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QUANTITATIVE PHOTOACOUSTIC IMAGING IN THE
RADIATIVE TRANSPORT REGIME∗

ALEXANDER V. MAMONOV† AND KUI REN‡

Abstract. The objective of quantitative photoacoustic tomography (QPAT) is to reconstruct
optical and thermodynamic properties of heterogeneous media from data describing the absorbed
energy distribution inside the media. There have been extensive theoretical and computational
studies on the inverse problem in QPAT, although most were in the diffusive regime. We present in
this work some numerical reconstruction algorithms for multi-source QPAT in the radiative transport
regime with energy data collected at either single or multiple wavelengths. We show that when the
medium to be probed is non-scattering, explicit reconstruction schemes can be derived to reconstruct
the absorption and the Grüneisen coefficients. When data at multiple wavelengths are utilized, we
can reconstruct simultaneously the absorption, scattering, and Grüneisen coefficients. We show by
numerical simulations that the reconstructions are stable.
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1. Introduction
In photoacoustic tomography (PAT) experiments, we send near infra-red (NIR)

light into a biological tissue. The tissue absorbs part of the incoming light and heats
up due to the absorbed energy. The heating then results in expansions of the tissue
and the expansion generates compressive (acoustic) waves. We then measure the
time-dependent acoustic signal that arrives on the surface of the tissue. From the
knowledge of these acoustic measurements, we are interested in reconstructing the
absorption and scattering properties of the tissue, as well as the thermodynamic
Grüneisen parameter which measures the photoacoustic efficiency of the tissue. We
refer interested readers to [4, 12, 22, 28, 33, 59, 61, 67, 72, 95, 96, 100] for overviews
of the field of photoacoustic imaging.

The propagation of NIR light in biological tissues is accurately modeled by the
radiative transport equation, which describes the distribution of photons in the phase
space. To be precise, let Ω∈R

d (d≥2) be the domain of interest with smooth bound-
ary ∂Ω and S

d−1 be the unit sphere in R
d. We denote by X=Ω×S

d−1 the phase
space and Γ±={(x,v) : (x,v)∈∂Ω×S

d−1 s.t. ±n(x) ·v>0} its incoming and outgo-
ing boundaries, n(x) being the unit outer normal vector at x∈∂Ω. The radiative
transport equation for photon density u(x,v) can then be written as [9, 11, 77]:

v ·∇u(x,v)+σa(x)u(x,v) = σs(x)K(u)(x,v), in X,
u(x,v) = g(x,v), on Γ−,

(1.1)

Here the positive functions σa(x) and σs(x) are the absorption and the scattering
coefficients, respectively. The function g(x,v) is the incoming illumination source.
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The scattering operator K is defined as

K(u)(x,v)=

∫

Sd−1

K(v,v′)u(x,v′)dv′−u(x,v),

where dv is the normalized measure on S
d−1 in the sense that

∫
Sd−1 dv=1, and the

kernel K(v,v′) describes the way that photons traveling in direction v′ are scattered
into direction v, and satisfies the normalization condition

∫
Sd−1K(v,v′)dv′=1, ∀ v∈

S
d−1. In practical applications in biomedical optics, K is often taken to be the Henyey-

Greenstein phase function [9, 54, 97], which depends only on the product v ·v′; see
equation (5.5) in Section 5.

The photon energy that is absorbed at location x∈Ω per unit volume, E(x), is
the product of the absorption coefficient and the fluence distribution:

E(x)=

∫

Sd−1

σa(x)u(x,v)dv. (1.2)

The heating due to this absorbed energy generates an initial pressure field, denoted
by H, in the tissue that depends on the thermodynamic properties of the tissue and
is proportional to E:

H(x)=Υ(x)E(x)≡Υ(x)

∫

Sd−1

σa(x)u(x,v)dv, (1.3)

where the positive function Υ(x) is the nondimensional Grüneisen coefficient which
in the current formulation measures the photoacoustic efficiency of the tissue. To
simplify the presentation, in the rest of this work we use the short notation 〈f〉v to
denote the integral of f over the v variable.

The initial pressure field H then propagates according to the acoustic wave equa-
tion, with the wave speed c(x),

1

c2(x)

∂2p

∂t2
−∆p=0, in R+×R

d,

p(0,x)=H(x),
∂p

∂t
(0,x)=0, in R

d.

(1.4)

The time-dependent pressure signal p(t,x) is then measured on the surface of the tissue
for long enough time, say t∞, and the objective is to reconstruct the coefficients σa, σs,
and the Grüneisen coefficient Υ from this measurement. Note that the reason that we
can write the transport equation in the stationary case while using the wave equation
in the time-dependent case is that the two phenomena occur on two significantly
different time scales [13].

The reconstruction problem in photoacoustic tomography can be split into two
steps. In the first step, we need to reconstruct the initial pressure field H(x) from
the measured acoustic signal on the boundary, p(t,x)|(0,T )×∂Ω. This is a well known
inverse problem for the acoustic wave equation that has been thoroughly studied in
the past a few years under various scenarios; see for instance [1, 2, 24, 29, 40, 42, 41,
49, 50, 51, 52, 53, 60, 64, 65, 62, 63, 68, 69, 72, 82, 99] for analytical reconstruction
formulas with constant wave speed, [55, 56, 73, 85, 88, 89, 98] for reconstruction under
variable wave speed, and [7, 8, 36, 58, 91, 92, 3, 23, 32, 36, 71, 70, 73, 87, 86, 90, 101]
for reconstructions under even more complicated situations.

This work is concerned with the second step of photoacoustic tomography, called
quantitative photoacoustic tomography (QPAT). The objective is to reconstruct the
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absorption and the diffusion coefficients, σa and σs, in the transport equation (1.1)
and the Grüneisen coefficient Υ from the result of the first step, the data H in (1.3).
This step has recently attracted significant attention from mathematical [5, 6, 13, 21,
14, 15, 16, 18, 19], computational [20, 30, 31, 34, 48, 44, 66, 80, 81, 83, 104, 106], and
modeling and experimental [17, 75] perspectives. Most of existing work on this step,
however, is done in the diffusive regime [14, 16, 18], i.e., it is based on the diffusion
approximation to the transport equation (1.1). Transport-based QPAT is only studied
in [13, 34, 102] where the Grüneisen coefficient Υ has been assumed to be a known
constant.

To set up the problem appropriately, for the rest of the paper, we assume that all
the coefficients that we are interested in are positive and bounded functions. More
precisely, we assume:

(A1) the coefficients 0<c0≤Υ(x), σa(x), σs(x)∈L1(Ω)∩L∞(Ω) for some c0>0;

(A2) the scattering kernel K(v,v′)∈L1(Sd−1×S
d−1);

(A3) the illumination, modeled by the boundary condition g, is in L1(Γ−,dξ), with
measure dξ= |v ·n(x)|dm(x)dv, dm(x) being the usual Lebesgue measure on
∂Ω.

With these assumptions, it is well-known that the radiative transport problem (1.1)
is well-posed and thus admits a unique solution u∈L1(X) [35]. This means that
the data H in (1.3) is a well-defined function in L1(Ω). In practical applications,
the objects to be imaged are often embedded into phantoms of similar optical and
acoustic properties to get regularly shaped imaging domains. We thus assume that
the domain Ω is convex. This assumption will simplify some of the presentation but
is not essential for the results obtained.

We conclude this section with two remarks. First, if both the absorption coef-
ficient σa(x) and the scattering coefficient σs(x) are known and only the Grüneisen
coefficient must be reconstructed, we can simply solve the transport equation (1.1)
and compute the energy E(x). Then Υ(x) is reconstructed as Υ= H

E . Thus we need
only one interior data set and one transport solver to solve the inverse problem. This
is a trivial case. We will not discuss this case in the rest of the paper.

Second, in practical application of PAT in biomedical imaging, the absorption
and the scattering coefficients σa and σs are often isotropic, i.e. independent of the
angular variable v. We thus restrict ourselves to the case of isotropic coefficients
in this work. Mathematically this assumption is essential, as we can see from the
following result that it is not possible to uniquely reconstruct anisotropic coefficients.

Proposition 1.1. Let (Υ,σa,σs) and (Υ̃,σ̃a,σs) be two sets of coefficients, and H
and H̃ the corresponding data sets. Let z(x)∈C1(Ω̄) be an arbitrary positive function
with boundary value z|∂Ω=1. Then

σ̃a=(σa−v ·∇lnz)z and Υ̃σ̃a=Υσa (1.5)

implies H̃=H.

Proof. Let u be the solution of the transport equation for coefficients (σa,σs)
with boundary value g. It is straightforward to verify that uz is the solution of the
transport equation for coefficients (σa−v ·∇lnz,σs) with the same boundary value g

(because z|∂Ω=1). Now, clearly Υ̃

∫

Sd−1

(σa−v ·∇lnz)uz dv=Υ

∫

Sd−1

σau dv if (1.5)

holds.
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The rest of the paper is structured as follows. We first study in Section 2 the
inverse transport problem for non-scattering media for applications in quantitative
sectional QPAT. We present some analytical reconstruction strategies in this setting.
We then study in Section 3 the same inverse problem for scattering media. We lin-
earize the nonlinear inverse problem using the tool of Born approximation and present
some numerical procedures to solve the linear and nonlinear inverse problems. In Sec-
tion 4 we consider the QPAT problem in the case when illuminations with multiple
wavelengths are available. To validate the reconstruction strategies, in Section 5 we
provide several numerical simulations with synthetic data generated under different
scenarios. We conclude the paper with some additional remarks in Section 6.

2. QPAT of non-scattering media
We start by considering the QPAT problem for non-scattering media. In this case,

photons propagate in the media along straight trajectories, without changing their
propagation directions. The scattering mechanism in the transport equation (1.1)
is thus dropped by setting the scattering coefficient σs=0. We have the following
transport model for light propagation:

v ·∇u(x,v)+σa(x)u(x,v) = 0, in X,
u(x,v) = g(x,v), on Γ−.

(2.1)

The fact that photons travel in straight lines allows us to illuminate only part of the
domain, for instance a plane cut through a three-dimensional medium. This is the
fundamental principle of sectional photoacoustic tomography [107, 39].

To simplify the presentation, for any point x∈Ω and direction v∈S
d−1, let us

define

τ±(x,v)= inf{s∈R+|x±sv /∈Ω},

and τ(x,v)= τ+(x,v)+τ−(x,v). It is easy to see that τ+(x,v) (resp. τ−(x,v)) is
the distance it takes a particle at x traveling in direction v (resp. −v) to reach the
boundary of the domain. In the same spirit, for any point (x,v) on the incoming
boundary Γ−, we define

τ+(x,v)=sup{s∈R+|x±sv∈Ω},

and set τ−(x,v)=0. Thus τ+(x,v) is the distance for a photon coming into the
domain at x in direction v to exit the domain.

