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SCATTERING OF SOLUTIONS AND STABILITY OF SOLITARY

WAVES FOR THE GENERALIZED BBM-ZK EQUATION∗

AMIN ESFAHANI†

Abstract. In this paper, a two-dimensional version of the BBM equation will be considered.
The existence and scattering of global small amplitude solutions to this equation will be studied.
The orbital stability of solitary wave solutions of this equation will be also investigated.
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1. Introduction

In [2], Benjamin, Bona, and Mahony derived the following alternative to the KdV
equation model for the propagation of long, weakly nonlinear one-dimensional waves:

ut+ux−uxxt+uux=0, (1.1)

where u is a real-valued function. The idea behind the derivation of (1.1) (so-called
BBM equation) is that the dispersion of the linearized equation at zero, while being
equivalent to that of the linearized KdV equation for long waves, does not possess the
bad short wave behavior of the KdV dispersion ω(k)=k−k3 (see [2] for a very lucid
discussion of the shortcomings of the KdV equation with respect to modeling).

A natural weakly two dimensional generalization of (1.1) is so-called BBM-ZK
equation [1, 13, 22, 34]

ut+εux−(uxt+βuyy)x+uux=0, (1.2)

where β∈R
∗, ε>0, and u=u(x,y,t) is a real-valued function. One can easily observe

that the dispersion relation of (1.2) is a good approximation of that of the Zakharov-
Kuznetsov (ZK) equation

ut+(uxx+uyy)x+uux=0, (1.3)

which can be considered as a two dimensional version of the KdV equation

ut+uxxx+uux=0. (1.4)

The motivation of this work is to compare the behaviors of the solutions of the two-
dimensional versions of (1.1) and (1.4). In [16], Faminskii considered the initial value
problem associated with the ZK equation. He showed the local and global well-
posedness for initial data in Hm(R2), with m∈N. In [5], Biagioni and Linares dealt
with the case p=2 for the generalized Zakharov-Kuznetsov (gZK) equation,

ut+(uxx+uyy)x+u
pux=0, (1.5)

and proved the local well-posedness for data in H1(R2). By considering the cases
p=1 and p=2, Linares and Pastor [25] improved the results in [5, 16] by showing
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that the initial value problem associated with equation (1.3) is locally well-posed for
initial data in Hs(R2), s>3/4. Moreover they also proved the global well-posedness
in H1(R2), for p=2, via a standard method by using the unique ground state of (1.5).
Recently, the local and global well-posedness and a nonlinear scattering result in the
energy space, for the case p≥3, have been investigated in [17, 26]. More precisely,
the authors in [17] obtained the local well-posedness of (1.5) in Hs(R2) for s>3/4
if 2≤p≤8, and s>1−2/p if p>8. They also showed that solutions of (1.5) with

small initial data decay to zero like (1+ |t|)−
2p

3(p+1) in L2(p+1)(R2). Recently Ribaud
and Vento in [30] improved these results to s>1/4 if p=2, s>5/12 if p=3 and
s>1−2/p if p≥4; see also results of [29] for the three dimensional case of (1.5). It is
noteworthy that the Cauchy problem for the ZK equation in the Bourgain-type spaces
[9, 10, 11] seems not to work. It should also be noted that questions of existence and
orbital stability of solitary wave solutions of (1.5) were addressed by de Bouard [12].
In [12], the author proved that the positive, radially symmetric solitary waves are
orbitally stable.

We consider here a generalization of equation (1.2), namely the gBBM-ZK equa-
tion:

ut+εux−(uxt+βuyy)x+(f(u))x=0. (1.6)

The author in [13] investigated the well-posedness of (1.2). He showed that equa-
tion (1.2) is globally well-posed in an appropriate functional space X, continuously
embedded in L2(R2). Furthermore, it was established in [13] that if the solution of
the Cauchy problem associated to (1.2) has a compact support for all times, then this
solution vanishes identically. It is worth remarking that the transverse instability of
solitary waves of (1.2) has been studied in [22].

In the present work, we study the decay behavior of small solutions of the initial
value problem for the gBBM-ZK equation. We obtain a lower bound for the degrees
of nonlinearity. These results allow us to establish a nonlinear scattering result for
small perturbations; that is, the small solutions of the nonlinear problem behave
asymptotically like the solution of the associated linear problem.

We also investigate the nonlinear stability of solitary waves of the gBBM-ZK
equation. Indeed, by using the famous result of [32], we prove the nonlinear sta-
bility and instability of solitary waves of the gBBM-ZK equation under appropriate
conditions on the nonlinearity and the parameter ε, and some spectral assumptions.
Finally, we will compare the stability of solitary waves of the BBM-ZK equation to
the gZK equation and another two dimensional generalization of the BBM equation,
the so-called 2D-gBBM equation [3, 12]:

ut+εux−∆ut+(f(u))x=0. (1.7)

Regarding the decay and the scattering of the solutions of (1.7), Biler et al. [6] showed
that the supremum norm of solutions with small initial data of (1.7) with p≥3 decay
to zero like (1+ |t|)−2/3. It should be noted that orbital stability of solitary wave
solutions and scattering of small solutions to (1.7) were addressed by de Bouard [12].

The rest of this paper is organized as follows. In the next section, the decay and
the scattering properties of (1.6) shall be studied. Section 3 is devoted to the nonlinear
stability of solitary waves of the gBBM-ZK equation. We will show that solitary waves
of the gBBM-ZK equation are stable if and only if d′′>0 (see (3.11)). We will apply
our results to the power-law nonlinearity f(u)=up+1/(p+1). The regions of stability
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of solitary waves of (1.5), (1.6), and (1.7) will be compared. We also study the effects
of the parameter ε on stability of solitary waves of these equations.

We finish this section by introducing some notations which will be used through-
out this paper.

Notations. Throughout this paper, the notation ‖·‖s,p is used to denote the
norm in the Bessel potential space Lp

s(R
n)=(I−∆)−s/2Lp(Rn) such that for u∈

Lp
s(R

n), ‖u‖s,p= |(I−∆)s/2u|p<+∞, where | · |p is denoted the norm in Lp(Rn) space.
We also use ‖·‖s for the norm in the usual Sobolev space Hs(Rn)=L2

s(R
n). For

1≤p≤∞, the notation |(f,g)|p is defined by |(f,g)|p= |f |p+ |g|p.
We also use the notation ‖·‖(s1,s2) to denote the norm in the anisotropic Sobolev

space

Hs1,s2(R2)=
(
I−∂2x

)−s1/2(
I−∂2y

)−s2/2
L2(R2),

such that for u∈Hs1,s2(R2),

‖u‖(s1,s2)=
∣∣∣(I−∂2x)s1/2(I−∂2y)s2/2u

∣∣∣
2
<+∞.

For any positive numbers a and b, the notation a. b means that there exists a
positive (harmless) constant k such that a≤ k b. We also use a∼ b when a. b and
b.a.

2. Decay and scattering

In this section, we will study the decay and the scattering properties of (1.6).
Throughout this paper we assume that f ∈C2(R) such that f(0)=0 and f(s)=
O(|s|p+1) as |s|→+∞. Before stating our main results, we give the following results
for the existence of the local and global solutions of (1.6). The proofs of the first two
theorems follow by classical semi-group theory [28, 31] or the parabolic regularization
theory [21] (see also [15, 32]).

