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HOMOGENIZATION OF STOCHASTIC SEMILINEAR PARABOLIC

EQUATIONS WITH NON-LIPSCHITZ FORCINGS IN DOMAINS

WITH FINE GRAINED BOUNDARIES∗

MAMADOU SANGO†

Abstract. The present work deals with the homogenization and in-depth asymptotic analysis
of a nonlinear stochastic evolution equation with non-Lipschitz nonlinearities in a domain with fine
grained boundaries in which the obstacles have a non-periodic distribution. Under appropriate con-
ditions on the data it is proved that a solution of the initial problem converges in suitable topologies
to a solution of a limit problem which contains an additional term of capacity type. The notion
of solution is that of weak probabilistic which is a system consisting of a probability space, Wiener
process, and a solution in the distribution sense of the problem.
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1. Introduction

Let Ω be a bounded domain in the Euclidean space Rn (n≥ 3) with boundary
∂Ω. For 0<T <∞, we denote by QT the cylinder (0,T )×Ω. We assume that for

each natural number s there is defined a finite number of disjoint closed sets F
(s)
i (i=

1,2, ...,I (s), I (s) is a natural number) lying inside Ω. Let Ω(s) be the sequence of

perforated domains obtained by removing the set F (s)=∪
I(s)
i=1F

(s)
i from Ω, i.e., Ω(s)=

Ω\F (s); the boundary ∂Ω(s) of Ω(s) is assumed to be sufficiently smooth (e.g., of class

C2). In the sequel we shall formulate some conditions on F
(s)
i from which it follows in

particular that as s→∞ the diameters of F
(s)
i tend to zero. We consider the sequence

of cylindrical domains Q
(s)
T =(0,T )×Ω(s). In Q

(s)
T , we consider the initial boundary

value problem for the stochastic partial differential equation

du(s)=
[

∆u(s)+f
(

t,u(s)
)]

dt+

d
∑

k=1

gk

(

t,u(s)
)

dw
(s)k
t , in Q

(s)
T , (1.1)

u(s) (t,x)=0, on ∂Q
(s)
T , (1.2)

u(s) (0,x)=u0 (x) , in Ω(s), (1.3)

where ∂Q
(s)
T =(0,T )×∂Ω(s), f and gk are real valued functions taking values in some

Hilbert spaces, u0 (x) is a deterministic real valued function defined on Ω(s), ∆ is

the Laplace operator, i.e., ∆=
∑n

i=1∂
2/∂x2i , and W (s) (t)=

(

w
(s)1
t , ...,w

(s)d
t

)

is a d-

dimensional Wiener process.

The case of linear noises which corresponds to f and gk independent of u(s) was
considered in [50]. The present paper considers the more difficult question of nonlinear
noise which in addition does not satisfy the Lipschitz condition. In this regard the
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notion of solution for the problem (1.1)-(1.3) is already different from the one in [50].
As is known the adequate notion of solution here is that of probabilistic weak solution

(

S(s),F (s),
{

F
(s)
t

}

0≤t≤T
,P(s),W (s),u(s)

)

,

which will be defined in the next section.
The aim of the present work is to investigate the behavior of the sequence

(

S(s),F (s),
{

F
(s)
t

}

0≤t≤T
,P(s),W (s),u(s)

)

, s=1,2, ...

of solutions of problem (1.1)-(1.3) under some appropriate conditions on the data
and on the perforated domain Ω(s) that we make precise later on. We shall prove
that under those conditions the sequence of solutions converge in suitable topologies

to a probabilistic system
(

Ξ,G,{Gt}0≤t≤T ,P,W,u
)

which is a weak solution of a

homogenized stochastic evolution problem in the cylinder QT . Namely

du=[∆u−c(x)u+f (t,u)]dt+
d
∑

k=1

gk (t,u)dw
k
t in QT , (1.4)

u(t,x)=0 on ∂QT , (1.5)

u(0,x)=u0 (x) in Ω. (1.6)

The function c(x) is defined in terms of the geometry of the sets F
(s)
i . The investi-

gation will be based on a corrector formula with remainder term involving u(s) and
its limits and the solutions of some auxiliary elliptic boundary value problems that

we introduce in neighborhoods of the sets F
(s)
i , the analog of cell problems in the

periodic homogenization setting. The accuracy of the corrector formula is given by
proving that the remainder term converges to zero in suitable topologies. This im-
portant and crucial rigorous asymptotic study provides an in-depth analysis of the
problem. A central idea in the work which is absent in the deterministic case lies in
seeking the remainder term in the corrector formula of u(s) as a sum of stochastic

integrals of some functions with respect to the Wiener processes w
(s)k
t (k=1, ...,d).

This representation is of paramount importance in achieving our goals. In view of the
different notion of solution and the kind of nonlinearity considered the present work
differs from [50] in many regards. The lack of appropriate regularity of the solution,
such as L∞-boundedness, requires new ideas at various stages to deal with the arising
difficulties.

Since the pioneering work of Bensoussan and Temam [4, 5] in the earlier 1970’s,
stochastic partial differential equations (SPDE’s) have grown into one of the most
active areas of research in the frontiers of mathematics today. The incorporation of
randomness in partial differential equations (PDE’s) governing a wide range of models
arising in applied sciences make them more realistic in view of the overwhelming preva-
lence of stochastic factors in nature. This thought pattern based on both empirical
and experimental data led to the emergence of SPDE’s. A great wealth of results have
been obtained in several directions of research and collected in numerous monographs.
An area which has remained relatively dormant is that of perturbed SPDE’s, and no-
tably homogenization of SPDE’s. We note that the interaction between probability
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theory and homogenization has been mainly in the use of the probabilistic methods
in order to investigate deterministic perturbed PDE’s and in the study of PDE’s with
rapidly oscillating random coefficients or in perforated random domains. A wealth of
interesting results using various methods is now available and the field is expanding.
We refer to [7, 9, 11, 19, 24, 29, 31, 35, 36, 37, 43, 44, 45, 46, 48, 54, 55, 60, 65] for
classical and recent results. It is worth noting the new direction of numerical homog-
enization which has also recorded in recent years some success in the treatment of
random parabolic equations; see [1, 20, 21]. Further references can be found in these
papers.

As far as the homogenization of stochastic evolution problems driven by random
noises is concerned, very little is known so far. In view of the huge interest presented
by SPDE’s in applied sciences, there is a need to develop frameworks that will enable
the study of the corresponding stochastic homogenization problems. The work of Ben-
soussan [6] which deals with the homogenization of a sequence of stochastic PDE’s in a
fixed domain was pioneering in this direction. The work [50] was the first dealing with
the homogenization of stochastic evolution PDE’s in perforated domains; furthermore
no conditions of periodic distribution of the holes were assumed. These works were
followed by [27, 28, 62] and [63] in the periodic setting. The two last papers treat the
case of perforated domains with periodically distributed perforations. In particular
they extend Tartar’s energy method and Nguetseng-Allaire’s two-scale convergence
([3, 41]) to the stochastic setting; a nice introduction to these notions can be found
in the monograph [14]. It should be noted that the limit problem in these cases does
not differ in form from the original one as in the corresponding deterministic case.

In the present work we limit ourselves to a simpler model of SPDE’s which, as
witnessed in the subsequent pages, encapsulates most of the complexities arising in
SPDE’s in domains with fine grained boundaries. We provide a rigorous investigation
of the problem and lay down a framework which can be used to study more general
problems. We note that the stochastic limit problem obtained in the homogenization
process has an additional term of capacity type depending on the geometry of the

sets F
(s)
i . This phenomenon arises also in deterministic problems and was originally

discovered in homogenization of elliptic boundary value problems in the celebrated
work of Khruslov and Marchenko [38] (see also the long awaited English version [39]);
the nonlinear version of their theory was developed by Skrypnik [58]. More infor-
mation on results obtained in this kind of deterministic problems can be found in,
for example, [44] (heat equations in perforated domains by probabilistic means) and
[2, 16, 13, 18, 51]. Deterministic evolution problems in non-periodically perforated
domains have been less studied; we refer to [12, 15, 59, 52] for some results in this
direction.

It should be noted that even under the stronger conditions of periodic distribution
of holes our main result has an additional novelty compared to the previous work
done in [6, 27, 28, 62] and [63] in the periodic framework, in the sense that there
the authors deal only with noises that satisfy the Lipschitz condition, and we also
obtain an optimal corrector result (Theorem 3.2) which was not considered in these
papers. The framework developed in the paper is quite general and enables the
study of wider classes of stochastic evolution problems in varying domains with non-
periodic geometry. An analog of the homogenization theory of Cioranescu and Murat
elaborated in [16] can be developed in the framework of SPDE’s. In view of the
appearance of measures in the limit problem in that framework, a new class of SPDE’s
will emerge, notably SPDE’s with measure-valued coefficients. However there is no



348 HOMOGENIZATION OF STOCHASTIC PARABOLIC EQUATIONS

indication that sharp corrector results as in the present work could be obtained. Still,
in this direction an important issue is the derivation of Brinkman’s law for turbulent
flows of fluids governed by the Stochastic-Navier Stokes equations. The deterministic
stationary case was solved in the work of Allaire [2]. Since homogenization of SPDE’s
is in its infancy, numerous problems are waiting to be solved.

It is by now well known that problems such as (1.1)-(1.3) describe processes
(heat conduction, diffusion and reaction-diffusion processes) taking place in highly
heterogeneous media under the influence of random factors. We can also view the
problem as a simplified stochastic model of fluid dynamics in a turbulent regime
filling a cylinder with tiny cylindrical obstacles.

The plan of the paper is as follows. In Section 2, we state some preliminary
results on the existence and uniqueness of a solution of problem (1.1)-(1.3) following
[8] and [40]. Next we introduce some auxiliary elliptic boundary value problems

in the neighborhood of the sets F
(s)
i whose solutions and their a priori pointwise

estimates play a central role in our investigation, and we state the conditions on
the geometry of the perforated set Ω(s) and formulate our main result. In Section
3, we construct a corrector formula with remainder term for u(s)and prove that the
remainder term converges to zero in suitable topologies. In Section 4, we derive the
stochastic evolution problem satisfied by the limit of u(s) in a sense that we make
precise in Section 2.

2. Preliminary results

We shall use the following well-known Lebesgue and Sobolev spaces Lp (·), W
1
p (·),

o

W 1
p (·) (p≥1) (we denote H1 (Ω)=:W 1

2 (·), H
1
0 (·)=:

o

W 1
2 (·)) as defined, for example in

[22]; H−1 (·) stands for the dual of H1
0 (·), (., .) denotes the scalar product in L2 (·),

where throughout · stands for either Ω or Ω(s). C∞
o (·) is the space of infinitely

differentiable functions with compact support in ·.
Let X be any Banach space of functions defined on Ω or Ω(s) and let (S,F ,P)

be any probability space over which the expectation is denoted by E. By the symbol
Lp (S,Lq (0,T,X)) we denote the space of functions u=u(ω,t,x) defined on S× [0,T ]
with values in X, and such that

a.u(ω,t,x) is measurable with respect to (ω,t) and for each t is Ft-measurable in ω.

b.u(ω,t,x)∈X for almost all (ω,t), and

||u||Lp(S,Lq(0,T,X))=

(

E

∫ T

0

(||u(t)||qX dt)
p/q

)1/p

<∞; (2.1)

E denotes the mathematical expectation. If q=∞, we write

||u||Lp(S,L∞(0,T,X))=

(

E ess sup
0≤t≤T

||u(t)||pX

)1/p

<∞. (2.2)

Let Z be any Banach space of functions defined on the cylinder QT . We denote by
Lp (S,Z) the space of random variables u defined on S with values in Z and such that

||u||Lp(S,Z)=(E ||u||pZ)
1/p

<∞.

The following density result, similar in proof to the deterministic case (see e.g.,
[33, Chap.1, § 1.1], [64, §25]), holds.



M. SANGO 349

Lemma 2.1. Let Ω be a sufficiently smooth domain, p,q≥1, and let

u ∈ Lq (S,L∞ (0,T,Lp (Ω))) ∩ Lq

(

S,Lp

(

0,T,
o

W 1
p (Ω)

))

.

Then there exists a sequence of functions

(um)m=1,2,...∈Lq (S,C
∞
0 (QT ))

such that

lim
m→∞

||um−u||Lq(S,L∞(0,T,Lp(Ω)))=0,

lim
m→∞

∣

∣

∣

∣

∣

∣

∣

∣

∂ (um−u)

∂x

∣

∣

∣

∣

∣

∣

∣

∣

Lq(S,Lp(0,T,Lp(Ω)))

=0.

We also have the following result, which is [34, Chap. 1, Lemma 1.3].