It is straightforward to show the following representation of the interior data.

Lemma 2.1. The interior data H(x) generated with source g and coefficients (Υ,σa)
can be written as

H(x)=Υ(x)σa(x)

∫

Sd−1

g(x−τ−(x,v)v,v)e
−
∫ τ

−
(x,v)

0 σa(x−τ−(x,v)v+sv)dsdv. (2.2)

Proof. The transport equation (2.1) can be integrated along direction v as an
ODE to obtain the solution:

u(x,v)=g(x−τ−(x,v)v,v)e
−
∫ τ

−
(x,v)

0 σa(x−τ−(x,v)v+sv)ds. (2.3)

The result then follows from using this solution in the data H introduced in (1.3).

In fact, this simple representation of the transport solution allows us to obtain
an explicit procedure for reconstructing the two unknown coefficients Υ and σa if we
have the luxury of using the right illumination source g(x,v).
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Fig. 2.1. Two illumination schemes that allow the simultaneous reconstruction of Υ and σa

using two data sets in a circular domain. Left: two collimated sources supported on Σ− (solid part
of ∂Ω) and Σ+ (dashed part of ∂Ω), respectively; Right: two point sources located at x′ and x′′,
respectively.

2.1. Reconstruction with collimated sources. The first case where we can
derive an analytical reconstruction formula is when collimated sources, i.e., sources
focused on a specific direction, are used. Let v′ be the direction in which the source
points, and define Σ±(v

′)≡{x∈∂Ω|±n(x) ·v′>0}, Σ−(v
′) (resp. Σ+(v

′)) to be the
part of the boundary ∂Ω where lines in direction v′ enters (resp. leaves) the domain Ω.
As mentioned in the introduction, we assume that the domain Ω is convex. In this case,
each point x∈Σ−(v

′) is uniquely mapped to a point y∈Σ+(v
′) as: y=x+τ+(x,v

′)v′,
and vise versa: x=y+τ+(y,−v′)(−v′).

The collimated illumination source that we choose has the form

g(x,v)=g(x)δ(v−v′), x∈Σ−(v
′). (2.4)

This leads to the following expression for the interior data:

H(x)=g(x−τ−(x,v
′)v′)

(
Υ(x)σa(x)e

−
∫ τ

−
(x,v′)

0 σa(x−τ−(x,v′)v′+sv′)ds
)
.

If x′∈∂Ω is the back-track of x to the boundary in −v direction, i.e., x′=x−
τ−(x,v

′)v′, then H can be written as

H(x′+τ−(x,v
′)v′)

g(x′)Υ(x′+τ−(x,v′)v′)
=σa(x

′+τ−(x,v
′)v′)e−

∫ τ
−

(x,v′)

0 σa(x
′+sv′)ds. (2.5)

(i) Reconstruction of σa. If Υ is known, then we can take the log of the above
formula and differentiate with respect to τ− to obtain the following equation for σa:

v′ ·∇σa(x)−σ2
a(x)−

(
v′ ·∇ln

H

Υg

)
σa(x) = 0, in Ω,

σa(x) =
H(x)

Υ(x)g(x)
, on Σ−,

(2.6)

where g in the term v′ ·∇ln
H

Υg
is evaluated at x−τ−(x,v

′)v′. This is an initial value

problem for a first order ordinary differential equation (because the direction v′ is
fixed). It can be solved uniquely [43] to reconstruct the absorption coefficient σa

along the lines in direction v′.
There is an equivalent reconstruction procedure for σa. When a collimated source

is used, photons travel only along the direction to which the source is pointing, say
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v′. Thus, the solution u to the transport equation is only non-zero in this direction.
In other words, 〈u〉v≡

∫
Sd−1 u(x,v)dv=u(x,v′), and hence the data can be expressed

as H=Υσa(x)u(x,v
′). We can thus replace the absorption term σa(x)u(x,v) in the

transport equation with the term H/Υ to obtain the following transport equation for
the photon density u:

v ·∇u(x,v)+
H

Υ
= 0, in X,

u(x,v) = g(x)δ(v−v′), on Γ−.
(2.7)

This transport equation can be solved uniquely for u [35]:

u(x′+ tv,v)=





g(x′)−

∫ t

0

H

Υ
(x′+sv)ds, x′∈Σ− and v=v′,

0, x′∈Σ− and v 6=v′.
(2.8)

Once u is obtained, we can reconstruct the absorption σa=H/(Υu) provided that we
select the boundary condition g such that the denominator does not vanish.

(ii) Reconstruction of (Υ, σa). In fact, we can use two data sets generated with
collimated sources to determine the Grüneisen coefficient and the absorption coeffi-
cients simultaneously. The configuration of the two sources is illustrated in figure 2.1
(left). Let g1(x,v)=g(x)δ(v−v′) be the first collimated source supported on Σ−,
and H1 be the corresponding interior data which takes the form of H in (2.5). Then
the second source we use is supported on Σ+ with an identical intensity distribution,
except that it points in the opposite direction, i.e., −v′. More precisely,

g2(x,v)=g(x−τ+(x,v
′)v′)δ(v+v′), x∈Σ+(v

′). (2.9)

If we use this source in the expression for the data H in (2.2), we obtain the following
expression for the interior data H2:

H2(x
′+τ−(x,v

′)v′)

g(x′)Υ(x′+τ−(x,v′)v′)
=σa(x

′+τ−(x,v
′)v′)e−

∫ τ+(x,v′)

0 σa(x
′+τ(x,v′)v′−sv′)ds.

(2.10)
We now take the logarithm of the ratio of (2.5) and (2.10) and use the relation

τ(x,v)= τ+(x,v)+τ−(x,v) to obtain

ln
H2

H1
(x′+τ−(x,v

′)v′)=−

∫ τ+(x′,v′)

0

σa(x
′+sv′)ds+2

∫ τ−(x,v′)

0

σa(x
′+sv′)ds.

(2.11)
Differentiation of this result with respect to τ−(x,v

′) (equivalent to the directional
differentiation v′ ·∇x) will allow us to reconstruct the quantity 2σa(x

′+τ−(x,v
′)v′)=

2σa(x) a.e. The coefficient Υ can then be reconstructed by solving the transport equa-
tion with the reconstructed σa and g1 (resp. g2), and computing Υ=H1/(σa〈u1〉v)
(resp. Υ=H2/(σa〈u2〉v)).

2.2. Reconstruction with point sources. The second case where we can
derive an analytical reconstruction method is when the illumination source is a point
source in the spatial variable:

g(x,v)=g(v)δ(x−x′). (2.12)
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This is the most commonly used type of source in optical imaging, such as optical

tomography [9]. For any point x∈Ω, let us define v′=
x−x′

|x−x′|
as the unit vector

pointing from x′ to x. Then the interior data H simplifies to

H(x)=g(v′)
(
Υ(x)σa(x)e

−
∫ τ

−
(x,v′)

0 σa(x−τ−(x,v′)v′+sv′)ds
)
.

Following the presentation in the previous section, we can rewrite this as

H(x′+τ−(x,v
′)v′)

g(v′)Υ(x′+τ−(x,v′)v′)
=σa(x

′+τ−(x,v
′)v′)e−

∫ τ
−

(x,v′)

0 σa(x
′+sv′)ds. (2.13)

This is the same type of formula as (2.5) except that the unit direction vectors v′

are different at different points x∈Ω.

(i) Reconstruction of σa. If Υ is known, we can differentiate (2.13) as before to
obtain an equation for the absorption coefficient σa. For each v′∈S

d−1
− (x′)≡{v∈

S
d−1|n(x′) ·v<0}, define Ωv

′ ≡
{
x∈Ω

∣∣∣ x−x
′

|x−x
′| =v′

}
. Then

v′ ·∇σa(x)−σ2
a(x)−

(
v′ ·∇ln

H(x)

Υ(x)g(v′)

)
σa(x) = 0, in Ωv

′ ,

σa(x) = σa(x
′), at x′.

(2.14)

For a fixed v′, we can solve this first order ODE to find σa(x) along the line segment
Ωv

′ if we know the value of σa(x) at x′. Due to the singularity of the source at x′,
we can not reconstruct this value from the data H as before.

Point sources emit photons that travel in straight lines away from the source
location. Thus the transport solution at each spatial position x is only non-zero in
direction v′. Hence H=Υ(x)σa(x)u(x,v

′). The transport equation can again be
simplified to

v ·∇u(x,v)+
H

Υ
= 0, in X,

u(x,v) = g(v)δ(x−x′), on Γ−.
(2.15)

This transport equation can be conveniently solved in the polar coordinates with the
origin at x′. The absorption coefficient can then be reconstructed as σa=H/(Υu)
away from x′.

(ii) Reconstruction of (Υ, σa). If both coefficients are unknown, we can use two
data sets generated with point sources to reconstruct them. The setup is depicted in
figure 2.1 (right). Let g1(x,v)=g(v)δ(x−x′) and g2(x,v)=g(v)δ(x−x′′) be the two
point sources used to produce the interior data. We denote by d(x′,x′′)= |x′−x′′| the

distance between the two points and by v̄=
x′′−x′

|x′′−x′|
the unit vector pointing from x′

to x′′. For any point x∈Ω, we define v′′=
x−x′′

|x−x′′|
as the unit vector pointing from

x′′ to x. It is then straightforward to verify that

τ−(x,v
′)v′ · v̄+τ−(x,v

′′)v′′ ·(−v̄)=d(x′,x′′). (2.16)

The first source g1 produces data H1 that is given in (2.13), while the second
source g2 produces the data H2 that is given by

H2(x)=g(v′′)
(
Υ(x)σa(x)e

−
∫ τ

−
(x,v′′)

0 σa(x−τ−(x,v′′)v′′+sv′′)ds
)
.
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We can rewrite H2 into

H2(x
′′+τ−(x,v

′′)v′′)

g(v′′)Υ(x′′+τ−(x,v′′)v′′)
=σa(x

′′+τ−(x,v
′′)v′′)e−

∫ τ
−

(x,v′′)

0 σa(x
′′+sv′′)ds. (2.17)

Taking the ratio of (2.17) and (2.13), we obtain, after taking logarithm on both sides,

ln

(
H2(x

′′+τ−(x,v
′′)v′′)g(v′)Υ(x′+τ−(x,v

′)v′)

H1(x′+τ−(x,v′)v′)g(v′′)Υ(x′′+τ−(x,v′′)v′′)

)

=

∫ τ−(x,v′)

0

σa(x
′+sv′)ds−

∫ τ−(x,v′′)

0

σa(x
′′+sv′′)ds. (2.18)

We can now differentiate this result with respect to τ−(x,v
′) (which is equivalent

to the directional differentiation v′ ·∇x) and use relation (2.16) to obtain the quantity(
1−

v′ · v̄

v′′ · v̄

)
σa(x). Note that for any point x∈Ω located on the line determined by

x′ and x′′, v
′·v̄

v
′′·v̄ =−1 (because x lies between x′ and x′′). The result in this case

reduces to that in the case of two collimated sources: (1− v
′·v̄

v
′′·v̄ )σa(x)=2σa(x).