Theorem 2.1.

(i) For u0∈Hs(R2), s>1, there exists a T =T (‖u0‖s)>0, and a unique solu-
tion u∈C

(
[0,T );Hs(R2)

)
of (1.6) with u(0)=u0. In addition, u(t) satisfies

E(u(t))=E(u0), Q(u(t))=Q(u0), and I(u(t))= I(u0), for all t∈ [0,T ), where

I(u)=

∫

R2

udxdy, (2.1)

E(u)=−1

2

∫

R2

εu2+βu2y+2F (u)dxdy, (2.2)

Q(u)=
1

2

∫

R2

u2+u2xdxdy, (2.3)

where F ′=f . Furthermore,

u∈C
(
[0,T );Hs1,s2(R2)

)
,

where s1≥0 and s2=s−s1.
(ii) For u0∈Hs1,s2(R2), s1,s2>1/2, there exists a T =T (‖u0‖(s1,s2))>0 and a

unique solution u∈C
(
[0,T );Hs1,s2(R2)

)
of (1.6) with u(0)=u0. In addi-

tion, u(t) satisfies E(u(t))=E(u0), Q(u(t))=Q(u0), and I(u(t))= I(u0), for
all t∈ [0,T ). Furthermore,

u∈C
(
[0,T );Hmin{s1,s2}(R2)

)
.
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We also have the following weaker result.

Theorem 2.2.

(i) If u0∈H1(R2), then there exists a global solution u∈L∞
(
R;H1(R2)

)
of (1.6)

with u(0)=u0. Moreover, there exists T >0 and a unique weak solution u∈
C
(
[0,T );H1(R2)

)
of (1.6) with u(0)=u0. In addition, u(t) satisfies E(u(t))=

E(u0), Q(u(t))=Q(u0), and I(u(t))= I(u0), for all t∈ [0,T ).

(ii) If u0∈H1,0(R2), then there exists a global solution u∈L∞
(
R;H1,0(R2)

)
of (1.6)

with u(0)=u0. Moreover, there exists T >0 and a unique weak solution u∈
C
(
[0,T );H1,0(R2)

)
of (1.6) with u(0)=u0. In addition, u(t) satisfies E(u(t))=

E(u0), Q(u(t))=Q(u0), and I(u(t))= I(u0), for all t∈ [0,T ).

Theorem 2.3.

(i) There is δ>0 such that if ‖u0‖1<δ, equation (1.6) has a unique solution u∈
C(R;H1(R2)) with u(0)=u0. Moreover, ‖u(t)‖1≤C‖u0‖1, for all time t∈R,
where C=C(‖u0‖1)>0 and the functionals E, Q, and I are independent of t.

(ii) There is δ>0 such that if ‖u0‖(1,0)<δ, equation (1.6) has a unique solution
u∈C(R;H1,0(R2)) with u(0)=u0. Moreover, ‖u(t)‖(1,0)≤C‖u0‖(1,0), for all
time t∈R, where C=C(‖u0‖(1,0))>0 and the functionals E, Q, and I are in-
dependent of t.

Proof. Without loss of generality we restrict ourselves to the case t>0 and
β=−1. By theorems 2.1 and 2.2, it suffices to prove that ‖u(t)‖1 is bounded in [0,T ).
In fact, using the invariants E and Q, we obtain

‖u(t)‖1≤C
(
‖u0‖21+ |u(t)|p+2

p+2

)
≤C

(
‖u0‖21+‖u(t)‖p+2

1

)
, (2.4)

for t∈ [0,T ), where the constant C>0 depends only on ‖u0‖1. Define M(t)=
sup0≤τ<t‖u(τ)‖1. Then by (2.4), we have

M(t)≤Cδ+CM(t)q,

where q=p+2/2. Hence, for sufficiently small δ such that ‖u0‖1≤ δ, it follows from
the continuity of M(t) that M(t) remains in the bounded connected component of
{z≥0 z≤Cδ+Czq} containing the origin for all t∈ [0,T ). Moreover, we have M(t)≤
C‖u0‖1, for all time t∈ [0,T ). This completes the proof of (i). The proof of (ii) is
similar.

Lemma 2.4. Let N≫1, t 6=0, and J =[−N,N ]. Then there exists a constant C>0,
independent of t and N , such that

∣∣∣∣
∫

J

∫

R

e
−i

(

tξ
(

ε+βη2

1+ξ2

)

−xξ−yη
)

dη dξ

∣∣∣∣≤Ct
−1/2N3/2. (2.5)

Proof. Denote the integral of the left hand side of (2.5) by A. Then by the

change of variable ξ=a
√

1+ξ2

|tξ| , we obtain

A=

∫

J

∫

R

e
−iξ

(

tξ

1+ξ2
−x

)

e−iβa2sgn(tξ)+iya
√

1+ξ2

|tξ|

√
1+ξ2

|tξ| dadξ.
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Now we note that

−iβa2sgn(tξ)+iya

√
1+ξ2

|tξ| =−iβ sgn(tξ)

(
a− βy sgn(tξ)

2

√
1+ξ2

|tξ|

)2

+
iβy2(1+ξ2)

4|tξ| ,

hence
∫

R

e−iβa2sgn(tξ)+iya
√

1+ξ2

|tξ| da=e
iβy2(1+ξ2)

4|tξ|

∫

R

e±a2

da=
√
πe

iβy2(1+ξ2)
4|tξ|

±iπ4 .

Consequently, this yields that

|A|=
√
π|t−1/2|

∣∣∣∣∣

∫

J

√
1+ξ2

|ξ| dξ

∣∣∣∣∣. t
−1/2N3/2.

Lemma 2.5. Let S(t) be the C0-group of unitary operators for the linearized problem
of (1.6),

ut+εux−(uxt+βuyy)x=0.

(i) Let s1,s2>1/2, θ=(2(s1+1))−1∈ [0,1/3), and u0∈Hs1,s2(R)∩L1(R2). Then
there exists a constant C>0, depending only on s1, such that for all t∈R we
have

|S(t)u0|∞≤C(1+ |t|) 3θ−1
2

(
|u0|1+‖u0‖(s1,s2)

)
. (2.6)

(ii) Let s>1/2, θ=(2(s+1))−1∈ [0,1/3), and u0∈H2s(R)∩L1(R2). Then there ex-
ists a constant C>0, depending only on s, such that for all t∈R we have

|S(t)u0|∞≤C(1+ |t|) 3θ−1
2 (|u0|1+‖u0‖2s) . (2.7)

Proof. (i) Let N >0 be sufficiently large. Then we have

S(t)u0=

∫

|ξ|>N

∫

R

ei(th(ξ,η)+xξ+yη)û0(ξ,η)dη dξ

+

∫

|ξ|≤N

∫

R

ei(th(ξ,η)+xξ+yη)û0(ξ,η)dη dξ,

where h(ξ,η)= ξ
(

ε+βη2

1+ξ2

)
. By Lemma 2.4, the second term in the right hand side of

the above identity is bounded by t−1/2N3/2|u0|1. On the other hand, the Cauchy-
Schwarz inequality implies that

∣∣∣∣∣

∫

|ξ|≥N

∫

R

ei(th(ξ,η)+xξ+yη)û0(ξ,η)dη dξ

∣∣∣∣∣.N
1/2−s1‖u0‖(s1,s2).