Lemma 2.2. Let (gκ)κ=1,2... and g be some functions in Lq (0,T,Lq (Ω)) with q∈
(1,∞) such that

||gκ||Lq(0,T,Lq(Ω))≤C, ∀κ,

and as κ→∞

gκ→g for almost all (t,x)∈QT .

Then gκ weakly converges to g in Lq (0,T,Lq (Ω)).

Remark 2.1. The results of the lemma hold for the space Lq (Ξ,Lq (0,T,Lq (Ω))) in
Ξ×QT .

The next result is from [56, Section 8, Theorem 5]. It is a sharper version of a
theorem due to Aubin (cf. [34, Chap. 1, Par. 5]).

Lemma 2.3. Let X, B, and Y be some Banach spaces such that X is compactly
embedded into B and let B be a subset of Y . For any 1≤p,q≤∞, let V be a set
bounded in Lq (0,T,X) such that

lim
θ→0

∫ T−θ

0

||v (t+θ)−v (t)||pY dt=0, uniformly for all v∈V.

Then V is relatively compact in Lp (0,T,B).

The following Poincaré inequalities in an annulus as proved in [58, Lemma 1.4,
Chap. 8]play a crucial role for obtaining sharp estimates.

Lemma 2.4. Let K (ρ1,ρ2) be the ring {x : 0<ρ1< |x|<ρ2<r} and f (x)∈
H1 (B (0,r)). Then
∫

K(ρ1,ρ2)

|f (x)|2dx≤C
[

ρ22−ρ
2
1

]

∫

K(ρ1,r)

|∇f |2dx+C
ρn2 −ρ

n
1

rn

∫

K(r/2,r)

|f (x)|2dx.

(2.3)
Furthermore if f (x) ∈H1

0 (B (0,r)), then
∫

K(ρ1,ρ2)

|f (x)|2dx≤C
[

ρ22−ρ
2
1

]

∫

K(ρ1,r)

|∇f |2dx. (2.4)
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We now introduce the following definition.

Definition 2.5. By a weak solution of problem (1.1)-(1.3), we mean a system

(

S(s),F (s),
{

F
(s)
t

}

0≤t≤T
,P(s),W (s),u(s)

)

such that for each s,

•

(

S(s),F (s),
{

F
(s)
t

}

0≤t≤T
,P(s)

)

is a probability space,
{

F
(s)
t

}

0≤t≤T
is a fil-

tration on
(

S(s),F (s),P(s)
)

,

• W (s) (t) is sequence of d−dimensional F
(s)
t standard Wiener process,

• u(s) (t) ∈Lp

(

S(s),L∞

(

0,T,L2

(

Ω(s)
)))

∩Lp/2

(

S(s),L2

(

0,T,H1
0

(

Ω(s)
)))

, for
any p∈ [1,∞),

• for any η∈H1
0

(

Ω(s)
)

the integral identity

(

u(s) (t) ,η
)

=(u0,η)−

∫ t

0

n
∑

i=1

(

∂u(s) (τ)

∂xi
,
∂η

∂xi

)

dτ

+

∫ t

0

(f,η)dτ+
d
∑

k=1

∫ t

0

(gk,η)dw
(s)k
τ (2.5)

holds for almost all ω and t∈ [0,T ].

We assume the following conditions on the data:
f : (0,T )×L2

(

Ω(s)
)

→L2

(

Ω(s)
)

is a nonlinear mapping such that

• f(t, ·) is measurable for almost every t,

• v→f (t,v) is continuous from L2

(

Ω(s)
)

into L2

(

Ω(s)
)

,

||f (t,v)||L2(Ω(s))≤C
(

1+ ||v||L2(Ω(s))

)

, (2.6)

gk : (0,T )×L2

(

Ω(s)
)

→L2

(

Ω(s)
)

are nonlinear mappings such that

• g(t, ·) is measurable for almost every t,

• v→gk (t,v) is continuous from L2

(

Ω(s)
)

into L2

(

Ω(s)
)

,
•

||gk (t,v)||L2(Ω(s))≤C
(

1+ ||v||L2(Ω(s))

)

. (2.7)

•

u0 (x)∈L2

(

Ω(s)
)

. (2.8)

We introduce the space Z
(s)
θ (indexed by θ>0 such that T −θ>0) of functions

v (t,x) defined and measurable on Q
(s)
T and such that

sup
0≤t≤T

||v||2L2(Ω(s))≤C1,

∫ T

0

||v (t)||2H1
0(Ω(s))dt≤C2,

∫ T−θ

0

||v (t+θ)−v (t)||2H−1(Ω(s))dt≤C3θ.
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We endow Z
(s)
θ with the norm

||v||Z = sup
0≤t≤T

||v||L2(Ω(s))+

(

∫ T

0

||v (t)||2H1
0(Ω(s))dt

)1/2

+

(

sup
θ>0

1

θ

∫ T−θ

0

||v (t+θ)−v (t)||2H−1(Ω(s))dt

)1/2

.

We also consider the space X
(s)
p,θ (1≤p<∞) of random variables v defined on S(s)×

Q
(s)
T such that

E(s) sup
0≤t≤T

||v||2p
L2(Ω(s))

<∞, E(s)

(

∫ T

0

||v||2H1
0(Ω(s))dt

)p/2

<∞,

E(s)

∫ T−θ

0

||v (t+θ)−v (t)||2H−1(Ω(s))dt≤Cθ,

where E(s) denotes the mathematical expectation on
(

S(s),F (s),P(s)
)

. Endowed with
the norm

||v||
X

(s)
p,θ

=

(

E(s) sup
0≤t≤T

||v||2p
L2(Ω(s))

)1/2p

+



E(s)

(

∫ T

0

||v||2H1
0(Ω(s))dt

)p/2




2/p

+E(s)

(

sup
θ>0

1

θ

∫ T−θ

0

||v (t+θ)−v (t)||2H−1(Ω(s))dt

)1/2

,

X
(s)
p,θ is a Banach space. We denote by Z̃θ and X̃p,θ the corresponding spaces with

Ω(s) replaced by Ω.
The following existence result holds (see, e.g., [8, 40]).

Theorem 2.6. Under the above conditions, for each s, the problem (1.1)-(1.3) has a
weak solution

(

S(s),F (s),
{

F
(s)
t

}

0≤t≤T
,P(s),W (s),u(s)

)

such that u(s) satisfies
∣

∣

∣

∣

∣

∣
u(s)

∣

∣

∣

∣

∣

∣

X
(s)
p,θ

≤C, (2.9)

with a constant C independent of s, for all p≥1 and for sufficiently small θ>0.

Note that the equation (2.5) implies that almost surely

u(s) (·)∈C
(

0,T,L2

(

Ω(s)
))

.

This follows by arguing as in [61, Chap. 3 Par. 3]. Thus the initial condition (1.3)
makes sense almost surely.
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Let ũ(s), ũ0 be the extension by zero to QT and to Ω of the functions u(s) and
u0, respectively, such that P(s)-almost surely

ũ(s) (x,t)=u(s) (x,t) ∀ (x,t)∈Q
(s)
T , ũ(s) (x,t)=0 ∀ (x,t) /∈Q

(s)
T ,

ũ0 (x)=u0 (x) in Ω(s) and ũ0 (x)=0 outside Ω(s).

Under the smoothness conditions on Ω(s) and the fact that u(s) satisfies the Dirichlet
boundary conditions such extensions always exist.

These extensions induce extensions f̃ and g̃k of f and gk from (0,T )×L2

(

Ω(s)
)

→

L2

(

Ω(s)
)

to (0,T )×L2 (Ω)→L2 (Ω) preserving the inequalities (2.6) and (2.7) with

obvious changes of Ω(s) by Ω; ũ0 (x) is bounded in L2 (Ω). Therefore from (2.9) it
follows that the function ũ(s) satisfies the estimate

∣

∣

∣

∣

∣

∣
ũ(s)

∣

∣

∣

∣

∣

∣

X̃p,θ

≤C, (2.10)

with the constant C independent of s.
Now we consider the set

K=C
(

0,T,Rd
)

×L2 (0,T,L2 (Ω))

and B(K), the σ-algebra of the Borel sets of K. For each s, let Φ be the map

Φ :S→K :ω 7→
(

W (s) (ω, ·) ,ũ(s) (ω, ·)
)

.

For each s, we introduce the probability measure πs on (K,B(K)) defined by

πs (A)=P(s)
(

Φ−1 (A)
)

for all A∈B(K) .

We have the following result.

Theorem 2.7. The family of probability measures {πs :s∈N} is tight.

The proof of the theorem can be carried out following [8] and [40] (see also [49]).
Thus we have, from Prokhorov’s compactness result ([47, 17]), that there exists a
subsequence

{

πsj
}

and a measure π such that

πsj →π

weakly. By Skorokhod’s limit theorem ([57, 17]), there exist a probability space
(Ξ,G,P ) and random variables

(

W (sj),u(sj)
)

, (W,u) on (Ξ,G,P ) with values in K

such that the probability law of
(

W (sj),u(sj)
)

is πsj ; hence
{

W (sj)
}

is a sequence of
d-dimensional Wiener processes. Furthermore

(

W (sj),u(sj)
)

→ (W,u) in K, P -a.s., (2.11)

and the probability law of (W,u) is π.
Set

Gt=σ{W (τ) ,u(τ)}τ∈[0,t] .
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We show that W (t) is a Gt-standard Wiener process. For this we use the following
characterization of Wiener processes through their characteristic functions (see [25])
which stipulates that for any m∈N, 0= t0<t1< · · ·<tm and v0,v1, ...,vm∈R

d,

E exp

{

m
∑

k=1

ivk · [W (tk)−W (tk−1)]− iv0 ·W (t0)

}

=exp







−
1

2

Nj
∑

k=1

|vk|
2
(tk− tk−1)







, (2.12)

where E denotes the mathematical expectation over (Ξ,G,P ). (2.12) will follow if we
can show that for the conditional characteristic function we have

E [exp{iv · [W (t+h)−W (t)]}/Gt]=exp

(

−
|v|2h

2

)

(2.13)

for all h>0 and any v∈R
d. Note that for any given σ-algebra G and random variables

X and Y on a probability space (Ξ,G,P ) (it can be any probability space) on which the
mathematical expectation is denoted by E, if X is G-measurable and E |Y |, E |XY |<
∞, then

E (XY |G)=XE (Y |G) , EE (Y |G)=E (Y ) ,

that is

E (XY )=E (XE (Y |G)) .

Using this fact we see that (2.13) will be proved if for any continuous bounded func-
tional Λt (W (·) ,u(·)) on Ξ depending only on the values of W and u on the interval
(0,t), we have

E [exp{v · [W (t+h)−W (t)]}Λt (W (·) ,u(·))]

=exp

(

−
|v|2h

2

)

EΛt (W (·) , ,y (·)) . (2.14)

Since
[

W (sj) (t+h)−W (sj) (t)
]

are independent of Λt

(

W (sj),u(sj)
)

and W (sj) is a
Wiener process,

E
[

exp
{

iv ·
[

W (sj) (t+h)−W (sj) (t)
]}

Λt

(

W (sj),u(sj)
)]

=E exp
{

iv ·
[

W (sj) (t+h)−W (sj) (t)
]}

EΛt

(

W (sj),u(sj)
)

=exp

(

−
|v|2h

2

)

EΛt

(

W (sj),u(sj)
)

.

In view of (2.11) and the continuity of Λt we can pass to the limit in this equality and
get (2.14). The required claim is therefore proved.

A crucial step is to note that the pair (u(sj),W (sj)) satisfies the problem (1.1)-
(1.3). We note that this a not a subsequence of (u(s),W (s)); they only share at this
stage the same law. This fact may seem obvious but in view of the nonlinearity
considered in the noise, the proof requires some work; we follow [8] and [49].
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Since we shall be using (u(sj),W (sj)) and (u(s),W (s)) at the same time, in order
to avoid some confusion we temporary denote u(sj) and W (sj) by y(sj) and B(sj),
respectively. We shall revert to the original notation later.

From (1.1)-(1.3), we have

u(s) (t,x)

=u0 (x)+

∫ t

0

[

∆u(s) (r,x)+f
(

r,u(s) (r,x)
)]

dr+

∫ t

0

G
(

r,u(s) (r,x)
)

dW (s)
r , in Q

(s)
T ,

where

G
(

r,u(s) (r,x)
)

dW (s)=
d
∑

k=1

gk

(

r,u(s) (r,x)
)

dw(s)k
r .

We set

Ψs (t)=Ψ
(

u(s) (t) ,G
(

r,u(s)
))

,

where

Ψ
(

u(s) (t) ,G
(

r,u(s)
)

,W (s)
)

=u(s) (t,x)−u0 (x)−

∫ t

0

[

∆u(s) (r,x)+f
(

r,u(s) (r,x)
)]

dr

−

∫ t

0

G
(

r,u(s) (r,x)
)

dW (s)
r

and

Xs (ω)=

∫ T

0

||Ψs (t)||
2
H−1 dt.