2.3. Reconstruction with cone-limited sources. The reconstruction pro-
cedures in the previous sections work only when the illumination function g takes
the required special forms. For more general sources, we do not have similar explicit
reconstruction procedures. In fact, it is not clear whether or not data from an arbi-
trary source would uniquely determine the absorption coefficient. We consider here a
reconstruction method for a source that is slightly more general than the sources used
in sections 2.1 and 2.2 but which still possess certain causality properties of those
sources.

Let v0 be a selected direction pointing inside the domain Ω. We intend to con-
struct a source such that the transport equation (2.1) with the source is causal along
direction v0. Such causality would allow us to derive a direct layer peeling method
that solves the inverse problem in one pass in a non-iterative manner. We require the
source g(x,v) satisfy the following condition:

g(x,v)=0 for any v /∈V (v0,θ0)={v∈S
d−1 |v ·v0≥ cosθ0}, (2.19)

where the cone V (v0,θ0) is determined by the selected direction v0∈S
d−1 and the

half-aperture 0<θ0<π/2. A practically important case that satisfies the assump-
tion (2.19) is when the physical source can be separated from the object occupying
the domain Ω by a hyper-plane. This limits the angle at which Ω is visible from the
source, thus the rays entering Ω are limited to some cone of directions V (v0,θ0) with
v0 orthogonal to the separating hyper-plane. Then the resulting effective boundary
conditions satisfy (2.19). In fact, in such a case we can extend Ω to a d-dimensional
hyper-cube Ω̃ such that g(x,v) is non-zero only on one side of the cube which is
orthogonal to v0, as shown in figure 2.2.

To simplify the presentation of the method we consider here the case d=2, al-
though the algorithm remains essentially the same for d=3. We assume that Ω̃ is
the square [0,L]2 with σa(x)=0 for x∈ Ω̃\Ω. We also assume that the rays enter
the domain from the bottom side {(x,y) |x∈ (0,L),y=0}, so v0=(0,1). The source
g(x,v) is only non-zero on the bottom side. Thus the equation (2.1) is causal in the
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(0, 0)
Π

(L, 0)

Ω

(0, L) (L, L)

Ω̃

v
0

θ1 θ2

Fig. 2.2. Domain Ω and its extension to a hyper-cube Ω̃. The physical sources located on a
line marked with × are separated from Ω by a hyper-plane Π. The boundary condition is non-zero
only on the bottom side of Ω̃ (thick black part) that is orthogonal to v0. The half-aperture θ0 of the
cone V (v0,θ0) is given by θ0=π/2−min{θ1,θ2}.

y direction; see figure 2.2 for the details of the setup. We use the parametrization
v=(cosθ,sinθ) so that v∈V (v0,θ0) becomes θ∈ [π/2−θ0,π/2+θ0]. This implies
that we can divide (2.1) by sinθ (>0), so that the free transport equation together
with its boundary condition can be written as

uy(x,y,θ) = −cotθ ux(x,y,θ)−cscθ σa(x,y)u(x,y,θ),

u(x,0,θ) = g(x,θ), x∈ (0,L), θ∈
[
π
2 −θ0, π2 +θ0

]
,

u(0,y,θ) = 0, y∈ (0,L), θ∈
[
π
2 −θ0, π2

)
,

u(L,y,θ) = 0, y∈ (0,L), θ∈
(
π
2 ,

π
2 +θ0

]
,

(2.20)

where we observe that no boundary condition is needed on the top side of the domain
Ω̃, {(x,y) |x∈ (0,L),y=L}. The interior data H(x,y) now takes the form

H(x,y)=Υ(x,y)σa(x,y)

π/2+θ0∫

π/2−θ0

u(x,y,θ)dθ≡Υ(x,y)σa(x,y)〈u(x,y,θ)〉θ0 .

The role of the temporal variable in (2.20) is played by y (the system is causal
in y), so we can apply a first order time stepping procedure to obtain a semi-discrete
inversion scheme. Let us discretize (2.20) in y on a grid with nodes yj , j=0, . . . ,Ny,
where y0=0, yNy

=L, and the grid steps are hk=yk−yk−1, k=1, . . . ,Ny. For the
semi-discrete quantities we use notation

u(j)(x,θ)≈u(x,yj ,θ), σ(j)
a (x)≈σa(x,yj), j=0, . . . ,Ny. (2.21)

To reconstruct σa with Υ known, we apply a forward Euler time stepping scheme to
(2.20) to obtain the following explicit reconstruction procedure.
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1. Initialize u(0)(x,θ)=g(x,θ), and

σ(0)
a (x)=

H(x,0)

Υ(x,0)〈g(x,θ)〉θ0

, x∈ [0,L].

2. For j=1, . . . ,Ny, compute

u(j)(x,θ)=
(
I−hj cotθ ∂x−hj cscθ σ

(j−1)
a (x)

)
u(j−1)(x,θ) (2.22)

for x∈ (0,L) and θ∈
[
π/2−θ0,π/2+θ0

]
. At the boundary x∈{0,L} set

u(j)(0,θ) = 0, θ∈
[
π
2 −θ0, π2

)
,

u(j)(L,θ) = 0, θ∈
(
π
2 ,

π
2 +θ0

]
, (2.23)

and compute the reconstruction

σ(j)
a (x)=

H(x,yj)

Υ(x,yj)
〈
u(j)(x,θ)

〉
θ0

, x∈ [0,L]. (2.24)

The above method is quite stable in practice as demonstrated in the numerical
examples in Section 5.1. However, the discretization of ∂x in (2.22) should be com-
patible with the grid refinement in y to retain stability of the forward Euler scheme.
If a coarser discretization in y compared to that in x is desired, then (2.22) can be
replaced by a semi-implicit scheme

(I+hj cotθ ∂x)u
(j)(x,θ)=

(
I−hj cscθ σ

(j−1)
a (x)

)
u(j−1)(x,θ),

which requires solving a first order differential (difference if discretized) equation in
x at every step j with boundary conditions (2.23). Generalizing this method to
reconstruct simultaneously two coefficients Υ and σa remains a topic of future study.

We conclude Section 2 by summarizing the reconstruction results for non-
scattering media that we have introduced into the following uniqueness and stability
theorem.

Theorem 2.2. Let (Υ,σa) and (Υ̃,σ̃a) be two sets of coefficients in (1.3) and (2.1)
satisfying the assumptions in (A1), and g1(x,v) and g2(x,v) be two source functions
of the form (2.4) or (2.12). Let (H1,H2) and (H̃1,H̃2) be the corresponding interior
data. Then (a) H1= H̃1 implies σa(x)= σ̃a(x) if Υ=Υ̃; and (b) (H1,H2)=(H̃1,H̃2)
implies (Υ,σa)=(Υ̃,σ̃a). Moreover, the following stability result holds:

‖Υ(x)σa(x)e
−
∫ τ

−
(x,v′)

0 σa(x−τ−(x,v′)v′+sv′)ds

−Υ̃(x)σ̃a(x)e
−
∫ τ

−
(x,v′)

0 σ̃a(x−τ−(x,v′)v′+sv′)ds‖L∞(Ω)

≤Cl‖Hl−H̃l‖L∞(Ω), l=1,2, (2.25)

Cl being a constant that depends on gl but is independent of the data Hl and H̃l.

3. QPAT of scattering media
We now consider the QPAT problem for scattering media. When the scattering

effect is very weak, the results obtained in the previous section could be used to obtain
a good approximation of the reconstruction. We thus assume that the scattering
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effects are sufficiently strong so that neglecting them would deteriorate significantly
the quality of the reconstructions. On the other hand, we assume that the scattering
effect is not strong enough for us to model the light propagation process with the
diffusion model, for which explicit reconstruction strategies have been proposed [14,
16, 18].

3.1. Stability and uniqueness results. Unlike the non-scattering regime
where we have unique and stable reconstruction using only a small number of interior
data sets, in scattering media, we have only stability and uniqueness results from
information of the full albedo operator:

A :
L1(Γ−,dξ) → L1(Ω),
g(x,v) 7→ Ag=H(x).

(3.1)

It is the clear that A depends on all three coefficients Υ, σa, and σs. We denote by
‖A‖L(L1(Γ−,dξ);L1(Ω)) the norm of A as a linear operator from L1(Γ−,dξ) to L1(Ω).

We then have the following stability estimate following the analysis in [13, The-
orem 2.3].

Theorem 3.1. Let (Υ,σa,σs) and (Υ̃,σ̃a,σ̃s) be two set of coefficients satisfying the
regularity assumptions in (A1), and A, Ã the corresponding albedo operators. Denote
σ=σa+σs and σ̃= σ̃a+ σ̃s. Then the following result holds:

∫ τ+(x′,v′)

0

|Υ(x′+ tv′)σa(x
′+ tv′)e−

∫
t

0
σ(x′+sv′)ds

−Υ̃(x′+ tv′)σ̃a(x
′+ tv′)e−

∫
t

0
σ̃(x′+sv′)ds|dt

≤‖A−Ã‖L(L1(Γ−,dξ);L1(Ω)) (3.2)

for any point (x′,v′)∈Γ−.

The result is a slight modification of the result in [13] where the singular part
of the Schwartz kernel of the albedo operator is analyzed in detail. The only change
that we have to make is to include the Grüneisen coefficient Υ in the final step of the
analysis. We thus will not repeat the lengthy analysis here, but instead refer to [13].

It turns out that the stability result (3.2) leads to the unique reconstruction of the
coefficients in some simplified situations. More precisely, if one of the three coefficients
is known, we can reconstruct the other two coefficients uniquely as summarized in the
following corollary.