By choosing N = tθ with |t|≥1, we obtain

|S(t)u0|. |t| 3θ−1
2

(
|u0|1+‖u0‖(s1,s2)

)
,

for all |t|≥1. Finally by using the embedding Hs1,s2(R2) →֒L∞(R2) for s1,s2>1/2,
we have for |t|≤1 that

|S(t)u0|.‖u0‖(s1,s2).
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This completes the proof of (i).
The proof of (ii) is similar to (i).

The following lemma is a direct consequence of Lemma 2.5 and an interpolation
theorem.

Lemma 2.6. Let 1<q≤∞ and 1/q+1/q′=1.

(i) If s1,s2>1/2, θ=(2(s1+1))−1∈ [0,1/3), and u0∈Hs1,s2(R)∩Lq(R2), then
there exists a constant C>0, depending only on s1, such that for all t∈R we
have

|S(t)u0|q′ ≤C(1+ |t|)(
3θ−1

2 )
(

1− 2
q′

)(
|u0|q+‖u0‖(s1,s2)

)
. (2.8)

(ii) If s>1/2, θ=(2(s+1))−1∈ [0,1/3), and u0∈H2s(R2)∩Lq(R2), then there ex-
ists a constant C>0, depending only on s, such that for all t∈R we have

|S(t)u0|q′ ≤C(1+ |t|)(
3θ−1

2 )
(

1− 2
q′

)

(|u0|q+‖u0‖2s) . (2.9)

Theorem 2.7. Suppose that s>1, µ=(1−3θ)/2, θ=(2(s+1))−1∈ [0,1/3), and

p>
3(1−θ)
1−3θ

.

Then there exists δ>0 and C>0 such that for any u0∈H2s(R2)∩L1(R2) satisfying
|u0|1+‖u0‖2s<δ, there is a unique solution u∈C(R;H2s(R2)) of (1.6) with u(0)=u0
such that

|u(t)|∞≤C(1+ |t|)−µ. (2.10)

Proof. Consider the map

Φ(u)(t)=S(t)u0+

∫ t

0

S(t−τ)L−1∂xf(u(τ))dτ, (2.11)

where L= I−∂2x, and for T >0 define the norm ‖u‖X , for u∈H2s(R2), by

‖u‖X := sup
t∈[0,T ]

(‖u(τ)‖2s+(1+ |τ |)µ|u(τ)|∞) .

We shall show that Φ in strictly contractive in a suitable closed ball in
C([−T,T ];H2(R2)). First we prove that

|Φ(u)−Φ(v)|∞(t)≤Cs,p(‖u‖pX +‖v‖p
X
)(1+ |t|)−µ‖u−v‖X , (2.12)

for any u,v∈H2s(R2). Indeed, for any u,v∈H2s(R2), we have from (2.11) and Lemma
2.5 that

|Φ(u)−Φ(v)|∞(t).

∫ t

0

|S(t−τ)L−1∂x(F (u(τ))−F (v(τ)))|∞ dτ

.

∫ t

0

(1+ t−τ)−µ
(
|L−1∂x(F (u(τ))−F (v(τ)))|1

+‖L−1∂x(F (u(τ))−F (v(τ)))‖2s
)
dτ

.

∫ t

0

(1+ t−τ)−µ (|F (u(τ))−F (v(τ))|1

+‖F (u(τ))−F (v(τ))‖2s)dτ,
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where in the last inequality we used the fact

∣∣L−1∂xF
∣∣
1
.
∣∣∣
∣∣L−1∂xF

∣∣
L1

x(R)

∣∣∣
L1

y(R)
.
∣∣|K|L1

x(R)
|F |L1

x(R)

∣∣
L1

y(R)

= |K|L1
x(R)

∣∣|F |L1
x(R)

∣∣
L1

y(R)
= |K|L1

x(R)
|F |1,

(2.13)

where K(x)=sgn(x)e−|x|∈L1(R). Now, we are going to estimate ‖F (u(τ))−
F (v(τ))‖1 and ‖F (u(τ))−F (v(τ))‖2s. Actually, for the H2s(R2)-estimate, by using
the fractional Leibniz rule [23, Lemma X.4] we have

‖F (u(t))−F (v(t))‖2s. |u−v|∞‖|u|p+ |v|p‖2s+ ||u|p+ |v|p|∞‖u−v‖2s
. |u−v|∞||u|+ |v||p−1

∞ ‖|u|+ |v|‖2s+ ||u|p+ |v|p|∞‖u−v‖2s
. (1+τ)−µp(‖u‖p

X
+‖v‖p

X
)‖u−v‖X .

On the other hand, it follows from the Cauchy-Schwarz inequality that

|F (u(t))−F (v(t))|1. |u−v|∞||u|p−2+ |v|p−2|∞||u|+ |v||22
. |u−v|∞||u|p−2+ |v|p−2|∞‖|u|+ |v|‖22s
. (1+τ)−µ(p−1)(‖u‖p

X
+‖v‖p

X
)‖u−v‖X .

We therefore conclude that

|Φ(u(t))−Φ(v(t))|∞. (1+ t)−µ(p−1)
(
‖u‖p

X
+‖v‖p

X

)
‖u−v‖X .

Next, we show that

‖Φ(u)(t)−Φ(v)(t)‖2s≤Cs,p(‖u‖pX +‖v‖p
X
)(1+ |t|)−µ‖u−v‖X , (2.14)

for any u,v∈H2s(R2). But, for any u,v∈H2s(R2), we have from (2.11) and the
Leibniz rule that

‖Φ(u)(t)−Φ(v)(t)‖2s.
∫ t

0

‖F (u(τ))−F (v(τ))‖2sdτ

.

∫ t

0

|u−v|∞‖|u|p+ |v|p‖2s+‖u−v‖2s||u|+ |v||p∞dτ

.

∫ t

0

|u−v|∞||u|+ |v||p−1
∞ ‖|u|+ |v|‖2s+‖u−v‖2s||u|+ |v||p∞dτ

. (‖u‖p
X

+‖v‖p
X
)‖u−v‖X

∫ t

0

(1+τ)−µpdτ

. (‖u‖p
X

+‖v‖p
X
)‖u−v‖X .

Combining (2.12) and (2.14) leads to the conclusion

‖Φ(u)−Φ(v)‖X ≤Cs,p

(
‖u‖p

X
+‖v‖p

X

)
‖u−v‖X (2.15)

and

‖Φ(u)‖X ≤Cs,p|u0|+‖u0‖2s+‖u‖p+1
X

. (2.16)

Now for M>0, we consider the closed ball

BX =
{
u∈C([−T,T ];H2s(R2)); ‖u‖X ≤M

}
.
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By choosing δ>0 and M>0 small enough such that δ+Mp+1≤M and Cs,pM<1,
it follows from (2.15) and (2.16) that Φ is strictly contractive on BX and there
exists a unique solution u of (1.6) in BX , if |u0|1+‖u0‖<δ. Thereby, the continuity
of the norm ‖u‖X with respect to T and (2.16) allows us to conclude that ‖u‖X

remains bounded for all T >0. Thus we have obtained a bound of ‖u‖X for all T and
consequently an a priori estimate of the local solution which permits us to extend u
globally.