Hence almost surely

Xs=0

and

E(s) Xs

1+Xs
=0,

since Xs≥0 a.s.
Let

Ψsj (t)=Ψ
(

y(sj) (t) ,G
(

r,y(sj)
)

,B(sj)
)

, in Q
(sj)
T ,

and

Ysj (ω)=

∫ T

0

∣

∣

∣

∣Ψsj (t)
∣

∣

∣

∣

2

H−1 dt.

Our claims will be proved if we can show that

E
Ysj

1+Ysj
=0. (2.15)
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An obstacle in the realization of this goal is the fact that Xs is not a deterministic
functional of u(s) and W (s) in view of the presence of the stochastic integral in Xs.
In order to circumvent that difficulty we introduce a regularization of G with respect
to t, given by

Gε (y)(t)=
1

ε

∫ T

0

ρ

(

−
t−r

ε

)

G(r,y (r))dr, (2.16)

where ρ is a mollifier. We have that

E(s)

∫ T

0

||Gε (y)(t)||2L2(Ω(s))dt≤E
(s)

∫ T

0

||G(t,y (t))||2L2(Ω(s))dt (2.17)

and

Gε (y)(·)→G(y)(·) in L2

(

S(s),L2

(

0,T,L2

(

Ω(s)
)))

, (2.18)

as ε→0. Next, we set

Xs,ε=

∫ T

0

||Ψs,ε (t)||
2
H−1 dt; Ψs,ε (t)=Ψ

(

u(s) (t) ,Gε
(

r,u(s)
)

,W (s)
)

,

Ysj ,ε=

∫ T

0

∣

∣

∣

∣Ψsj ,ε (t)
∣

∣

∣

∣

2

H−1 dt; Ψsj ,ε (t)=Ψ
(

u(sj) (t) ,Gε
(

r,u(sj)
)

,B(sj)
)

,

and introduce the mapping

φs,ε :C
(

0,T,Rd
)

×L2

(

0,T,L2

(

Ω(s)
))

→
(

S(s),F (s),P(s)
)

given by

φs,ε

(

W (s),u(s)
)

=
Xs,ε

1+Xs, ε
.

Owing to the definition of Xs,ε, it is easy to see that φs,ε is bounded and measurable.
Similarly, let

φsj ,ε

(

B(sj),y(sj)
)

=
Ysj ,ε

1+Ysj , ε
.

We use the conclusions of Skorokhod’s theorem as follows. Since the laws of
(

B(sj),y(sj)
)

and
(

W (sj),u(sj)
)

are identical,

E
Ysj ,ε

1+Ysj , ε
=Eφsj ,ε

(

B(sj),y(sj)
)

=

∫

S

φsj ,ε (w,x)dπsj

=E(sj)φsj ,ε

(

W (sj),u(sj)
)

=E(sj)
Xsj ,ε

1+Xsj , ε
. (2.19)

But

E
Ysj

1+Ysj
−E(sj)

Xsj

1+Xsj

=E

(

Ysj
1+Ysj

−
Ysj ,ε

1+Ysj , ε

)

+E
Ysj ,ε

1+Ysj , ε
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−E(sj)
Xsj ,ε

1+Xsj , ε
+E(sj)

(

Xsj ,ε

1+Xsj , ε
−

Xsj

1+Xsj

)

.

Hence

E

∣

∣

∣

∣

Ysj
1+Ysj

−
Ysj ,ε

1+Ysj , ε

∣

∣

∣

∣

=E

∣

∣

∣

∣

∣

Ysj −Ysj ,ε
(

1+Ysj
)(

1+Ysj , ε

)

∣

∣

∣

∣

∣

≤E
∣

∣Ysj −Ysj ,ε
∣

∣

≤C

(

E

∫ T

0

∣

∣

∣

∣

∣

∣gε
(

y(sj)
)

(t)−g
(

y(sj)
)

(t)
∣

∣

∣

∣

∣

∣

2

L2

(

Ω(sj)
)dt

)1/2

and

E(sj)
∣

∣

∣

∣

Xsj ,ε

1+Xsj , ε
−

Xsj

1+Xsj

∣

∣

∣

∣

≤C



E(sj)
∫ T

0

∣

∣

∣

∣

∣

∣g
ε
(

u(sj)
)

(t)−g
(

u(sj)
)

(t)
∣

∣

∣

∣

∣

∣

2

L2

(

Ω
(sj)

)dt





1/2

.

The right-hand sides in these estimates converge to zero as ε→0, in view of (2.18) (re-
formulated accordingly on the probability space (Ξ,G,P ). Combining these relations
with (2.19), we get

∣

∣

∣

∣

∣

∣

∣

∣

E
Ysj

1+Ysj

∣

∣

∣

∣

−

∣

∣

∣

∣

E(sj)
Xsj

1+Xsj

∣

∣

∣

∣

∣

∣

∣

∣

≤

∣

∣

∣

∣

E
Ysj

1+Ysj
−E(sj)

Xsj

1+Xsj

∣

∣

∣

∣

≤0.

It therefore follows that
∣

∣

∣

∣

E
Ysj

1+Ysj

∣

∣

∣

∣

=

∣

∣

∣

∣

E(sj)
Xsj

1+Xsj

∣

∣

∣

∣

=0.

This proves (2.15) and hence we get

du(sj)=
[

∆u(sj)+f
(

t,u(sj)
)]

dt+

d
∑

k=1

gk

(

t,u(sj)
)

dw
(sj)k
t , in Q

(sj)
T , (2.20)

u(sj) (t,x)=0, on ∂Q
(sj)
T , (2.21)

u(sj) (0,x)=u0 (x) , in Ω(sj). (2.22)

Next we have that the extension of u(sj) to QT , which we denote again by u(sj),
satisfies the estimate (2.10). As a consequence, the following convergences hold: for
any p∈ [1,∞),

u(sj)⇀u weakly-star in Lp (Ξ,L∞ (0,T,L2 (Ω))) , (2.23)

u(sj)⇀u weakly in Lp/2

(

Ξ,L2

(

0,T,H1
0 (Ω)

))

. (2.24)

Furthermore

u∈ Lp (Ξ,L∞ (0,T,L2 (Ω)))∩Lp/2

(

Ξ,L2

(

0,T,H1
0 (Ω)

))

, (2.25)

and almost surely

u(·)∈C (0,T,L2 (Ω)) .
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Letting p=4, we have that

u(sj)∈L4 (Ξ,L∞ (0,T,L2 (Ω))) .

Combining this fact with (2.11) we deduce via Vitali’s convergence theorem that

u(sj)→u strongly in L2 (Ξ,L2 (0,T,L2 (Ω))) . (2.26)

Our aim is to determine the initial boundary value problem satisfied by the func-
tion u and estimate its closeness to u(s) in suitable topologies finer than the above
weak convergence. For this purpose we need some suitable assumptions on the do-
mains Ω(s).

Let B (x,ρ) denote the ball of radius ρ centered at x. Let d
(s)
i be the radius

of the smallest ball containing F
(s)
i and x

(s)
i the center of that ball. We denote by

r
(s)
i the distance between B

(

x
(s)
i ,d

(s)
i

)

and the set ∪i6=jB
(

x
(s)
j ,d

(s)
j

)

∪∂Ω; we shall

impose some conditions (forthcoming Hypothesis 1) which guaranty that the sequence
(

r
(s)
i

)

is positive and does not converge to zero rapidly, and hence which prevent

B
(

x
(s)
i ,d

(s)
i

)

from crossing ∂Ω.

B
(

x
(s)
i ,d

(s)
i

)

lies inside Ω and Ω is open, so there exists a ball B
(

x
(s)
i ,a

)

(a>

d
(s)
i for sufficiently large s) inside Ω which contains B

(

x
(s)
i ,d

(s)
i

)

. We set B
(s)
i =

B
(

x
(s)
i ,a

)

\F
(s)
i . We consider the deterministic functions v

(s)
i (x)∈H1

(

B
(s)
i

)

which

are solutions of the boundary value problems

∆v
(s)
i (x)=0 in B

(s)
i ,

v
(s)
i (x)=1 on ∂F

(s)
i , (2.27)

v
(s)
i (x)=0 on ∂B

(

x
(s)
i ,a

)

.

We set v
(s)
i (x)=1 on F

(s)
i and v

(s)
i (x)=0 outside B

(

x
(s)
i ,a

)

. It is well-known that

(2.27) is uniquely solvable. In particular v
(s)
i (x) is the solution of the variational

problem

inf

{

∫

B
(

x
(s)
i ,a

)

∣

∣

∣

∣

∂ϕ

∂x

∣

∣

∣

∣

2

dx : ϕ(x)∈H1
0

(

B
(

x
(s)
i ,a

))

, ϕ(x)=1 in F
(s)
i

}

.

We note that this quantity is the capacity Cap
(

F
(s)
i

)

of the set F
(s)
i (see e.g. Evans-

Gariepy [23] for a definition), i.e.,

Cap
(

F
(s)
i

)

=

∫

B
(

x
(s)
i ,a

)

∣

∣

∣

∣

∣

∂v
(s)
i

∂x

∣

∣

∣

∣

∣

2

dx.

By the maximum principle (see e.g. [22, Section 2.2.3]) and the extension of v
(s)
i (x)

by 1 in F
(s)
i , we get that

0≤v
(s)
i (x)≤1 in B

(

x
(s)
i ,a

)

. (2.28)
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The following pointwise a priori estimates are well-known (see e.g. [30] for proof in the
case of higher-order elliptic equations and [51, 53, 58] for quasilinear elliptic models):

∫

B
(

x
(s)
i ,a

)

∣

∣

∣

∣

∣

∂v
(s)
i

∂x

∣

∣

∣

∣

∣

2

dx≤C1

[

d
(s)
i

]n−2

, (2.29)

∣

∣

∣
Dαv

(s)
i (x)

∣

∣

∣
≤C2

[

d
(s)
i

]n−2

∣

∣

∣x−x
(s)
i

∣

∣

∣

n−2+|α|
if d

(s)
i <

∣

∣

∣
x−x

(s)
i

∣

∣

∣
<a, (2.30)

for any α=(α1, ...,αn) with non-negative integer components such that |α|≤1, Dα=
Dα1

1 · · ·Dαn
n , Di=∂/∂xi; the constants C1 and C2 are independent of s. Combining

the last estimate with the regularity results of the gradient of the solution of Dirichlet
problem for elliptic equations (see [32] or [26]), we have

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∂v
(s)
i

∂x

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

L∞

(

B
(

x
(s)
i ,1

))

≤
C

d
(s)
i

, (2.31)

with the constant C independent on s. It is easy to check the sharpness of this

estimate when F
(s)
i is a ball.

We impose on the perforated domain Ω(s) the following conditions. There exist
constants A1 and A2 independent of s such that
H1.

d
(s)
i ≤A1r

(s)
i , lim

s→∞
max

1≤i≤I(s)

{

r
(s)
i

}

=0. (2.32)

H2.

I(s)
∑

i=1

[

d
(s)
i

]2(n−2)

[

r
(s)
i

]n ≤A2. (2.33)

H3. There exists a bounded function c(x) such that for any open set G⊂Ω,

lim
s→∞

∑

i∈Is(G)

Cap
(

F
(s)
i

)

=

∫

G

c(x)dx, (2.34)

where Is (G) is the set of indices i∈{1,2, ...,I (s)} such that F
(s)
i ⊂G.

The main result of the paper is the following.

Theorem 2.8. Let the conditions (2.6), (2.7), and (2.8) on the data hold and assume
that the hypotheses H1, H2, and H3 are satisfied. Given a sequence of weak solutions

(S(s),F (s),
{

F
(s)
t

}

0≤t≤T
,P(s),W (s),u(s))

of problem (1.1)-(1.3), there exist a probability space
(

Ξ,{Gt}0≤t≤T ,G,P
)

and

stochastic processes
(

W (sj),u(sj)
)

, (W,u) (W =
(

w1
t , ...,w

d
t

)

is a d-dimensional Wiener

process) on this probability space such that
(

W (sj),u(sj)
)

has the same distribution as
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(

W (s),u(s)
)

and converges to (W,u) in the sense of (2.11). Furthermore u satisfies
almost surely in the sense of distributions the stochastic initial boundary value problem

du=[∆u−c(x)u+f (t,u)]dt+
d
∑

k=1

gk (t,u)dw
k
t , in QT , (2.35)

u(t,x)=0, on ∂QT , (2.36)

u(0,x)=u0 (x) , in Ω, (2.37)

where ∂QT =(0,T )×∂Ω. In addition u(sj) strongly converges to u in

Lp

(

Ξ,Lp

(

0,T,
o

W 1
p (Ω)

))

for all p∈ (1,2).