Corollary 3.2. Let (Υ,σa,σs) and (Υ̃,σ̃a,σ̃s) be two set of coefficients satisfying the
regularity assumptions in (A1). Then the following statements hold: (a) If Υ=Υ̃,
then A= Ã implies (σa,σs)=(σ̃a,σ̃s); (b) If σs= σ̃s, then A= Ã implies (Υ,σa)=
(Υ̃,σ̃a); (c) If σa= σ̃a, then A= Ã implies (Υ,σs)=(Υ̃,σ̃s).

Proof. Theorem 3.1 implies that we can reconstruct uniquely

M(x′,v′,t)=Υ(x′+ tv′)σa(x
′+ tv′)e−

∫
t

0
σ(x′+sv′)ds, (x′,v′)∈Γ−. (3.3)

We can reconstruct the same quantity for a different point on (x′+τ+(x
′,v′)v′,−v′)

on Γ− with t replaced by τ+(x
′,v′)− t: M(x′+τ+(x

′,v′)v′,−v′,τ+(x
′,v′)− t). Taking

the log of the ratio of the two quantities, we obtain
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ln
M(x′+τ+(x

′,v′)v′,−v′,τ+(x
′,v′)− t)

M(x′,v′,t)

=−

∫ τ+(x′,v′)−t

0

σ(x′+τ+(x
′,v′)−sv′)ds+

∫ t

0

σ(x′+sv′)ds. (3.4)

Taking the derivative of the above quantity gives us 2σ(x′+ tv′) for a.e. (x′,v′)∈
Γ− and t>0. This in turn gives us σ(x) for a.e. x∈Ω. Once σ(x) is uniquely
determined, we reconstruct Υσa≡µ uniquely from M(x′,v′,t). (a) If Υ is known
already, then σa is known from µ, and thus σ−σa would give us σs; (b) If σs is
known, σ−σs would give us σa. Υ is then known from µ; (c) If σa is known, then µ
would give us Υ and σ would give us σs. This completes the proof.

Remark 3.3. Case (a) was presented in [13]. The construction of M(x′,v′,t) and
M(x′+τ+(x

′,v′)v′,−v′,τ+(x
′,v′)− t) is in the same spirit as the construction of (2.5)

and (2.10) (or (2.13) and (2.17)) using collimated (or point) sources in the previous
section.

The above stability and uniqueness results, however, do not guarantee the unique
reconstruction of all three coefficients simultaneously. In fact, theory based on the
diffusion model in [14] states that one can not simultaneously reconstruct all three
coefficient uniquely unless additional information is available [16]. Moreover, unlike
the situation in the non-scattering regime, no explicit reconstruction method can be
derived in the scattering media. We thus have to rely mainly on other computational
methods for the reconstructions. We now derive a numerical reconstruction method
based on the Born approximation of the nonlinear inverse problem.

3.2. Linearized reconstruction with Born approximation. We linearize
around some known, not necessarily constant, background optical properties σa0(x)
and σs0(x). To be more precise, we assume

σa(x)=σa0(x)+ σ̃a(x), σs(x)=σs0(x)+ σ̃s(x), (3.5)

where the perturbations are small in the sense that
∥∥∥ σ̃a(x)

σa0

∥∥∥
L∞(Ω)

�1 and
∥∥∥ σ̃s(x)

σs0

∥∥∥
L∞(Ω)

�1. Note again that Υ(x) is not assumed in perturbative form since

the inverse problem of reconstructing Υ is linear (because the data H is linearly
proportional to the unknown Υ).

In practice, the background properties can be obtained through a priori knowl-
edge such as statistics of existing data. They can also be obtained by reconstructions
using a less accurate, thus usually computationally cheaper, model of light propaga-
tion, for instance the diffusion approximation [14, 16].

The solution of the radiative transport problem with coefficients σa and σs can
then be written as

u(x,v)=U(x,v)+ ũ(x,v), (3.6)

where U(x,v) is the solution of the transport equation (1.1) with the known back-
ground coefficients σa0 and σs0, and ũ(x,v) is the perturbation in the solution caused
by the perturbations σ̃a(x) and σ̃s(x) in the coefficients. The equation satisfied by
the perturbation ũ(x,v), to the first order, is

v ·∇ũ(x,v)+σa0(x)ũ = σs0(x)K(ũ)− σ̃a(x)U+ σ̃s(x)K(U), in X,
ũ(x,v) = 0, on Γ−.

(3.7)
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It is can be shown, using the fact that u is Fréchet differentiable with respective to
σa and σs [37, 38, 79], that the terms omitted are indeed high order terms.

We now introduce the (adjoint) Green’s function G(x,v;y) for the transport prob-
lem with background optical properties, the solution of the following adjoint transport
equation:

−v ·∇G(x,v;y)+σa0(x)G(x,v;y) = σs0(x)K(G)(x,v;y)−δ(x−y), in X,
G(x,v;y) = 0, on Γ+,

(3.8)
where δ is the usual Dirac delta function. Note that since the transport operator is
not self-adjoint, the boundary condition is now put on Γ+. Rigorously speaking, this
equation only holds in the weak sense; we need to multiply it with a test function in
C+(Ω×S

d−1) (that is the space of continuous positive functions from Ω×S
d−1 to R).

This requires that the coefficients σa0 and σs0 are at least continuous in Ω̄.
We can now multiply (3.7) by ΥG and integrate over X, and multiply (3.8) by

Υũ and integrate over X, and subtract the results to show that

Υ(x)〈ũ(x,v)〉v=

∫

Ω

Υ(y)σ̃a(y)〈U(y,v)G(y,v;x)〉vdy

−

∫

Ω

Υ(y)σ̃s(y)〈K(U)(y,v)G(y,v;x)〉vdy. (3.9)

The perturbations in (3.5) and (3.6) imply that the interior data H is now given,
to the first order, by

H=Υσa0〈U〉v+Υσ̃a〈U〉v+Υσa0〈ũ〉v. (3.10)

Combining (3.10) and (3.9), we can show that

H

σa0〈U〉v
(x)=I(Υ)+La(Υσ̃a)+Ls(Υσ̃s), (3.11)

where I is the identity operator and the operators La and Ls are defined, respectively,
as

La(Υσ̃a)=
Υσ̃a

σa0
+

∫

Ω

Υ(y)σ̃a(y)
〈UG〉v
〈U〉v

(y;x)dy, (3.12)

Ls(Υσ̃s)=−

∫

Ω

Υ(y)σ̃s(y)
〈K(U)G〉v

〈U〉v
(y;x)dy. (3.13)

Here we have normalized the data by σa0〈U〉v. This can be done when 〈U〉v(x) 6=0,
which can be guaranteed by selecting an appropriate illumination source g(x,v). The
normalization makes the sizes of the kernels of the integral operators La and Ls on
the same order at all locations. This is important due to the fact that the strength
of optical signals usually varies over several orders of magnitude across the domain
of interest. The normalization results in well-balanced matrix elements when the
integral equation (3.11) is discretized for numerical solution.

Equation (3.11) is a linear integral equation for the three variables Υ, Υσ̃a,
and Υσ̃s. The kernels for the operator La and those for Ls, 〈UG〉v/〈U〉v, and
〈K(U)G〉v/〈U〉v are known since they only involve the solutions of the forward and
adjoint transport equations with background optical properties σa0 and σs0. It re-
mains to solve (3.11) to reconstruct the unknowns (Υ, Υσ̃a, and Υσ̃s), and then the
real coefficients (Υ, σ̃a, and σ̃s).
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In practice, we do not have the full albedo data, but only a finite number of
data sets generated from different sources. Let us assume that there are Ng data

sets collected from Ng illuminations. The data sets are denoted by {Hi}
Ng

i=1 and the

corresponding illuminations are denoted by {gi}
Ng

i=1. The system of linear integral
equation with Ng data sets can be written as

L




Υ
Υσ̃a

Υσ̃s


≡




I La
1 Ls

1
...

...
...

I La
i Ls

i
...

...
...

I La
Ng

Ls
Ng







Υ
Υσ̃a

Υσ̃s


=

1

σa0




H1/〈U1〉v
...

Hi/〈Ui〉v
...

HNg
/〈UNg

〉v




≡




h1

...
hi

...
hNg



, (3.14)

where La
i and Ls

i are the same operators defined in (3.12) and (3.13), respectively,
with U replaced with Ui.

The integral formulation can be discretized to get a linear system of equations. Let
us assume that we have a numerical procedure, say a quadrature rule, to discretize
the integral equation (3.9), and assume that we discretize σ̃a(x) on a mesh of NΩ

nodes, {yk}
NΩ

k=1. Then L will be matrix consisting of Ng×3 blocks, each having size
NΩ×NΩ. The lk elements of the matrices are given by

(La

i )lk =
δlk

σa0(xl)
+ξk

〈Ui(yk,v)G(yk,v;xl)〉v
〈Ui(xl,v)〉v

, (Ls

i )lk =−ξk
〈K(Ui)(yk,v)G(yk,v;xl)〉v

〈Ui(xl,v)〉v
,

(3.15)

where ξk (1≤k≤NΩ) is the weight of the quadrature on the k-th element. For
simplicity of notation, we will not differentiate from now on integral operators and
their discrete equivalences, the matrices.

The system (3.14) can be over- or under-determined and so is often solved in the
regularized least-square sense. More specifically, we solving the problem by solve the
following minimization problem:

min
Υ,Υσ̃a,Υσ̃s

∥∥∥∥∥∥∥
L




Υ
Υσ̃a

Υσ̃s


−




h1

...
hNg




∥∥∥∥∥∥∥

2

l2

+ρ

∥∥∥∥∥∥
D




Υ
Υσ̃a

Υσ̃s



∥∥∥∥∥∥

2

l2

, (3.16)

where the first term is the data fidelity term and the second term is a Tikhonov
regularization term with the strength of regularization given by ρ. The operator D
is the discrete differentiation. The regularization term is needed due to the presence
of noise in practice even though the inverse problem here is very stable compared to
similar inverse transport problems in diffuse optical tomography [9, 11, 77].

Remark 3.4. The l2 least squares formulation and Tikhonov regularization strat-
egy (3.16) are adopted here mainly for their computational efficiency. One can employ
different data fidelity and regularization terms such as those based on total variation
(TV) and l1 norms [45, 46]. Different selection can be effective for different prob-
lems. We refer the interested reader to [45, 46] for detailed numerical analysis and
comparison of performances of different approaches. The primary focus here is the
properties of the inverse transport problems in QPAT, not the details of the numerical
implementation.
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It is important to notice that the norm of the operator Ls is in general small
compared to that of La and the identity operator I, especially when the transport
process is diffusive and the scattering is very isotropic. In those cases, U(x,v) is
roughly independent of v, so that ‖K(U)‖L1(X)�1. Thus 〈K(U)G〉v is very small.
In this case, when noise is present in the measured data, the reconstruction of the
scattering coefficient σs is easily corrupted by noise. That was observed in the past in
optical tomography [9, 10, 77]. We thus separate the reconstruction into the following
two cases.

