s||b’|dsdt
1)EH1 bmm”UHH[} 0 0 mln
T 1
S/ / |w?||me| ds dt

1
<\F||na||L2(0T L2yt —

1
« [ et as)
0

Orwe, V) ;-1
<t € >Hs dt

B ||b HLZ(OTL2 ||nsHL2(OTL2)

bIIlll’l bmlIl

+%hmmﬁm%hmm@0
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VT 1 _
< Hne||L2(o,T;L§) +v2& <b||”a|L2(O,T;L§) +bm12n|ma|L2(0,T;L’;‘)) :

bmin in

Here we used the uniform bounds of (3.1) and Corollary 6.2.

Since the family {w.} is uniformly bounded in L'(0,7;W3:1(0,1)) by Lemma 4.3,
and due to the compact embedding W1((0,1)) < L"((0,1)) (1 <r < 00), it holds that
the family w. is relatively compact in L'(0,T;W?7(0,1)).

By interpolation, using the uniform bound in L H'(0,1)) on w,, this also holds
true in L9(0,T; H'(0,1)) for any 1<g< oo. 0

LEMMA 7.2. Let (we,be,Ae) be a solution to (1.13) according to Theorem 1.2. Then
it holds that b. — 1 in L*((0,T),W17(0,1))NL((0,T),H'(0,1)), 1 <r,q < o0.

Proof. We obtain the strong convergence of b, by an application of the Lions-
Aubin Lemma as formulated in [12]. On the one hand, using (1.13) and the defini-
tions (1.16), observe that the family of distributions {9;b.} is uniformly bounded in

LY0,T;H~1((0,1))) as
1
i [ ot as
0

1 1
<6tb5,v>H;1:/ [—mav’—i—naw;v]dsg/ el || ds+ o]
0 0

for all ve HE((0,1)). This implies
<8tb€,v>H:1

T
/0 'UEH(% ||U||HU1

1 T 1 T 1
< sup ——— / / \m5||v"dsdt+|\v|L§c/ / |wl||ne| ds dt
vEH] ||U||H3 0o Jo " Jo Jo

T
< / [[mell L2 dt+ || Wil 2 0,7:22) Inell 2 (0,7:22)
0

<VT el p20,7,02) + ) T2bp i Erlme | 12 (0,7:12)-
Here we used the uniform bounds of (3.1) and Corollary 6.2.

Since the family {b.} is uniformly bounded in L'(0,7;W?21(0,1)) by Lemma 4.3,
and due to the compact embedding W1((0,1)) < L"((0,1)) (1 <r <o), it holds that
the family b. is relatively compact in L'(0,7; W7 (0,1)).

By interpolation, using the uniform bound in L H'(0,1)) on b., this holds also
true in L4(0,T;H*(0,1)) for any 1< q< oco.

Finally, we consider the first inequality formulated in Lemma 2.5 and obtain as a
consequence of energy dissipation (1.14) that

2
||b5(t7.)—1||Lg§E\/551 for all ¢>0, (7.1)

which allows us to identify the limit of any strongly converging subsequence of the
family {b.} as the constant function 1. |

LEMMA 7.3.  Let (we,be,\c) be a solution to (1.13) according to Theorem 1.2. Then
there are subsequences and limit functions such that A\. — \o in L?H} and r. —w( in
L2((0,T),L?), with r- —~w{ in L?H}.
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Proof.  The strong convergence of w. and b. (Lemma 7.1 and 7.2) imply the
strong convergence of r. to w(. The weak convergence of v/ and also the weak con-
vergence of A, to a limit function )y are a consequence of the uniform bounds stated
in Corollary 6.2. 0

Finally we finish with the proof of Theorem 1.5, which summarizes the results of
lemmas 7.1, 7.2, and 7.3 and states the consistency of the model (1.5) with the limit
model (1.6) and, as a consequence, the strong convergence of m. and n..

Proof. (Theorem 1.5) The convergence results of lemmas 7.1, 7.2, and 7.3 imme-
diately allow us to pass to the limit as € —0 in the system (1.20), (1.21), obtaining
(2.2), (2.3) as the limit system.

Observe that the definitions (1.16), together with the strong convergence of w,
(Lemma 7.1) and the weak convergence of 7. and A, (Lemma 7.3), imply that

me —whwy+Ny and n.—wy —whhg in LZL2.

The fact that the equality (6.8) also holds in the limit as €; =0, (2.7), implies

”mEHing + ||neH%3L§ =&r= ||W6W6/+>\6||%§Lg + g’ _W{))\OH%ng'

These two facts imply the strong convergence of m. and n. since

00 1
/ /[(ms—mo)Q—i—(nE—no)Q]dsdt
o Jo
00 1
:/ /[mg—2m5m0+mg+n572nsno+n3]dsdt%() as e—0.
o Jo

d
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