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SUB-LINEAR ESTIMATE OF LARGE VELOCITIES IN A

COLLISIONLESS PLASMA∗

ZILI CHEN† AND XIANWEN ZHANG‡

Abstract. We consider the Vlasov-Poisson system in three space dimensions in the electrostatic
case. For a smooth solution with compactly supported initial datum, the growth estimate of its

velocity support is improved to t
2
11

+ε for any ε>0. As a consequence, we obtain a better decay

estimate of the electrical field, namely ‖E‖∞=O(t−
1
11

+ε) as t→∞.
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1. Introduction

In this paper, we consider the asymptotic behavior of classical solutions to the
three-dimensional Vlasov-Poisson system:

∂tf+v ·∇xf+E ·∇vf =0, f(0,x,v)=f0(x,v), (1.1)

−△xU(t,x)=γρ(t,x), ρ(t,x)=

∫

R3

f(t,x,v)dv, (1.2)

E(t,x)=−∇xU(t,x), (1.3)

where the unknown f(t,x,v)≥0 denotes microscopic density of particles at time t≥0
and position x∈R

3, moving with velocity v∈R
3. The self-generated field E(t,x) is the

Coulomb field or Newtonian field, which is described by γ=1 and γ=−1 respectively.
Assuming f0∈C1

c (R
3×R

3), we know that there exists a unique solution f ∈C1(R+×
R

3×R
3) to this system, and the smooth solution remains compactly supported at

any finite time; see [9, 12]. So, we define for t≥0

R(t)=sup{|v| : ∃ x∈R
3 such that f(t,x,v) 6=0}. (1.4)

Several different super-linear estimates for R(t) were given in [2, 9, 12]. The first
sub-linear estimate was obtained in [13]:

R(t)≤C(2+ t)11/15 ln4/15(2+ t), t≥0,

which was improved in [7] with exponent 2/3, namely

R(t)≤C(2+ t)2/3 ln11/21(2+ t), t≥0.

Another method to get the existence of a classical solution to the Vlasov-Poisson
system is based on the control of moments (see [4]). For more background and related
topics, see [1, 11] and the references therein.
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280 LARGE VELOCITIES IN A COLLISIONLESS PLASMA

For the case of γ=1, strong a priori estimates were obtained in [3, 8]:
∫ ∫

(v−x/t)2f(t,x,v)dvdx≤Ct−1, t≥1, (1.5)

‖ρ(t, ·)‖5/3≤Ct−3/5, t≥1, (1.6)

where the constant C>0 depends on f(1). So it is natural to expect a better bound
in this case. G. Rein gave a direct estimate in [10]: R(t)≤C(1+ t)2/3. C. Pallard

improved this bound to R(t)≤C(1+ t)6/25 ln6/25(2+ t) in [5, 6]. The purpose of this
paper is to slightly refine the last estimate. Our main theorem is the following.

Theorem 1.1. For any nonnegative function f0∈C1
c (R

3×R
3) and ε>0, there exists

a constant Cε>1 depending on f0 and ε such that

R(t)≤Cε(1+ t)
2
11+ε, t≥0. (1.7)

Furthermore,

‖E(t, ·)‖∞≤Cε(1+ t)−
1
11+ε, t≥0. (1.8)

Denote the characteristic flow corresponding to the first order hyperbolic partial
differential equation (1.1) by (X(s,t,x,v),V (s,t,x,v)), then

{ dX(s,t,x,v)
ds =V (s,t,x,v), X(t,t,x,v)=x,

dV (s,t,x,v)
ds =E(s,X(s,t,x,v)), V (t,t,x,v)=v.

(1.9)

By uniqueness we know
{

X(s1,s2,X(s2,t,x,v),V (s2,t,x,v))=X(s1,t,x,v),

V (s1,s2,X(s2,t,x,v),V (s2,t,x,v))=V (s1,t,x,v),

and moreover the characteristic flow is measure preserving. For the sake of simplicity,
we shall use the shorthand

(X(s),V (s))=(X(s,t,x,v),V (s,t,x,v))

and

(X∗(s),V ∗(s))=(X(s,t,x∗,v∗),V (s,t,x∗,v∗))

throughout the paper, where (x∗,v∗) means that it belongs to the support of f(t).
Using the notation of [13, 6] we define

∆(t,P )=sup

{

△∈ [0,t] : ∀(x∗,v∗)∈ suppf(t)⇒

∫ t

t−∆

|E(s,X∗(s))|ds≤P

}

and

θ∗(s)=V ∗(s)−
X∗(s)

s
.