3.2.1. Reconstructing (Υ, σa). To reconstruct σ̃a and Υ assuming σs is
known, we solve the simplified least-squares problem

min
Υ,Υσ̃a

∥∥∥∥∥∥∥




I La
1

...
...

I La
Ng



(

Υ
Υσ̃a

)
−




h1

...
hNg




∥∥∥∥∥∥∥

2

l2

+ρ

∥∥∥∥D
(

Υ
Υσ̃a

)∥∥∥∥
2

l2
. (3.17)

We recover from the solution the coefficients Υ and σ̃a. The solution of the least-
squares problem is simply

(
Υ

Υσ̃a

)
=

[(
NgI

∑Ng

i=1L
a
i∑Ng

i=1L
a∗
i

∑Ng

i=1L
a∗
i La

i

)
+ρD∗D

]−1(
I . . . I
La∗
1 . . . La∗

Ng

)



h1

...
hNg


 , (3.18)

where the superscript ∗ is used to denote the adjoint of an operator, and I∗=I. The
inversion of the regularized normal operator is achieved by a linear solver, not direct
inversion.

3.2.2. Reconstructing (σa, σs) or (Υ, σs). To reconstruct either (σa,
σs) or (Υ, σs), we need to deal with an unbalanced system of equations caused by
the smallness of the scattering component Ls. We consider here only the case of
reconstructing (σa, σs). To obtain a similar algorithm to reconstruct (Υ, σs), we
only need to replace the operator La in the algorithm by I. We solve the simplified
least-squares problem

min
Υσ̃a,Υσ̃s

∥∥∥∥∥∥∥




La
1 Ls

1
...

...
La
Ng

Ls
Ng



(
Υσ̃a

Υσ̃s

)
−




h1

...
hNg




∥∥∥∥∥∥∥

2

l2

+ρ

∥∥∥∥D
(
Υσ̃a

Υσ̃s

)∥∥∥∥
2

l2
. (3.19)

The normal equation for this minimization problem is

(∑Ng

i=1L
a∗
i La

i +ρD∗
aDa

∑Ng

i=1L
a∗
i Ls

i∑Ng

i=1L
s∗
i La

i

∑Ng

i=1L
s∗
i Ls

i +ρD∗
sDs

)(
Υσ̃a

Υσ̃s

)
=

(∑Ng

i=1L
a∗
i hi∑Ng

i=1L
s∗
i hi

)
, (3.20)

where Da and Ds are such that D=diag(Da,Ds). Instead of solving this normal
equation directly to get a solution similar to (3.18), we perform Gaussian elimination
of the system to obtain

(∑Ng

i=1L
a∗
i La

i +ρD∗
aDa

∑Ng

i=1L
a∗
i Ls

i

0 Lred

)(
Υσ̃a

Υσ̃s

)
=

(∑Ng

i=1L
a∗
i hi

hred

)
, (3.21)
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where

Lred=

Ng∑

i=1

Ls∗
i Ls

i +ρD∗
sDs−

Ng∑

i=1

Ls∗
i La

i

( Ng∑

i=1

La∗
i La

i +ρD∗
aDa

)−1
Ng∑

i=1

La∗
i Ls

i ,

and

hred=

Ng∑

i=1

Ls∗
i hi−

[
Ng∑

i=1

Ls∗
i La

i

( Ng∑

i=1

La∗
i La

i +ρD∗
aDa

)−1
Ng∑

i=1

La∗
i Ls

i

]
Ng∑

i=1

La∗
i hi.

This motivates the following two-step reconstruction procedure.

Step I. We reconstruct the coefficient Υσ̃s by solving the reduced linear system

LredΥσ̃s=hred. (3.22)

In the construction of the operator Lred, we need to apply the inverse of the operator∑Ng

i=1L
a∗
i La

i +ρD∗
aDa. We construct this inverse as accurately as possible. For large

problems, we avoid constructing the inverse operator directly. Instead, we construct
it implicitly. More precisely, to apply the inverse operator to any object z to get

ẑ=(
∑Ng

i=1L
a∗
i La

i +ρD∗
aDa)

−1z, we solve the linear system
(∑Ng

i=1L
a∗
i La

i +ρD∗
aDa

)
ẑ=

z to maximum accuracy.

Step II. Once the coefficient Υσ̃s is reconstructed, we can eliminate it from

the system to obtain a linear system for the reconstruction of Υσ̃a:
(∑Ng

i=1L
a∗
i La

i +

ρD∗
aDa

)
Υσ̃a=

∑Ng

i=1L
a∗
i hi−(

∑Ng

i=1L
a∗
i Ls

i )Υσ̃s.

3.3. Minimization-based nonlinear reconstruction scheme. To solve
the full nonlinear inverse problem, we reformulate the problem into a regularized least-
squares formulation. More precisely, we minimize the following objective functional:

Φ(Υ,σa,σs)≡
1

2

Ng∑

i=1

‖Υσa〈ui〉v−H∗
i ‖

2
L2(Ω), (3.23)

where ui is the solution of the transport equation with the ith illumination, i.e., ui

solves

v ·∇ui(x,v)+σa(x)ui(x,v) = σs(x)K(ui)(x,v), in X,
ui(x,v) = gi(x,v), on Γ−.

(3.24)

The interior data collected for illumination gi is denoted by H∗
i .

It is known that the functional (3.23) is Fréchet differentiable with respect to
the unknowns provided that the coefficients satisfy the assumptions in (A1); see for
instance [37, 38, 79]. We can thus use gradient-based minimization techniques to solve
this problem. To calculate the Fréchet derivatives of the objective functional, we use
the method of adjoint equations [93]. Let us denote by wi the solution of the following
adjoint transport equation:

−v ·∇wi(x,v)+σa(x)wi(x,v) = σs(x)K(wi)(x,v)+Υσa(Υσa〈ui〉v−H∗
i ), in X,

wi(x,v) = 0, on Γ+.
(3.25)

It is then straightforward to follow the standard calculations in [37, 38, 79] to show
that the Fréchet derivatives can be computed as follows.
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Theorem 3.5. The Fréchet derivatives of Φ are given by

〈∂Φ
∂Υ

,Υ̂
〉
=

Ng∑

i=1

〈(Υσa〈ui〉v−H∗
i )σa〈ui〉v,Υ̂〉L2(X), (3.26)

〈 ∂Φ

∂σa
,σ̂a

〉
=

Ng∑

i=1

〈(Υσa〈ui〉v−H∗
i )Υ〈ui〉v−〈uiwi〉v,σ̂a〉L2(X), (3.27)

〈 ∂Φ

∂σs
,σ̂s

〉
=

Ng∑

i=1

〈〈K(ui)wi〉v,σ̂s〉L2(X) (3.28)

where 〈·, ·〉L2(X) denotes the usual inner product in L2(X).

Note that due to the fact that the problem of reconstructing Υ is a linear inverse
problem, the Fréchet derivative of the objective functional with respect to Υ is inde-

pendent of the adjoint solutions {wi}
Ng

i=1. If we know σa and σs but are interested

in reconstructing Υ, then we can simply solve for Υ such that 〈 ∂Φ∂Υ ,Υ̂〉=0 for any

test function Υ̂. This in turn gives us Υσa〈ui〉v−H∗
i =0, 1≤ i≤Ng, which holds

for every point x in Ω. The least-squares solution of this overdetermined system is

Υ=
∑Ng

i=1

(
〈ui〉vH

∗
i

)
/
∑Ng

i=1

(
σa〈ui〉

2
v

)
. Thus we need only to solve the Ng transport

equations and evaluate 〈ui〉v to reconstruct Υ.
We use the limited memory version of the BFGS quasi-Newton method to solve the

minimization problem. The details of the implementation are documented in [79, 77].
In our numerical experiments, we only attempt to reconstruct two of the three coef-
ficients. We observe that the algorithm converges very fast, even from initial guesses
that are relatively far from the true coefficients. This confirms the theory developed
in the diffusive regime [14, 16, 18], which is that the problem is very well-conditioned
when only two coefficients are sought. In the numerical simulation, we can add a small
amount of regularization to the problem when the noise in the data is significant. This

is done by adding a Tikhonov functional term, such as
ρ

2
‖(Υ,σa)−(Ῡ,σ̄a)‖2(H1(Ω))2 in

the reconstruction of (Υ,σa) where Ῡ, σ̄a, and σ̄s are values obtained with a priori
knowledge, in the objective functional (3.23).

4. The multi-spectral QPAT
In practical applications of PAT, light of different wavelengths can be used to

probe the properties of the medium at those wavelengths [25, 26, 27, 30, 33, 57, 66,
74, 76, 83, 84, 94, 103, 105]. This is the idea of multi-spectral QPAT.

Let us denote by Λ the set of wavelengths that can be accessed in practice. The
radiative transport equation in this case takes the form

v ·∇u(x,v,λ)+σa(x,λ)u(x,v,λ) = σs(x,λ)K(u)(x,v,λ), in X×Λ,
u(x,v,λ) = g(x,v,λ), on Γ−×Λ,

(4.1)

where the coefficients σa(x,λ) and σs(x,λ) are now functions of the wavelength. The
interior datum collected in this case is now also a function of the wavelength

H(x,λ)=Υ(x,λ)

∫

Sd−1

σa(x,λ)u(x,v,λ)dv. (4.2)

Due to the fact that the equations for different wavelengths are decoupled, we could
not expect to reconstruct unknowns at one wavelength from data collected at other
wavelengths, unless other a priori information is supplied.
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If the medium is non-scattering, the results in Section 2 enable us to reconstruct
Υ(x,λ) and σa(x,λ) with two well-chosen illuminations g1(x,v,λ) and g2(x,v,λ). The
illuminations can be either collimated sources of the form g(x,λ)δ(v−v′) or point
sources in space of the form g(v,λ)δ(x−x′). We can simply perform wavelength by
wavelength reconstructions using the methods developed in Section 2.