Theorem 2.8. Let r,s>1, q′>2, s′>2/r, µ=(1−3θ)/2<q′/(q′−2), θ=(2(s+
1))−1∈ [0,1/3), and

p>
4(r−q′)+2rq′

(1−3θ)(q′−2)(rs−2)
.

Then there exists δ>0 and C>0 such that for any u0∈H2s(R2)∩Lq′(R2)∩Lr
s′(R

2)
satisfying |u0|q′ +‖u0‖2s+‖u0‖s′,r<δ, there is a unique solution u∈C(R;H2s(R2)∩
Lr
s′(R

2)) of (1.6) with u(0)=u0 such that

|u(t)|q′ ≤C(1+ |t|)−µ
(

1− 2
q′

)

. (2.17)

Proof. Let ℓ=1−2/q′. For T >0, define the norm ‖u‖X , for u∈H2s(R2)∩
Lr
s′(R

2), by

‖u‖X := sup
0≤τ≤T

(
‖u(τ)‖2s+‖u(τ)‖s′,r+(1+τ)µℓ|u(τ)|q′

)
.

Similar to Theorem 2.7, it is enough to show that Φ, defined in (2.11), in strictly
contractive in a suitable closed ball in C([−T,T ];H2s(R2)∩Lr

s′(R
2)); we therefore

show that, for any u,v∈H2s(R2)∩Lr
s′(R

2),

|Φ(u)−Φ(v)|q′ ≤C
(
‖u‖p

X
+‖v‖p

X

)
(1+ t)−µℓ‖u−v‖X , (2.18)

‖Φ(u)−Φ(v)‖s′,r≤C
(
‖u‖p

X
+‖v‖p

X

)
‖u−v‖X , (2.19)

‖Φ(u)−Φ(v)‖2s≤C
(
‖u‖p

X
+‖v‖p

X

)
‖u−v‖X , (2.20)

where C=C(s,p,s′,r). To prove (2.18), note that (2.11), Lemma 2.6, and (2.13) imply
that

|Φ(u)−Φ(v)|q′ .
∫ t

0

|S(t−τ)L−1∂x(F (u(τ))−F (v(τ)))|q′ dτ

.

∫ t

0

(1+ t−τ)−µ
(
|L−1∂x(F (u(τ))−F (v(τ)))|q

+‖L−1∂x(F (u(τ))−F (v(τ)))‖2s
)
dτ

.

∫ t

0

(1+ t−τ)−µ (|F (u(τ))−F (v(τ))|q+‖F (u(τ))−F (v(τ))‖2s)dτ,

where in the last inequality we used the Mikhlin-Hormander theorem [33]. It remains
to bound F (u(τ))−F (v(τ)) in H2s(R2)∩Lq(R2). First, observe from the Hölder
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inequality, the Sobolev embedding, and the Gagliardo-Nirenberg inequality [18] that

|F (u(τ))−F (v(τ))|q . |u−v|q′ ||u|p+ |v|p| qq′

q′−q

. |u−v|q′ ||u|+ |v||p
pqq′

q′−q

. |u−v|q′‖|u|+ |v|‖ps′,r

. |u−v|q′‖|u|+ |v|‖s′,r||u|+ |v||p−1
∞

. |u−v|q′‖|u|+ |v|‖s′,r‖|u|+ |v|‖a(p−1)
s′,r ||u|+ |v||(1−a)(p−1)

q′

. (1+τ)−µℓ(1−a)‖u−v‖X (‖u‖X +‖v‖X )p,

where

a=
2r

2(r−q′)+rq′ . (2.21)

On the other hand, it is deduced from the Leibniz rule and the Gagliardo-Nirenberg
inequality that

‖F (u(τ))−F (v(τ))‖2s
.‖u−v‖2s||u|p+ |v|p|∞+ |u−v|∞‖|u|p+ |v|p‖2s
.‖u−v‖2s‖|u|+ |v|‖aps′,r||u|+ |v||(1−a)p

q′ +‖u−v‖as′,r|u−v|1−a
q′ ‖|u|p+ |v|p‖2s

.‖u−v‖2s‖|u|+ |v|‖aps′,r||u|+ |v||(1−a)p
q′

+‖u−v‖as′,r|u−v|1−a
q′ ‖|u|+ |v|‖2s||u|+ |v||p−1

∞

.‖u−v‖2s‖|u|+ |v|‖aps′,r||u|+ |v||(1−a)p
q′

+‖u−v‖as′,r|u−v|1−a
q′ ‖|u|+ |v|‖2s‖|u|+ |v|‖a(p−1)

s′,r ||u|+ |v||(1−a)(p−1)
q′

. (1+τ)−µℓ(1−a)‖u−v‖X (‖u‖X +‖v‖X )p,

where a is the same as above. It is then concluded that

|Φ(u)−Φ(v)|q′ .‖u−v‖X (‖u‖X +‖v‖X )p
∫ t

0

(1+τ)−µℓ(1−a)(1+ t−τ)−µ dτ

. (1+ t)−µ‖u−v‖X (‖u‖X +‖v‖X )p.

To verify (2.19), one can observe again from (2.11) that

‖Φ(u)−Φ(v)‖s′,r.
∫ t

0

‖L−1∂x(F (u(τ))−F (v(τ)))‖s′,r dτ

.

∫ t

0

‖L−1∂x(F (u(τ))−F (v(τ)))‖s′,r dτ.
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But we get from the Leibniz rule and the Gagliardo-Nirenberg inequality that

‖F (u(τ))−F (v(τ))‖s′,r
.‖u−v‖s′,r||u|p+ |v|p|∞+ |u−v|∞‖|u|p+ |v|p‖s′,r
.‖u−v‖s′,r‖|u|+ |v|‖aps′,r||u|+ |v||(1−a)p

q′

+‖u−v‖as′,r|u−v|1−a
q′ ‖|u|p+ |v|p‖s′,r

.‖u−v‖s′,r‖|u|+ |v|‖aps′,r||u|+ |v||(1−a)p
q′

+‖u−v‖as′,r|u−v|1−a
q′ ‖|u|+ |v|‖s′,r||u|+ |v||p−1

∞

.‖u−v‖s′,r‖|u|+ |v|‖aps′,r||u|+ |v||(1−a)p
q′

+‖u−v‖as′,r|u−v|1−a
q′ ‖|u|+ |v|‖s′,r||u|+ |v||(1−a)(p−1)

q′ ‖|u|+ |v|‖a(p−1)
s′,r

. (1+τ)−µℓ(1−a)‖u−v‖X (‖u‖X +‖v‖X )p,

where a is defined in (2.21). It is therefore concluded that

‖Φ(u)−Φ(v)‖s′,r.‖u−v‖X (‖u‖X +‖v‖X )p
∫ t

0

(1+τ)−µℓ(1−a) dτ

.‖u−v‖X (‖u‖X +‖v‖X )p.

Inequality (2.20) can be proved similar to (2.18) and (2.19).