The analysis centers on estimating
∫ t

t−δ
|E(s,X∗(s))|ds for some 0<δ<t. On the one

hand, from (1.9) we know

|V ∗(t)−V ∗(t−δ)|≤

∫ t

t−δ

|E(s,X∗(s))|ds.
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On the other hand, from (sθ∗)′(s)=sE(s,X∗(s)) we obtain

θ∗(t)=
t−δ

t
θ∗(t−δ)+

1

t

∫ t

t−δ

sE(s,X∗(s))ds, (1.10)

and then

|θ∗(t)|≤ |θ∗(t−δ)|+

∫ t

t−δ

|E(s,X∗(s))|ds. (1.11)

So, we define

I=

∫ t

t−δ

|E(s,X∗(s))|ds.

The estimates for I are critical in this paper. At first, we give a result obtained in
[10] (see also Proposition 1 in [6] for its proof).

Lemma 1.2. There exists a constant C>1 such that for any P >0 and t≥2,

∫ t

t−δ

|E(s,X∗(s))|ds≤C
(

P 4/3t−1/3δ+δ1/2t−1/2 ln1/2[t(2+P−1)]
)

, (1.12)

where δ≤min{t1/2, ∆(t,P/5)}.

This lemma implies a lower bound for ∆(t,P ) (see [6]).

Lemma 1.3. There exists c2∈ (0,1) such that for any t≥5 and P >0,

∆(t,P )≥ c2min{t, P 2t ln−1 t, P t5/7 ln−4/7 t}. (1.13)

In this paper, the letter C is used to denote a positive constant which changes from
line to line, c1,c2, etc. denote fixed positive constants, and ‖·‖p always denotes the
norm of the space Lp(R3) for 1≤p≤∞.

2. The estimate about I
The point is to get a better estimate than (1.12) for a suitable δ∈ (0,t). Note

that f0 is nonnegative, and then f is nonnegative, so

I≤

∫ t

t−δ

∫

R3

ρ(s,x)

|x−X∗(s)|2
dxds

=

∫ t

t−δ

∫

R3

∫

R3

f(s,x,v)

|x−X∗(s)|2
dxdvds.

Similar to the decomposition in [13], the integral area is divided into three sets:

G={(s,x,v)∈ (t−δ,t)×R
3×R

3 : |v−V ∗(s)|≤P or |v−x/s|≤P},

B={(s,x,v)∈ (t−δ,t)×R
3×R

3 : |x−X∗(s)|≤ r(s,x,v)}\G,

U =(t−δ,t)×R
3×R

3 \(G∪B),

with

δ(s,x,v)= c2min

{

1

5
s,

1

25
|v−V ∗(s)|2s ln−1s,

1

5
|v−V ∗(s)|s5/7 ln−4/7s,

1

25
|v−x/s|2s ln−1s,

1

5
|v−x/s|s5/7 ln−4/7s

}

,
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r(s,x,v)=
R

|v−V ∗(s)||v−x/s|2δ(s,x,v)
,

δ= c2min

{

1

5
t, ∆(t,

1

5
|v∗−x∗/t|)

}

,

where c2 is the constant stated in Lemma 1.3, P and R are undetermined parameters,
and P will be chosen less than t−2/7 ln3/7 t. Following from Lemma 1.3, we have

δ(t,x,v)≤min

{

1

5
t, ∆(t,

1

5
|v−v∗|), ∆(t,

1

5
|v−x/t|)

}

. (2.1)

2.1. The contribution of G. Denote

ρ̄(s,x)=

∫

|v−V ∗(s)|≤P or |v−x/s|≤P

f(s,x,v)dv.

