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COLLIDING INTERFACES IN OLD AND NEW
DIFFUSE-INTERFACE APPROXIMATIONS OF WILLMORE-FLOW∗

SELIM ESEDOḠLU† , ANDREAS RÄTZ‡ , AND MATTHIAS RÖGER§

Abstract. This paper is concerned with diffuse-interface approximations of the Willmore flow.
We first present numerical results of standard diffuse-interface models for colliding one dimensional
interfaces. In such a scenario evolutions towards interfaces with corners can occur that do not
necessarily describe the adequate sharp-interface dynamics.

We therefore propose and investigate alternative diffuse-interface approximations that lead to a
different and more regular behavior if interfaces collide. These dynamics are derived from approxi-
mate energies that converge to the L1-lower-semicontinuous envelope of the Willmore energy, which
is in general not true for the more standard Willmore approximation.
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1. Introduction
Diffuse-interface approximation of geometric evolution equations has a long his-

tory and is widely used in numerical simulations. One advantage of the diffuse-
interface approach is that usually an automatic treatment of topological changes in
a reasonable manner is guaranteed. It is however not always clear which (general-
ized) sharp-interface evolution is in fact approximated. We discuss here this issue
in the case of the diffuse Willmore flow, in particular in situations where collisions
between different interfaces occur and where these interfaces interact with each other.
In applications such as image processing and computer vision, it is of great interest
to compute Willmore flow through such topological events.

In the following we fix a nonempty open set Ω⊂Rn. Let M denote the class of
open sets E⊂Ω with Γ=∂E∩Ω given by a finite union of embedded closed (n−1)-
dimensional C2-manifolds without boundary in Ω. We associate to such Γ the inner
unit normal field ν : Γ→Rn, the shape operator A with respect to ν, and the principal
curvatures κ1,. ..,κn−1 with respect to ν. Finally we define the scalar mean curvature

H=κ1 + .. .+κn−1 and the mean curvature vector ~H=Hν.
The Willmore energy [38] is then defined as

W(Γ) :=
1

2

∫
Γ

H2(x) dHn−1(x). (1.1)

The corresponding L2-gradient flow is called Willmore flow. For an evolving family
of sets (E(t))t∈(0,T ) in M with boundaries Γ(t) =∂E(t)∩Ω, the velocity in direction
of the outer normal field is given by

v(t) = ∆Γ(t)H(t)− 1

2
H(t)3 +H(t)|A(t)|2, (1.2)
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126 APPROXIMATIONS OF WILLMORE FLOW

on Γ(t), where |A(t)|2 =κ2
1 + ·· ·+κ2

n−1 denotes the squared Frobenius norm of the
shape operator A(t) and ∆Γ(t) denotes the Laplace-Beltrami operator on Γ(t).

In two dimensional space the Willmore functional for curves and the Willmore
flow are better known as Eulers elastica functional and evolution of elastic curves. In
this case (1.2) reduces to

v(t) = ∆κ(t)+
1

2
κ(t)3, (1.3)

where κ(t) denotes the curvature of Γ(t). The Willmore flow of a single curve in the
plane exists for all times [24] and converges for fixed curve length to an elastica.

A well-known and widely used diffuse-interface approximation of the Willmore
energy is motivated by a conjecture of De Giorgi [18] and is in a modified form given
by

Wε(u) :=

∫
Rn

1

2ε

(
−ε∆u+

1

ε
W ′(u)

)2

dLn, (1.4)

where W ′ is the derivative of a suitable double-well potential W and u is a smooth
function on Rn. The corresponding formal approximation of the Willmore flow is then
given by the L2(Ω)-gradient flow of Wε,

ε∂tu= ∆
(
−ε∆u+

1

ε
W ′(u)

)
− 1

ε2
W ′′(u)

(
−ε∆u+

1

ε
W ′(u)

)
, (1.5)

complemented by suitable boundary conditions for u on ∂Ω and an initial condition
for u in Ω.