We proceed by studying the asymptotic behavior of such solutions as t→±∞.
We prove that under a smallness condition the solution scatters to a solution of the
linear problem. Precisely, we have the following.

Theorem 2.9. Under assumptions of Theorem 2.7, let u(t) be the solution of (1.6).
Then there exists a unique solution u±(t)∈H2s(R2), s≥1/2, of the linearized equation
of (1.6) such that

‖u(t)−u±(t)‖2s→0, (2.22)

as t→±∞.

Proof. Let u(t) be the solution of (1.6) in Theorem 2.7. We define

u±(t)=u(t)+

∫ ±∞

t

S(t−τ)L−1∂xf(u(τ))dτ, (2.23)

which is a solution of the linearized equation of (1.6):

ut+εux−(uxt+βuyy)x=0. (2.24)

Now we only consider the case u+(t), since the proof of u−(t) is similar.
By theorems 2.3 and 2.7, we obtain

‖u(t)−u+(t)‖2s≤
∫ +∞

t

‖S(t−τ)L−1∂xf(u(τ))‖2s dτ

≤
∫ +∞

t

‖f(u(τ))‖dτ .
∫ +∞

t

|u|p∞‖u‖2s dτ

≤Cδ
∫ +∞

t

(1+τ)−pµ dτ ≤Cδ(1+ t)1−pµ→0,
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as t→+∞. Using the integral form (2.11), we may write u+(t) as the form

u+(t)=S(t)u0+

∫ +∞

0

S(t−τ)L−1∂xf(u(τ))dτ =S(t)w
+,

where w+=u0+
∫ +∞

0
S(−τ)L−1∂xf(u(τ))dτ . Since the right side is a linear combi-

nation of solutions of (2.24), so is u+. Now we are going to show the uniqueness of u+.
Let w+ be another solution of (2.24) which satisfies (2.22). Let V (t)=u+(t)−w+(t).
We want to show that V (t)=0 a.e. Since V is also the solution of (2.24), we have

‖V (0)‖2s=‖S(t)V (0)‖2s=‖V (t)‖2s‖u(t)−w+(t)‖2s+‖u(t)−u+(t)‖2s→0,

as t→+∞. This implies that ‖V (t)‖1=0 for all t≥0. Hence u+=w+. This completes
the proof of Theorem 2.9.

The following theorem plays a key role in our instability analysis.

Theorem 2.10. Let u0∈Hs1,s2(R2)∩L∞(Ry;L
1(Rx))∩L1(R2), s1,s2>1/2. Then

if u(t) is the solution of (1.6) with u(0)=u0, we have
∣∣∂−1

x u(z,y,t)
∣∣
∞
≤C(1+ |t|) 3θ+1

2 ,

where θ=(2(s1+1))−1∈ (0,1/3) and C is a constant depending only on

sup
t≥0

‖u(t)‖1+‖u0‖L∞
y L1

x
+ |u0|1.

Proof. Considering the group S(t) defined above, we can write

u(t)=S(t)u0−
∫ t

0

S(t−τ)L−1∂xf(u(τ))dτ,

so that

U(t)=∂−1
x u(t)=

∫ x

−∞

u(z,y,t)dz=Z(t)−
∫ t

0

S(t−τ)L−1f(u(τ))dτ,

=Z(t)−Λ(t),

where Z(t)=∂−1
x S(t)u0. On the other hand, we can write

S(t)u0=u0−
∫ t

0

L−1∂xS(τ)u0 dτ.

Then, we have

Z(t)=U0−
∫ t

0

L−1S(τ)u0 dτ,

where U0=∂
−1
x u0. Now by our assumptions we get from Lemma 2.5 that

|Z(t)|≤
∣∣∣∣
∫ x

−∞

u0(z,y)dz

∣∣∣∣+
∣∣∣∣
∫ t

0

L−1S(τ)u0 dτ

∣∣∣∣

≤
∣∣∣∣
∫

R

u0(z,y)dz

∣∣∣∣+
∫ t

0

∣∣L−1S(τ)u0
∣∣
∞

dτ

≤|u0|L∞(Ry;L1(Rx))+

∫ t

0

∣∣S(τ)L−1u0
∣∣
∞

dτ

. |u0|L∞(Ry;L1(Rx))+(1+ |t|) 3θ+1
2

(
|u0|1+‖u0‖(s1,s2)

)
,

(2.25)
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where in the last inequality we used the fact |L−1u0|1. |u0|1 (see (2.13)). It just
remains to estimate Λ(t). Note that another application of Lemma 2.5 yields

|Λ(t)|.
∫ t

0

(1+ t−τ) 3θ−1
2

(
|L−1f(u)|1+‖L−1f(u)‖(s1,s2)

)
dτ

.

∫ t

0

(1+ t−τ) 3θ−1
2 (|f(u)|1+ |f(u)|2) dτ.

(2.26)

Since |f(s)|≤C|s|2 for |s|≤1 and |f(s)|≤C|s|p+1 for |s|≥1,

|f(u)|1≤C
(∫

|u|≤1

|u|2 dxdy+
∫

|u|≥1

|u|p+1 dxdy

)
≤C

(
|u|22+ |u|p+1

p+1

)
≤C=C(‖u‖1).

It is therefore concluded that |Λ(t)|≤C(1+ t) 3θ+1
2 . This completes the proof.

3. Stability

We consider a solitary wave solution of (1.6) of the form u(x,y,t)=ϕc(x−ct,y),
vanishing at infinity, where c>0 is the wave velocity; then ϕc satisfies

−c∂2xϕc+(c−ε)ϕc+β∂
2
yϕc−F (ϕc)=0. (3.1)

Using some Pohozaev-type identities, one can easily show that there is no solitary
wave solution of (1.6) if c<ε or β>0.

Existence of solutions for (3.1) is well-known. It follows, for example, from the
results of Berestycki and Lions [4]. We are interested in the cylindrically symmetric
positive solutions of (3.1). We recall the results in the following theorem.

Theorem 3.1. Suppose that f satisfies the assumptions stated at the beginning of
Section 2. If c>0 and β<0, then equation (3.1) possesses a cylindrically symmetric
positive solution ϕc∈H1(R2), which is called a ground state of (3.1). Moreover,
ϕc∈H∞(R2), ∂rϕc(r)<0, for all r 6=0 where r= |(√cx,

√
−βy)|, and there is a σ>0

such that for all α∈N
2 with |α|≤2, |∂αϕc(x,y)|≤Cαe

−σr.

For the sake of simplicity, throughout this section we assume that β=−1.

We note that the solution ϕc of (3.1), given by Theorem 3.1, is the critical point
of

Sc(ϕc)=E(ϕc)+cQ(ϕc). (3.2)

Now, we define the linearized operator Lc around ϕc by

Lc=S
′′
c =E

′′+cQ′′=−c∂2x−∂2y+c−ε−f ′(ϕc). (3.3)

It is clear that Lc is self-adjoint from H1(R2) into H−1(R2) and that L−1/2LcL−1/2

is self-adjoint on L2(R2). One can easily see that the solution ϕc satisfies

Lc∂xϕc=0 and Lc∂yϕc=0.