Following from (1.6), we have ‖ρ̄(s, ·)‖5/3≤Cs−3/5. And using the well known
inequality[6]

‖κ∗| · |−2‖∞≤ c1‖κ‖
5/9
5/3‖κ‖

4/9
∞ , (2.2)

we obtain
∫∫∫

G

f(s,x,v)

|x−X∗(s)|2
dxdvds≤

∫ t

t−δ

∫

ρ̄(s,x)

|x−X∗(s)|2
dxds

≤ c1

∫ t

t−δ

‖ρ̄(s, ·)‖
5/9
5/3‖ρ̄(s, ·)‖

4/9
∞ ds

≤C

∫ t

t−δ

s−1/3dsP 4/3,

that is

IG≤Ct−1/3P 4/3δ. (2.3)

2.2. The contribution of B. Following the method used in [6], a further
partition of B will be given:

B+=B∩{|x−X∗(s)|>2tP/5}, B−=B \B+.

By the definition of δ(s,x,v) we decompose B=
5
⋃

k=1

Bk by

Bk=

{

(s,x,v)∈B : δ(s,x,v)=5−
3+(−1)k

2 c2|v−V ∗(s)|σ1k |v−x/s|σ2ks−αk ln−βk s

}

,

where σ1k, σ2k, αk, and βk(k=1, · · · ,5) are respectively defined in the table.
For s>5 and (s,x,v)∈Bk, we have

|x−X∗(s)||v−V ∗(s)|1+σ1k |v−x/s|2+σ2k ≤ c3Rsαk lnβk s, (2.4)

where c3=
25
c2
.

In the following, we denote B+∩Bk and B−∩Bk by B+
k and B−

k respectively
(k=1, · · · ,5).
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k σ1k σ2k αk βk

1 0 0 -1 0
2 2 0 -1 1
3 1 0 -5/7 4/7
4 0 2 -1 1
5 0 1 -5/7 4/7

The contribution of B−: Pick (s,x,v)∈B−. Note that δ≤ t/5, so we obtain
2tP/5≤sP/2 and hence

|v−x/s|≥ |v−X∗(s)/s|−s−1|X∗(s)−x|≥ |v−X∗(s)/s|−P/2.

Since |v−x/s|>P we have

|v−X∗(s)/s|≤
3

2
|v−x/s|.

Similarly,

|v−X∗(s)/s|≥ |v−x/s|−s−1|X∗(s)−x|≥ |v−x/s|−P/2≥
1

2
|v−x/s|,

and thus

1

2
|v−x/s|≤ |v−X∗(s)/s|≤

3

2
|v−x/s|. (2.5)

Combining (2.4) and (2.5) we obtain that

|x−X∗(s)||v−V ∗(s)|1+σ1k |v−X∗(s)/s|2+σ2k ≤ c′3Rsαk lnβk s,

where c′3=( 32 )
4c3. So integrating in the x variable first gives:

IB−

k
=

∫

B−

k

f(s,x,v)

|x−X∗(s)|2
dxdvds

≤ c′3‖f0‖L∞(R3×R3)

∫ t

t−δ

Rsαk lnβk s

·

(

∫

|v−V ∗(s)|>P and |v−X∗(s)/s|>P/2

1

|v−V ∗(s)|1+σ1k |v−X∗(s)/s|2+σ2k
dv

)

ds

≤C

∫ t

t−δ

Rsαk lnβk s

·

(

∫

|v−V ∗(s)|>P and |v−X∗(s)/s|>P/2

1

|v−V ∗(s)|1+σ1k |v−X∗(s)/s|2+σ2k
dv

)

ds.

