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ON A SYSTEM COUPLING TWO-CRYSTALLIZATION
ALLEN-CAHN EQUATIONS AND A SINGULAR NAVIER-STOKES

SYSTEM∗

BIANCA MORELLI RODOLFO CALSAVARA† AND JOSÉ LUIZ BOLDRINI‡

Abstract. We present a result on existence of solutions for a system of highly nonlinear and sin-
gular partial differential equations obtained by coupling the two-crystallization Allen-Cahn equations
to a singular Navier-Stokes system and a nonlinear heat equation.

Such a system constitutes a phase field model for non-isothermal solidification/melting processes
of certain metallic alloys for which two different kinds of crystallization are possible. In this model,
the liquid phase and each one of the possible crystallization states are described by their own phase
fields. The possibility of occurrence of fluid flow in a a priori unknown non-solid region is also
considered, turning the model into a free-boundary value problem.
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1. Introduction
We will analyze a system of nonlinear partial differential equations subjected to

boundary and initial conditions, which models the solidification and melting processes
of certain metallic alloys that may solidify in two different kinds of crystallization;
the model also takes in account the possibility of flow of the molten material due to
thermal or concentration differences. This system is the following:

τt−b∆τ+v.∇τ = l1αt+ l2βt+ l3γt+f, in Q,

αt−k∆α+v ·∇α=g1(τ,α,β,γ)+g3(τ,α,β,γ), in Q,

βt−k∆β+v ·∇β=g2(τ,α,β,γ)−g3(τ,α,β,γ), in Q,

γt−k∆γ+v ·∇γ=−g1(τ,α,β,γ)−g2(τ,α,β,γ), in Q,

vt−ν∆v+∇v+v ·∇v+h(α+β) ·v =F(τ,α,β,γ)+F, in Qml

div v=0, in Qml,

v=0, in Qs,

∂τ/∂n=∂α/∂n=∂β/∂n=∂γ/∂n=0, on∂Ω×(0,T ),

v=0, on ∂Qml,

τ = τ0, α=α0, β=β0, γ=γ0, v=v0, in Ω×{t=0}.

(1.1)

The notations used here are as follows. The set Ω⊂R
2 is a bounded C2-domain,
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258 TWO-CRYSTALLIZATION ALLEN-CAHN EQUATIONS

0<T <∞, Q=Ω×(0,T ), and n denotes the outer unitary normal to the boundary
∂Ω.

The unknown function τ is associated to the temperature; the phase field unknown
functions α and β represent solid fractions of two different kinds of crystallization,
while the also unknown phase field function γ represents the liquid fraction; thus, by
their physical meanings, we must have α, β, γ≥0 and α+β+γ=1. The velocity field
is v.

The phase fields determine the solid and non solid regions: Qs={(x,t)∈Q :
α(x,t)+β(x,t)=1} gives the solid region, Qml={(x,t)∈Q :α(x,t)+β(x,t)<1} gives
the non-solid (molten) region. Note that the equations for the flow, which is as-
sumed to be incompressible, is valid only in this unknown molten region Qml while
the velocity must be zero at the solid region Qs.

In the equation for the temperature, equation (1.1) (i), b>0 is a given constant
related to the thermal diffusion coefficient; l1, l2, and l3 are given constants related
to the latent heat of the associated to each kind of material states; the function f is
related to the given density of heat sources and sinks.

In the equations for the the phase fields, that is, equations (1.1) (ii), (iii), (iv),
the given positive constant k>0 is related to the width of the transitions layers;
interactions among the phase fields are given by the functions

g1=g1(τ,α,β,γ)=−a1αγ(γ−α+c1τ+d1),

g2=g2(τ,α,β,γ)=−a2βγ(γ−β+c2τ+d2),

g3=g3(τ,α,β,γ)=−a3αβ(β−α+c3τ+d3),

(1.2)

where a1, a2, a3, c1, c2, c3, d1, d2, d3 are given constants.
Observe that the equations for the temperature and phase fields present advection

terms since we are considering the effects of the flow of the materials.
In the modified Navier-Stokes equations for the flow, equation (1.1)(v), the vis-

cosity ν >0 is assumed to be constant; F is a given external force field; to take in
consideration the buoyancy forces due to thermal and concentrations differences, there
is a Boussinesq type term:

F(τ,α,β,γ)=Aτ+Bα+Cβ+Dγ, (1.3)

where A, B, C, andD are given suitable functions. In this same equation, we also have
a Carman-Kozeny type term h(α+β)v that acts as a penalization term and take care
of the variation of the flow in the non-solid regions. This is done by introducing an
internal dry friction that is null in pure liquid state and increases as the material ap-
proaches the solid state. Thus, the function h(·) is a given non-negative function such
that h(α+β) must be zero at the pure liquid region Ql={(x,t)∈Q :α(x,t)+β(x,t)=
0}, strictly positive in the mushy region Qml={(x,t)∈Q : 0<α(x,t)+β(x,t)<1} and
also h(α+β)→+∞ as α+β→1−; that is h(·) is considered ∞ in the solid region
Qs={(x,t)∈Q :α(x,t)+β(x,t)=1}. Therefore, the Carman-Kozeny term brings a
singularity to the equation, and this is the reason that it holds only in the a priori
not known non solid region Qml. This term also forces the velocity to become zero
on the solid region Qs. Hence, the present problem is in fact a free-boundary value
problem. We remark that the classical Carman-Kozeny term is h(z)=Cz2/(1−z)3,
where C>0 is a constant depending on the material.

The initial conditions τ0, α0, β0, γ0, and v0 are suitable given functions that
according to their physical interpretation satisfy α0+β0+γ0=1.
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The present model for alloy solidification involves more than one phase field and
can be seen as a generalization of the model treated by (Hoffman and Jiang 1992)
and of the one treated by Steinbach et al. in (Steinbach at al. 1996) and (Steinbach
and Pezzolla 1999). As in (Hoffman and Jiang 1992), the present model assumes
that the energy stored in the transition layers is isotropic, but in (Hoffman and Jiang
1992) only one crystallization type is allowed so that there is no possibility of flow
in the melt. As in (Steinbach at al. 1996) and (Steinbach and Pezzolla 1999) we
have two possible crystallization states and the same interactions potentials for the
phase fields, and thus the same functions g1, g2, and g3; but in (Steinbach at al. 1996)
and (Steinbach and Pezzolla 1999) the temperature is supposed to be known and there
is no possibility of flow in the melt. Besides, rigorous mathematical analysis is not the
main interest in (Steinbach at al. 1996) and (Steinbach and Pezzolla 1999). We also
call the attention of the reader to the fact that equations of (1.1) could be rewritten
just in terms of α and β since on physical grounds one must have γ=1−α−β. Since
in (Steinbach at al. 1996) and (Steinbach and Pezzolla 1999) it is presented using the
three phase fields, for comparison we also preferred to present it as in (1.1).

To be fair, we must recall that there many articles considering phase field models.
Here, we just mention some representative ones, dealing with different types and
questions concerning phase field models: (Caginalp and Jones 1995), (Caginalp 1994),
(Caginalp 1989), (Caginalp 1986), (Colli and Sprekel 1997), (Colli and Sprekel 1998),
(Colli and Sprekel 1999), (Hoffman and Jiang 1992), (Horn et al. 1996), (Krejči et al.
2002), (Sprekel and Zheng 2003), (Planas and Boldrini 2005), (Planas 2007), (Boldrini
and Planas 2002), (Boldrini and Planas 2005), (Boldrini and Vaz 2003), and (Vaz and
Boldrini 2006). The interested reader can get more information by consulting the
references of those papers.

Now, it is important to call the reader’s attention to certain mathematical aspects
of the problem.

The fact that it is a free-boundary problem for the flow due to the presence of
a singularity term makes it impossible to get strong velocity estimates. Thus, only
the usual estimate weak estimates for the velocity are available and, since the veloc-
ity appears in the advection terms appearing in the other equations, it also makes
it harder to obtain stronger estimates for the other variables and thus to handle the
nonlinearities. In fact, at a certain point of the arguments we will have to rely on local
estimates for the time derivative of the velocity field. The fact that there is no strong
estimates for the velocity also allows us to presently prove the existence of solutions
for only the two-dimensional (N=2) case; the three-dimensional case is presently un-
der investigation for a different constitutive law for the fluid flow; see (Caretta and
Boldrini 2010).