We continue by stating our hypotheses on ϕc and Lc (see lemmas 3.2 and 3.6
below), which are as follows.
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Hypothesis 3.1. The ground state solution of (3.1) given by Theorem 3.1 is unique
and the curve c 7→ϕc defined for c>ε is C1 with values in H2(R2). Moreover there
are positive constants C and ̺ such that

∣∣∣∣
dϕc

dc
(x,y)

∣∣∣∣≤Ce
−̺|(x,y)|,

for all (x,y)∈R
2 and c>ε.

Hypothesis 3.2. The operator Lc, for c>ε, has a unique simple negative eigenvalue
λc with a corresponding cylindrically symmetric positive eigenfunction χc such that
for all (x,y)∈R

2,

|χc(x,y)|≤Cce
−ρ|(x,y)|,

for some positive constants Cc and ρ. In addition, the mapping c 7→χc is continuous
with values in H2(R2). Furthermore the essential spectrum of Lc is positive and
bounded away from zero and the null space of Lc is spanned by ∂xϕc and ∂yϕc.

The following lemma considers the power-law nonlinearity f(s)=sp+1/(p+1).

Lemma 3.2. Let p≥1 be an integer and f(u)=up+1/(p+1). Then hypotheses 3.1
and 3.2 are satisfied.

Remark 3.3. It is noteworthy that if ψ satisfies

−∆ψ+ψ− ψp+1

p+1
=0,

and the operator L1=−∆+1−ψp satisfies Hypothesis 3.2, i.e. L1 has a unique
simple negative eigenvalue λ with a corresponding radially symmetric positive eigen-
function χ1, then the operator Lc=−c∂2x−∂2y+c−ε−ϕp

c satisfies Hypothesis 3.2.
More precisely, the unique simple negative eigenvalue of Lc is a multiple of λ and the
cylindrically symmetric positive eigenfunction of Lc is a dilation of χ1.

Proof of Lemma 3.2.

Proof. The regularity of ϕc with respect to c follows from Theorem 3.1 (see
(3.9)). Uniqueness of the ground state was proved in [24]. We show that ∂xϕc and
∂yϕc are the only zero modes of Lc. By Remark 3.3, it is enough to prove it for the
operator

L1=−∆+1−ψp.

We can use the same argument as in [24, 35] and see that any zero mode of L1 can be
decomposed into a series of radial functions multiplied by spherical harmonics. Since
each one of ∂xϕc and ∂yϕc corresponds to spherical harmonics of degree 1, it follows
that the only other possible zero modes correspond to spherical harmonics of degree
zero. Thus, it is sufficient to show that L1 has no radial zero mode, or more precisely
the solution of

urr+
1

r
ur−u+up=0, (3.4)

where r= |(x,y)|, with u(0)=1 and u′(0)=0, does not vanish at infinity. But Kwong
in [24] showed that if u(r,α) is the solution of (3.4) with ur(0,α)=0 and u(0,α)=α,
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and if α0 is the initial value generating the ground state, then uα(r,α0)→+∞ as
r→+∞. On the other hand, uα(r,α0) satisfies u(0)=1 and u′(0)=0; hence this
solution does not vanish at infinity.

The properties of Hypothesis 3.2 are proved in [36, Proposition 4.2].

Now we examine the relation between the convexity properties of the function
d(c) and the properties of the functional E near the critical point ϕc under suitable
constraints. Indeed by defining ψω in the form

ψω =ϕc+s(ω)χc, (3.5)

where s(c) is an appropriate function, we can prove following theorem exactly as [8,
Theorem 3.1] or [32, Theorem 2.3].

Theorem 3.3. If d′′(c)<0, then there exists a curve ω 7→ψω passing through ϕc,
lying on the surface Q(u)=Q(ϕc), and on which E(u) has a strict local maximum at
u=ϕc.

We also denote the tubular neighborhoods of the orbit generated by a solitary
wave by

Uǫ=

{
u∈H1(R2); inf

z∈R2
‖u−ϕc(·−z)‖1<ǫ

}

and

Us
ǫ ={u∈Uǫ; u is y–cylindrically symmetric},

where ǫ>0.

Lemma 3.4. Fix c>ε and let ϕc be a solitary wave given in Theorem 3.1. Then,
there exist an ǫ>0 and a C1–map ζ :Uǫ→R

2 such that for all u∈Uǫ and z∈R
2,

(i) 〈u(·+ζ(u)),∂xϕc〉= 〈u(·+ζ(u)),∂yϕc〉=0,

(ii) ζ(u(·+z))= ζ(u)−z.
(iii) Moreover, if u∈Us

ǫ then ζ(u)=(ζ0(u),0), where

ζ ′0(u)=
∂xϕc(·−ζ(u))

〈u,∂2xϕc(·−ζ(u))〉
. (3.6)

Proof. The proof of this lemma is well-known. In fact, one defines F :H1(R2)×
R

2→R
2 by

F (u,ζ)=

∫

R2

u((x,y)+ζ)∇ϕc(x,y)dxdy,

where ζ=(ζ1,ζ2). Then, taking into account that ϕc is cylindrically symmetric (see
Theorem 3.1), one can apply the Implicit Function Theorem to conclude the state-
ments. For details we refer the reader to [8, Lemma 4.1].

We continue by defining for u∈Us
ǫ the mapping

B(u)=ϑ(·−γ(t), ·)−〈ϑ(·−γ(t), ·),Lu〉∂xL−1ζ ′0(u)

=ϑ(·−γ(t), ·)− 〈ϑ(·−γ(t), ·),Lu〉
〈u,∂2xϕc(·−γ(t), ·)〉

∂2x∂xL−1ϕc(·−γ(t), ·),
(3.7)
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where γ(t)= ζ0(u(t)) and ϑ is defined by

ϑ=
dψω

dω

∣∣∣∣
ω=c

. (3.8)

Now we can prove the following properties of B.

Lemma 3.5. For any small ǫ>0, the mapping B is a C1–function from Us
ǫ into

H1(R2). In addition, the following statements hold:

(i) B(ϕc)=ϑ;

(ii) 〈B(u),Lu〉=0, for all u∈Us
ǫ ;

(iii) B commutes with translations in x-variable.

Proof. The proof of this lemma is standard by using Lemma 3.4. For details we
refer the reader to [8, Proposition 4.1].

Hypothesis 3.4. We assume that L(dϕc

dc )∈L1(R2).

Lemma 3.6. If f(u)=up+1/(p+1) with p≥1, then Hypothesis 3.4 is satisfied.

Proof. First we note from Theorem 3.1 that ∂αϕc∈L1(R2), for all α∈N
2 with

|α|≤2. An argument similar to [7] and [14] shows from

ϕc=Kc ∗f(ϕc), K̂c(ξ,η)=
1

cξ2+η2+c−ε ,

that ∂αϕc∈L1(R2) for all α∈N
3
0 with |α|≤3. Hence the proof follows from the fact

that if ϕc is a ground state of (3.1), then ϕc∈H∞(R2) and

ψ(x,y)=(c−ε)−1/pϕc

(√
c

c−ε x,
1√
c−ε y

)
(3.9)

satisfies

−∆ψ+ψ−f(ψ)=0. (3.10)

Lemma 3.7. Let f ∈C2(R) satisfy the assumptions stated at the beginning of Section
2. Then Lϑ∈L1(R2).