Firstly, note that by the definition of R(t) we have that |v|, |V ∗(s)|≤R(s). Then
assuming that there exists positive constants γ and C such that P >Ct−γ for any
t>1, we can directly compute that

IB−

1
≤CR

∫ t

t−δ

s−1ds

∫

P/2<|v−X∗(s)/s|≤|v−V ∗(s)|≤2R(s)

1

|v−V ∗(s)||v−X∗(s)/s|2
dv

+CR

∫ t

t−δ

s−1ds

∫

P<|v−V ∗(s)|≤|v−X∗(s)/s|

1

|v−V ∗(s)||v−X∗(s)/s|2
dv
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≤CR

∫ t

t−δ

s−1ds

∫

P/2<|v−X∗(s)/s|≤2R(s)

1

|v−X∗(s)/s|3
dv

+CR

∫ t

t−δ

s−1ds

∫

P<|v−V ∗(s)|≤2R(s)

1

|v−V ∗(s)|3
dv

≤CR

∫ t

t−δ

s−1 lnsds.

Now, we consider B−
2 . The definition of δ(s,x,v) implies that

|v−V ∗(s)|≤ |v−x/s|.

Combining this with (2.5), we obtain |v−V ∗(s)|≤2|v−X∗(s)/s|. Following from

|v−V ∗(s)|+ |v−X∗(s)/s|≥ |V ∗(s)−X∗(s)/s|= |θ∗(s)|,

we have

|v−X∗(s)/s|≥
1

3
|θ∗(s)|.

Consequently,

IB−

2
≤C

∫ t

t−δ

Rs−1 lns

·

(

∫

|v−X∗(s)/s|≥ 1
3 |θ

∗(s)| and P<|v−V ∗(s)|≤2R(s)

1

|v−V ∗(s)|3|v−X∗(s)/s|2
dv

)

ds

≤C

∫ t

t−δ

Rs−1 lnsds

∫

P<|v−V ∗(s)|≤2R(s)

1

|v−V ∗(s)|3|θ∗(s)|2
dv

≤CR

∫ t

t−δ

s−1 ln2s

|θ∗(s)|2
ds.

Similarly, for B−
3 we also have |v−X∗(s)/s|≥ 1

3 |θ
∗(s)| and |v−V ∗(s)|≤2|v−

X∗(s)/s|. Then we have B−
3 =(B1

3 ∪B2
3), where

B1
3 =

{

(s,x,v)∈B−
3 :

2

3
|θ∗(s)|≤ |v−V ∗(s)|≤2|v−X∗(s)/s|

}

and

B2
3 =

{

(s,x,v)∈B−
3 : |v−X∗(s)/s|≥

1

3
|θ∗(s)|≥

1

2
|v−V ∗(s)|

}

.

For the first one,

IB1
3
≤C

∫ t

t−δ

Rs−5/7 ln4/7s

·

(

∫

2
3 |θ

∗(s)|≤|v−V ∗(s)|≤2|v−X∗(s)/s|

1

|v−V ∗(s)|2|v−X∗(s)/s|2
dv

)

ds

≤C

∫ t

t−δ

Rs−5/7 ln4/7sds

∫

|v−V ∗(s)|≥ 2
3 |θ

∗(s)|

1

|v−V ∗(s)|4
dv

≤CR

∫ t

t−δ

s−5/7 ln4/7s

|θ∗(s)|
ds.
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For the second one,

IB2
3
≤C

∫ t

t−δ

Rs−5/7 ln4/7s

·

(

∫

|v−X∗(s)/s|≥ 1
3 |θ

∗(s)| and |v−V ∗(s)|≤ 2
3 |θ

∗(s)|

1

|v−V ∗(s)|2|v−X∗(s)/s|2
dv

)

ds

≤C

∫ t

t−δ

Rs−5/7 ln4/7sds

∫

|v−V ∗(s)|≤ 2
3 |θ

∗(s)|

1

|v−V ∗(s)|2|θ∗(s)|2
dv

≤CR

∫ t

t−δ

s−5/7 ln4/7s

|θ∗(s)|
ds.

So,

IB−

3
= IB1

3
+IB2

3
≤CR

∫ t

t−δ

s−5/7 ln4/7s

|θ∗(s)|
ds.

For IB−

4
, the definition of δ(s,x,v) implies that

|v−V ∗(s)|≥ |v−x/s|.

So |v−V ∗(s)|≥ 2
3 |v−X∗(s)/s| because of (2.5), and then |v−X∗(s)/s|≤3R(s). By

the same computation as B−
2 , we obtain

|v−V ∗(s)|≥
3

5
|θ∗(s)|.