From the point of view of the phase fields, the fact that here we have more than
one of them brings another mathematical difficulty as compared to models with just
one phase field. In fact, in this last case the higher power nonlinearities have the right
sign at least for the process of obtaining the weaker estimates. On the other hand,
here we also have higher powered nonlinearities which are products of different phase
fields and thus we have no control of even their signs. These difficulties demand that
we be very careful even to find the weaker estimates. We will also need to prove that
the phase fields are nonnegative and add up to one.

We also remark that, unlike what occurs in the usual phase field models, in the
present one there are terms in which the temperature acts by scalar multiplication
on the phase fields, bringing nonlinearities that are harder to handle than the ones in
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the usual models.
To obtain existence of solutions for this model we combine ideas used in (Boldrini

et al. 2009) to handle the fact that we have more than one phase field and in (Planas
and Boldrini 2005) to handle the fact that we have flow in the melt. Our result is
stated in Theorem 2.7 at the end of the next section.

This paper is organized as follows. In Section 2 we fix the notations, recall
certain results that will be used along the paper, and state our main result concerning
the existence of a suitable weak solution for the free-boundary value problem. In
Section 3 we consider a sequence of regularized problems and obtain some estimates
and convergence results that allow one to pass to a suitable limit. Finally, in Section 4
we pass to the limit in the previously obtained regularized solutions and get a weak
solution of the original problem.

2. Preliminaries, hypotheses, and main result
For convenience of references, here we will just recall certain facts that will be

useful along the paper.
We will use standard notations for Sobolev spaces. Given 1≤p≤+∞ and k∈

N, we denote the usual Sobolev space by W k
p (Ω)={f ∈Lp(Ω) :Dαf ∈Lp(Ω), |α|≤k} ,

whose properties can be found for instance in (Adams 1975, Theorem 5.4, pp. 97); here
we only mention the following result that is a consequence of the Sobolev embedding
theorem given in (Adams 1975, Theorem 5.4, pp. 97).

Lemma 2.1. If Ω⊂R
2 satisfies the cone property and p satisfies 1≤p<∞, then

(i)W 2
p (Ω) →֒W

2− 2

q
q (Ω), for all p≤ q≤2p;

(ii)W k
p (Ω) →֒L∞(Ω), for all k,p>2 with k∈N;

(iii)H1
0 (Ω) →֒Lq(Ω), for all q∈N,

with continuous embedding.

The first four equations in problem (1.1) will be studied in functional
spaces denoted by W 2,1

q (Q) = {f ∈Lq(Q) :Dαf ∈Lq(Q), ∀1≤|α|≤2,ft∈Lq(Q)} , and

Lp(0,T ;B)=
{
f : (0,T )→B :‖ ‖f(t)‖B ‖Lp((0,T ))<+∞

}
, with B any of several suit-

able Banach spaces.
Results concerning these spaces can be found for instance in (Ladyzhenskaya

1968) and (Mikhaylov 1978). Here we just recall a result that sometimes is called
the Lions-Peetre embedding theorem (Lions 1985, pp. 15); it is also a consequence of
Lemma 3.3, pp. 80, in (Ladyzhenskaya 1968).

Lemma 2.2. Let Ω⊂R
2 an open and bounded C2-domain and let Q=Ω×(0,T ), with

0<T <∞. Then, W 2,1
q (Q)⊂Lp(Q), with compact and continuous embedding for

p=

{
any positive number, if q=2,

∞, if q>2.

To deal with the modified Navier-Stokes equations in problem (1.1), it is necessary
to consider two other functional spaces. For each open set U ⊂R

2 let V(U)={w∈
(C∞(U))2 : div w=0}. Then, H(U) is the closure of V(U) in (L2(U))2 and V (U) is
the closure of V(U) in (H1

0 (U))2. Besides,

H :=H(Ω), V :=V (Ω).
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By using the Gagliardo-Nirenberg Inequality (see (Friedman 1976), pp. 27), we
easily obtain the following result.

Lemma 2.3. Let Ω⊂R
2 an open and bounded C1-domain. Then L∞(0,T ;H)∩

L2(0,T ;V )⊂L4(Q), with continuous imbedding, and satisfies

‖v‖L4(Q)≤C‖v‖
1/2
L∞(0,T ;H).‖v‖

1/2
L2(0,T ;V ),

where C depends only on Ω.

Finally, let us state a result on existence, uniqueness, and regularity of solutions
which is a special case of one for linear parabolic differential partial equations given
by Theorem 9.1, pp. 341, in (Ladyzhenskaya 1968).

Proposition 2.4. Let Ω⊂R
2 an open and bounded domain. Suppose that f ∈

Lq(Q) and c∈Lq(Q), with q>1, φ0∈W
2−2/q
q (Ω) satisfies the compatibility condi-

tion ∂φ0/∂n|∂Ω=0, and v∈Lr(Q), with r=max{q,4} if q 6=4 and r=4+ε for any
ε≥0 if q=4. Then, the problem





φt−k∆φ+v ·∇φ+cφ=f, in Q,

∂φ/∂n=0, on ∂Ω×(0,T ),

φ=φ0, in Ω×{t=0}.

has a unique solution φ∈W 2,1
q (Q). This solution satisfies the estimate

‖φ‖W 2,1
q (Q)≤C

[
‖f‖Lq(Q)+‖φ0‖W 2−2/q

q (Ω)

]
,

where C depends on Ω, T , k, v, and c.

Next, we state a result on existence, uniqueness, and regularity of, and an a
priori estimate for solutions of an auxiliary problem which is presented and proved in
Calsavara and Boldrini [10]

Proposition 2.5. Assume that hypotheses (2.3) and (2.4) hold. Let f ∈Lq(Q), with
2<q<4, and v∈L4(Q)∩L2(0,T ;V ). Then there exists a unique solution (τ,α,β,γ)∈[
W 2,1

q (Q)
]4

of the problem





τt−b∆τ+v ·∇τ = l1αt+ l2βt+ l3γt+f, in Q,

αt−k∆α+v ·∇α=g1(τ,α,β,γ)+g3(τ,α,β,γ), in Q,

βt−k∆β+v ·∇β=g2(τ,α,β,γ)−g3(τ,α,β,γ), in Q,

γt−k∆γ+v ·∇γ=−g1(τ,α,β,γ)−g2(τ,α,β,γ), in Q,

∂τ/∂n=∂α/∂n=∂β/∂n=∂γ/∂n=0, on ∂Ω×(0,T ),

τ = τ0, α=α0, β=β0, γ=γ0, in Ω×{t=0},

(2.1)

where g1, g2, and g3 are given by (1.2).
Besides, this solution satisfies α≥0, β≥0, γ≥0, α+β+γ=1, and

‖τ‖W 2,1
q (Q)+‖α‖W 2,1

q (Q)+‖β‖W 2,1
q (Q)+‖γ‖W 2,1

q (Q)

≤C(‖τ0‖W 2
2
(Ω)+‖α0‖W 2

2
(Ω)+‖β0‖W 2

2
(Ω)+‖γ0‖W 2

2
(Ω)+‖f‖Lq(Q)),

(2.2)
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where the constant C depends on Ω, T , ‖v‖L4(Q), and the constants of Problem (2.1).

Remark 2.6. Under the hypothesis of Proposition 2.5, the solution (τ,α,β,γ) of
Problem (2.1) satisfies

∫

Ω

(
τ2(t)+α2(t)+β2(t)+γ2(t)

)
dx+

∫ t

0

∫

Ω

(
|∇τ |2+ |∇α|2+ |∇β|2+ |∇γ|2

)
dxdt

≤C
(
‖τ0‖

2
L2(Ω)+‖α0‖

2
L2(Ω)+‖β0‖

2
L2(Ω)+‖f‖2L2(Q)

)
+C

∫ t

0

∫

Ω

|v|2dxdt,

for all 0≤ t≤T , where the constant C depends on Ω, T , and constants of prob-
lem (2.1).

Next, for easy reference, we collect in the following some hypotheses that will be
assumed throughout the rest of this article.
Main hypotheses:

(i) Ω⊂R
2 is a boundedC2-domain;

(ii)0<T <∞, andQ=Ω×(0,T );

(iii)l1 (or l′1), l2 (or l′2), l3, c1, c2, c3, d1, d2, and d3 are real constants;
b, k, a1, a2, a3, and ν are positive constants;

(iv)h∈C1([0,1)) is a non-decreasing function such that h(0)=0 and
limθ→1− h(θ)=+∞;

(v)A(·), B(·), C(·), and D(·) are given functions in (L∞(Q))2;

(vi)F (·) is a given function in (L2(Q))2.