Remark 2.2. The existence of the probability system
(

Ξ,{Gt}0≤t≤T ,G,P,W,u
)

is

a consequence of the Prokhorov and Skorokhod’s compactness results as obtained
above. Therefore the main issues are the construction of the limit problem (2.35)-
(2.37) and the strong convergence statement. The latter will follow from a deep
asymptotic analysis, undertaken in the next section, centered around an appropriate

corrector result for the sequence u(sj) involving the functions v
(s)
i and some suitable

test functions.

Remark 2.3. The equation (2.35) contains an additional term of capacity type de-
fined in Hypothesis H3. Explicit expressions for the function c(x) may be obtained

for special cases, for instance when the sets F
(s)
i are balls that are periodically dis-

tributed. We refer to [38, Chap.1, pages 55-56], [16, 44] for details. Cioranescu and
Murat introduce an abstract version of our conditions, so our geometry is a particular
case of theirs.

The next sections of the work will be devoted to the proof of Theorem 2.8.

3. Corrector result of u(s) with remainder term

3.1. Formulation of the corrector result. In this section we deal with a
corrector result with a remainder term for the sequence u(sj) in terms of the functions

u, v
(s)
i (x) and appropriate test functions that we shall introduce shortly. We prove

that the remainder term converges to zero in suitable topologies, making it possible
to justify the corrector formula. We start by introducing the test functions alluded
to earlier.

We consider the numbers

ρ
(s)
i =max

{(

1+
1

2A1

)

d
(s)
i ,

1

2A3

[

r
(s)
i

]
n

n−2

ln2r
(s)
i

}

, (3.1)

where A1 is the constant from Hypothesis H1 and

A3= sup
0<τ≤diamΩ

{

τ
2

n−2 ln2 τ
}

.

By the definition of ρ
(s)
i and the Hypothesis H1, we see that

ρ
(s)
i ≤d

(s)
i +

r
(s)
i

2
.
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Furthermore, for i 6= j we have that B

(

x
(s)
i ,d

(s)
i +

r
(s)
i

2

)

∩B

(

x
(s)
j ,d

(s)
j +

r
(s)
j

2

)

=∅. Let

θ1 and θ2 be such that 0<θ2<θ1<1. We consider the functions ψ
(s)
i ∈C∞

o (Rn),

such that 0≤ψ
(s)
i (x)≤1, ψ

(s)
i (x)=0 for

∣

∣

∣x−x
(s)
i

∣

∣

∣≥θ1ρ
(s)
i , ψ

(s)
i (x)=1 for

∣

∣

∣x−x
(s)
i

∣

∣

∣≤

θ2ρ
(s)
i , and

∣

∣

∣

∣

∣

∂ψ
(s)
i

∂x

∣

∣

∣

∣

∣

≤
C

ρ
(s)
i

,

with the constant C independent of s. We note that ψ
(s)
i (x)ψ

(s)
j (x)=0 for i 6= j. Let

us consider the following sets of indices:

I ′s=

{

i=1,2, ...,I (s) :

(

1+
1

2A1

)

d
(s)
i ≥

1

2A3

[

r
(s)
i

]
n

n−2

ln2r
(s)
i

}

,

I ′′s =

{

i=1,2, ...,I (s) :

(

1+
1

2A1

)

d
(s)
i <

1

2A3

[

r
(s)
i

]
n

n−2

ln2r
(s)
i

}

.

It is clear that I ′s∩I
′′
s =∅. We have the following lemma.

Lemma 3.1. If the conditions H1 and H2 are satisfied, then

lim
s→∞

∑

i∈I′
s

[

d
(s)
i

]n−2

=0, (3.2)

lim
s→∞

∑

i∈I′′
s

[

ρ
(s)
i

]n

=0. (3.3)

Proof. We have

∑

i∈I′
s

[

d
(s)
i

]n−2

=
∑

i∈I′
s

[

d
(s)
i

]2(n−2)

[

d
(s)
i

]n−2

≤C max
1≤i≤I(s)











1
[

lnr
(s)
i

]2(n−2)











∑

i∈I′
s







[

d
(s)
i

]2(n−2)

[

r
(s)
i

]n






.

By condition H2, (3.2) follows from a passage to the limit as s→∞ in the above
inequality; here we have made use of the definition of the set I ′s.

For the proof of the relation (3.3), we note that since the balls B

(

x
(s)
i ,d

(s)
i +

r
(s)
i

2

)

,

i=1, ...,I (s) are pairwise disjoint and Ω is bounded, it follows that

I(s)
∑

i=1

[

r
(s)
i

]n

≤C, (3.4)

where C is a constant independent of s. We have, by the definition of the set I ′′s ,

∑

i∈I′′
s

[

ρ
(s)
i

]n

≤

[

1

2A3

]n

max
1≤i≤I(s)

{

[

r
(s)
i

]
2n

n−2

ln2nr
(s)
i

}

∑

i∈I′′
s

[

r
(s)
i

]n

.
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A passage to the limit in both sides of this inequality and the relation (3.4) yield
(3.3). The lemma is proved.

As a consequence of Lemma 3.1, we have

I(s)
∑

i=1

[

ρ
(s)
i

]n

≤K1. (3.5)

This readily follows from (3.3) and the estimate

I(s)
∑

i=1

[

d
(s)
i

]n−2

≤K2. (3.6)

The constants K1 and K2 in these inequalities are independent of s. To establish
(3.6), we apply Hölder’s inequality and get

I(s)
∑

i=1

[

d
(s)
i

]n−2

=

I(s)
∑

i=1

[

d
(s)
i

]n−2

[

r
(s)
i

]
n
2

[

r
(s)
i

]
n
2

≤















I(s)
∑

i=1







[

d
(s)
i

]n−2

[

r
(s)
i

]
n
2







2














1
2






I(s)
∑

i=1

[

r
(s)
i

]n







1
2

.

Thus, (3.6) is an immediate consequence of condition H2 and the relation (3.4). Ob-

viously (3.6) implies that d
(s)
i tends to zero as s→∞. Therefore the sets F

(s)
i vanish

as s →∞.

Next we proceed to the construction of the corrector formula for u(s). Let p=4 in
(2.25), so that u ∈ L4 (Ξ,L∞ (0,T,L2 (Ω))) ∩ L2

(

Ξ,L2

(

0,T,H1
0 (Ω)

))

. By Theorem 2.1
there exists a sequence (um)m=1,2,...∈L4 (Ξ,C

∞
o (QT )) approximating u in the sense

given there. For simplicity we denote from now on a solution u(sj) of the problem
(2.20)-(2.22) (often referred to as problem (1.1)-(1.3)) as u(s). We look for u(s) in the
form

u(s) (t,x)=u(t,x)−H1s (t,x)−H2s (t,x)+Rs (t,x) , (3.7)

where

H1s (ω,t,x)=
∑

i∈I′
s

v
(s)
i (x)u(ω,t,x)ψ

(s)
i (x) ,

H2s (ω,t,x)=
∑

i∈I′′
s

v
(s)
i (x)u(ω,t,x)ψ

(s)
i (x) ,

and Rs (ω,t,x) is the remainder term.
A surprising fact is that the remainder turns out to be expressed in terms of

stochastic integrals as

Rs (ω,t,x)=
d
∑

k=1

∫ t

0

Gsk (ω,τ,x)dw
(s)k
τ , (3.8)
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where Gsk (ω,t,x) are some appropriate Gt-measurable functions such that

E

∫ t

0

|Gsk (ω,τ,x)|
2
dτ <∞, for t∈ [0,T ] .

Investigating the convergence of the functions Hks (k=1,2) and the remainder
Rs is the main issue to be addressed in the work. A direct study on the functions Hks

turns out to be difficult since some needed regularity results such as L∞ boundedness
of u are not known. We therefore use the sequence {um} as an auxiliary tool. Namely
we rewrite the functions Hks (k=1,2) as

Hks (ω,t,x)=H
m′
ks (ω,t,x)+H

m′′
ks (ω,t,x) , (3.9)

where

Hm′
1s (ω,t,x)=

∑

i∈I′
s

v
(s)
i (x)um (ω,t,x)ψ

(s)
i (x) ,

Hm′′
1s (ω,t,x)=

∑

i∈I′
s

v
(s)
i (x)[u(ω,t,x)−um (ω,t,x)]ψ

(s)
i (x) ,

Hm′
2s (ω,t,x)=

∑

i∈I′′
s

v
(s)
i (x)um (ω,t,x)ψ

(s)
i (x) ,

Hm′′
2s (ω,t,x)=

∑

i∈I′′
s

v
(s)
i (x)[u(ω,t,x)−um (ω,t,x)]ψ

(s)
i (x) .

From now on we denote all constants depending only on the data and independent
of s and m by C, and constants depending on m and independent of s will be denoted
by Cm.

The main result of this section is as follows.

Theorem 3.2. As s→∞, under the conditions of Theorem 2.8, we have

H1s→0 strongly in L2

(

Ξ,L2

(

0,T,H1
0 (Ω)

))

, (3.10)

H2s→0 strongly in Lp

(

Ξ,Lp

(

0,T,
o

W 1
p (Ω)

))

with p∈ (1,2) , (3.11)

H2s→0 weakly in L2

(

Ξ,L2

(

0,T,H1
0 (Ω)

))

, (3.12)

Rs→0 strongly in L2

(

Ξ,L2

(

0,T,H1
0 (Ω)

))

. (3.13)

We immediately note that the last assertion of Theorem 2.8 is a direct consequence
of this theorem.

3.2. Proof of Theorem 3.2. We denote the ball B
(

x
(s)
i ,θ1ρ

(s)
i

)

by D
(s)
i .

Since ρ
(s)
i →0 as s→∞, we can assume that for s sufficiently large, θ1ρ

(s)
i is less than

1. Recall that um∈ L4 (Ξ,C
∞
o (QT )) implies that

||um||L4(Ξ,C∞
o (QT ))=

(

E sup
(t,x)∈QT

|Dαum (ω,t,x)|4
)1/4

<∞.
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STEP 1. We prove (3.10), i.e.,

lim
s→∞

E

∫ T

0

||H1s||
2
H1

0 (Ω)dt=0. (3.14)

We have

E

∫ T

0

||Hm′
1s ||

2
H1

0 (Ω)dt≤E
∑

i∈I′
s

∫ T

0

∣

∣

∣

∣

∣

∣

∣

∣

∂

∂x

[

v
(s)
i (x)um (ω,t,x)ψ

(s)
i (x)

]

∣

∣

∣

∣

∣

∣

∣

∣

2

L2(Ω)

dt

≤2(Im′
1s +Im′

2s +Im′
3s ) , (3.15)

where

Im′
1s =E

∑

i∈I′
s

∫

QT

∣

∣

∣v
(s)
i

∣

∣

∣

2 ∣
∣

∣ψ
(s)
i

∣

∣

∣

2
∣

∣

∣

∣

∂um
∂x

∣

∣

∣

∣

2

dxdt,

Im′
2s =E

∑

i∈I′
s

∫

QT

|um|2
∣

∣

∣
ψ
(s)
i

∣

∣

∣

2
∣

∣

∣

∣

∣

∂v
(s)
i

∂x

∣

∣

∣

∣

∣

2

dxdt,

Im′
3s =E

∑

i∈I′
s

∫

QT

∣

∣

∣v
(s)
i

∣

∣

∣

2

|um|2
∣

∣

∣

∣

∣

∂ψ
(s)
i

∂x

∣

∣

∣

∣

∣

2

dxdt.