4.1. Uniqueness of reconstruction. The theory developed in [16] for
the diffusion equation confirms that we can reconstruct all three coefficients Υ, σa,
and σs simultaneously with multi-spectral interior data under practically reasonable
assumptions on the coefficients. Following [16], we take the following standard model
for the unknown coefficients:

σa(x,λ)=

K∑

k=1

αk(λ)σ
k
a(x), σs(x,λ)=β(λ)σs(x), Υ(x,λ)=γ(λ)Υ(x), (4.3)

where the functions {αk(λ)}
K
k=1, β(λ), and γ(λ) are assumed to be known. In other

words, all three coefficient functions can be written as products of functions of different
variables. Moreover, the absorption coefficient contains multiple components. This
is the parameter model proposed in [30, 33, 57, 66, 94] to reconstruct chromophore
concentrations from photoacoustic measurements.

We have the following uniqueness result with the multi-spectral data.

Corollary 4.1. Let (Υ,σa,σs) and (Υ̃,σ̃a,σ̃s) be two sets of coefficients of the
form (4.3), satisfying the regularity assumptions in (A1). Assume that we have data
from M(≥K) different wavelengths {λm}Mm=1 such that the matrix α=(αk(λm)), 1≤
k≤K, 1≤m≤M has rank K. Let Aλ be the albedo operator that depends on wave-
length. Then Aλ= Ãλ implies {Υ(x),{σk

a(x)}
K
k=1,σs(x)}={Υ̃(x),{σ̃k

a(x)}
K
k=1,σ̃s(x)}.

Proof. Corollary 3.2 implies that we can uniquely reconstruct

µ(x,λ)=γ(λ)Υ(x)σa(x,λ), σ(x,λ)=σa(x,λ)+β(λ)σs(x). (4.4)

Take two wavelengths λ1 and λ2. We then have

µ(x,λ1)

µ(x,λ2)
=

γ(λ1)σa(x,λ1)

γ(λ2)σa(x,λ2)
, (4.5)

β(λ2)σ(x,λ1)−β(λ1)σ(x,λ2)=β(λ2)σa(x,λ1)−β(λ1)σa(x,λ2). (4.6)

If β(λ1)γ(λ1)µ(x,λ2)−β(λ2)γ(λ2)µ(x,λ1) 6=0 at x∈Ω, we can solve the above sys-
tem of equations to reconstruct σa(x,λ1) and σa(x,λ2). We then obtain Υ(x) and
σs(x). Once we know Υ(x) and σs(x), we can uniquely reconstruct σa(x,λ) for
any λ∈Λ. Now select {λm}Mm=1 from Λ such that the matrix α=(αk(λm)), 1≤k≤
K, 1≤m≤M has rank K. We can reconstruct {σk

a(x)}
K
k=1 by solving the system∑K

k=1αk(λm)σk
a(x)=σ(x,λm), 1≤m≤M . This completes the proof.

4.2. Reconstruction methods. The linearized and nonlinear reconstruction
methods proposed in the previous section can be adapted to use the multi-spectral
interior data. We will not repeat the whole algorithm again but just highlight the
main modifications here for the linearized reconstruction with Born approximation.

We can build an analogue of (3.11):

Hλ

γ(λ)σa0〈Uλ〉
(x)=I(Υ)+La

λ(Υσ̃a)+Ls
λ(Υσ̃s), (4.7)
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where I is the identity operator and the operators La and Ls are defined, respectively,
as

La
λ(Υσ̃a)=

Υσ̃a

σa0
+

∫

Ω

Υ(y)σ̃a(y,λ)
〈UλGλ〉v
〈Uλ〉v

(y;x)dy, (4.8)

Ls
λ(Υσ̃s)=−α(λ)

∫

Ω

Υ(y)σ̃s(y)
〈K(Uλ)Gλ〉v

〈Uλ〉v
(y;x)dy. (4.9)

Let us assume again that we collect the data for Ng different illumination patterns
and that for each illumination pattern we have data for M different wavelengths
{λm}Mm=1. We denote by Hi,λm

, 1≤ i≤Ng, 1≤m≤M the ith data set at wavelength
λm. The system of linear integral equations with these Ng×M data sets can be
written as




I La
1,λ1

0 . . . 0 Ls
1,λ1

...
...

...
I 0 0 · · · La

1,λM
Ls
1,λM

...
...

...
I La

i,λ1
0 · · · 0 Ls

i,λ1

...
...

...
I 0 0 . . . La

i,λM
Ls
i,λM

...
...

...
I La

Ng,λ1
0 · · · 0 Ls

Ng,λ1

...
...

...
I 0 0 · · · La

Ng,λM
Ls
Ng,λM







Υ
σ̃a(x,λ1)

...
σ̃a(x,λm)

...
σ̃a(x,λM )
σ̃s(x)




=




h1,λ1

...
h1,λM

...
hi,λ1

...
hi,λM

...
hNg,λ1

...
hNg,λM




, (4.10)

with La
i,λm

and Ls
i,λm

being the evaluation of the operators defined in (4.8) and (4.9),
respectively, at source gi and wavelength λm. If we introduce the notation

La
i =diag(La

i,λm
, . . . ,La

i,λm
, . . . ,La

i,λM
),

σ̃a=(σ̃a(x,λ1), . . . ,σ̃a(x,λm), . . . ,σ̃a(x,λM ))T ,

hi=(hi,λ1
, . . . ,hi,λm

, . . . ,hi,λM
)T ,

then this system is exactly the same form as (3.14). We solve this linear system in the
least-squares sense again in exactly the same ways as those presented in Section 3.2.
Once (Υ(x),{σ̃a(x,λm)}Mm=1,σ̃s(x)) are reconstructed, we reconstruct the coefficient
components {σ̃k

a}
K
k=1 by solving the following linear system (in least-squares sense)

locally (i.e. at each spatial location x∈Ω):




α1(λ1) · · · αK(λ1)
... · · ·

...
α1(λM ) · · · αK(λM )







σ̃1
a(x)
...

σ̃K
a (x)


=




σ̃a(x,λ1)
...

σ̃a(x,λM )


.

5. Numerical experiments
We now present some numerical simulations with synthetic data to demonstrate

the performance of the algorithms that we have presented in the previous sections.
To simplify numerical computation, we consider only two-dimensional simulations,
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although the algorithms we have described are independent of spatial dimension.
We will use both x and (x,y) to denote a point on the plane. The computational
domain is the square Ω=(0,2)×(0,2). We denote by Ω≡Ω∪∂Ω. We also denote by
∂Ω|L, ∂Ω|R, ∂Ω|B , and ∂Ω|T the left, right, bottom, and top sides of the boundary
∂Ω, respectively. For instance, ∂Ω|L={(x,y) |x=0,y∈ (0,2)}. The unit sphere S

1 is
parameterized by an angle θ∈ [0, 2π) so that the direction vector v can be represented
as (cosθ, sinθ). As before, we will denote by 〈u〉v and 〈u〉θ the average of u on S

1.
To generate synthetic data, we solve the transport problem on a spatial mesh that

is four times as fine as the mesh used to solve the inverse problem. We then compute
H in (1.3) by averaging in the four neighbor cells. This way, the interior data H
automatically contains noise due to the mismatch in spatial discretization. However,
we will still call the data constructed in this way the “noiseless” data. In the case
when the parameters that we are interested in are discontinuous in space, there is no
way to exactly recover the discontinuity in the coefficients even with noiseless data.

To get noisy data, we add random noise in the following way. Let H∈R
NΩ (NΩ

being the total number of grid points) be a vector of noiseless data on the grid, then

the noisy data vector H̃∈R
NΩ is given by

H̃=(I+εN )H, N =diag(X1, . . . ,XNΩ
), (5.1)

where Xj , j=1, . . . ,NΩ are independent identically distributed Gaussian random vari-
ables with zero mean and unit variance, and ε is the parameter that controls the noise
level in the noisy data. For a particular value of the parameter ε we say that the noise
level is ε ·100%. For example, for ε=0.05 we say the noise level is 5%.

To measure the error in the reconstruction of a quantity, say ζ, we define the
relative l2 error Eζ of the reconstruction as

Eζ =
‖ζ̃−ζ‖l2

‖ζ‖l2
, (5.2)

where ζ ∈R
NΩ and ζ̃ ∈R

NΩ are the vectors containing the true and reconstructed
quantity, respectively. For instance, Eσa

is the relative L2 error in the reconstruction
of σa.

5.1. Reconstructions in non-scattering media. In this section we
present some numerical simulations in non-scattering media following the reconstruc-
tion methods presented in Section 2. To do the reconstruction, we cover the domain
with 100×100 cells of uniform size whose nodes are given as

Ω∆={xi,j =(xi,yj)| xi= i∆x, yj = j∆y, i,j=0,1, . . . ,100},

with ∆x=∆y=0.02. This is four times as fine as the grids used in next section for
reconstructions in scattering media.

5.1.1. Reconstructing σa. We show now some reconstructions of the ab-
sorption coefficient.

In the first numerical simulation in this group, we perform a reconstruction of a
piecewise constant absorption function using a collimated source located on the left
side of the boundary pointing inside the domain. The source is g(x,v)=χ∂Ω|Lδ(v−v′)
with v′=(1,0). The absorption function consists of a background σa=0.1 cm−1 and
three disk inclusions Ω1={x∈Ω | |x−(0.6,0.6)|≤0.2}, Ω2={x∈Ω | |x−(1.4,0.6)|≤
0.2}, and Ω3={x∈Ω | |x−(1.0,1.5)|≤0.3} with values σa|Ω1

=0.3 cm−1, σa|Ω2
=



A. V. MAMONOV AND K. REN 221

Fig. 5.1. Reconstructions of a piecewise constant absorption coefficient with a collimated source.
Left to right: true absorption coefficient σa, interior data H, σa reconstructed with noiseless data,
and σa reconstructed with noisy data (noise level 5%).

0 0.1 0.2 0.3 0.4 0.02 0.04 0.06 0.08 0.1 0.12 0 0.1 0.2 0.3 0.4 0 0.1 0.2 0.3 0.4

Fig. 5.2. Reconstructions of a piecewise constant absorption coefficient with cone-limited
source. Left to right: true absorption coefficient σa, interior data H, σa reconstructed with noiseless
data and σa reconstructed with noisy data (noise level 5%).

0 0.1 0.2 0.3 0 0.05 0.1 0 0.1 0.2 0.3 0 0.1 0.2 0.3

Fig. 5.3. Reconstructions of a smooth absorption coefficient with cone-limited source. Left to
right: true absorption coefficient σa, interior data H, σa reconstructed with noiseless data and σa

reconstructed with noisy data (noise level 5%).

0.3 cm−1, and σa|Ω3
=0.2 cm−1, respectively. The reconstruction results with noise-

less and noisy data are presented in figure 5.1. The reconstruction is almost perfect
when noiseless data is used. When noisy data (ε=0.05) is used, we can clearly see a
degeneration of the quality of the reconstruction. However, the degeneration is very
small, comparable to the noise level of the data. The relative L2 error in the recon-
structions are Eσa

=0.3% and Eσa
=2.8% in noiseless and noisy case, respectively.