(2.3)

For the initial conditions we assume that

(vii) τ0, α0, β0, γ0∈W 2
2 (Ω);

(viii) α0, β0, γ0≥0, and α0+β0+γ0=1; (2.4)

(ix)∂τ0/∂n= ∂α0/∂n=∂β0/∂n=∂γ0/∂n=0.

For initial velocity field we require that

(x) v0∈H;

(xi) v0(x)=0 for all x∈Ω such that α0+β0=1.
(2.5)

Let us observe that α0+β0=1 implies γ0=0, and the last condition means that the
initial velocity is null in the initial solid region.

Our objective in this work is to show the following existence result for weak
solutions for Problem (1.1) under the previous hypotheses.

Theorem 2.7. Under hypotheses (2.3), (2.4), (2.5), and f ∈Lq(Q), with 2<q<4,
there are functions τ , α, β, γ∈W 2,1

q (Q), with α≥0, β≥0,γ≥0, α+β+γ=1 in Q,
and v∈L∞(0,T ;H)∩L2(0,T ;V ) such that (v,τ,α,β,γ) is a solution of problem (1.1)
in the following weak sense:

If



B. M. R. CALSAVARA AND J. L. BOLDRINI 263

Qml={(x,t)∈Q : α(x,t)+β(x,t)<1},

Qs={(x,t)∈Q : α(x,t)+β(x,t)=1},

Ωml(0)={(x,0) : x∈Ω, α0(x)+β0(x)<1},

then

τt−b∆τ+v ·∇τ = l1αt+ l2βt+ l3γt+f, in L2(Q),

αt−k∆α+v ·∇α=g1(τ,α,β,γ)+g3(τ,α,β,γ), in L2(Q),

βt−k∆β+v ·∇β=g2(τ,α,β,γ)−g3(τ,α,β,γ), in L2(Q),

γt−k∆γ+v ·∇γ=−g1(τ,α,β,γ)−g2(τ,α,β,γ), in L2(Q),

∂τ/∂n=∂α/∂n=∂β/∂n=∂γ/∂n=0, on ∂Ω×(0,T ),

τ = τ0, α=α0, β=β0, γ=γ0, in Ω×{t=0}.

−
∫ T

0
<v,ηt>ds+ν

∫ T

0
(∇v,∇η)ds+

∫ T

0
(v.∇v,η)ds+

∫ T

0
(h(α+β).v,η)ds

=
∫ T

0
(F(τ,α,β,γ),η)ds+

∫ T

0
(F,η)ds +(v0,η(0))Ωml(0), ∀η∈Wml,

v=0, in Qs.

(2.6)

Here,
Wml={η∈L2(0,T ;V ) : ηt∈L2(0,T,V ′), and

η(T )=0with compact suppη⊂Qml∪Ωml(0)},

and g1, g2, and g3 are given by (1.2).

3. A regularized problem
In this section we introduce a regularized version of the original problem by

modifying the Navier-Stokes type equations in such way that they hold in the whole
domain Ω instead of only in an a priori unknown region.

For each δ∈ (0,ε), with 0<ε≤1, let us consider the following regularized problem:

τ δt −b∆τ δ+vδ ·∇τ δ = l1α
δ
t + l2β

δ
t + l3γ

δ
t +f, in Q,

αδ
t −k∆αδ+vδ ·∇αδ =g1(τ

δ,αδ,βδ,γδ)+g3(τ
δ,αδ,βδ,γδ), in Q,

βδ
t −k∆βδ+vδ ·∇βδ =g2(τ

δ,αδ,βδ,γδ)−g3(τ
δ,αδ,βδ,γδ), in Q,

γδ
t −k∆γδ+vδ ·∇γδ =−g1(τ

δ,αδ,βδ,γδ)−g2(τ
δ,αδ,βδ,γδ), in Q,

∂τ δ/∂n=∂αδ/∂n=∂βδ/∂n=∂γδ/∂n=0, on ∂Ω×(0,T ),

τ δ = τ0, α
δ =α0, β

δ =β0, γ
δ =γ0, in Ω×{t=0},

(3.1)

d

dt
(vδ,u)+ν(∇vδ,∇u)+(vδ.∇vδ,u)+(h(αδ+βδ−δ)vδ,u)

=(F(τ δ,αδ,βδ,γδ),u)+(F,u), ∀ u∈V, ∀ t∈ (0,T ),

vδ =0, on ∂Ω×(0,T ),

vδ =v0, in Ω×{t=0}.

(3.2)
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Here g1, g2, and g3 are given by (1.2), F is given by (1.3), and h is extended to be
zero in (−ε,0), so h(t)≥0 for t∈ (−ε,1).

The idea for this regularization comes from the fact that by item (iv) in Hypothe-
ses (2.3) we have that h∈C1([0,1)) is a non-decreasing function such that h(0)=0
and limx→1− h(x)=+∞. Since hopefully we will get 0≤αδ+βδ ≤1, we will have that
h(αδ+βδ−δ) is bounded for each δ∈ (0,ε).

For this regularized problem, the following result holds.

Proposition 3.1. Assume that hypotheses (2.3), (2.4), and (2.5) hold, and f ∈
Lq(Q), with 2<q<4. For each δ∈ (0,ε), the regularized problem (3.1) has a unique
solution (vδ,τ δ,αδ,βδ,γδ) such that vδ ∈L∞(0,T ;H)∩L2(0,T ;V ), vδt ∈L2(0,T ;V ′),

(τ δ,αδ,βδ,γδ)∈
[
W 2,1

q (Q)
]4
,

αδ ≥0, βδ ≥0, γδ ≥0, and αδ+βδ+γδ =1 a.e. in Q.

Besides, it holds that

‖vδ‖L∞(0,T ;H)+‖vδ‖L2(0,T ;V )

+‖τ δ‖W 2,1
q (Q)+‖αδ‖W 2,1

q (Q)+‖βδ‖W 2,1
q (Q)+‖γδ‖W 2,1

q (Q)

≤C
[
‖v0‖L2(Ω)+‖τ0‖W 2

2
(Ω)+‖α0‖W 2

2
(Ω)+‖β0‖W 2

2
(Ω)+‖γ0‖W 2

2
(Ω)

+‖f‖Lq(Q)+‖F‖L2(Q)

]
,

where C depends on T , Ω, ‖v0‖L2(Ω), ‖τ0‖L2(Ω), ‖α0‖L2(Ω), ‖β0‖L2(Ω), ‖γ0‖L2(Ω),
‖f‖L2(Q), and ‖F‖L2(Q), and constants of Problem (3.1), and thus is independent of
δ.

In the following arguments, we fix δ∈ (0,ε) and for simplicity of notations in the
rest of this section we will omit the superscript δ of vδ, τ δ, αδ, βδ, and γδ.

To prove the last proposition, i.e, to obtain the existence of solutions of prob-
lem (3.1), let us apply the Leray-Schauder’s fixed point theorem (Friedman 1964) in
the following setting.

Consider the set

K :=L2(0,T ;H)×L∞(Q)×K,

where K={(α,β,γ)∈ [L∞(Q)]
3
:α, β, γ≥0 and α+β+γ=1}, which is a closed con-

vex subset of L2(0,T ;H)× [L∞(Q)]
4
.

We also consider the family of operators Sλ :K→K, for 0≤λ≤1, defined for any
(ṽ, τ̃ ,α̃,β̃, γ̃)∈K as

Sλ(ṽ, τ̃ ,α̃,β̃, γ̃)=(v,τ,α,β,γ),

where (v,τ,α,β,γ) is the solution of the following problem:

τt−b∆τ+v ·∇τ = l1αt+ l2βt+ l3γt+f, in Q,

αt−k∆α+v ·∇α=g1(τ,α,β,γ)+g3(τ,α,β,γ), in Q,

βt−k∆β+v ·∇β=g2(τ,α,β,γ)−g3(τ,α,β,γ), in Q,

γt−k∆γ+v ·∇γ=−g1(τ,α,β,γ)−g2(τ,α,β,γ), in Q,
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d

dt
(v,u)−ν(∇v,∇u) +(v ·∇v,u)+λ(h(α̃+ β̃−δ)v,u) (3.3)

=λ(F(τ̃ ,α̃,β̃, γ̃)+F,u), for all u∈V, t∈ (0,T ),

∂τ/∂n=∂α/∂n=∂β/∂n=∂γ/∂n=0, on ∂Ω×(0,T ),

τ = τ0, α=α0, β=β0 in Ω×{t=0},

where g1, g2, g3, and F are given by (1.2) and (1.3).