Using Poincaré’s inequality, we have

I1s≤

(

E sup
(t,x)∈QT

∣

∣

∣

∣

∂um
∂x

∣

∣

∣

∣

2
)

∑

i∈I′
s

∫

B
(

x
(s)
i ,1

)

∣

∣

∣v
(s)
i

∣

∣

∣

2

dx

≤Cm

∑

i∈I′
s

∫

B
(

x
(s)
i ,1

)

∣

∣

∣

∣

∣

∂v
(s)
i

∂x

∣

∣

∣

∣

∣

2

dx

≤Cm

∑

i∈I′
s

[

d
(s)
i

]n−2

, (3.16)

where we have used inequality (2.29).
Next by (2.29), we have

I2s≤Cm

∑

i∈I′
s

[

d
(s)
i

]n−2

. (3.17)

Thanks to the properties of ψ
(s)
i (x), the boundedness of v

(s)
i (x) , and the definition

of I ′s, we have

I3s≤Cm

∑

i∈I′
s

[

ρ
(s)
i

]n−2

≤Cm

∑

i∈I′
s

[

d
(s)
i

]n−2

. (3.18)

We derive from (3.15), (3.16), (3.17), and (3.18) the inequality

E

∫ T

0

||Hm′
1s ||

2
H1

0 (Ω)dt≤Cm

∑

i∈I′
s

[

d
(s)
i

]n−2

. (3.19)
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Next we have

E

∫ T

0

||Hm′′
1s ||

2
H1

0 (Ω)dt≤2(Im′′
1s +Im′′

2s +Im′′
3s ) , (3.20)

where

Im′′
1s =E

∑

i∈I′
s

∫

QT

∣

∣

∣
v
(s)
i

∣

∣

∣

2 ∣
∣

∣
ψ
(s)
i

∣

∣

∣

2
∣

∣

∣

∣

∂ (um−u)

∂x

∣

∣

∣

∣

2

dxdt,

Im′′
2s =E

∑

i∈I′
s

∫

QT

∣

∣

∣ψ
(s)
i

∣

∣

∣

2

|um−u|2
∣

∣

∣

∣

∣

∂v
(s)
i

∂x

∣

∣

∣

∣

∣

2

dxdt,

Im′′
3s =E

∑

i∈I′
s

∫

QT

∣

∣

∣v
(s)
i

∣

∣

∣

2

|um−u|2
∣

∣

∣

∣

∣

∂ψ
(s)
i

∂x

∣

∣

∣

∣

∣

2

dxdt.

We have, in view of the boundedness of v
(s)
i and ψ

(s)
i ,

Im′′
1s ≤E

∑

i∈I′
s

∫ T

0

∫

B
(

x
(s)
i ,θ1ρ

(s)
i

)

∣

∣

∣

∣

∂ (um−u)

∂x

∣

∣

∣

∣

2

dxdt

≤E

∫ T

0

∫

∪i∈I′s
B
(

x
(s)
i ,θ1ρ

(s)
i

)

∣

∣

∣

∣

∂ (um−u)

∂x

∣

∣

∣

∣

2

dxdt

≤E

∫

QT

∣

∣

∣

∣

∂ (um−u)

∂x

∣

∣

∣

∣

2

dxdt= ε1 (m) ,

where ε1 (m)→0 as m→∞; here we have used the fact that the balls B
(

x
(s)
i ,θ1ρ

(s)
i

)

are pairwise disjoint.
The estimation of Im′′

2s is more involved. First we note that the strong conver-
gence of um to u in L2 (Ξ,L2 (QT )) implies that um converges to u in the dP ×dt×dx
measure. Hence by a theorem of Riesz there exists a subsequence umk

of um which
converges almost everywhere in Ξ×QT ; the whole sequence um does not converge
almost everywhere in general. In view of the necessity of this result, we can consider
that throughout the approximating sequence um is actually replaced by the subse-
quence umk

which achieves the needed convergence, and we therefore denote umk
as

um. Now by Egorov’s theorem for any ε>0 there exists a set Aε in the Borel σ-algebra
of Ξ×QT with measure (dP ×dt×dx)(Aε)<ε and

lim
m→∞

sup
(ω,t,x)∈(Ξ×QT )\Aε

|(um−u)(ω,t,x)|=0. (3.21)

By the above remark for any ε>0, there exists the set Aε such that

I ′′2s≤CE sup
(ω,t,x)∈(Ξ×QT )\Aε

|um−u|
n
∑

j=1





∑

i∈I′
s

∫

B
(

x
(s)
i ,1

)

∣

∣

∣

∣

∣

∂v
(s)
i

∂xj

∣

∣

∣

∣

∣

2

dx





+
∑

i∈I′
s

∫

Aε

∣

∣

∣ψ
(s)
i

∣

∣

∣

2

|um−u|2
∣

∣

∣

∣

∣

∂v
(s)
i

∂x

∣

∣

∣

∣

∣

2

dxdtdP. (3.22)
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Using (2.31), we estimate the second term above by

CE

(

[

min
i∈I′s

[

d
(s)
i

]2
]−1∫

Ãε

|u−um|2dxdt

)

, (3.23)

where Ãε is the projection of Aε on QT . We cover the set Ãε with a finite number of
balls blε, l=1, ...,L, and since ε is an arbitrary positive number, we choose the radius

of blε such that its measure meas
[

blε
]

is equal to mini∈I′
s

[

d
(s)
i

]2

maxi∈I′
s
d
(s)
i . Thus by

(2.29),

I ′′2s≤CE sup
(ω,t,x)∈(Ξ×QT )\Aε

|um−u|
∑

i∈I′
s

[

d
(s)
i

]n−2

+Cmax
i∈I′

s

d
(s)
i

L
∑

l=1

E

(

1

meas [blε]

∫

blε

|u−um|2dxdt

)

. (3.24)

The second factor of the first term in the right-hand side of the above inequality
converges to zero as s→∞ by (3.2), while the first factor is finite and independent
of s. Hence the first term vanishes as s→∞. As s→∞, by the Besicovich-Lebesgue
differentiation theorem,

1

mini∈I′
s

[

d
(s)
i

]2

maxi∈I′
s
d
(s)
i

∫

blε

|u−um|2dxdt→
∣

∣(u−um)
(

center of blε
)∣

∣

2
,

which is finite, while the first factor in the second term in the right side in (3.24)
converges to 0 as s→∞. Hence we have shown that I ′′2s vanishes as s→∞.

Similar arguments show that

Im′′
3s ≤Cmε3 (s) ,

where ε3 (s)→0 as s→∞. Combining these estimates we deduce from (3.20) that

E

∫ T

0

||Hm′′
1s ||

2
H1

0 (Ω)dt≤ ε1 (m)+Cmε(s) , (3.25)

with ε(s)→0 as s→∞. From (3.19) and (3.25), we get

E

∫ T

0

||H1s||
2
H1

0 (Ω)dt≤Cm





∑

i∈I′
s

[

d
(s)
i

]n−2

+ε(s)



+ε1 (m) .

Passing to the limit in both sides of this inequality as s→∞, and using (3.2) we get

lim
s→∞

E

∫ T

0

||H1s||
2
H1

0 (Ω)dt≤ ε1 (m) .

A second passage to the limit as m→∞ gives (3.14) and therefore (3.10) holds.

STEP 2. Let us establish (3.11), i.e.,

lim
s→∞

E

∫ T

0

||H2s (ω,t,x)||
p
o

W 1
p (Ω)

dt=0. (3.26)
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We start with the proof of the relation

E

∫ T

0

||Hm′
2s (ω,t,x)||

2
H1

0 (Ω)dt<Cm. (3.27)

Combining the boundedness of um and v
(s)
i with the properties of ψ

(s)
i (x), and the

inequality (2.29), we get

E

∫ T

0

||Hm′
2s ||

2
H1

0 (Ω)dt≤E
∑

i∈I′′
s

∫ T

0

∣

∣

∣

∣

∣

∣

∣

∣

∂

∂x

(

v
(s)
i (x)umψ

(s)
i (x)

)

∣

∣

∣

∣

∣

∣

∣

∣

2

L2(Ω)

dt

≤Cm





∑

i∈I′′
s

[

d
(s)
i

]n−2

+
∑

i∈I′′
s

[

ρ
(s)
i

]n



 . (3.28)

This inequality together with (3.5), (3.6) gives (3.27).

Next since Hm′
2s (ω,t,x)=0 outside ∪i∈I′′

s
D

(s)
i , by Hölder’s inequality we have

||Hm′
2s ||

p
o

W 1
p (Ω)

≤C ||Hm′
2s ||

2
H1

0 (Ω)







∑

i∈I′′
s

[

ρ
(s)
i

]n







2
p
−1

, p∈ (1,2) .

Integrating both sides of this inequality with respect to t and passing to the mathe-
matical expectation we get from (3.27) that

E

∫ T

0

||Hm′
2s (ω,t,x)||

p
o

W 1
p (Ω)

dt≤Cm







∑

i∈I′′
s

[

ρ
(s)
i

]n







2
p
−1

. (3.29)

Repeating the same arguments used in the estimation of Hm′′
1s , it follows that

E

∫ T

0

||Hm′′
2s (ω,t,x)||

2
H1

0 (Ω)dt≤ ε(m) , (3.30)

where ε(m)→0 as m→∞. Thus for p∈ (1,2),

E

∫ T

0

||Hm′′
2s (ω,t,x)||

p
o

W 1
p (Ω)

dt≤C

(

E

∫ T

0

||Hm′′
2s (ω,t,x)||

2
H1

0 (Ω)dt

)p/2

≤ ε(m) . (3.31)

Hence

E

∫ T

0

||H2s (ω,t,x)||
p
o

W 1
p (Ω)

dt≤Cm







∑

i∈I′′
s

[

ρ
(s)
i

]n







2
p
−1

+ε(m) .

Passing to the limit in this inequality as s→∞, and using (3.3) and passing to the
limit in the resulting relation, we get

lim
s→∞

E

∫ T

0

||H2s (ω,t,x)||
p
o

W 1
p (Ω)

dt=0.
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This proves (3.11). On the other hand (3.27) and (3.30) imply that H2s is bounded in
L2

(

Ξ,L2

(

0,T,H1
0 (Ω)

))

, and thus it converges weakly to a function ξ which is equal
almost everywhere to 0 in view of (3.11). The statement (3.12) is therefore established.

STEP 3. We proceed to the proof of (3.13). It is the most involved part of
the work. In view of (2.24), (3.10), (3.12), and the relation (3.7), we have that
Rs∈L2

(

Ξ,L2

(

0,T,H1
0 (Ω)

))

and

Rs⇀0 weakly in L2

(

Ξ,L2

(

0,T,H1
0 (Ω)

))

. (3.32)

This does not imply strong convergence of Rs in L2 (Ξ,L2 (0,T,L2 (Ω))) directly. The
latter follows from the strong convergence of H2s to zero in L2 (Ξ,L2 (0,T,L2 (Ω))) ,
which can be established by rephrasing some parts of the proof of (3.10). This fact,
combined with the strong convergence (2.26) of u(s) to u in L2 (Ξ,L2 (0,T,L2 (Ω)))
and (3.10), enables us to claim that

Rs−→0 strongly in L2 (Ξ,L2 (0,T,L2 (Ω))) . (3.33)

Let y
(s)
n (ω,t,x)= ζn (t)Rs (ω,t,x), n=1,2, ... be a sequence of random functions in

L2

(

Ξ,L2

(

0,T,H1
0 (Ω)

))

, where ζn (t)∈C
∞
o (R), ζn (t)=1 on

[

1
n ,T − 1

n

]

, and ζn (t)=0

outside (0,T ). We havey
(s)
n (t)=0 outside (0,T ) and

lim
n→∞

∫ T

0

∫

Ω(s)

∣

∣

∣y(s)n (ω,t,x)
∣

∣

∣

2

dt=

∫ T

0

∫

Ω(s)

|Rs (ω,t,x)|
2
dt. (3.34)

We recall the following formula of integration by parts:

∫ T

0

∫

Ω(s)

y(s)n du(s)dx=

∫

Ω(s)

y(s)n (.,T,.)u(s) (.,T,.)dx−

∫

Ω(s)

y(s)n (.,0, .)u(s) (.,0, .)dx

−

∫ T

0

∫

Ω(s)

u(s)dy(s)n dx−

∫ T

0

∫

Ω(s)

dy(s)n du(s)dx. (3.35)

Multiplying the equation (1.1) by y
(s)
n and integrating both sides of the resulting

equation over the cylinder Q
(s)
T , we get

−

∫ T

0

∫

Ω(s)

y(s)n ∆u(s)dxdt=−

∫

Ω(s)

∫ T

0

y(s)n du(s)dx+

∫ T

0

∫

Ω(s)

y(s)n f
(

t,u(s)
)

dxdt

+

d
∑

k=1

∫ T

0

∫

Ω(s)

y(s)n gk

(

t,u(s)
)

dxdwk
t .

Further integrating by parts over the integral containing ∆u(s) and the one containing

y
(s)
n du(s) (using formula (3.35)), and using the above multiplication rule and the fact

that y
(s)
n (.,0, .)=y

(s)
n (.,T,.)=0, after passage to mathematical expectation we get

E

n
∑

j=1

∫ T

0

∫

Ω(s)

ζn (t)
∂u(s)

∂xj

∂Rs

∂xj
dxdt

=E

∫ T

0

(

f (s),ζn (t)Rs

)

dt+E

∫ T

0

(

u(s),Rs

) ∂ζn (t)

∂t
dt
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+E
d
∑

k=1

∫ T

0

ζn (t)
(

g
(s)
k ,Rs

)

dw
(s)k
t

+

d
∑

k=1

∫ T

0

ζn (t)
(

u(s),Gsk

)

dw
(s)k
t +E

d
∑

k=1

∫ T

0

ζn (t)(gk,Gsk)dt (3.36)

≡M
(n)
1s +M

(n)
2s +M

(n)
3s +M

(n)
4s +M

(n)
5s .