Then, following the method used in [6, 13] we obtain

IB−

4
≤C

∫ t

t−δ

Rs−1 lns

·

(

∫

|v−V ∗(s)|≥ 3
5 |θ

∗(s)| and P/2<|v−X∗(s)/s|≤3R(s)

1

|v−V ∗(s)||v−X∗(s)/s|4
dv

)

ds

≤C

∫ t

t−δ

Rs−1 lnsds

∫

P/2<|v−X∗(s)/s|≤3R(s)

1

P |v−X∗(s)/s|3|θ∗(s)|
dv

≤CRP−1

∫ t

t−δ

s−1 ln2s

|θ∗(s)|
ds.

Analogously, we obtain

IB−

5
=CR

∫ t

t−δ

s−5/7 ln11/7s

|θ∗(s)|
ds.

Thus

IB− ≤CR

{
∫ t

t−δ

s−1 lnsds+

∫ t

t−δ

s−1 lns

|θ∗(s)|2
ds

+

∫ t

t−δ

s−5/7 ln11/7s

|θ∗(s)|
ds+P−1

∫ t

t−δ

s−1 ln2s

|θ∗(s)|
ds

}

.
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Remember that δ= c2min{ 1
5 t, ∆(t, 15 |v

∗−x∗/t|)}, so by the same arguments used in
Lemma 2.2 below, we have

3

5
|v∗−x∗/t|≤

∣

∣

∣

∣

V ∗(s)−
X∗(s)

s

∣

∣

∣

∣

≤
7

5
|v∗−x∗/t|.

Thus,

IB− ≤CR[δt−1 lnt+δt−1 lnt|θ∗(t)|−2

+δt−5/7 ln11/7 t|θ∗(t)|−1+δP−1t−1 ln2 t|θ∗(t)|−1]

≤CR[δt−1 lnt+δt−1 lnt|θ∗(t)|−2+δP−1t−1 ln2 t|θ∗(t)|−1] (2.6)

since P ≤ t−2/7 ln3/7 t.

The contribution of B+: For B+
k , k=2,3,4,5, we know |v−V ∗(s)|≤ |v−x/s| or

|v−V ∗(s)|≥ |v−x/s| because of the definition of δ(s,x,v). Then,

|x−X∗(s)||v−⋆|3+σ1k+σ2k ≤ c2Rsαk lnβk s,

where ⋆=V ∗(s) or x/s. Writing x=X∗(s)+ρω with ρ≥ 2tP
5 and ω∈S

2, we find

ρ|v−⋆|3−ǫkP ǫk+σ1k+σ2k ≤ c2Rsαk lnβk s, ǫk ∈ (0,3),

since (s,x,v)∈B+
k and B+

k ∩G=∅. Then

IB+
k
≤C

∫ t

t−δ

∫ ∞

2tP
5

∫

S2

∫

R3

1B+
k
(s,X∗(s)+ρω,v)dvdωdρds

≤CR
3

3−ǫk P
−

3(ǫk+σ1k+σ2k)

3−ǫk

∫ ∞

2tP
5

ρ
− 3

3−ǫk dρ

∫ t

t−δ

s
3αk
3−ǫk ln

3βk
3−ǫk sds

≤CδR
3

3−ǫk P
−

3(ǫk+σ1k+σ2k)+ǫk
3−ǫk t

3αk−ǫk
3−ǫk ln

3βk
3−ǫk t.

Actually, we can choose ǫ2= ǫ4= ǫ and ǫ3= ǫ5= ǫ′ to obtain

IB+
2
= IB+

4
≤CδR

3
3−ǫP− 4ǫ+6

3−ǫ t
−3−ǫ
3−ǫ ln

3
3−ǫ t,

IB+
3
= IB+

5
≤CδR

3
3−ǫ′ P− 4ǫ′+3

3−ǫ′ t
−15/7−ǫ′

3−ǫ′ ln
12/7

3−ǫ′ t.