In the next sequence of lemmas, we will verify the hypotheses of the Leray-
Schauder theorem.

Lemma 3.2. Assume that hypotheses (2.3), (2.4), and (2.5) hold. Let f ∈Lq(Q),

with 2<q<4. Then Sλ(ṽ, τ̃ ,α̃,β̃, γ̃) is well defined for each (ṽ, τ̃ ,α̃,β̃, γ̃)∈K and each
0≤λ≤1.

Proof. Indeed, since F(τ̃ ,α̃,β̃, γ̃)+F ∈L2(Q), we have from theo-
rems 3.1 and 3.2 in (Temam 1979), pp. 282 and 294, that there exists a unique
v∈L∞(0,T ;H)∩L2(0,T ;V ) such that vt∈L2(0,T ;V ′) is a solution of the fourth equa-
tion of problem (3.3). In particular, v∈L2(0,T ;H).

Now, since v∈L∞(0,T ;H)∩L2(0,T ;V ) by Lemma 2.3, we have that v∈L4(Q).
Then, by Proposition 2.5 applied to first, second, and third equations of problem (3.3),
there exists a unique solution (τ,α,β)∈ [W 2,1

q (Q)]3 of these equations and this solution
satisfies α, β, γ≥0, and α+β+γ=1. Besides, since q>2, we have (τ,α,β,γ)∈

[L∞(Q)]
4
.

So, (v,τ,α,β,γ)∈K and it is the unique solution of Problem (3.3).

Lemma 3.3. Assume that hypotheses (2.3), (2.4), and (2.5) hold. Let f ∈Lq(Q),
with 2<q<4. Then for each fixed λ∈ [0,1], Sλ :K→K is continuous and compact.

Proof. For this, we fix λ∈ [0,1], consider (ṽ1, τ̃1,α̃1,β̃1), (ṽ2, τ̃2,α̃2,β̃2)∈K, with

(vi,τi,αi,βi)=Sλ(ṽi, τ̃i,α̃i,β̃i), for i=1,2, and define

(ṽ, τ̃ ,α̃,β̃)=(ṽ1, τ̃1,α̃1,β̃1)−(ṽ2, τ̃2,α̃2,β̃2),

(v,τ,α,β)=(v1,τ1,α1,β1)−(v2,τ2,α2,β2).

We have that v∈L∞(0,T ;H)∩L2(0,T ;V ) and satisfies

d

dt
(v,u)−ν(∇v,∇u)+(v ·∇v1,u)+(v2 ·∇v,u)+λ(h(α̃1+ β̃1−δ)v,u)

=−λ((h(α̃1+ β̃1−δ)−h(α̃2+ β̃2−δ))v2,u)+λ(F(τ̃ ,α̃,β̃),u),

for all u∈V , t∈ (0,T ).

By taking u=v(t), for each t∈ (0,T ) in the last equation, we obtain that

1

2

d

dt
‖v‖2L2(Ω)−ν‖∇v‖2L2(Ω)+(v2 ·∇v,v)+λ(h(α̃1+ β̃1−δ)v,v)

=−(v ·∇v1,v)−λ((h(α̃1+ β̃1−δ)−h(α̃2+ β̃2−δ))v2,v)+λ(F(τ̃ ,α̃,β̃),v).
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Now, we observe that

(v2 ·∇v,v)=0,

(h(α̃1+ β̃1−δ)v,v)≥0,

|(v ·∇v1,v)|≤‖v‖2L4(Ω)‖∇v1‖L2(Ω)≤‖v‖L2(Ω)‖∇v‖L2(Ω)‖∇v1‖L2(Ω)

≤Cε‖v‖
2
L2(Ω)‖∇v1‖

2
L2(Ω)+ε‖∇v‖2L2(Ω)

≤Cε‖v‖
2
L2(Ω)+ε‖∇v‖2L2(Ω),

((h(α̃1+ β̃1−δ)−h(α̃2+ β̃2−δ))v2,v)

=(h′(θ)(α̃+ β̃−δ)v2,v)

≤C
(
‖α̃‖L2(Ω)+‖β̃‖L2(Ω)

)
‖v2‖L4(Ω)‖v‖L4(Ω)

≤C
(
‖α̃‖L2(Ω)+‖β̃‖L2(Ω)

)
‖∇v2‖L2(Ω)‖∇v‖L2(Ω)

≤Cε‖α̃‖
2
L2(Ω)+Cε‖β̃‖

2
L2(Ω)+ε‖∇v2‖

2
L2(Ω)‖∇v‖2L2(Ω)

≤Cε‖α̃‖
2
L2(Ω)+Cε‖β̃‖

2
L2(Ω)+C ·ε‖∇v‖2L2(Ω),

(F(τ̃ ,α̃,β̃),v)≤C
(
‖τ̃‖2L2(Ω)+‖α̃‖2L2(Ω)+‖β̃‖2L2(Ω)+‖v‖2L2(Ω)

)
,

where θ∈ [0,1].

By replacing the last equalities and inequalities in the previous one, we obtain

d

dt
‖v‖2L2(Ω)+ν‖∇v‖2L2(Ω)≤Cǫ‖v‖

2
L2(Ω)+C.ǫ‖∇ṽ‖2L2(Ω)

+C‖τ̃‖2L2(Ω)+Cǫ‖α̃‖
2
L2(Ω)+Cǫ‖β̃‖

2
L2(Ω).

By taking ǫ>0 small enough and integrating in (0,t), with 0≤ t≤T , it follows
that

‖v(t)‖2L2(Ω)+‖∇v(t)‖2L2(Ω)≤C
(
‖α̃‖2L2(Q)+‖β̃‖2L2(Q)+‖τ̃‖2L2(Q)

)

+C

∫ t

0

‖v‖2L2(Ω)dt.

By Gronwall’s lemma, we get for all t∈ (0,T ) that

‖v(t)‖2L2(Ω)+‖∇v(t)‖2L2(Ω)≤C
(
‖α̃‖2L2(Q)+‖β̃‖2L2(Q)+‖τ̃‖2L2(Q)

)
.

Thus,

‖v‖L2(0,T ;H)≤C
(
‖v‖L∞(0,T ;H)+‖v‖L2(0,T ;V ))

)
≤C‖(ṽ, τ̃ ,α̃,β̃)‖K (3.4)

and

‖v‖L4(Q)≤C‖v‖
1/2
L∞(0,T ;H)‖v‖

1/2
L2(0,T ;V ))≤C‖(ṽ, τ̃ ,α̃,β̃)‖K. (3.5)
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Next, we observe that from the fact that α satisfies

αt−k∆α+v ·∇α
=−a1 [α1γ1(γ1−α1+c1τ1+d1)−α2γ2(γ2−α2+c1τ2+d1)]

−a3 [α1β1(β1−α1+c3τ1+d3)−α2β2(β2−α2+c3τ2+d3)] , in Q,

∂α/∂n=0, on ∂Ω×(0,T ),

α=0, in Ω×{t=0},

where a1, a2, a3, c1, c2, c3, d1, d2, and d3 are given constants, by adding and sub-
tracting suitable terms, we obtain that α satisfies

αt−k∆α+v2 ·∇α

+[a1γ1(γ1−α1+c1τ1+d1)−a1α2γ2+a3β1(β1−α1+c3τ1+d3)−a3α2β2]α

=−v ·∇α1+β [−a3α2(β1−α1+c3τ1+d3)−a3α2β2]

+γ [−a1α2(γ1−α1+c1τ1+d1)−a1α2γ2]+τ [−a1c1α2γ2−a3c3α2β2] , inQ,

∂α/∂n=0, on ∂Ω×(0,T ),

α=0, in Ω×{t=0}.
(3.6)

By using Proposition 2.4 with this last equation, estimate (2.2), and the contin-
uous imbedding W 2,1

q (Q)⊂L∞(Q), we conclude that for all 2<q<4 it holds that

‖α‖W 2,1
q (Q)≤C‖τ‖Lq(Q)+C‖β‖Lq(Q)+C‖γ‖Lq(Q)+C‖v ·∇α2‖Lq(Q),

where C depends on ‖(ṽ1, τ̃1,α̃1,β̃1, γ̃1)‖K and ‖(ṽ2, τ̃2,α̃2,β̃2, γ̃2)‖K.
Next, recall that since Ω∈R

2, then H1
0 (Ω)⊂Lr(Ω), for all 1≤ r<∞; by fixing

q∈ (2,4) and using Hölder’s inequality first in Ω and then in (0,T ) for last term of the
last equation, and using Gagliardo-Nirenberg’s equations for the other three terms,
we obtain