Taking into account (3.33), we see that the first two terms M
(n)
1s ,M

(n)
2s in the right-

hand side of (3.36) converge to zero. Let us represent the left-hand side of the equation
(3.36) in the form

E

n
∑

j=1

∫ T

0

∫

Ω(s)

ζn (t)
∂u(s)

∂xj

∂Rs

∂xj
dxdt= I1s−I2s−I3s+I4s, (3.37)

where

I1s=E

n
∑

j=1

∫ T

0

∫

Ω(s)

ζn (t)
∂u

∂xj

∂Rs

∂xj
dxdt,

I2s=E
n
∑

j=1

∫ T

0

∫

Ω(s)

ζn (t)
∂H1s

∂xj

∂Rs

∂xj
dxdt,

I3s=E

n
∑

j=1

∫ T

0

∫

Ω(s)

ζn (t)
∂H2s

∂xj

∂Rs

∂xj
dxdt,

I4s=E

n
∑

j=1

∫ T

0

∫

Ω(s)

ζn (t)
∂Rs

∂xj

∂Rs

∂xj
dxdt;

here we have omitted the index n in the notation of the Ijs, for simplicity. Thus by
convergence of any Ijs when s→∞, we shall also generally mean that n→∞. By
(3.10) and (3.32), and the fact that u∈L2

(

Ξ,L2

(

0,T,H1
0 (Ω)

))

, it follows that I1s
and I2s converge to zero as s→∞.

We proceed next to the estimation of I3s. We note firstly that since v
(s)
i (x) is a

solution of problem (2.27), it satisfies the integral identity

n
∑

j=1

∫

B
(s)
i

∂v
(s)
i

∂xj

∂ϕ

∂xj
dx=0, (3.38)

for all ϕ(x)∈H1
0

(

B
(s)
i

)

; recall that B
(s)
i =B

(

x
(s)
i ,1

)

\F
(s)
i . Using the definitions of

v
(s)
i (x) and the test functions ψ

(s)
i (x), we write

I3s=J1s+J
′
2s+J

′
3s+J

′′
2s+J

′′
3s, (3.39)

where

J1s=E

n
∑

j=1

∫ T

0

ζn (t)





∑

i∈I′′
s

∫

D
(s)
i \F

(s)
i

∂v
(s)
i

∂xj

∂

∂xj

(

Rsuψ
(s)
i

)

dx



dt,
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J ′
2s=E

n
∑

j=1

∫ T

0

ζn (t)





∑

i∈I′′
s

∫

D
(s)
i

Rs
∂v

(s)
i

∂xj

∂

∂xj

(

umψ
(s)
i

)

dx



dt,

J ′
3s=E

n
∑

j=1

∫ T

0

ζn (t)





∑

i∈I′′
s

∫

D
(s)
i

v
(s)
i

∂Rs

∂xj

∂

∂xj

(

umψ
(s)
i

)

dx



dt,

J ′′
2s=E

n
∑

j=1

∫ T

0

ζn (t)





∑

i∈I′′
s

∫

D
(s)
i

Rs
∂v

(s)
i

∂xj

∂

∂xj

(

[u−um]ψ
(s)
i

)

dx



dt,

J ′′
3s=E

n
∑

j=1

∫ T

0

ζn (t)





∑

i∈I′′
s

∫

D
(s)
i

v
(s)
i

∂Rs

∂xj

∂

∂xj

(

[u−um]ψ
(s)
i

)

dx



dt.

For s sufficiently large we may assume that θ1ρ
(s)
i <1, i.e., D

(s)
i ⊂B

(

x
(s)
i ,1

)

. Thus

ψ
(s)
i (x)=0 outside B

(

x
(s)
i ,1

)

. Since Rsuψ
(s)
i ∈H1

0

(

B
(s)
i

)

for almost all t and ω, then

taking into account the integral identity (3.38), we get that J1s=0.
In order to estimate J2s and J3s we shall need an auxiliary result. For 0<µ<1,

let Bµ=
{

x∈B
(

x
(s)
i ,1

)

: 0≤v
(s)
i (x)≤µ

}

. We define the function

v
(s)
iµ (x)=

{

v
(s)
i (x) if x∈Bµ,
µ if x /∈Bµ.

An easy verification shows that the function ϕ(x)=v
(s)
iµ (x)−µv

(s)
i (x) is an admissible

test function for the integral identity (3.38). Hence substituting it in (3.38) we get
∫

B
(

x
(s)
i ,1

)

∇v
(s)
i ∇vµdx=µ

∫

B
(

x
(s)
i ,1

)

∣

∣

∣∇v
(s)
i

∣

∣

∣

2

dx.

The left hand side of this equation is equal to
∫

Bµ

∣

∣

∣
∇v

(s)
i

∣

∣

∣

2

dx. Hence thanks to (3.38)

we get the inequality
∫

Bµ

∣

∣

∣∇v
(s)
i

∣

∣

∣

2

dx≤Cµ
[

d
(s)
i

]n−2

. (3.40)

By the boundedness of um, we have

J ′
2s≤F

′
2s+F

′′
2s, (3.41)

where

F ′
2s=C

√

E sup
(t,x)∈QT

|um|2

√

√

√

√

√E





∑

i∈I′′
s

∫ T

0

∫

D
(s)
i

|Rs|

∣

∣

∣

∣

∣

∂ψ
(s)
i

∂x

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∂v
(s)
i

∂x

∣

∣

∣

∣

∣

dxdt





2

, (3.42)

F ′′
2s=C

√

E sup
(t,x)∈QT

|um|2

√

√

√

√

√E





∑

i∈I′′
s

∫ T

0

∫

D
(s)
i

|Rs|

∣

∣

∣

∣

∣

∂v
(s)
i

∂x

∣

∣

∣

∣

∣

∣

∣

∣
ψ
(s)
i

∣

∣

∣
dxdt





2

. (3.43)
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Let us denote B
(s)
2i =D

(s)
i \B

(

x
(s)
i ,θ2ρ

(s)
i

)

, and also denote the integral in (3.42) by

F ′
2. Using Hölder’s inequality and the definition of ψ

(s)
i (x) , we have

F ′
2≤





∑

i∈I′′
s

[

ρ
(s)
i

]−2
∫

B
(s)
2i

∣

∣

∣

∣

∣

∂v
(s)
i

∂x

∣

∣

∣

∣

∣

2

dx





1/2



∑

i∈I′′
s

∫ T

0

∫

D
(s)
i

|Rs|
2
dxdt





1/2

. (3.44)

Let us estimate the integral in the first factor. We set µ
(s)
i =max

x∈B
(s)
2i

∣

∣

∣v
(s)
i (x)

∣

∣

∣. By

(2.30) we have

µ
(s)
i ≤C

[

d
(s)
i

]n−2

[

ρ
(s)
i

]n−2 . (3.45)

Since

∫

B
(s)
2i

∣

∣

∣

∣

∣

∂v
(s)
i

∂x

∣

∣

∣

∣

∣

2

dx≤

∫

B
µ
(s)
i

∣

∣

∣

∣

∣

∂v
(s)
i

∂x

∣

∣

∣

∣

∣

2

dx,

it follows from (3.40) and (3.45) that

∫

B
(s)
2i

∣

∣

∣

∣

∣

∂v
(s)
i

∂x

∣

∣

∣

∣

∣

2

dx≤Cµ
(s)
i

[

d
(s)
i

]n−2

≤C

[

d
(s)
i

]2(n−2)

[

ρ
(s)
i

]n−2 .

This inequality and (3.44) imply

F ′
2≤

∑

i∈I′′
s







[

d
(s)
i

]2(n−2)

[

ρ
(s)
i

]n







1/2
(

∫ T

0

∫

D
(s)
i

|Rs|
2
dxdt

)1/2

. (3.46)

Let us estimate the integral over D
(s)
i in the right-hand side of (3.46). As noted

at the beginning of Section 3, θ1ρ
(s)
i ≤ρ

(s)
i ≤

d
(s)
i

2 +r
(s)
i . Define σ

(s)
i =

d
(s)
i

2 +r
(s)
i . By

inequality (2.3) in Lemma 2.4, we have

∫

D
(s)
i

|Rs|
2
dx≤C

(

θ1ρ
(s)
i

)2
∫

B
(

x
(s)
i ,σ

(s)
i

)

∣

∣

∣

∣

∂Rs

∂x

∣

∣

∣

∣

2

dx

+C

[

θ1ρ
(s)
i

]n

[

σ
(s)
i

]n

∫

B
(

x
(s)
i ,σ

(s)
i

)

|Rs|
2
dx.

This inequality and (3.46) give

F ′
2≤C

∑

i∈I′′
s







[

d
(s)
i

]2(n−2)

[

ρ
(s)
i

]n







1/2
(

∫ T

0

∫

B
(

x
(s)
i ,σ

(s)
i

)

|Rs|
2
dxdt

)1/2
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+C
∑

i∈I′′
s







[

d
(s)
i

]2(n−2)

[

ρ
(s)
i

]n−2







1/2
(

∫ T

0

∫

B
(

x
(s)
i ,σ

(s)
i

)

∣

∣

∣

∣

∂Rs

∂x

∣

∣

∣

∣

2

dxdt

)1/2

.

The balls B
(

x
(s)
i ,σ

(s)
i

)

do not intersect, thus by the definition of I ′′s and (3.42) we

get that

F ′
2s≤Cm

√

√

√

√

√

√







∑

i∈I′′
s

[

d
(s)
i

]2(n−2)

[

ρ
(s)
i

]n






E

(∫

QT

|Rs|
2
dxdt

)

+Cm

√

√

√

√

√

√

√

sup











1
[

lnr
(s)
i

]2(n−2)

















∑

i∈I′′
s

[

d
(s)
i

]2(n−2)

[

r
(s)
i

]n







1/2

E

(

∫

QT

∣

∣

∣

∣

∂Rs

∂x

∣

∣

∣

∣

2

dxdt

)

.

The first term in the right-hand side converges to zero thanks to (2.33) and (3.33).
The two last factors in the second term are bounded for similar reasons, while the
first factor converges to zero. Hence we get that lims→∞F ′

2s=0.
Next, by Hölder’s inequality we have

F ′′
2s≤Cm

(

E

∫

QT

|Rs|
2
dxdt

)1/2




∑

i∈I′′
s

[

d
(s)
i

]n−2





1/2

.

(3.6) and (3.33) imply that lims→∞F ′′
2s=0. Hence we have proved that

lim
s→∞

J ′
2s=0. (3.47a)

Similar arguments show that

lim
s→∞

J ′
3s=0. (3.48)

Next we prove that J ′′
2s and J ′′

3s converge to zero as s→∞. By Egorov’s theorem,
for any ε>0 there exists a set Aε in the Borel σ-algebra of Ξ×QT with measure
(dP ×dt×dx)(Aε)<ε and

lim
m→∞

sup
(ω,t,x)∈(Ξ×QT )\Aε

|(um−u)(ω,t,x)|=0. (3.49)

We have J ′′
2s≤G

′
2+G

′′
2 , where

G′
2=CE

n
∑

j=1

∫ T

0





∑

i∈I′′
s

∫

D
(s)
i

∣

∣

∣

∣

∣

Rs [u−um]
∂v

(s)
i

∂xj

∂ψ
(s)
i

∂xj

∣

∣

∣

∣

∣

dx



dt,

G′′
2 ≤CE

n
∑

j=1

∫ T

0





∑

i∈I′′
s

∫

D
(s)
i

∣

∣

∣

∣

∣

Rsψ
(s)
i

∂v
(s)
i

∂xj

∂ [u−um]

∂xj

∣

∣

∣

∣

∣

dx



dt.
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Thus

G′
2≤CE sup

(ω,t,x)∈(Ξ×QT )\Aε

|um−u|
n
∑

j=1

∫ T

0





∑

i∈I′′
s

∫

D
(s)
i

∣

∣

∣

∣

∣

Rs
∂v

(s)
i

∂xj

∂ψ
(s)
i

∂xj

∣

∣

∣

∣

∣

dx



dt

+C

n
∑

j=1

∫

Aε

∣

∣

∣

∣

∣

Rs [u−um]
∂v

(s)
i

∂xj

∂ψ
(s)
i

∂xj

∣

∣

∣

∣

∣

dxdtdP. (3.50)

The second term is estimated above by

C

(

E

∫

QT

|Rs|
2
dxdt

)1/2

E

(

[

min
i∈I′′

s

[

ρ
(s)
i

]2
]−1∫

Ãε

|u−um|2dxdt

)1/2

, (3.51)

where Ãε is the projection of Aε on QT . We cover the set Ãε with a finite number of
balls blε, l=1, ...,L, and since ε is an arbitrary positive number, we choose the radius

of blε such that its volume is equal to mini∈I′′
s

[

ρ
(s)
i

]2

. Thus

G′
2≤CE sup

(ω,t,x)∈(Ξ×QT )\Aε

|um−u|
n
∑

j=1

∫ T

0





∑

i∈I′′
s

∫

D
(s)
i

∣

∣

∣

∣

∣

Rs
∂v

(s)
i

∂xj

∂ψ
(s)
i

∂xj

∣

∣

∣

∣

∣

dx



dt

+C

√

E

∫

QT

|Rs|
2
dxdtE

√

√

√

√

L
∑

l=1

[

min
i∈I′′

s

[

ρ
(s)
i

]2
]−1∫

blε

|u−um|2dxdt. (3.52)

The second factor of the first term in the right-hand side of the above inequality
converges to zero as s→∞ (see the investigation of the term F ′

2s above), while the
first factor is finite and independent of s. Hence the first term vanishes as s→∞. As
s→∞, by the Besicovich-Lebesgue differentiation theorem,

1

meas [blε]

∫

blε

|u−um|2dxdt→|u−um|2
(

center of blε
)

which is finite, while the first factor in the second term in the right side in (3.52)
converges to 0 as s→∞. Hence we have shown that G′

2 vanishes as s→∞. Similarly
G′′

2 →0 as s→∞. Thus J ′′
2s→0 as s→∞. Analogously J ′′

3s→0 as s→∞. Combining
all the results of convergence obtained, we get that I3s (see (3.39)) converges to zero
as s→∞.