If contact and collision of (sharp) interfaces are possible it is a priori not clear
how to continue the Willmore flow. This situation already occurs for the evolution
of several curves in the plane. In many applications interactions of different curves
should be considered, and treating the evolution of each curve separately might not be
appropriate. To account for touching and colliding curves in such situations a suitable
generalization of the evolution beyond the smooth embedded case is required. One
possible extension is a gradient dynamic with respect to a suitably relaxed Willmore
functional for general sets. A natural candidate for such relaxation is the L1(Ω)-lower-
semicontinuous envelope

W̃(E) := inf
{

liminf
k→∞

W(∂Ek) : Ek
k→∞−→ E in L1(Ω),Ek ∈M for all k∈N

}
. (1.6)

It is however difficult to characterize and numerically approximate the corresponding
gradient flow. Instead we consider here diffuse-interface approximations that naturally
allow for collision of (diffuse) interfaces and exist globally in time.

Our first observation is that the usual diffuse approximation (1.4) does not ap-
proximate any gradient flow with respect to the generalized elastic energy (1.6). In
fact, careful numerical simulations show that the diffuse evolution in the plane can
lead to transversal intersections of interfaces, which is known to have infinite energy
with respect to the L1(R2)-lower-semicontinuous envelope of the elastica functional
[8]. The occurrence of intersections is related to the existence of saddle solutions of
the Allen-Cahn equation, as we will explain below. This example also demonstrates
that already on the level of energies a discrepancy between the diffuse elastica energy
and the relaxation (1.6) of the sharp-interface energy occurs. In particular, Wε does
not Gamma-converge to W̃ [32].
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We will next discuss two diffuse-interface approximations of the Willmore flow
that Gamma-converge to W̃. The first one was proposed by Bellettini [5]. As an
alternative we introduce a modification of the usual diffuse Willmore functional that
adds a penalty term to Wε. This penalty term is very small as long as no collisions of
interfaces occur, allows for the touching of diffuse interfaces, but prevents transversal
intersections. For both approaches we consider the L2-gradient flows and present
numerical simulations.

2. Diffuse approximation of the Willmore functional and diffuse Will-
more flows

Diffuse-interface approximations of the Willmore energy (1.1) are usually based
on a Ginzburg–Landau free energy for a phase-field variable u

Hε(u) :=

∫
Ω

(ε
2
|∇u|2 +ε−1W (u)

)
dx, (2.1)

where W denotes a suitable double-well potential that we choose in the following
as W (u) = 18u2(1−u)2. For a smooth phase field u : Ω→R let us further define the
L2-gradient of Hε,

w :=
δHε
δu

=−ε∆u+ε−1W ′(u),

the diffuse normal vector

ν(x) :=

{
∇u
|∇u| , if ∇u 6= 0,

0, else,

and the level set mean curvature

v(x) :=∇·ν(x). (2.2)

For phase fields u with ‘moderate’ energy Hε(u) the function u will look like a
smoothed indicator function that is close to the values 0,1 in a large part of the
domain and possibly with thin transition layers. The width of these diffuse interfaces
is proportional to ε>0. The energy Hε is a diffuse-interface counterpart of the surface
area functional. This statement was made precise by Modica and Mortola, who proved
the Gamma-convergence with respect to L1 of Hε to the perimeter functional [31, 30].
The L2-gradient w of Hε describes a kind of diffuse mean curvature and motivates the
definition of the diffuse Willmore functional (1.4). The approximation Wε has been
studied intensively and is widely used in numerical simulations [27, 9, 22, 28]. For
space dimension n= 2,3 it is known [33] that (for uniformly bounded Hε) the func-
tionals Wε Gamma-converge towards the Willmore functional in limit points E⊂Ω
with C2-boundary in Ω. The Gamma-convergence is not true in general limit points
E⊂Rn. In fact [16] showed the existence of a smooth function u :R2→ (−1,1) (where
±1 are the zeros of the double well potential) with the following properties: u is a
saddle solution of the Allen-Cahn equation