‖α‖W 2,1
q (Q)≤Cε‖τ‖L2(Q)+ε‖τ‖W 2,1

q (Q)+Cε‖β‖L2(Q)+ε‖β‖W 2,1
q (Q)

+Cε‖γ‖L2(Q)+ε‖γ‖W 2,1
q (Q)+C‖v‖L4(Q)‖α2‖W 2,1

2
(Q)

≤Cε‖τ‖L2(Q)+ε‖τ‖W 2,1
q (Q)+Cε‖β‖L2(Q)+ε‖β‖W 2,1

q (Q)

+Cε‖γ‖L2(Q)+ε‖γ‖W 2,1
q (Q)+C‖(ṽ, τ̃ ,α̃,β̃, γ̃)‖K,

where C depends on ‖(ṽ1, τ̃1,α̃1,β̃1, γ̃1)‖K and ‖(ṽ2, τ̃2,α̃2,β̃2, γ̃2)‖K, by estimate (3.5).
By proceeding similarly for equations satisfied by β, γ, and τ , we also obtain

‖β‖W 2,1
q (Q)≤Cε‖τ‖L2(Q)+ε‖τ‖W 2,1

q (Q)+Cε‖α‖L2(Q)+ε‖α‖W 2,1
q (Q)

+Cε‖γ‖L2(Q)+ε‖γ‖W 2,1
q (Q)+C‖(ṽ, τ̃ ,α̃,β̃, γ̃)‖K,

‖γ‖W 2,1
q (Q)≤Cε‖τ‖L2(Q)+ε‖τ‖W 2,1

q (Q)+Cε‖α‖L2(Q)+ε‖α‖W 2,1
q (Q)

+Cε‖β‖L2(Q)+ε‖β‖W 2,1
q (Q)+C‖(ṽ, τ̃ ,α̃,β̃, γ̃)‖K,
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and

‖τ‖W 2,1
q (Q)≤Cε‖α‖L2(Q)+ε‖α‖W 2,1

q (Q)+Cε‖β‖L2(Q)+ε‖β‖W 2,1
q (Q)

+Cε‖γ‖L2(Q)+ε‖γ‖W 2,1
q (Q)+C‖(ṽ, τ̃ ,α̃,β̃, γ̃)‖K,

for all 2<q<4, with C depending on ‖(ṽ1, τ̃1,α̃1,β̃1, γ̃1)‖K and ‖(ṽ2, τ̃2,α̃2,β̃2, γ̃2)‖K.
By adding the last four inequalities and taking ε>0 small enough, we have for

all 2<q<4 that

‖τ‖W 2,1
q (Q)+‖α‖W 2,1

q (Q)+‖β‖W 2,1
q (Q)+‖γ‖W 2,1

q (Q)

≤C‖τ‖L2(Q)+C‖α‖L2(Q)+C‖β‖L2(Q)+C‖γ‖L2(Q)+C‖(ṽ, τ̃ ,α̃,β̃, γ̃)‖K,
(3.7)

with C depending on ‖(ṽ1, τ̃1,α̃1,β̃1, γ̃1)‖K and ‖(ṽ2, τ̃2,α̃2,β̃2, γ̃2)‖K.
By multiplying inequality (3.6) by α, integrating in Ω and using Hölder’s and

Young’s inequalities, and also using that (τ1,α1,β1,γ1), (τ2,α2,β2,γ2)∈W 2,1
q (Q)⊂

L∞(Q) (because 2<q<4), we obtain

1

2

d

dt

∫

Ω

α2dx+k

∫

Ω

|∇α|2dx

≤−

∫

Ω

(v2.∇α)α dx−

∫

Ω

(v.∇α1)α dx+

∫

Ω

(
α2+β2+γ2+τ2

)
dx,

where C depends on (τ1,α1,β1,γ1) and (τ2,α2,β2,γ2).

Now, since v∈V a.e. in [0,T ], we have that
∫ t

0

∫
Ω
(v.∇α)α dxdt=0 and, by using

Hölder’s, Gagliardo-Nirenberg’s, and Young’s inequalities, and estimate (3.5), we have

∫

Ω

(v.∇α1)α dx≤‖v‖L4(Ω)‖∇α1‖L4(Ω)‖α‖L2(Ω)

≤C‖v‖L4(Ω)‖∇τ‖
1/2
L2(Ω)‖∆τ‖

1/2
L2(Ω)‖α‖L4(Ω)≤C‖v‖L4(Ω)‖α‖L2(Ω)

≤C‖v‖2L4(Ω)+C‖α‖2L2(Ω)≤C‖(ṽ, τ̃ ,α̃,β̃)‖K+C‖α‖2L2(Ω).

Then,

d

dt

∫

Ω

α2dx≤

∫

Ω

(
α2+β2+γ2+τ2

)
dx+C‖(ṽ, τ̃ ,α̃,β̃)‖K,

where C depends on (τ1,α1,β1,γ1,v1) and (τ2,α2,β2,γ2,v2).
By proceeding similarly with the equations satisfied by β, γ, and τ , we obtain

d

dt

∫

Ω

β2dx≤

∫

Ω

(
α2+β2+γ2+τ2

)
dx+C‖(ṽ, τ̃ ,α̃,β̃)‖K,

d

dt

∫

Ω

γ2dx≤

∫

Ω

(
α2+β2+γ2+τ2

)
dx+C‖(ṽ, τ̃ ,α̃,β̃)‖K,

d

dt

∫

Ω

τ2dx≤C

∫

Ω

(
α2+β2+γ2+τ2

)
dx+C‖(ṽ, τ̃ ,α̃,β̃)‖K,

where C depends on (τ1,α1,β1,γ1,v1) and (τ2,α2,β2,γ2,v2).
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By adding the last four equation and using Gronwall’s Lemma,

∫

Ω

(
α(t)2+β(t)2+γ(t)2+τ(t)2

)
dx≤C‖(ṽ, τ̃ ,α̃,β̃)‖K,

By replacing the last inequality in estimate (3.7), we get

‖τ‖W 2,1
q (Q)+‖α‖W 2,1

q (Q)+‖β‖W 2,1
q (Q)+‖γ‖W 2,1

q (Q)≤C‖(ṽ, τ̃ ,α̃,β̃, γ̃)‖K,

for all 2<q<4, with C depending on (ṽ1, τ̃1,α̃1,β̃1, γ̃1) and (ṽ2, τ̃2,α̃2,β̃2, γ̃2).

Hence, Sλ :K→ [L2(0,T ;V )∩L∞(0,T ;H)]× [W 2,1
q (Q)]4 is continuous. Since

[L2(0,T ;V )∩L∞(0,T ;H)]× [W 2,1
q (Q)]4⊂K, with continuous imbedding, we get that

Sλ :K→K is continuous.

To prove that Sλ :K→K is compact, let us show that Sλ :K→{w∈L2(0,T ;V ) :
wt∈L2(0,T ;H ′)]× [W 2,1

q (Q)]4 is bounded.

For this, let A⊂K bounded, (ṽ, τ̃ ,α̃,β̃, γ̃)∈K arbitrary and (v,τ,α,β,γ)=

Sλ(ṽ, τ̃ ,α̃,β̃, γ̃). By our previous estimates, we can conclude that the operator
Sλ :K→ [L2(0,T ;V )∩L∞(0,T ;H)]× [W 2,1

q (Q)]4 is bounded. Next, by proceeding sim-
ilarly as we did when we obtained estimates (3.4) and (3.5), we get that

‖v‖L4(Q)≤C(‖v‖L∞(0,T ;H)+‖v‖L2(0,T ;V )))

≤C(‖v0‖H +‖(ṽ, τ̃ ,α̃,β̃, γ̃)‖K+‖F‖L2(Q))≤C.
(3.8)

By Lemma 3.2, we know the regularity of vt; to obtain an estimate, we use the
first equation of problem (3.3) and Hölder’s and Young’s inequalities to get

(vt,u)≤C(‖∇v‖L2(Ω)+‖v‖2L4(Ω)+‖v‖L2(Ω)+‖τ̃‖L2(Ω)+‖α̃‖L2(Ω)

+‖β̃‖L2(Ω)+‖γ̃‖L2(Ω)+‖F‖L2(Ω)) ‖u‖H1
0
(Ω),

for all u∈V , t∈ (0,T ). Thus,

‖vt‖V ′ ≤C (‖v‖V +‖v‖2L4(Ω)+‖τ̃‖L2(Ω)+‖α̃‖L2(Ω)+‖β̃‖L2(Ω)

+‖γ̃‖L2(Ω)+‖F‖L2(Ω)),

for all t∈ (0,T ). From estimates (3.8), we conclude that

‖vt‖L2(0,T ;V ′)≤C(‖v0‖H +‖(v,τ̃ ,α̃,β̃, γ̃)‖K+‖F‖L2(Q))≤C.