Next we perform two reconstructions using a cone-limited source. The setup is
as depicted in figure 2.2. The boundary condition g(x,θ) corresponds to a uniform
isotropic line source of unit intensity concentrated on a segment {(x,y) |x∈ (0,2),y=
−2}, which results in g(x,θ) being non-zero only on ∂Ω|B . The half-aperture angle
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θ0 for such a source is π/4, so we only keep track of the solution u(x,y,θ) for θ∈
[π/4,3π/4]. This segment is uniformly discretized with 50 nodes to generate the data
and with 40 nodes to solve the inverse problem using the algorithm from Section 2.3.

We show in figure 5.2 the reconstruction of a piecewise-constant absorption coef-
ficient with the cone-limited source. The absorption coefficient (in units of cm−1) is
given by

σa(x)=0.1+0.1χΩ1
(x)+0.2χΩ2

(x)+0.3χΩ3
(x), (5.3)

with the rectangular inclusion Ω1=[0.4,1.2]× [0.2,0.8], the smaller disk inclusion
Ω2={x∈Ω | |x−(1.6,1.0)|≤0.3}, and the larger disk inclusion Ω3={x∈Ω | |x−
(0.6,1.4)|≤0.4}. Thus the absorption coefficient in the background is σa=0.1 cm−1

while those in the three inclusions take the values σa|Ω1
=0.2 cm−1, σa|Ω2

=0.3 cm−1,
and σa|Ω3

=0.4 cm−1, respectively. The quality of the reconstruction is comparable
to that in the previous numerical experiment in figure 5.1. The relative L2 error in
the reconstructions are Eσa

=7.7% and Eσa
=9.2% in the noiseless and noisy case,

respectively.
Smoother absorption coefficients can be reconstructed with similar quality. To

demonstrate this, we show in figure 5.3 the reconstruction of the absorption coefficient
that is a sum of a Gaussian and linear functions given by

σa(x,y)=Ax+By+C+De ((x−0.4)2+(y−0.4)2)/s2D , (5.4)

where the parameters A,B,C,D, and sD are chosen so that 0.1 cm−1≤σa≤0.3 cm−1.
We performed reconstructions for many different choices of smooth absorption coeffi-
cients. The quality of the reconstruction in figure 5.3 is representative of the typical
reconstruction quality that we obtained in those experiments.
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Fig. 5.4. Relative error Eσ in the reconstruction of the absorption coefficient with a cone-limited
source versus noise level EH in the data. Noise levels from 0 to 30%. Left: reconstruction of piecewise
constant absorption coefficient (5.3); Right: reconstruction of smooth absorption coefficient (5.4).
Perfect linear stability Eσ =EH is shown as a dashed line for reference.

To characterize the stability of the reconstruction more precisely, we plot in fig-
ure 5.4 the relative L2 error Eσ in the reconstruction of the absorption coefficients (5.3)
and (5.4) versus the noise level EH in the data used. Numerically the method appears
to have linear stability, with the piecewise constant case being slightly worse than the
smooth one. This is typically due to an imperfect resolution of the boundaries of the
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inclusions. Also, there is some residual error in the noiseless (ε=0) case due to the
mismatch between the fine grid and the reconstruction grid.

5.1.2. Reconstructing (Υ, σa). To reconstruct both the Grüneisen co-
efficient and the absorption coefficient, we use data collected from two collimated
sources located on the left and right sides of the boundary, respectively: g1(x,v)=
χ∂Ω|Lδ(v−v′) and g2(x,v)=χ∂Ω|Rδ(v+v′) with v′=(1,0). The background ab-

Fig. 5.5. Reconstructions of σa (top row) and Υ (bottom row) using a pair of collimated
sources. Left to right: true coefficients, coefficients reconstructed with noiseless data, and coefficients
reconstructed with noisy data. The noisy data contains 5% random noise (ε=0.05).

sorption coefficient is σa=0.1 cm−1 and the background Grüneisen coefficient is
Υ=0.5. There are four inclusions: two for the absorption coefficient located in
Ω1={x∈Ω | |x−(0.5,0.5)|≤0.3} and Ω2={x∈Ω | |x−(1.5,1.5)|≤0.2}, respectively,
and two for the Grüneisen coefficient located in Ω3={x∈Ω | |x−(0.5,1.5)|≤0.2} and
Ω4={x∈Ω | |x−(1.5,0.5)|≤0.3}, respectively. The coefficients inside the inclusions
are σa|Ω1

=0.2 cm−1, σa|Ω2
=0.3 cm−1, Υ|Ω3

=0.6, and Υ|Ω4
=0.7, respectively. We

perform the reconstruction with both noiseless data and noisy data polluted with 5%
additive random noise. The reconstruction results are presented in figure 5.5. Other
than the phantom inclusions in the reconstructed Grüneisen coefficient at the locations
of the inclusions of the absorption coefficient, the quality of the reconstructions is very
high, and is comparable to the previous reconstructions in the cases of one unknown
coefficient. The relative L2 error in the reconstructions are (EΥ=2.8%, Eσa

=3.2%)
and (EΥ=3.8%, Eσa

=4.4%) in the noiseless and noisy cases, respectively. The phan-
tom inclusions in the reconstructed Grüneisen coefficients are caused by the inaccuracy
of the reconstruction of the absorption coefficient at the boundary of the square in-
clusions. This inaccuracy originates from the differentiation of the quantity ln H2

H1
,

which contains noise coming from mismatch between the forward and inversion grids.
For the reconstruction from noisy data, the noise added to the synthetic data is ran-
dom but has only low frequency components. If the data contain very high frequency
components as in the previous cases, numerical differentiation of the quantity ln H2

H1

in the algorithm would yield even larger noise in the reconstruction that would bury
the true coefficients. Averaging from multiple reconstructions would be necessary to
get a clean image. We would not address this issue in detail now but leave it to future
study.
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5.2. Reconstructions in scattering media. Here we present some numer-
ical simulations for scattering media, i.e. the case when σs 6=0. In this case, we do
not have analytical reconstruction formulas to work with. We thus use the linearized
reconstruction and minimization-based nonlinear reconstruction schemes.

5.2.1. Numerical setup. The transport equations are solved with a finite
volume scheme for the spatial variable and a discrete ordinate method for the angular
variable. The domain is covered by 50×50 cells of uniform size whose nodes are given
by

Ωh={xi,j =(xi,yj)| xi= i∆x, yj = j∆y, i,j=0,1, . . . ,50},

with ∆x=∆y=0.04. We discretize S
1 into 128 uniformly distributed directions with

identical quadrature weight:

S
1
∆θ={vk :vk=(k−1)∗∆θ, k=1, . . . ,128},

where ∆θ=2π/128. Note that this discretization is not as fine as that used in the pre-
vious case when scattering is not present in the problem. This is only done here to save
computational cost. It should not be regarded as a limitation of the reconstruction
algorithms for scattering media.

The scattering kernel is chosen as the Henyey-Greenstein phase function [9, 54, 97]

K(v,v′)=
1

2π

1−η2

(1+η2−2ηv ·v′)3/2
, (5.5)

where η∈ [0,1] is the anisotropy factor, which measures how peaked forward the phase
function is. The larger η is, the more forward the scattering. The anisotropy factor is
often used to define the so-called effective scattering coefficient through σ′

s=(1−η)σs.
For more details on the forward solver, we refer to our previous publications [78,

79].

5.2.2. Reconstructing σa. We first reconstruct the absorption coefficient,
assuming that both the scattering coefficient and the Grüneisen coefficients are known.
The setup is as follows. The medium consists of a homogeneous background absorb-
ing medium with absorption coefficient σa=0.2 cm−1 and two absorbing inclusions.
The first inclusion occupies Ω1=[0.4,0.8]× [0.4,0.8] with the absorption coefficient
σa=0.3 cm−1. The second inclusion occupies Ω2=[1.2,1.6]× [1.2,1.6] with the ab-
sorption coefficient σa=0.1 cm−1. We first performed two reconstructions with the
linearization method: a reconstruction in an isotropically scattering medium with
η=0, σs=8 cm−1 and a reconstruction in an anisotropically scattering medium with
η=0.9, σs=80 cm−1. The Grüneisen coefficient is always Υ=0.5. The synthetic data
used in these reconstructions is noiseless in the sense described at the beginning of
this section. The results of the reconstructions are shown in figure 5.6. The quality
of the reconstructions is very high (although shown on a coarser grid than those in
the previous section). The relative L2 error in the reconstructions are Eσa

=2.8%
(for Born reconstruction in isotropic medium), Eσa

=3.0% (for Born reconstruction in
anisotropic medium), Eσa

=3.0% (for nonlinear reconstruction in isotropic medium),
and Eσa

=3.2% (for nonlinear reconstruction in isotropic medium), respectively. Note
that the fast decay of field from the line source makes the second inclusion hardly
visible in the data H=Υσa〈u〉v plots. This is one of the main reason that the quanti-
tative step of PAT is needed. The reconstructions using the nonlinear reconstruction
algorithm are presented in the right column of figure 5.6.
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5.2.3. Reconstructing (Υ, σa). We now perform numerical simulations
where we reconstruct both the Grüneisen coefficient and the absorption coefficient.
The scattering coefficient is fixed at σs=8 cm−1 and the anisotropic factor η=0. The

0 0.02 0.04 0.06 0.08 0.1 0.1 0.15 0.2 0.25 0.3 0.1 0.15 0.2 0.25 0.3

0 0.02 0.04 0.06 0.08 0.1 0.1 0.15 0.2 0.25 0.3 0.1 0.15 0.2 0.25 0.3

Fig. 5.6. Reconstructions of the absorption coefficient. Top row: the data H=Υσa〈u〉v (left),
σa reconstructed using Born approximation (middle) and σa reconstructed using nonlinear iteration
(right) in an isotropic medium; Bottom row: same as the top row but in an anisotropic medium.