Proof. We recall that ϑ is defined by

ϑ=
dϕc

dc
+s′(c)χc,

for some real-valued function s. We have from Hypothesis 3.2 and Lemma 3.6 that
L(dϕc/dc), χc∈L1(R2). On the other hand, since χc satisfies Lχc=λχc, for some
λ<0, then χc satisfies

χc= K̃c ∗(f ′(ϕc)χc),
̂̃
Kc(ξ,η)=1/(cξ2+η2+c−ε−λ).

Hence by the aforementioned argument in the proof of Lemma 3.6, we obtain that
∂2xχc∈L1(R2). This completes the proof.

We define the stability of solitary wave in the usual way.
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Definition 3.8. Let ϕc be a solitary wave solution of (1.6). We say that ϕc is
orbitally (or nonlinearly) stable if for all ǫ>0, there is a δ>0 such that for any
u0∈Hs

(
R

2
)
, s>1, with ‖u0−ϕc‖1≤ δ, the corresponding solution u(t) of (1.6) with

u(0)=u0 satisfies

sup
t≥0

inf
z∈R2

‖u(t)−ϕc(·−z)‖1≤ ǫ.

Otherwise, we say that ϕc is nonlinearly unstable.

Theorem 3.9. Suppose that f satisfies the assumptions stated at the beginning of
Section 2. Let c>ε and ϕc be a solution of (3.1) given by Theorem 3.1, and also
assume that hypotheses 3.1, 3.2, and 3.4 hold. Then ϕc is stable if and only if d′′(c)>
0, where

d(c)=E(ϕc)+cQ(ϕc). (3.11)

Proof of stability is exactly the same as in [8, 20, 32], so we omit it and we only
prove instability.

Lemma 3.10. Suppose that c>ε and d′′(c)<0. Let ϕc be a solitary wave given in
Theorem 3.1. Then there is a small enough ǫ>0 such that for any u∈Us

ǫ which is
not a translation of ϕc and satisfies Q(u)=Q(ϕc), there is a λ=λ(u)∈ (−ǫ,ǫ) such
that

E(ϕc)<E(u)+λ〈E′(u),B(u)〉. (3.12)

Proof. The proof follows from Taylor’s theorem. For details see [15, Lemma
3.11] or [32, Lemma 4.3].

The following lemma has a key role in the proof of instability. The proof is similar
to Lemma 4.4 in [32].

Lemma 3.11. Let c>ε and ϕc be a corresponding solitary wave given in Theo-
rem (3.1). Assume d′′(c)<0. Then, the curve c 7→ψc defined in Theorem 3.3 satis-
fies E(ψω)<E(ϕc) for ω 6= c, Q(ψω)=Q(ϕc), and 〈E′(ψω),B(ψω)〉 changes sign as ω
passes through c.

Now we turn our attention to complete the proof of instability of Theorem 3.9.
Let ǫ>0 be sufficiently small as in Lemma 3.4, Us

ǫ be the corresponding tubular
neighborhood and a cylindrically symmetric data u0=ψω with ω close to c (inH1(R2)-
norm), so that u0∈Us

ǫ ∩Hs(R2) with s>1, E(u0)<E(ϕc), and 〈E′(u0),B(u0)〉>0.
By Theorem 2.1, there exists a T ∗>0 and a solution u(t)∈C([0,T ∗);Hs(R2)) of (1.6)
with u(0)=u0. Let T

∗ be the maximal time for which u(t)∈C([0,T ∗);Hs(R2)). Note
that since u0 belongs to U

s
ǫ so belongs u(t), for t∈ [0,T ] with T ≤T ∗ (since the gBBM-

ZK equation is invariant from y to −y). We want to show that T <+∞, which means
that u(t) eventually leaves Us

ǫ .
Define the Lyapunov function

A(t)=

∫

R2

∂−1
x u(x,y,t)Lϑ(x−γ(t),y)dxdy.
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From the Hölder inequality, Lemma 3.7, and Theorem 2.10, we have

|A(t)|≤ |∂−1
x u(t)|∞|Lϑ|1. (1+ t)

3θ+1
2 . (3.13)

On the other hand, we see from ut−L−1∂xE
′(u)=0 and the definition of B that

d

dt
A(t)=

〈
∂−1
x

du

dt
,Lϑ(·−γ(t), ·)

〉
−
〈
∂−1
x u,∂x(Lϑ(·−γ(t), ·))

〉〈
ζ ′0(u(t)),

du

dt

〉

= 〈E′(u(t)),ϑ(·−γ(t), ·)〉−〈u,Lϑ(·−γ(t), ·)〉
〈
∂xL−1ζ ′0(u(t)),E

′(u(t))
〉

= 〈E′(u(t)),B(u(t))〉 .

Since E is conserved, we obtain from Lemma 3.10 that

λ(u(t))〈E′(u(t)),B(u(t))〉>E(ϕc)−E(u0)=:C0>0. (3.14)

So, since 〈E′(u0),B(u0)〉>0, we deduce that λ(u(t))>0 and we may choose (if neces-
sary) ǫ>0 small enough such that |λ(u(t))|<1 as long as u(t)∈Us

ǫ . Therefore, from
(3.14), we have for 0≤ t≤T ,

0<C0< |〈E′(u(t)),B(u(t))〉|=
∣∣∣∣
d

dt
A(t)

∣∣∣∣ . (3.15)

As a consequence of (3.13) and (3.15) we deduce that T is necessarily finite, i.e., u(t)
must exits Us

ǫ in a finite time. This proves the theorem.

3.1. Application to power-law nonlinearity. Now we apply our stability
results for the case f(u)=up+1/(p+1). It is already seen in (3.9) that if ϕc, with
c>ε, is the positive cylindrical solution of (3.1), then ψ defined in (3.9) satisfies
(3.10). lemmas 3.2 and 3.6 show that hypotheses 3.1, 3.2, and 3.4 hold in this case.

A straightforward calculation reveals from the Pohozaev-type identities that

d(c)= c

∫

R2

(∂xϕc)
2dxdy.

Hence

d(c)=
√
c(c−ε)2/p

∫

R2

ψ2
xdxdy,

so that

d′′(c)=
c3/2(c−ε)2/p−2

4p2
N (ε,c,p), (3.16)

where

N (ε,c,p)= c2(16−p2)+2cp(pε−4)−p2ε.

Therefore we get the fact that ϕc is stable if one of the following cases occurs, and is
unstable otherwise:

(i) p=4, ε>1, and c>max
{
ε, ε

2(ε−1)

}
,

(ii) p<4, pε=4, and c>max
{
ε,
√

ε
ε2−1

}
,
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(iii) p<4, pε 6=4, and c>max

{
ε,

4−pε+
√

(pε−4)2+ε(16−p2)

16−p2 p

}
,

(iv) p>4, pε<4, and {c>ε}∩
{
c<

pε−4+
√

p2ε(ε−1)−8pε+16(ε+1)

p2−16 p

}
,

(v) p>4, pε 6=4, and {c>ε}∩{a1(p)<c<a2(p)}, where

a1(p)=
pε−4−

√
p2ε(ε−1)−8pε+16(ε+1)

p2−16
p

and

a2(p)=
pε−4+

√
p2ε(ε−1)−8pε+16(ε+1)

p2−16
p.