Then, Sλ :K→
{
w∈L2(0,T ;V ) :wt∈L2(0,T ;H ′)

}
× [W 2,1

q (Q)]4 is bounded. By

using the compact imbedding
{
w∈L2(0,T ;V ) :wt∈L2(0,T ;H ′)

}
⊂L2(0,T ;H) and

Lemma 2.2, we get that Sλ :K→K is compact for each fixed λ∈ [0,1].

Since λ∈ [0,1] is arbitrary, we conclude that Sλ :K→K is continuous and compact
for each fixed λ∈ [0,1].

Lemma 3.4. Assume that hypotheses (2.3), (2.4), and (2.5) hold. Let f ∈Lq(Q),

with 2<q<4. Given any bounded subset A⊂K, then Sλ(ṽ, τ̃ ,α̃,β̃, γ̃) is continuous in

λ, uniformly with respect to (ṽ, τ̃ ,α̃,β̃, γ̃)∈A.
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Proof. Indeed, take (ṽ, τ̃ ,α̃,β̃, γ̃)∈A and consider λ1,λ2∈ [0,1] and

(vi,τi,αi,βi,γi)=Sλi
(ṽ, τ̃ ,α̃,β̃, γ̃), for i=1, 2. Proceeding as before, we have

‖v1−v2‖L4(Q)+‖τ1−τ2‖W 2,1
q (Q)+‖α1−α2‖W 2,1

q (Q)

+‖β1−β2‖W 2,1
q (Q)+‖γ1−γ2‖W 2,1

q (Q) ≤C|λ1−λ2|,

where C depends on ‖(ṽ1, τ̃1,α̃1,β̃1, γ̃1)‖K and ‖(ṽ2, τ̃2,α̃2,β̃2, γ̃2)‖K.

From this, since A is bounded in K, we obtain

‖(v1,τ1,α1,β1,γ1)−(v2,τ2,α2,β2,γ2)‖K≤C|λ1−λ2|,

with C depending only on A, and thus S(·)(ṽ, τ̃ ,α̃,β̃, γ̃) : [0,1]→K is continuous in λ,

uniformly with respect to (ṽ, τ̃ ,α̃,β̃, γ̃)∈A.

Lemma 3.5. Assume that hypotheses (2.3), (2.4), and (2.5) hold. Let f ∈Lq(Q),
with 2<q<4. Then, the operator S0 has a unique fixed point.

Proof. For λ=0 problem (3.3) becomes

τt−b∆τ+v ·∇τ = l1αt+ l2βt+ l3γt+f, in Q,

αt−k∆α+v ·∇α=g1(τ,α,β,γ)+g3(τ,α,β,γ), in Q,

βt−k∆β+v ·∇β=g2(τ,α,β,γ)−g3(τ,α,β,γ), in Q,

γt−k∆γ+v ·∇γ=−g1(τ,α,β,γ)−g2(τ,α,β,γ), in Q,

d

dt
(v,u)−ν(∇v,∇u)+(v ·∇v,u)=0, for all u∈V, t∈ (0,T ),

∂τ/∂n=∂α/∂n=∂β/∂n=∂γ/∂n=0, on ∂Ω×(0,T ),

τ = τ0, α=α0, β=β0, in Ω×{t=0},

where g1, g2, and g3 are given by (1.2).

From theorems 3.1 and 3.2 in (Temam 1979), pp. 282 and 294, we conclude
that there exists a unique v∈L∞(0,T ;H)∩L2(0,T ;V )⊂L4(Q), with vt∈L2(0,T ;V ′),
which is a unique solution of the fifth equation of the above problem; by apply-
ing Proposition 2.5 to the first four equations, we obtain that there exists a unique
(τ,α,β,γ)∈W 2,1

q (Q)⊂L∞(Q), which is a solution of the equations in the proposi-
tion for q>2. Thus, there exists a unique (v,τ,α,β,γ)∈ [L∞(0,T ;H)∩L2(0,T ;V )]×
[W 2,1

q (Q)]4⊂K, which solves the problem (3.3) with λ=0. Then, operator S0 has a
unique fixed point (v,τ,α,β,γ)∈K.

Lemma 3.6. Assume that hypotheses (2.3), (2.4), and (2.5) hold. Let f ∈Lq(Q),
with 2<q<4. There exists a constant K>0 independent of λ so that every possible
fixed point (v,τ,α,β,γ) of Sλ satisfies ‖(v,τ,α,β,γ)‖K≤K for all λ∈ [0,1].

Proof. For this, consider a fixed point (v,τ,α,β,γ)∈K of Sλ for some λ∈ [0,1],
i.e. (v,τ,α,β,γ)=Sλ(v,τ,α,β,γ). Then, using the previous notations, (v,τ,α,β,γ)
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satisfies

τt−b∆τ+v ·∇τ = l1αt+ l2βt+ l3γt+f, in Q,

αt−k∆α+v ·∇α=g1(τ,α,β,γ)+g3(τ,α,β,γ), in Q,

βt−k∆β+v ·∇β=g2(τ,α,β,γ)−g3(τ,α,β,γ), in Q,

γt−k∆γ+v ·∇γ=−g1(τ,α,β,γ)−g2(τ,α,β,γ), in Q,

d

dt
(v,u)−ν(∇v,∇u)+(v ·∇v,u)+λ(h(α+β−δ)v,u)

=λ(F(τ,α,β,γ)+F,u) for all u∈V, t∈ (0,T ),

∂τ/∂n=∂α/∂n=∂β/∂n=∂γ/∂n=0, on ∂Ω×(0,T ),

τ = τ0, α=α0, β=β0, in Ω×{t=0},

(3.9)

where g1, g2, g3, and F are given by (1.2) and (1.3).
First of all observe that by Lemma 3.2, when (v,τ,α,β,γ) satisfies the previous

problem, then α, β, γ≥0 and α+β+γ=1.
By Remark 2.6 we have

∫

Ω

(
τ2(t)+α2(t)+β2(t)+γ2(t)

)
dx+

∫ t

0

∫

Ω

(
|∇τ |2+ |∇α|2+ |∇β|2+ |∇γ|2

)
dxdt

≤C
(
‖τ0‖

2
L2(Ω)+‖α0‖

2
L2(Ω)+‖β0‖

2
L2(Ω)+‖f‖2L2(Q)

)
+C

∫ t

0

∫

Ω

|v|2dxdt, (3.10)

for all 0≤ t≤T , where the constant C depends on Ω, T , and the constants of prob-
lem (3.9).

By replacing u=v(t) in the last equation of problem (3.9) and integrating in (0,t)
with 0≤ t≤T , we get

∫

Ω

|v(t)|2dx+

∫ t

0

∫

Ω

|∇v|2dxdt+

∫ t

0

∫

Ω

(v.∇v)v dxdt+

∫ t

0

∫

Ω

h(α+β−δ)|v|2dxdt

=‖v0‖
2
L2(Ω)+

∫ t

0

(Aτ+Bα+Cβ+Dγ+F,v)dt

≤‖v0‖
2
L2(Ω)+C

∫ t

0

∫

Ω

(
|v|2+τ2+α2+β2+F 2

)
dxdt.

Next, we observe that 0≤α+β≤1, 0<δ<ε and h≥0 in (−ε,1), so that h(α+

β−δ)≥0 in Q, and since
∫ t

0

∫
Ω
(v.∇v)v dxdt=0, we have that

∫

Ω

|v(t)|2dx+

∫ t

0

∫

Ω

|∇v|2dxdt

≤‖v0‖
2
L2(Ω)+C

∫ t

0

∫

Ω

(
|v|2+τ2+α2+β2+F 2

)
dxdt.