For IB+
1
, by dividing the integral area into two parts—|v−V ∗(s)|≤ |v−x/s| and |v−

V ∗(s)|> |v−x/s|—we can similarly compute that

IB+
1
≤CδR

3
3−ǫ1 P−

4ǫ1
3−ǫ1 t

−3−ǫ1
3−ǫ1 .

If P ≤ t−2/7 ln3/7 t, then for any ǫ∈ (0,3) we can choose ǫ1= ǫ′= ǫ to get IB+
3
≤ IB+

2

and IB+
1
≤CIB+

2
. As a consequence, we have

IB+ ≤CδR
3

3−ǫP− 4ǫ+6
3−ǫ t

−3−ǫ
3−ǫ ln

3
3−ǫ t (2.7)

for P ≤ t−2/7 ln3/7 t. Combining (2.6) and (2.7), we obtain

1

δ
IB ≤C[Rt−1 lnt+R

3
3−ǫP− 4ǫ+6

3−ǫ t
−3−ǫ
3−ǫ ln

3
3−ǫ t

+Rt−1 lnt|θ∗(t)|−2+RP−1t−1 ln2 t|θ∗(t)|−1] (2.8)

for P ≤ t−2/7 ln3/7 t.
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2.3. The contribution of U . Note that the characteristic flow is measure
preserving and f(s,X(s),V (s))=f(t,x,v), so we have

∫∫∫

U

f(s,x,v)

|x−X∗(s)|2
dxdvds=

∫ ∫
(
∫ t

t−δ

1U (s,X(s),V (s))

|X(s)−X∗(s)|2
ds

)

f(t,x,v)dvdx.

It is natural to follow the classic method used in [9, 12], and especially in [13, 6], to
control the inner time-integral. The next lemma is the main tool.

Lemma 2.1. Let s 7→ (X(s),V (s)) be a characteristic curve and ∆t∈ [0,t] satisfying

∆t≤∆(t,
1

5
|v−v∗|).

Suppose there exists some D>0 such that for any s∈ (t−∆t,t)

r(s,X(s),V (s))≥Dr(t,x,v),

whenever (s,X(s),V (s))∈U . Then the following upper bound holds true:

∫ t

t−∆t

1U (s,X(s),V (s))

|X(s)−X∗(s)|2
ds≤

1

D|v−v∗|r(t,x,v)
.

This lemma means that by controlling ∆t we could bound I in the ugly set. For its
proof we refer the readers to [13].

Now we show that the conditions of Lemma 2.1 are satisfied for ∆t= δ(t,x,v).
Remember (2.1), so we only need to prove the following result.

Lemma 2.2. There exists a constant c4>0 such that

r(s,X(s),V (s))≥ c4r(t,x,v), (2.9)

for any t≥5 and s∈ (t−δ(t,x,v),t).

Proof. Following from (2.1), we have

δ(t,x,v)≤∆(t,
1

5
|v−v∗|),

which yield that for any s∈ (t−δ(t,x,v),t),

|V (s)−v|≤
1

5
|v−v∗|

and

|V ∗(s)−v∗|≤
1

5
|v−v∗|.

As a consequence, we obtain

3

5
|v−v∗|≤ |V (s)−V ∗(s)|≤

7

5
|v−v∗|. (2.10)

Now considering

θ(s)=V (s)−
X(s)

s
.
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Similar to (1.10), we obtain for any s∈ (t−δ(t,x,v),t)

|θ(s)−θ(t)|≤ δ(t,x,v)t−1|θ(t)|+

∫ t

s

|E(τ,X(τ))|dτ.

Using (2.1) again we have δ(t,x,v)≤∆(t, 15 |v−x/t|) and

δ(t,x,v)≤
1

5
t. (2.11)

Hence
3

5
|v−x/t|≤

∣

∣

∣

∣

V (s)−
X(s)

s

∣

∣

∣

∣

≤
7

5
|v−x/t|. (2.12)

Combining (2.10), (2.11), (2.12), and the definition of r, we get the desired result.