Therefore taking into account that the first three terms in the right-hand side of
(3.37) and the first term in the right-hand side of (3.36) vanish at the limit, we have

E

n
∑

i=1

∫ T

0

∫

Ω(s)

ζn (t)

∣

∣

∣

∣

∂Rs

∂x

∣

∣

∣

∣

2

dxdt= ς(n)s +M
(n)
3s +M

(n)
4s +M

(n)
5s (3.53)

where ς
(n)
s →0, as s,n→∞.

We proceed to the estimation of the stochastic integral

M
(n)
3s =E

d
∑

k=1

∫ T

0

ζn (t)(gk,Rs)dw
k
t .
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We have, by the Martingale inequality,

E

d
∑

k=1

∫ T

0

ζn (t)(gk,Rs)dw
(s)k
t ≤

d
∑

k=1

E

∣

∣

∣

∣

∣

∫ T

0

(gk,Rs)dw
(s)k
t

∣

∣

∣

∣

∣

≤C
d
∑

k=1

E

(

∫ T

0

(gk,Rs)
2
dt

)1/2

.

In view of the condition (2.7) on gk, we have

E

d
∑

k=1

∫ T

0

ζn (t)(gk,Rs)dw
(s)k
t

≤C

[

E sup
0≤t≤T

(

1+
∣

∣

∣

∣

∣

∣u(s)
∣

∣

∣

∣

∣

∣

2

L2(Ω)

)]1/2[

E

(∫

QT

|Rs|
2
dxdt

)]1/2

.

The first factor in the right-hand is bounded and the second vanish at the limit by

(3.33). Hence lims,n→∞M
(n)
3s =0.

In order to estimate the last two stochastic integrals M
(n)
4s and M

(n)
5s we need the

relation

lim
s→∞,n→∞

E

∫ T

0

∫

Ω(s)

∣

∣

∣G
(n)
sk (ω,t,x)

∣

∣

∣

2

dt=0, (3.54)

the validity of which we now establish. From the definition of y
(s)
n , we have by (3.34)

and (3.33) that

lim
s→∞,n→∞

E

∫ T

0

∫

Ω(s)

∣

∣

∣y(s)n (ω,t,x)
∣

∣

∣

2

dxdt=0. (3.55)

But since (see e.g. [42, page 29])

E

∣

∣

∣

∣

∣

∫ T

0

(gk,Rs)dw
(s)k
t

∣

∣

∣

∣

∣

2

=E

∫ T

0

|(gk,Rs)|
2
dt, (3.56)

and the Wiener processes wk
t are independent, we have

E

∫ T

0

∫

Ω(s)

[

d
∑

k=1

∫ τ

0

Gsk (x,τ,ω)dw
(s)k
τ

]2

=E

∫ T

0

∫

Ω(s)

∫ τ

0

[Gsk (x,τ,ω)]
2
dτdxdt.

(3.57)
Since

E

∫ T

0

∫

Ω(s)

∣

∣

∣
y(s)n (ω,t,x)

∣

∣

∣

2

dxdt=E

∫ T

0

∫

Ω(s)

[ζn (t)]
2

[

d
∑

k=1

∫ τ

0

Gsk (x,τ,ω)dw
(s)k
τ

]2

,

(3.55) and (3.57) imply that

lim
s→∞,n→∞

E

∫ T

0

∫

Ω(s)

∫ t

0

[

G
(n)
sk (x,τ,ω)

]2

dτdxdt=0.
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Combining this relation with Fubini’s theorem and the non-negativity of the integrand,

we get (3.54). Arguing as in the estimation ofM
(n)
3s and taking into account (3.54), we

easily show that the integrals M
(n)
4s andM

(n)
5s in (3.53) converge to zero. Thus passing

to the limit in both sides of (3.53) as n,s→∞, and using the definition of ζn (t), we
conclude that

lim
s→∞

E

∫

QT

∣

∣

∣

∣

∂Rs

∂x

∣

∣

∣

∣

2

dxdt= lim
s→∞

lim
n→∞

E

∫

QT

ζn (t)

∣

∣

∣

∣

∂Rs

∂x

∣

∣

∣

∣

2

dxdt=0.

The relation (3.13) is proved. This completes the proof of Theorem 3.2.

4. Derivation of the limit problem

In this section we construct the limit problem (2.35)-(2.37) satisfied by the func-
tion u(ω,t,x). Let h(x) be an arbitrary function in C∞

o (Ω). We consider the sequence
of functions

hs (x)=h(x)−

I(s)
∑

i=1

h(x)v
(s)
i (x)ψ

(s)
i (x) , s=1,2, ..., (4.1)

where ψ
(s)
i (x) are the test functions introduced in the previous section and the func-

tions v
(s)
i (x) are solutions of the problem (2.27). It is clear that hs (x)∈H

1
0

(

Ω(s)
)

.
Let us denote the second term in (4.1) by Gs (x). Arguing as in the proof of Theorem
3.2 (see Steps 1 and 2), we see that

hs (x)→0, , weakly in H1
0 (Ω) (strongly in L2 (Ω)), (4.2)

and

hs (x)→0 strongly in
o

W 1
p (Ω) , p∈ (1,2) .

Substituting η (x)=gs (x) in the integral identity (2.5), we get

n
∑

i=1

∫ T

0

∫

Ω(s)

∂u(s)

∂xi

∂hs
∂xi

dxdt

=−

∫

Ω(s)

u(s) (ω,T,x)hs (x)dx+

∫

Ω(s)

u0 (x)hs (x)dx

+

∫ T

0

∫

Ω(s)

f
(

t,u(s)
)

hs (x)dxdt+

d
∑

k=1

∫ T

0

∫

Ω(s)

hsgk

(

t,u(s)
)

dxdw
(s)k
t .(4.3)

By (4.2) and the strong convergence (2.26) of u(s), it readily follows that

E

[∫

Ω(s)

u0 (x,ω)hs (x)dx−

∫

Ω(s)

u(s) (x,T,ω)hs (x)dx

]

(4.4)

→E

[∫

Ω

u0 (x,ω)h(x)dx−

∫

Ω

u(x,T,ω)h(x)dx

]

.

The convergence (2.26) implies, modulo extraction of a suitable subsequence, that for
almost every (ω,t) with respect to the measure dP ×dt,

u(s)→u strongly in L2 (Ω) .



M. SANGO 375

Combining this with the boundedness of u(s) in L4 (Ξ,L2 (0,T,L2 (Ω))) and the con-
tinuity of f (t,v) in v enables us to appeal to Vitali’s convergence theorem to claim
that

f
(

t,u(s)
)

→f (t,u) in L2 (Ξ,L2 (0,T,L2 (Ω))) .

This fact together with (4.2) implies

E

∫ T

0

∫

Ω

f
(

t,u(s)
)

hs (x)dxdt→E

∫ T

0

∫

Ω

f (t,u)h(x)dxdt. (4.5)

Similarly, owing to the conditions on gk,

gk

(

·,u(s) (·)
)

→gk (·,u(·)) in L2 (Ξ,L2 (0,T,L2 (Ω))) . (4.6)

The convergence

E

d
∑

k=1

∫ T

0

∫

Ω(s)

hsgk

(

t,u(s)
)

dxdw
(s)k
t →E

d
∑

k=1

∫ T

0

∫

Ω

hgk (t,u)dxdw
k
t (4.7)

is more involved; it will follow from

∫ t

0

gk

(

r,u(s) (r)
)

dw(s)k
r →

∫ t

0

gk (r,u(r))dw
k
r weakly in L2 (Ξ,L2 (Ω)) , (4.8)

for almost all t∈ [0,T ]. The difficulty here lies in the coupling of the nonlinearity of
gk with the presence of a varying Wiener process. To prove (4.8) we introduce the
regularization

gεk (u)(q)=
1

ε

∫ t

0

ρ

(

−
q−r

ε

)

gk (r,u(r))dr, (4.9)

where ρ is a mollifier and u ∈L2 (Ξ,L2 (QT )). We have that

E

∫ T

0

||gεk (u)(t)||
2
L2(Ω)dt≤E

∫ T

0

||gk (t,u(t))||
2
L2(Ω)dt (4.10)

and

gεk (t,u)→gk (t,u) strongly in L2 (Ξ,L2 (Ω)) . (4.11)

Also, for s fixed,

gεk

(

t,u(s)
)

→gk

(

t,u(s)
)

in L2 (Ξ,L2 (Ω)) . (4.12)

From the definition of gεk, we have

∫ t

0

∣

∣

∣

∣

∣

∣gεk

(

u(s)
)

(r)−gεk (u)(r)
∣

∣

∣

∣

∣

∣

2

L2(Ω)
dr

≤

∫ t

0

∣

∣

∣

∣

∣

∣gk

(

u(s)
)

(r)−gk (u)(r)
∣

∣

∣

∣

∣

∣

2

L2(Ω)
dr. (4.13)
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Next, by integration by parts we have

∫ t

0

gεk

(

u(s)
)

(r)dw(s)k
r =gεk

(

u(s)
)

(t)w
(s)k
t −

∫ t

0

gε′k

(

u(s)
)

(r)w(s)k
r dr.

In view of (2.11) and (4.6), passing to the limit as s→∞ in this relation we get

∫ t

0

gεk

(

u(s)
)

(r)dw(s)k
r →gεk (u)(t)w

k
t −

∫ t

0

gε′k (u)(r)wk
rdr (4.14)

pointwise for almost all ω, x; the right hand side is equal to
∫ t

0
gεk (u)(r)dw

k
r . Since

E

∣

∣

∣

∣

∫ t

0

∫

Ω

gεk

(

u(s)
)

(r)dxdw(s)k
r

∣

∣

∣

∣

2

=E

∫ t

0

∣

∣

∣

∣

∣

∣gεk

(

u(s)
)

(r)
∣

∣

∣

∣

∣

∣

2

L2(Ω)
dr≤C, (4.15)

it follows from Remark 2.1 that

∫ t

0

gεk

(

u(s)
)

(r)dw(s)k
r →

∫ t

0

gεk (u)(r)dw
k
r weakly in L2 (Ξ,L2 (Ω)) ,

that is, for all φ∈ L2 (Ξ,L2 (Ω)) ,

E

(

φ,

∫ t

0

gεk

(

u(s)
)

(r)dw(s)k
r

)

→E

(

φ,

∫ t

0

gεk (u)(r)dw
k
r

)

. (4.16)

Also

E

∣

∣

∣

∣

∫ t

0

∫

Ω

gk

(

u(s)
)

(r)dw(s)k
r

∣

∣

∣

∣

2

=E

∫ t

0

∣

∣

∣

∣

∣

∣gk

(

u(s)
)

(r)
∣

∣

∣

∣

∣

∣

2

L2(Ω)
dr≤C.