By adding the last inequality to the inequality (3.10) and then applying Gronwall’s
lemma, it follows that

∫

Ω

(
|v(t)|2+τ2(t)+α2(t)+β2(t)+γ2(t)

)
dx
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+

∫ t

0

∫

Ω

(
|∇v|2+ |∇τ |2+ |∇α|2+ |∇β|2+ |∇γ|2

)
dxdt

≤C
(
‖v0‖

2
L2(Ω)+‖τ0‖

2
L2(Ω)+‖α0‖

2
L2(Ω)+‖β0‖

2
L2(Ω)+‖γ0‖

2
L2(Ω)

+‖f‖2L2(Q)+‖F‖2L2(Q)

)
(3.11)

for all 0≤ t≤T .
From this, we get

‖v‖L∞(0,T ;H)+‖v‖L2(0,T ;V )≤C
(
‖v0‖L2(Ω) +‖τ0‖L2(Ω)+‖α0‖L2(Ω)

+‖β0‖L2(Ω)+‖γ0‖L2(Ω)+‖f‖L2(Q)+‖F‖L2(Q)

)
,

(3.12)

and since ‖v‖L4(Q)≤C‖v‖
1/2
L∞(0,T ;H)‖v‖

1/2
L2(0,T ;V ), it follows that

‖v‖L4(Q)≤C
(
‖v0‖L2(Ω)+‖τ0‖L2(Ω)+‖α0‖L2(Ω)+‖β0‖L2(Ω)+‖γ0‖L2(Ω)

+‖f‖L2(Q)+‖F‖L2(Q)

)
.

(3.13)

Now, by Proposition 2.5,

‖τ‖W 2,1
q (Q)+‖α‖W 2,1

q (Q)+‖β‖W 2,1
q (Q)+‖γ‖W 2,1

q (Q)

≤C(‖τ0‖W 2
2
(Ω)+‖α0‖W 2

2
(Ω)+‖β0‖W 2

2
(Ω)+‖γ0‖W 2

2
(Ω)+‖f‖Lq(Q)),

with the constant C depending on Ω, T , ‖v‖L4(Q), and the constants of Problem (3.9).
By (3.13), we conclude that

‖τ‖W 2,1
q (Q)+‖α‖W 2,1

q (Q)+‖β‖W 2,1
q (Q)+‖γ‖W 2,1

q (Q)

≤C(‖τ0‖W 2
2
(Ω)+‖α0‖W 2

2
(Ω)+‖β0‖W 2

2
(Ω)+‖γ0‖W 2

2
(Ω)+‖f‖Lq(Q)),

(3.14)

with the constant C depending on Ω, T , the constants and parameters of Prob-
lem (3.9), ‖v0‖L2(Ω), ‖τ0‖L2(Ω), ‖α0‖L2(Ω) ‖β0‖L2(Ω), ‖γ0‖L2(Ω), ‖f‖L2(Q), and
‖F‖L2(Q).

Since for 2<q<4, W 2,1
q (Q)⊂L∞(Q) with continuous imbedding, we have

‖(v,τ,α,β,γ)‖K

≤C
(
‖v‖L4(Q)+‖τ‖W 2,1

q (Q)+‖α‖W 2,1
q (Q)+‖β‖W 2,1

q (Q)+‖γ‖W 2,1
q (Q)

)

≤C
(
‖v0‖L2(Ω)+‖τ0‖W 2

2
(Ω)+‖α0‖W 2

2
(Ω)+‖β0‖W 2

2
(Ω)+‖γ0‖W 2

2
(Ω)

+‖f‖Lq(Q)+‖F‖L2(Q)

)

=:K,

where C does not depend on λ∈ [0,1].

Finally, we can use the previous lemmas to prove Proposition 3.1.

Proof of Proposition 3.1.
Proof. By lemmas 3.2 through 3.6 we obtain that the hypotheses of Leray-

Schauder’s fixed point theorem are satisfied. By applying the mentioned theo-
rem we conclude that there exists (v,τ,α,β,γ)∈{w∈L∞(0,T ;H)∩L2(0,T ;V ) :wt∈
L2(0,T ;V ′)}× [W 2,1

q (Q)]4⊂K, which is a fixed point of S1; that is, there exists a
solution of problem (3.1)-(3.2). From inequalities (3.12) and (3.14), we obtain the
estimate of Proposition (3.1).
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4. Passage to the limit
In this section we will pass to the limit as δ→0 along the solutions of the family

of problem (3.1)-(3.2), which were obtained in Proposition 3.1.
For this, with the notation of the beginning of the previous section, we summarize

our results in the following.

Lemma 4.1. Assume that hypotheses (2.3), (2.5), and (2.4) hold. There exists a
constant C, independent of δ∈ (0,ε), such that any solution (vδ,τ δ,αδ,βδ) of the reg-
ularized problem (3.1)-(3.2) satisfies

1. ‖vδ‖L∞(0,T ;H)∩L2(0,T ;V )+
∫ T

0

∫
Ω
h(αδ+βδ−δ)|vδ|2dxdt≤C;

2. ‖τ δ‖L∞(0,T ;L2(Ω))∩L2(0,T ;H1
0
(Ω))≤C;

3. ‖αδ‖L∞(0,T ;L2(Ω))∩L2(0,T ;H1
0
(Ω))≤C;

4. ‖βδ‖L∞(0,T ;L2(Ω))∩L2(0,T ;H1
0
(Ω))≤C;

5. ‖γδ‖L∞(0,T ;L2(Ω))∩L2(0,T ;H1
0
(Ω))≤C;

6. ‖τ δ‖W 2,1
q (Q), ‖α

δ‖W 2,1
q (Q), ‖β

δ‖W 2,1
q (Q), ‖γ

δ‖W 2,1
q (Q)≤C, for 2≤ q<4.

As consequence, we have the following.

Lemma 4.2. Assume that hypotheses (2.3), (2.4), and (2.5) hold, and let f ∈Lq(Q),
with 2<q<4. There exist τ , α, β, γ∈W 2,1

q (Q)∩C(0,T ;(H1(Ω))′), v∈L∞(0,T ;H)∩

L2(0,T ;V ) and subsequences of the solutions (vδ,τ δ,αδ,βδ,γδ) of the regularized prob-
lem (3.1)-(3.2), which for simplicity of notation we do not change the superscripts,
such that

τ δ → τ in Lq(Q)∩C(0,T ;(H1(Ω))′) strongly,

τ δ ⇀τ in L2(0,T ;H1(Ω)) weakly,

τ δt ⇀τt in Lq(Q) weakly,

αδ →α in Lq(0,T ;W 1
q (Ω))∩C(0,T ;(H1(Ω))′) strongly,

αδ ⇀α in L2(0,T ;H1(Ω)) weakly,

αδ
t ⇀αt in Lq(Q) weakly,

βδ →β in Lq(0,T ;W 1
q (Ω))∩C(0,T ;(H1(Ω))′) strongly,

βδ ⇀β in L2(0,T ;H1(Ω)) weakly,

βδ
t ⇀βt in Lq(Q) weakly,

γδ →γ in Lq(0,T ;W 1
q (Ω))∩C(0,T ;(H1(Ω))′) strongly,

γδ ⇀γ in L2(0,T ;H1(Ω)) weakly, and

γδ
t ⇀γt in Lq(Q) weakly.

(4.1)

αδ →α, βδ →β, and γδ →γ uniformly in Q, (4.2)

Moreover,

α≥0, β≥0, γ≥0 and α+β+γ=1 in Q.
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Also, there is v∈L∞(0,T ;H)∩L2(0,T ;V ) and a subsequence such that

vδ ⇀v in L2(0,T ;V ) weakly,

vδ
∗
⇀v in L∞(0,T ;H) weakly star.

(4.3)

Proof. By using Lemma 4.1 and the compact embedding given in (Simon 1987,
Corollary 4), we conclude that there exist τ , α, β, γ∈W 2,1

q (Q)∩C(0,T ;(H1(Ω))′)⊂

L2(0,T ;H1(Ω)) and subsequences of (τ δ), (αδ), (βδ), (γδ), which for simplicity of
notation we still denote by (τ δ), (αδ), (βδ), and (γδ), such that the convergences
in (4.1) hold.

Moreover, since αδ, βδ, and γδ are bounded sequences in W 2,1
q (Q), with 2<q<4,

and W 2,1
q (Q)⊂Hλ,λ/2(Q), with λ=2−4/q (see (Ladyzhenskaya 1968), pp. 80), and

thus are uniformly bounded and equicontinuous sequences of functions on Q. By the
Arzelà-Ascoli theorem, we can also assume that the convergences in (4.2) are true,
which obviously imply that α≥0, β≥0, γ≥0, and α+β+γ=1.

The known uniform estimates for vδ in L2(0,T ;V ) and L∞(0,T ;H) immediately
imply (4.3).