0.5 0.55 0.6 0.65 0.7 0.1 0.15 0.2 0.25 0.3 0 0.02 0.04 0.06 0 0.02 0.04

0.5 0.55 0.6 0.65 0.7 0.1 0.15 0.2 0.25 0.3 0.5 0.55 0.6 0.65 0.7 0.1 0.15 0.2 0.25 0.3

Fig. 5.7. Reconstructions of the Grüneisen and the absorption coefficients. Top left: true
coefficients (Υ, σa) Top right: two data sets (H1, H2) used in the reconstruction; Bottom left:
reconstructed (Υ, σa) with two data sets; Bottom right: reconstructed (Υ, σa) with eight data sets.
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background absorption coefficient is σa=0.1 cm−1 and the background Grüneisen co-
efficient is Υ=0.5. There are four inclusions: two for the absorption coefficient located
in Ω1=[0.4,1.2]× [0.4,0.8] and Ω2=[0.4,0.8]× [1.2,1.6], respectively, and two for the
Grüneisen coefficient located in Ω3=[0.4,1.6]× [1.2,1.6] and Ω4=[1.2,1.6]× [0.6,1.0],
respectively. The coefficients inside the inclusions are σa|Ω1

=0.2 cm−1, σa|Ω2
=0.3

cm−1, Υ|Ω3
=0.6, and Υ|Ω4

=0.7, respectively. We perform the reconstruction with
data polluted with 5% additive random noise added in the same way as in the pre-
vious section. The coefficients (Γ,σa) reconstructed with two data sets generated
with sources g1(x,v)=χ∂ΩL

and g2(x,v)=χ∂ΩR
are shown in figure 5.7 (the left two

plots in the bottom row). The relative L2 errors in the reconstructions are EΥ=5.3%
and Eσa

=4.5%, respectively. The quality of the reconstruction is slightly lower than
that in the reconstructions in the non-scattering regime, such as those shown in fig-
ure 5.5. It can be improved by averaging out noise in the data through the usage
of additional data sets. This is demonstrated in figure 5.7 (the right two plots in
the bottom row), where we show the reconstruction of the coefficients (Υ,σa) using
eight data sets. The eight sources used are the rotation of the source g1(x)=χ∂ΩL

and g2=χ∂ΩL
δ(v−(1,0)) over 0, π/2, π, and 3π/2 around the center of the square

domain Ω. The relative L2 errors in the reconstructions in this case are EΥ=3.3%
and Eσa

=3.5%, respectively.

0.1 0.15 0.2 0.25 0.3 6 7 8 9 10 0.1 0.15 0.2 0.25 0.3 6 7 8 9 10

−0.1 −0.05 0 −0.04 −0.02 0 −0.1 −0.05 0 −0.06 −0.04 −0.02 0 0.02

Fig. 5.8. Reconstructed absorption and scattering coefficients given in (5.6). Top row: (σa,
σs) reconstructed with noiseless (left two plots) and noisy (right two plots) data; Bottom row: the
corresponding relative differences between reconstructed and real coefficients.

5.2.4. Reconstructing (σa, σs). We now fix the Grüneisen coefficient Υ=1
and attempt to reconstruct both the absorption and the scattering coefficient. We
show in figure 5.8 the reconstructions of the objective absorption and scattering co-
efficients:

σa(x,y)=0.2+0.1sin(πx), σs(x,y)=8.0+2.0sin(πy). (5.6)
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Shown are the reconstructed (σa,σs) (top row) with eight noiseless and noisy data sets
and the corresponding pointwise relative error (bottom row), defined for σa (resp.
σs) as σ̃a−σa

σa
(resp. σ̃s−σs

σs
) in the reconstructions. The maximal pointwise rela-

tive errors are (‖ σ̃a−σa

σa
‖L∞ ,‖ σ̃s−σs

σs
‖L∞)=(12.4%,5.3%), (‖ σ̃a−σa

σa
‖L∞ ,‖ σ̃s−σs

σs
‖L∞)=

(13.6%,7.2%) in noise-free and noisy cases, respectively. Except for the relatively
large error on some parts of the boundary, the error in the reconstructions is com-
parable to the noise level in the data. We observe that this is also confirmed in the
reconstruction of piecewise constant coefficients such as those shown in figure 5.9.
The piecewise constant absorption coefficient and the smooth scattering coefficient
are given as

σa(x,y)=0.2+0.1sin(πx), σs(x,y)=8.0+2.0sin(πy), (5.7)

where the first absorbing inclusion is located in Ω1=[0.4,0.8]× [0.8,1.2] and the second
absorbing inclusion is located in Ω2=[1.4,1.6]× [0.2,1.8]. For piecewise constant coef-
ficients, the reconstruction error occurs on the boundary of the inclusions. This is true
also in the noiseless data case due to the fact that the synthetic data is generated by
averaging quantities on a finer mesh. The Tikhonov regularization we employed in the
numerical schemes also contribute to the smoothing on the boundary of the inclusions.
The maximal pointwise relative errors are (‖ σ̃a−σa

σa
‖L∞ ,‖ σ̃s−σs

σs
‖L∞)=(19.6%,5.6%)

and (‖ σ̃a−σa

σa
‖L∞ ,‖ σ̃s−σs

σs
‖L∞)=(20.8%,7.7%) in the noise-free and noisy cases, re-

spectively.

0.1 0.15 0.2 0.25 0.3 6 7 8 9 10 0.1 0.15 0.2 0.25 0.3 6 7 8 9 10

−0.1 0 0.1 −0.04 −0.02 0 −0.2 −0.1 0 0.1 −0.04 −0.02 0 0.02 0.04

Fig. 5.9. Reconstructed absorption and scattering coefficients given in (5.7). Top row: (σa,
σs) reconstructed with noiseless (left two plots) and noisy (right two plots) data; Bottom row: the
corresponding relative differences between reconstructed and real coefficients.

5.2.5. Reconstructing (Υ, σa, σs) with multi-spectral data. The
last numerical simulation is devoted to the simultaneous reconstructions of all three
coefficients with multi-spectral interior data. The coefficients take the forms given
in (4.3). To simplify the presentation, we consider only an absorption coefficient that
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Fig. 5.10. Simultaneous reconstruction of the absorption and the scattering and the Grüneisen
coefficients with multi-spectral data. Top row: reconstructed Υ, σs, σ1

a, and σ2
a; Bottom row: the

corresponding pointwise relative error in the reconstructions. The data used in this simulation are
noiseless.

Fig. 5.11. Same as in figure 5.10 except that the data used contain 5% random noise.
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has two components, i.e. K=2. The spectral components of the coefficients are given
as follows:

α1(λ)=
λ

λ0
, α2(λ)=

λ0

λ
, β(λ)=

(
λ

λ0

)3/2

, γ(λ)=1, (5.8)

where the normalization wavelength λ0 is included to control the amplitude of the
coefficients. These weight functions are by no means exactly what they should be
in practical applications. However, the specific forms do not affect the results of the
reconstruction. The spatial components of the coefficients are given as

Υ(x)=0.5+0.4tanh(4x−4), σs(x)=8.0+2.0sin(πx)sin(πy),
σ1
a(x)=0.1+0.1χΩ1

+0.2χΩ2
, σ2

a(x)=0.2−0.1χΩ3
+0.1χΩ4

,
(5.9)

where Ω1=[0.4,1.6]× [0.4,0.6], Ω2=[0.4,0.8]× [0.8,1.2], Ω3=[0.4,1.6]× [1.4,1.6], and
Ω4=[1.2,1.6]× [0.8,1.2]. The anisotropic factor is η=0. We performed numerical
reconstructions using four wavelength-dependent sources. For each source, we have
data for four different wavelengths. The results of the reconstructions using noiseless
data are presented in figure 5.10 and those using noisy data are shown in figure 5.11.
We observe similar reconstruction qualities (as can be seen in the plots of the point-
wise relative error) to the two-coefficient cases in the previous sections. The max-

imal pointwise relative errors (‖ Υ̃−Υ
Υ ‖L∞ ,‖ σ̃s−σs

σs
‖L∞ ,‖ σ̃1

a−σ1
a

σ1
a

‖L∞ ,‖ σ̃2
a−σ2

a

σ2
a

‖L∞) are

(19.7%,3.4%,7.2%,18.4%), (22.9%,4.4%,11.9%,21.2%) in the noise-free (figure 5.10)
and noisy (figure 5.11) cases, respectively.

6. Concluding remarks
We studied the quantitative photoacoustic tomography problem with the radia-

tive transport model, aiming at reconstructing multiple physical coefficients simulta-
neously using the data collected from multiple illuminations. We showed that in non-
scattering absorbing media, we can reconstruct both the absorption and the Grüneisen
coefficients simultaneously in a stable manner using only two sets of interior data.
Moreover, in this case we derived explicit reconstruction formulas for the problem
with particular choices of illuminations (collimated, point, and cone-limited sources).
In scattering media, we show, based on the result in [13], that one can stably recon-
struct two of the absorption, the scattering, and the Grüneisen coefficients when more
data, i.e., data given by the full albedo operator, is available. To reconstruct all three
coefficients simultaneously, we proposed to use interior data collected at different op-
tical wavelengths. We show that with some realistic a priori knowledge, mainly the
knowledge of the spectral dependence of the coefficients, we can stably reconstruct
the spatial component of all three coefficients simultaneously.

Besides the analytical reconstruction strategy for the non-scattering problem, we
proposed a linearized reconstruction method based on Born approximation to the orig-
inal inverse problem as well as a nonlinear reconstruction method based on numerical
minimization techniques for QPAT for scattering media. We show numerically that
the reconstruction is very stable. In fact, our numerical experiments showed that,
assuming that the data measured with ultrasound is accurate enough, the nonlinear
least-square formulation of the inverse transport problems with interior data problem
behaves like a convex optimization problem and thus can be solved efficiently and
accurately; see the numerical reconstructions in Section 5.

There are many important issues in quantitative PAT that need to be addressed
in the future. For instance, in the theory developed in [14, 18, 16] for the diffu-
sion model, one can reconstruct both the absorption and the scattering coefficients
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with only two “well-chosen” illuminations, with little a priori assumptions on the
coefficients. It would be interesting to see how to generalize this to the radiative
transport model (1.1) with σs 6=0. An equally important question is whether or not
we can derive any analytical reconstruction procedure, similar to those developed in
diffusion-based theory [18, 14, 16], for the inverse transport problem in scattering
media.

On the numerical side, when the noise present in the data is significant, we need to
regularize the reconstruction. The regularization we adopt here is the usual Tikhonov
regularization which yields smooth solutions among all possibilities. In certain appli-
cations, we might know a priori that the coefficients to be reconstructed are piecewise
constant, such as those presented in some of the numerical simulations in Section 5. In
this case, alternative regularization strategies such as the total variation (TV) regular-
ization might be more appropriate. In [14, 47, 48], L1 regularization for non-smooth
coefficients has been considered in the diffusion case. It would be interesting to see
the performance of that in the transport case. We plan to explore this issue in the
future.
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