−∆u+W ′(u) = 0 in R2,

u= 0 holds on the coordinate axes {(x1,x2) : x1x2 = 0}, and u is positive inside the
first and third quadrants of R2 and negative inside the second and fourth quad-
rants. Moreover, there exists k>0 such that for |x|, |y|>k the saddle solution u
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is exponentially close to ±1 and |∇u| is exponentially small. In particular, the
rescaled functions uε :R2→R, uε(x) :=u( 1

εx) have on compact subsets of R2 uni-
formly bounded energy Hε, converge in L1

loc(R2) to the ±1-characteristic function
of the set E :={(x1,x2) :x1x2>0}, and finally satisfy Wε(uε) = 0 for all ε>0. On
the other hand, we have by [8] that W̃(E) =∞ for the L1

loc(R2)-lower-semicontinuous
envelope of the Willmore functional. Therefore

∞= W̃(E)> liminf
ε→0

Wε(uε) = 0,

which shows that Wε cannot Gamma-converge to W̃.
For a tighter convergence of approximations some control on the Willmore energy

of level sets of the phase fields is necessary. Bellettini [5] proposed such a type of
approximations for general geometric functionals. The corresponding approximation
of the Willmore functional is given by the square integral of the mean curvature of
the level sets of the phase field u integrated with respect to the diffuse area density,

Ŵε(u) :=
1

2

∫
Ω\{|∇u|=0}

(
∇· ∇u
|∇u|

)2(ε
2
|∇u|2 +ε−1W (u)

)
dx. (2.3)

In the particular case of (2.3) Bellettini’s results imply that (for uniformly bounded
diffuse surface area Hε) the functionals Ŵε in fact Gamma-converge with respect to
L1(Ω) to W̃.

For n= 2 an alternative approximation of the elastica functional has been investi-
gated by Mugnai [32]. He uses an approximation of the square integral of the second
fundamental form,

W̄ε(u) :=
1

2ε

∫
Ω

∣∣∣∣εD2u−ε−1W ′(u)
∇u
|∇u|

⊗ ∇u
|∇u|

∣∣∣∣2 dx. (2.4)

and obtains for n= 2 the L1(Ω)-Gamma-convergence of W̄ε to W̃, again under a
uniform bound on the diffuse surface area.

3. A new diffuse-interface approximation of the Willmore functional
We propose here a modification of the ‘standard’ approximationWε of the Willmore

functional by an additional penalty term. This has some advantages in numerical
simulations as we discuss below. The example of saddle solutions for the Allen-Cahn
equation and a comparison with Ŵε,W̄ε reveals that the standard approximation
works well as long as phase fields u behave like the optimal profile q for the one-
dimensional transition from 0 to 1 given by

−q′′+W (q) = 0, q(0) =
1

2
, lim

r→−∞
q(r) = 0, lim

r→−∞
q(r) = 1. (3.1)

Formal asymptotic expansions often use that uε(x)≈ q(dε ), where d denotes the signed
distance functions to a limit hypersurface. This property can be formalized as van-
ishing of the discrepancy

ζε :=
ε

2
|∇u|2−ε−1W (u)

that measures deviation from equi-distribution in the diffuse surface energy. In the
limit ε→0 this quantity vanishes in L1(Ω) for sequences of phase fields that have
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uniformly bounded diffuse surface energy and diffuse Willmore energy Wε [33]. This
weak control does however not exclude formation of transversal intersections in the
limit. Rewriting the diffuse mean curvature in terms of the level set mean curvature
v :=∇· ∇u|∇u| as

w =−ε∆u+
1

ε
W ′(u) =−ε|∇u|v−∇ζε ·

∇u
|∇u|2

on {∇u 6= 0},

we see that the diffuse mean curvature controls the level set mean curvature if and
only if the normal projection of the gradient of the discrepancy is small.