The just obtained functions α and β can now to be used to define the following
sets, as stated in Theorem 2.7:

Ωml(0)={x∈Ω:α0(x,t)+β0(x,t)<1}, (4.4)

Qml={(x,t)∈Q :α(x,t)+β(x,t)<1}, (4.5)

Qs={(x,t)∈Q :α(x,t)+β(x,t)=1}. (4.6)

We also remark that since α and β are continuous functions, Qml is an open set.

Lemma 4.3. Assume that hypotheses (2.3), (2.5), and (2.4) hold. For any 0≤
t1<t2≤T and U ⊂Ω such that U× [t1,t2]⊂Qml∪Ωml(0), there exist a constant C
and δ0∈ (0,δ) such that for all δ∈ (0,δ0), for any solution (vδ,τ δ,αδ,βδ,γδ) of the
regularized problem (3.1)-(3.2), it holds that

‖vδt ‖L2(t1,t2;V (U)′)≤C.

Proof. Take any 0≤ t1<t2≤T and U ⊂Ω such that U× [t1,t2]⊂Qml∪Ωml(0),
and fix δ∈ (0,ε).

By the first equation of Problem (3.2), we have

<vδt ,u>=−ν

∫

U

∇vδ.∇u dx−

∫

U

(vδ.∇vδ)u dx

−

∫

U

h(αδ+βδ−δ)vδu dx−

∫

U

(Aτ δ+Bαδ+Cβδ+Dγδ+F )u dx,

(4.7)
for all u∈V (U), a.e. in [t1,t2].

Since 0≤α+β<1 in Qml∪Ωml(0) and U× [t1,t2]⊂Qml∪Ωml(0) is a compact
set, there exists ρ∈ (0,1) such that α+β<1−ρ in [t1,t2]×U . Remembering that
αδ+βδ converges uniformly to α+β, it follows that there exists δ0∈ (0,ε) such that
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if δ∈ (0,δ0) then αδ+βδ <1−ρ/2 in U× [t1,t2]. Thus, 0≤h(αδ+βδ−δ)≤h(1−ρ/2)
in Qml∪Ωml(0) for δ∈ (0,δ0), because h is a non-decreasing function.

Consequently, h(αδ+βδ−δ) is uniformly bounded with respect to δ∈ (0,δ0) in
L∞(U×(t1,t2)).

Next, by applying Hölder’s and Young’s inequalities in (4.7) and using the previ-
ous results, we obtain

‖vδt ‖L2(t1,t2;V ′(U))≤C
[
‖vδ‖L2(t1,t2;V (U))+‖vδ‖2L2(t1,t2;V (U))

+‖h(αδ+βδ−δ)‖L∞(U×(t1,t2))‖v
δ‖L2(t1,t2;H(U))+‖τ δ‖L2(Q)

+‖αδ‖L2(Q)+‖βδ‖L2(Q)+‖γδ‖L2(Q)+‖F‖L2(Q)

]

≤C

for all δ∈ (0,δ0).

5. Proof of Theorem 2.7
Proof. We consider v, τ , α, β, γ, and the subsequences given in Lemma 4.2.

Then, the convergences stated in Lemma 4.2 are enough to pass to the limit as δ→0+
in (3.1) along a subsequence to give, in a standard way, that first four equations of
problem (1.1) or (2.6) are satisfied by (v,τ,α,β,γ).

To obtain seventh equation of Problem (2.6), we have to be more careful. Take any
0≤ t1<t2≤T and U ⊂Ω such that U× [t1,t2]⊂Qml∪Ωml(0); by Lemma 4.1, (vδ) is a
bounded sequence in L2(t1,t2;H

1(U)), and by Lemma 4.3, (vδt ) is a bounded sequence
L2(t1,t2;V (U)′), for all 0≤ t1<t2≤T and U ⊂Ω such that [t1,t2]×U ⊂Qml∪Ωml(0).
Then, by compact embedding (Simon 1987, Corollary 4) there exist v and a subse-
quence of (vδ) (which we still denote by (vδ)) such that (vδ) converges strongly to v
in L2((t1,t2)×U).

Next, we observe that Qml can be covered by a countable number of sets
Ui×(ti,ti+1) such that Ui× [ti,ti+1]⊂Qml∪Ωml(0); then by a diagonal argument,
we obtain that along a suitable subsequence besides the previous convergences we
also have

vδ →v in L2
loc(Qml∪Ωml(0)). (5.1)

Then, by taking u=η∈Wml in the first equation of Problem (3.2), after integrat-

ing over [0,T ] and doing an integration by parts in the term
∫ t

0
(vδt ,η)ds by using the

properties of η, we find

−

∫ T

0

<vδ,ηt>ds−(vδ(0),η(0))Ωml(0)

+

∫ T

0

[
ν(∇vδ,∇η)+(vδ.∇vδ,η)+(h(αδ+βδ−δ)vδ,η)

]
ds

=

∫ t

0

[
F(τ δ,αδ,βδ),η)+(F,η)

]
ds.

(5.2)

Finally observe that by (4.2) we get αδ+βδ−δ→α+β uniformly on compact
subsets of Q. Besides, since h∈C1([0,1)) and 0≤α+β≤1 in Qml, then h(αδ+βδ−
δ)→h(α+β) uniformly on compact subsets of Qml∪Ωml(0).

This last convergence and (5.1)-(4.1) allow us to pass to the limit in (5.2) and
obtain that v satisfies the seventh equation in (2.6).
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To check that v=0 a.e. in Qs given by (4.6), take any compact set K⊂Qs

and ǫ>0 arbitrary. Since K is compact, 0≤αδ+βδ ≤1 and αδ+βδ converges to
α+β=1 uniformly on K, so there exist δK ∈ (0,1) such that 1−ǫ≤αδ+βδ ≤1 in K
for δ∈ (0,δK) and consequently h(1−δ−ǫ)≤h(αδ+βδ−δ) in K for δ∈ (0,δK). From
the last inequality and Lemma 4.1, it follows that

h(1−δ−ǫ)‖vδ‖2L2(K)≤

∫ T

0

∫

Ω

h(αδ+βδ)|vδ|2dxdt≤C

for all δ∈ (0,δK).
By passing to the limit δ→0+ in last inequality, we obtain that h(1−ǫ)‖v‖2L2(K)≤

C, because h∈C1([0,1)). Since ǫ>0 is arbitrary and limθ→1− h(θ)=+∞, by (2.3),
we then conclude that ‖v‖2L2(K)=0. Therefore v=0 a.e. in K, and since K is an

arbitrary compact subset of Qs, we have that v=0 a.e. Qs as required in (2.6).
Hence, (v,τ,α,β,γ) is a solution of Problem (2.6).
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[19] P. Krejči, J. Sprekel, and U. Stefanelli, Phase-field models with hysteresis in one dimensional

thermo-visco-plasticity, SIAM J. Math. Anal., 34(2), 409–434, 2002.
[20] O.A. Ladyzenskaja, V.A. Solonnikov, and N.N. Ural’ceva, Linear and Quasilinear Equations

of Parabolic Type, Translations of Mathematical Monographs, American Mathematical
Society, Providence, Rhode Island, 23, 1968.

[21] J.L. Lions, Control of Distributed Singular Systems, Gauthier-Villars, 1985.
[22] V.P. Mikhaylov, Partial Differential Equations, Mir Publishers, Moscow, 1978.
[23] G. Planas and J.L. Boldrini, A bidimensional phase-field model with convection for change

phase of an alloy, J. Math. Anal. Appl., 303, 669–687, 2005.
[24] G. Planas, Existence of solutions to a phase-field model with phase-dependent heat absorption,

Electron. J. Diff. Equ., 28, 1–12, 2007.
[25] P. Sprekel and S. Zheng, Global existence and asymptotic behaviour for a nonlocal phase-field

model for non-isothermal phase transitions, J. Math. Anal., 279, 97–110, 2003.
[26] J.P. Simon, Compact sets in the space Lp(0,T ;B), Ann. Mat. Pura Appl., serie quarta, 146,

65–96, 1987.
[27] I. Steinbach, F. Pezzolla, B. Nestler, M. Seesselberg, R. Prieler, G.J. Schimitz, and J.L.L.

Rezende, A phase field concept for multiphase systems, Phys. D, 94, 135–147, 1996.
[28] I. Steinbach and F. Pezzolla, A generalized field method for multiphase transformations using

interface fields, Phys. D, 134, 385–393, 1999.
[29] R. Temam, Navier-Stokes Equations, Studies in Mathematics and its Applications, North-

Holland Publishing Company, 1979.
[30] C.L.D. Vaz and J.L. Boldrini, A semidiscretization scheme for a phase-field type model for

solidification, Port. Math., 63(3), 261–292, 2006.