Thus there exists η∈L2 (Ξ,L2 (Ω)) such that for all φ∈ L2 (Ξ,L2 (Ω)),

E
(

φ,gk

(

u(s)
)

(r)dw(s)k
r

)

→E (φ,η) . (4.17)

We show that

η=

∫ t

0

g (u)(r)dwk
r . (4.18)

We have

E

(

φ,

∫ t

0

gk

(

u(s)
)

(r)dw(s)k
r

)

−E

(

φ,

∫ t

0

g (u)(r)dwk
r

)

= I1+I2+I3, (4.19)

where

I1=E

(

φ,

∫ t

0

(

g
(

u(s)
)

(r)−gε
(

u(s)
)

(r)
)

dw(s)k
r

)

,

I2=E

(

φ,

∫ t

0

gε
(

u(s)
)

(r)dw(s)k
r −

∫ t

0

gε (u)(r)dwk
r

)

,

I3=E

(

φ,

∫ t

0

(gε (u)(r)−g (u)(r))dwk
r

)

.
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By the Cauchy-Schwarz inequality, (4.13), and (4.6) we have that I1 converges to zero
as s→∞. I2 converges to zero by (4.16), and I3 converges to zero by the Cauchy-
Schwarz inequality and (4.11). Hence, passing to the limit in (4.19) as ε→0 and
j→∞, we get (4.18). This proves (4.8). (4.7) is then a consequence of (4.8) and
(4.2).

Next we estimate the mathematical expectation of the expression in the left-hand
side of (4.3). Setting Hs=H1s+H2s, where H1s and H2s are from the relation (3.7),
with u replaced by its approximation um, we have

E

n
∑

i=1

∫ T

0

∫

Ω(s)

∂u(s)

∂xi

∂hs
∂xi

dxdt=L1s+L2s+L3s, (4.20)

where

L1s=E
n
∑

i=1

∫ T

0

∫

Ω(s)

∂u(s)

∂xi

∂h

∂xi
dxdt,

L2s=E

n
∑

i=1

∫ T

0

∫

Ω(s)

∂Hs

∂xi

∂Gs

∂xi
dxdt,

L3s=E
n
∑

i=1

∫ T

0

∫

Ω(s)

∂um
∂xi

∂Gs

∂xi
dxdt+E

n
∑

i=1

∫ T

0

∫

Ω(s)

∂Rs

∂xi

∂Gs

∂xi
dxdt.

Since u(s) converges to u weakly in L2

(

Ξ,L2

(

0,T,H1
0 (Ω)

))

and h∈H1
0 (Ω), it follows

that

lim
s→∞

L1s=E
n
∑

i=1

∫ T

0

∫

Ω

∂u

∂xi

∂h

∂xi
dxdt. (4.21)

By Theorem 3.2 (relation (3.13)) and (4.2) we get

lim
s→∞

L3s=0. (4.22)

We now estimate L2s. By the definition of Hs, Gs, v
(s)
i , and ψ

(s)
i , we have

L2s=J1s+J2s+J3s,

where

J1s=E
n
∑

j=1

I(s)
∑

i=1

∫ T

0

∫

Ω(s)

∂v
(s)
i

∂xj

∂

∂xj

(

v
(s)
i umh

[

ψ
(s)
i

]2
)

dxdt,

J2s=E

n
∑

j=1

I(s)
∑

i=1

∫ T

0

∫

Ω(s)

v
(s)
i

∂

∂xj

(

umψ
(s)
i

) ∂

∂xj

(

v
(s)
i hψ

(s)
i

)

dxdt,

J3s=E

n
∑

j=1

I(s)
∑

i=1

∫ T

0

∫

Ω(s)

v
(s)
i hψ

(s)
i

∂v
(s)
i

∂xj

∂

∂xj

(

umψ
(s)
i

)

dxdt.

We note that J2s is a sum of expressions of the type

E

n
∑

j=1

I(s)
∑

i=1

∫ T

0

∫

Ω(s)

v
(s)
i

∂α1um
∂xα1

j

∂α2ψ
(s)
i

∂xα2
j

∂α3v
(s)
i

∂xα3
j

∂α4h

∂xα4
j

∂α5ψ
(s)
i

∂xα5
j

dxdt, (4.23)
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where the αk’s are integers taking the values 0 or 1 and such that α1+α2=1, α3+
α4+α5=1. We shall prove that each of these expressions converges to zero. However,
we limit ourselves to one of them; the others are proved analogously. We take for
example

J ′
2s=E

n
∑

j=1

I(s)
∑

i=1

∫ T

0

∫

Ω(s)

[

v
(s)
i

]2

um

[

∂ψ
(s)
i

∂xj

]2

hdxdt.

Since |h(x)|≤C and um is finite, we get

J ′
2s≤Cm

I(s)
∑

i=1

[

ρ
(s)
i

]−2
∫

D
(s)
i \B

(

x
(s)
i ,θ2ρ

(s)
i

)

[

v
(s)
i (x)

]2

dx,

where we have used the definition of ψ
(s)
i (x). Thanks to (2.30), we have

J ′
2s≤Cm

∑

i∈I′
s

[

d
(s)
i

]2(n−2)

[

ρ
(s)
i

]n−2 +Cm

∑

i∈I′′
s

[

d
(s)
i

]2(n−2)

[

ρ
(s)
i

]n−2

≤Cm

∑

i∈I′
s

[

d
(s)
i

]n−2

+Cm sup











1
[

lnr
(s)
i

]2(n−2)











I(s)
∑

i=1

[

d
(s)
i

]2(n−2)

[

r
(s)
i

]n ,

where we have used the definition of the sets I ′s and I ′′s . Passing to the limit in both
sides of this inequality and taking into account the relation (3.2) and the condition
(2.33) we get that lims→∞J ′

2s=0. Similar arguments show that the remaining expres-
sions of the type (4.23) converge to zero. Therefore lims→∞J2s=0. Analogously we
prove that lims→∞J3s=0.

Assuming that s is sufficiently large so that θ1ρ
(s)
i <1, we can write

J1s=J
′
1s+J

′′
1s,

where

J ′
1s=E

n
∑

j=1

I(s)
∑

i=1

∫ T

0

∫

B
(s)
i

∂v
(s)
i

∂xj

∂

∂xj

[

v
(s)
i (x)umh

(

ψ
(s)
i −1

)(

ψ
(s)
i +1

)]

dxdt,

J ′′
1s=E

n
∑

j=1

I(s)
∑

i=1

∫ T

0

∫

Ω(s)

∂v
(s)
i

∂xj

∂

∂xj

[

v
(s)
i (x)umh

]

dxdt.

The function Φ
(s)
i (ω,t,x)= v

(s)
i (x)umh

(

ψ
(s)
i −1

)(

ψ
(s)
i +1

)

∈H1
0

(

B
(s)
i

)

for almost

all t and ω. Thus by the definition of the functions v
(s)
i (x) (it satisfies the integral

identity (3.38)) we get that J ′
1s=0.

Let us write

J ′′
1s=E

n
∑

j=1

I(s)
∑

i=1

∫ T

0

∫

Ω(s)

∂v
(s)
i

∂xj

∂v
(s)
i

∂xj
umhdxdt



M. SANGO 379

+E

n
∑

j=1

I(s)
∑

i=1

∫ T

0

∫

Ω(s)

v
(s)
i (x)

∂v
(s)
i

∂xj

∂

∂xj
[umh]dxdt. (4.24)

Arguing as we did above we can show that the second term in the right-hand side of
(4.24) converges to zero. Thus

J ′′
1s=E

n
∑

j=1

I(s)
∑

i=1

∫ T

0

∫

Ω

∂v
(s)
i

∂xj

∂v
(s)
i

∂xj
umhdxdt+µs, (4.25)

where lims→∞µs=0.
We now cover Ω with a system of closed sets Gl, l=1,2, ...,L, such that the

interior ofGl does not meet the interior of Gk for l 6=k, Ω=∪lGl, and furthermore
L is chosen such that for fixed m the modulus of continuity of the function umh
in Gl with respect to x is less than 1/mL. We denote by Is (Gl) the set of indices

i=1,2, ...,I (s) such that F
(s)
i ⊂Gl. Since the F

(s)
i vanish as s→∞, we can choose Gl

so that ∪lIs (Gl)={1,2, ...,I (s)}, i.e., all F
(s)
i lie inside some Gl for large s. Let c(x)

be the function defined in Hypothesis H3. We have

J ′′
1s=E

∫ T

0

∫

Ω

c(x)u(x)h(x)dxdt

+E

L
∑

l=1

∫ T

0







n
∑

j=1

∑

i∈Is(Gl)

∫

Gl

∂v
(s)
i

∂xj

∂v
(s)
i

∂xj
dx−

∫

Gl

c(x)dx







um

(

x
(s)
i

)

h
(

x
(s)
i

)

dt

+E

L
∑

l=1

n
∑

j=1

∫ T

0

∑

i∈Is(Gl)

∫

Gl

∂v
(s)
i

∂xj

∂v
(s)
i

∂xj

(

um (x)h(x)−um
(

x
(s)
i

)

h
(

x
(s)
i

))

dxdt

−E
L
∑

l=1

∫ T

0

∫

Gl

c(x)
(

um (x)h(x)−um
(

x
(s)
i

)

h
(

x
(s)
i

))

dxdt

+E

L
∑

l=1

∫ T

0

∫

Gl

c(x)(um (x)−u(x))hdxdt+µs;

we have omitted to write the variables t and ω for simplicity. Passing to the limit in
both sides of this equality first as s→∞ and later as m→∞, thanks to (2.34) and
the properties of um and h, we get by the dominated convergence theorem that

lim
s→∞

J ′′
1s=E

∫ T

0

∫

Ω

c(x)uhdxdt. (4.26)

As a result we have shown that

lim
s→∞

L2s=E

∫ T

0

∫

Ω

c(x)uhdxdt.

This together with the relations (4.4), (4.5), (4.7), (4.20), (4.21), and (4.22) enables
us to pass to the limit in (4.3) and obtain that

E

n
∑

i=1

∫ T

0

∫

Ω

[

∂u

∂xi

∂h

∂xi
+c(x)uh

]

dxdt
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=−E

∫

Ω

u(ω,T,x)hdx+E

∫

Ω

u0 (x)hdx

+E

∫ T

0

∫

Ω

f (t,u)hdxdt+E

d
∑

k=1

∫ T

0

∫

Ω

hgk (t,u)dxdw
k
t .

Since h(x) is an arbitrary test function, this implies that u(ω,t,x) is a generalized
solution of problem (2.35)-(2.37) for almost all ω. This completes the proof of Theorem
2.8.
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[40] N. Nagase, Remarks on nonlinear stochastic partial differential equations: An application of
the splitting-up method, SIAM J. Control & Optim., 33, 1716–1730, 1995.

[41] G. Nguetseng, A general convergence result for a functional related to the theory of homoge-
nization, SIAM J. Math. Anal., 20 (3), 608–623, 1989.

[42] B. Oksendal, Stochastic Differential Equations: An Introduction with Applications, Universi-
text, Springer-Verlag, Berlin-New York, 1998.

[43] A. Pankov, G-Convergence and Homogenization of Nonlinear Partial Differential Operators,
Mathematics and its Applications, Kluwer Academic Publishers, Dordrecht, 422, 1997.

[44] G.C. Papanicolaou and S.R.S. Varadhan, Diffusions in regions with many small holes, Stochas-
tic Differential Systems: Filtering and Control, Lecture Notes in Control and Information
Sciences, Springer Verlag, Berlin, 25, 190–206, 1980.



382 HOMOGENIZATION OF STOCHASTIC PARABOLIC EQUATIONS

[45] G.C. Papanicolaou and S.R.S. Varadhan, Boundary value problems with rapidly oscillating
random coefficients, Proceedings of a colloquium on random fields: Rigorous Results in
Statistical Mechanics and Quantum Field Theory, Colloq. Math. Soc. J. Bolyai, North-
Holland, Amsterdam, 1979.

[46] E. Pardoux, Homogenization of linear and semilinear second-order parabolic partial differential
equations with periodic coefficients: A probabilistic approach, J. Funct. Anal., 167, 498–
520, 1999.

[47] Y.V. Prokhorov, Convergence of random processes and limit theorems in probability theory,
Theory Prob. Appl., 1(2), 157–214, 1956.

[48] J. Rauch and M. Taylor, Potential and scattering theory, J. Funct. Anal., 18, 27–59, 1975.
[49] M. Sango, Magnetohydrodynamic turbulent flows: Existence results, Phys. D, 239(12), 912–923,

2010.
[50] M. Sango, Asymptotic behavior of a stochastic evolution problem in a varying domain, Stochas-

tic Anal. Appl., 20(6), 1331–1358, 2002.
[51] M. Sango, Homogenization of the Dirichlet problem for a system of quasilinear elliptic equations

in a domain with fine-grained boundary, Ann. Inst. H. Poincaré Anal. Non Linéaire, 20(2),
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