Then, using Lemma 2.1 we obtain, for any t≥5,
∫ t

t−δ(t,x,v)

1U (s,X(s),V (s))

|X(s)−X∗(s)|2
ds≤

1

c4|v−v∗|r(t,x,v)
=

δ(t,x,v)|v−x/t|2

c4R

≤ c5R
−1

∫ t

t−δ(t,x,v)

∣

∣

∣

∣

V (s)−
X(s)

s

∣

∣

∣

∣

2

ds. (2.13)

The last inequality follows from (2.12), where c5=
5

3c4
.

Now we will use a lemma which is introduced in [13] to make an inequality like
(2.13) satisfied for some δ≥ δ(t,x,v). It will be used in the similar way in our paper.

Lemma 2.3. Given T >0, suppose a,b∈L1((0,T );R+) and d∈C((0,T );R+) satisfy,

for any t∈ (0,T ), the inequalities d(t)≤ t and

∫ t

t−d(t)

a(s)ds≤

∫ t

t−d(t)

b(s)ds. (2.14)

Assume further that a(s)=0 whenever d(s)=0. Then for any t∈ (0,T ) and δ∈ [d(t),t]
we have

∫ t

t−δ

a(s)ds≤2

∫ t

t−δ

b(s)ds. (2.15)

Define functions a and b as

a(s)=
1U (s,X(s),V (s))

|X(s)−X∗(s)|2
1s≥5, b(s)=

c5
R

∣

∣

∣

∣

V (s)−
X(s)

s

∣

∣

∣

∣

2

1s≥4.

Set d(s)= δ(s,X(s),V (s)), s∈ [5,∞), and d(s)=d(5)s/5, s∈ (0,5). Note that
δ(t,x,v)≤ t/5 and we have t−δ(t,x,v)≥4 for any t≥5, which yields that

∫ t

t−d(t)

a(s)ds≤

∫ t

t−d(t)

b(s)ds, ∀t>0.

Furthermore, for s≥5, d(s)=0 implies either V (s)=V ∗(s) or V (s)= X(s)
s , so

(s,X(s),V (s)) /∈U . Note that (x,v) always belongs to the compact support of f(t)
when considering IU . So, if

|v∗−x∗/t|≥ |v−x/t|, ∀(x,v)∈ suppf(t),
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we have ∆(t, 15 |v
∗−x∗/t|)≥∆(t, 15 |v−x/t|), and then δ≥d(t) because of (2.1). Thus,

by Lemma 2.3 we have
∫ t

t−δ

a(s)ds≤2

∫ t

t−δ

b(s)ds, ∀t>0.

Observe that δ≤ t/5, we could obtain
∫ t

t−δ

1U (s,X(s),V (s))

|X(s)−X∗(s)|2
ds≤2c5R

−1

∫ t

t−δ

∣

∣

∣

∣

V (s)−
X(s)

s

∣

∣

∣

∣

2

ds, ∀ t≥7,

which yields
∫

U

f(t,x,v)

|X(s)−X∗(s)|2
dxdvds=

∫ ∫ ∫ t

t−δ

1U (s,X(s),V (s))

|X(s)−X∗(s)|2
dsf(t,x,v)dvdx

≤2c5R
−1

∫ t

t−δ

∫ ∫
∣

∣

∣

∣

V (s)−
X(s)

s

∣

∣

∣

∣

2

f(t,x,v)dvdxds

=2c5R
−1

∫ t

t−δ

∫ ∫

∣

∣

∣
v−

x

s

∣

∣

∣

2

f(s,x,v)dvdxds,

for any t≥7. Considering the estimate (1.5) we obtain

IU ≤CR−1t−1δ. (2.16)

At last, we combine the estimates of IG, IB , and IU and choose proper P, R to
get the growth of I.

Proposition 2.4. If δ= c2min{ 1
5 t,∆(t, 15 |v

∗−x∗/t|)}, |θ∗(t)|= |v∗−x∗/t|≥ |v−x/t|
for any (x,v)∈ suppf(t) and |θ∗(t)|>1, then there exists a positive constant Cε de-

pending on f0 and ε such that for any t≥7

I=

∫ t

t−δ

|E(s,X∗(s))|ds≤Cεδt
2
11+ε−1.