In particular, when ε=1, we observe that ϕc, with c>1, is stable for p≤2 or
p∈ [3,4) and

c>

(
4−p+√

8−2p

16−p2
)
p,

and unstable otherwise. Figure 3.1 illustrates the regions of instability of solitary
waves of (1.6) for ε=0.2 and p=1, · · · ,5.

3.2. Stability of solitary waves of the gZK, gBBM-ZK, and 2D-gBBM

equations. We are going to compare the stability of solitary waves of (1.6) to (1.5)
and (1.7). We note that if ϕc(x−ct,y) is a ground state of (1.7), then ϕc satisfies

(c−ε)ϕc−c∆ϕc−F (ϕc)=0.

As we mentioned before, when ε=1, the stability and the instability of solitary wave
solutions of (1.7) have been investigated by de Bouard [12]. We consider the homoge-
neous nonlinearity f(u)=up+1/(p+1). In [12], it was proved that the solitary waves
of (1.7) is stable if d′′2D−BBM (c)>0, and is unstable if d′′2D−BBM (c)<0, where

d2D−BBM (c)=
c

2
(c−ε)2/p|∇ψ|22, (3.17)

and ψ is the radial positive solution of (3.10).
It was also proved in [12] that the solitary wave ϕc, with c>0, of (1.5) is stable

if d′′ZK(c)>0, and is unstable if d′′ZK(c)<0, where

dZK(c)=
1

2
c2/p|∇ψ|22, (3.18)

and ψ is the radial positive solution of (3.10). More precisely, the solitary wave ϕc is
stable if p<2, while it is unstable if p>2. When p=2, the stability/instability of ϕc

is still unknown (see figure 3.2).
For the 2D-gBBM equation, one can observe for fixed ε>0 that there exists

p∗1=p
∗
1(ε)∈ (2,3] such that the solitary wave ϕc is stable if c>ε and p≤p∗1. For

p≥p∗1, a straightforward calculation reveals that there exists c∗= c∗p,ε>0 such that
the solitary wave ϕc is stable if and only if c>c∗. Figure 3.1 illustrates the region of
stability of ϕc for ε=0.2.

Our results above show that for the fixed ε>0, there exists p∗2=p
∗
1(ε)∈ (2,3] such

that the solitary wave ϕc is stable if c>ε and p≤p∗2. On the other hand, for p≥p∗2, a
straightforward calculation reveals that there exists c∗= c∗p,ε>0 such that the solitary
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Fig. 3.1. The region of stability of the ground states of the gBBM-ZK equation, p=1−2, 2−
3, 3−5, and ε=0.2.
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Fig. 3.2. The region of stability of solitary waves of the gZK equation for p=1−2, 2−5.
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Fig. 3.3. The region of stability of solitary waves of the 2D-gBBM equation for p=1−2, 2−
3, 3−5, and ε=0.2.

wave ϕc is stable if and only if c>c∗. Figure 3.3 illustrates the region of stability of
ϕc for ε=0.2.

These results show that p∗1>p
∗
2, so that the region of stability of solitary waves

of the 2D-gBBM equation is bigger than the stability regions of solitary waves for the
gBBM-ZK equation. Also the region of stability of solitary waves of the gBBM-ZK
equation is bigger than the stability regions of solitary waves for the gZK equation.
Therefore, the 2D-gBBM equation has better behavior in stability of solitary waves
than the gZK and the gBBM-ZK equations.

3.3. Effects of transport equation. Since equations (1.7) and (1.6) are
obtained by combining the transport equation and the gZK equation, we investigate
here the effects of the transport equation on the stability of solitary waves of equations
(1.7) and (1.6). Actually, we want to see the effects of perturbations of the parameter
ε on the region of stability of solitary waves of the gBBM-ZK and the 2D-gBBM
equations.

One can observe from the results above and figures 3.5 and 3.4 that for a fixed
p>2, the region of stability of solitary waves, for both equations (1.6) and (1.7),
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Fig. 3.4. The region of stability of solitary waves of the gBBM-ZK equation, from left to right
and then from top to bottom, for p=1, 1.2, 1.9, 2.6. Green and blue correspond respectively to p=3
and p=4 in the last figure.

becomes bigger when ε>0 tends to zero.

Remark 3.5. One can easily observe that the transport equation with the parameter
ε>0 does not affect the region of stability of the gZK equation. Indeed, in this case
the solitary wave ϕc, with c>ε, is stable if p<2 and is unstable if p>2.
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[21] R.J. Iório, KdV, BO and friends in weighted Sobolev spaces, in: Functional-Analytic Methods
for Partial Differential Equations, Tokyo, 1989, in: Lecture Notes in Math., Springer-
Verlag, Berlin, 1450, 104–121, 1990.

[22] M.A. Johnson, The transverse instability of periodic waves in Zakharov–Kuznetsov type equa-
tions, Stud. Appl. Math., 124, 323–345, 2010.

[23] T. Kato and G. Ponce, Commutator estimates and the Euler and Navier-Stokes equations,
Commun. Pure Appl. Math., 41, 891–907, 1988.

[24] M.K. Kwong, Uniqueness of positive radial solutions of ∆u−u+u
p in R

n, Arch. Ratio. Mech.
Anal., 105, 243–266, 1989.

[25] F. Linares and A. Pastor, Well-posedness for the two-dimensional modified Zakharov–
Kuznetsov equation, SIAM J. Math. Anal., 41, 1323–1339, 2009.

[26] F. Linares and A. Pastor, Local and global well-posedness for the 2D generalized Zakharov–
Kuznetsov equation, J. Funct. Anal., 260, 1060–1085, 2011.

[27] Y. Liu and M.M. Tom, Blow-up and instability of a regularized long-wave-KP equation, Diff.
Integral Equ., 19, 1131–1152, 2003.

[28] A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations,
Springer-Verlag, 1983.

[29] F. Ribaud and S. Vento, Well-posedness results for the three-dimensional Zakharov-Kuznetsov
equation, SIAM J. Math. Anal., 44, 2289–2304, 2012.

[30] F. Ribaud and S. Vento, A note on the Cauchy problem for the 2D generalized Zakharov-
Kuznetsov equations, Comptes Rendus Math., 350, 499–503, 2012.

[31] I. Segal, Non-linear Semi-groups, Ann. of Math., 78, 339–364, 1963.
[32] P.E. Souganidis and W. Strauss, Instability of a class of dispersive solitary waves, Proc. Roy.

Soc. Edinburgh A, 114, 195–212, 1990.
[33] E.M. Stein, Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Inte-

grals, Princeton University Press, 1993.
[34] A.M. Wazwaz, Compact and noncompact physical structures for the ZK-BBM equation, Appl.

Math. Comput., 169, 713–725, 2005.
[35] M.I. Weinstein, Modulational stability of ground states of nonlinear Schrödinger equations,

SIAM J. Math. Anal., 16, 472–491, 1985.
[36] M.I. Weinstein, Lyapunov stability of ground states of nonlinear dispersive evolution equations,

Commun. Pure Appl. Math., 39, 51–68, 1986.