Proof. Following from (2.3), (2.8), and (2.16), we have for P ≤ t−2/7 ln3/7 t,

1

δ
I≤C[P 4/3t−1/3+R−1t−1+Rt−1 lnt+R

3
3−ǫP− 4ǫ+6

3−ǫ t
−3−ǫ
3−ǫ ln

3
3−ǫ t

+Rt−1 lnt|θ∗(t)|−2+RP−1t−1 ln2 t|θ∗(t)|−1].

Let

P 4/3t−1/3=R−1t−1=R
3

3−ǫP− 4ǫ+6
3−ǫ t

−3−ǫ
3−ǫ ln

3
3−ǫ t,

then we obtain

P = t−
12+4ǫ
42+8ǫ ln

9
42+8ǫ t, R= t−

6
21+4ǫ ln−

21
21+4ǫ t.

Taking ǫ=3−, we have that Rt−1 lnt, Rt−1 lnt|θ∗(t)|−2, and RP−1t−1 ln2 t|θ∗(t)|−1

are less than

CǫR
−1t−1=Cǫt

−1+ 6
21+4ǫ ln

21
21+4ǫ t.

Consequently, for any t≥7 and ε>0, there exists a constant Cε>0 such that

1

δ
I≤Cεt

2
11+ε−1.

This completes the proof.
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3. The proof of Theorem 1.1

Using Proposition 2.4 we can obtain a uniform estimate on the size of θ∗(t).

Lemma 3.1. For any t≥1, there exists a constant Cε>1 depending on f0 and ε such

that

|θ∗(t)|≤Cε(t+1)
2
11+ε. (3.1)

Proof. We only need to show that

sup
(x∗,v∗)∈suppf(t)

|θ∗(t)|≤Cε(t+1)
2
11+ε.

For the sake of simplicity, we still record it as |θ∗(t)|. For any fixed t>7, if |θ∗(t)|≤1,
then (3.1) is proved. Now suppose |θ∗(t)|>1. Following from Proposition 2.4 and
inequality (1.11), we obtain that

|θ∗(t)|≤ |θ∗(t−δ)|+Cεt
2
11+ε−1δ (3.2)

for δ= c2min{ 1
5 t,∆(t, 15 |v

∗−x∗/t|)}. Let t0= t, tn+1= tn−δn where

δn= c2min

{

1

5
tn, ∆(tn,

1

5
|θ∗(tn)|)

}

.

Continue until either tn≤7 or |θ∗(tn)|≤1. By Lemma 1.3, we know that tn>7 and
|θ∗(tn)|>1 imply ∆(tn,

1
5 |θ

∗(tn)|)≥C, and hence δn≥C. Therefore there exists a
positive integer N such that

{

tn>7 and θ∗(tn)>1, 0≤n<N,
tN ≤7 or θ∗(tN )≤1.

By (3.2),

|θ∗(tn)|≤ |θ∗(tn+1)|+Cεt
2
11+ε−1
n δn, 0≤n<N.

Then, for any t>7

|θ∗(t)|≤ |θ∗(tN )|+Cε

N
∑

n=0

δnt
2
11+ε−1
n

≤|θ∗(tN )|+Cε(t− tN )t
2
11+ε−1

≤Cε(1+ t)
2
11+ε,

since θ∗(tN ) is less than 1 or bounded by a positive constant which only depends on
f0. As a consequence, there exists a constant Cε>1 depending on f0 and ε such that

|θ∗(t)|≤Cε(1+ t)
2
11+ε

for any t≥1.

Proof of Theorem 1.1.

Proof. Note that

d

dt

(

X∗(s)

s

)

=
θ∗(s)

s
, s>0.
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Then using Lemma 3.1, we obtain

|x∗|

t
≤Cε(1+ t)

2
11+ε, t≥1.

Combining it with (3.1), we get

|v∗|≤ |θ∗(t)|+
|x∗|

t

≤Cε(1+ t)
2
11+ε

for t≥1, and hence for t≥0. Using the inequality (2.2) again, we obtain (1.8) because
of (1.6) and (1.7).
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