This motivates us to introduce a penalty term of the form

Aε(u) :=
1

2ε1+α

∫
Ω

(
w+

(
ε|∇u|

√
2W (u)

) 1
2

v

)2

dx, (3.2)

where 0≤α≤1. If u≈ q(dε ) we find that Aε(u) =O(ε) remains small. The energy
however becomes large if u deviates from the optimal profile structure. We then
define the modified diffuse Willmore energy

Fε(u) :=Wε(u)+Aε(u). (3.3)

Using Bellettini’s result [5] we can prove the Gamma-convergence of the modified
Willmore energy Fε to W̃. In the following we extend the functionals Hε and Fε to
L1(Ω) by setting them to +∞ on L1(Ω)\C2(Ω).

Theorem 3.1. Let α>0. Then the functional Fε Gamma-converges with respect
to L1(Ω) to W̃ in the following sense:

1. Let (uε)ε>0 be a sequence of smooth phase fields uε : Ω→R with

sup
ε>0
Hε(uε)<∞ (3.4)

and uε→ u in L1(Ω). Then u∈BV (Ω;{0,1}), and

W̃(E)≤ liminf
ε→0

Fε(uε), (3.5)

where E={u= 1}.
2. Let E⊂Ω be given with W̃(E)<∞. Then there exists a sequence (uε)ε>0 of

smooth phase fields in Ω such that uε→XE in L1(Ω) and

W̃(E)≥ limsup
ε→0

Fε(uε). (3.6)

In the situation of (1) for α= 0 we still obtain

1

2
W̃(E)≤ liminf

ε→0
Fε(uε), (3.7)

and in particular W̃(E)<∞ if the right-hand side is finite.
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Proof.
1. By Young’s inequality we deduce for any K>0 the following estimate:

w2 +K

(
w+

(
ε|∇uε|

√
2W (uε)

) 1
2

v

)2

=(1+K)w2 +2Kw
(
ε|∇uε|

√
2W (uε)

) 1
2

v+Kε|∇uε|
√

2W (uε)v
2

≥ε K

1+K
|∇uε|

√
2W (uε)v

2. (3.8)

This implies

Fε(uε)≥
ε−α

2+2ε−α

∫
Ω

|∇uε|
√

2W (uε)v
2 dx

≥ ε−α

2+2ε−α

∫ 1

0

√
2W (s)

∫
{uε=s}∩{∇uε 6=0}

v2(x)dHn−1(x)ds, (3.9)

where we have used the co-area formula in the last line.
For (uε)ε>0 with uε→u in L1(Ω) we first have by the Modica–Mortola The-
orem that u∈BV (Ω;{0,1}) with∫

Ω

|∇u| ≤ liminf
ε→0

Hε(uε).

After passing to a subsequence (εk)k∈N we may assume

lim
k→∞

Fεk(uεk) = liminf
ε→0

Fε(uε).

By (3.9) we now can follow the proof of [5, Theorem 4.2]. First one obtains a
subsequence k→∞ (not relabeled) and a set I⊂ (0,1) with full measure such
that for any s∈ I,

{uεk =s}= ∂{uεk >s},
{uεk =s}∩{∇uεk = 0}= ∅,

X{uεk
>s}→X{u>s}=XE as k→∞,

where E={u= 1}. Moreover by the definition of W̃ we have

W̃(E)≤ liminf
k→∞

W(X{uεk
>s}) = liminf

k→∞

∫
{uεk

=s}
v2 dHn−1

for any s∈ I. By (3.9) and Fatou’s Lemma for α>0 we eventually obtain

liminf
ε→0

Fε(uε)≥W̃(u)

∫ 1

0

√
2W (s)ds= W̃(u).

In the case α= 0 the same argument shows (3.7).

2. Let first E⊂Ω have smooth boundary. We follow the standard construction of
a recovery sequence and consider the one-dimensional optimal profile q from
(3.1) and the signed distance function d from ∂E. We then set uε := q(dε )
in {|d|<δ}, where δ>0 is suitably small such that the projection on ∂E is
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smooth on {|d|<2δ}. In {|d|>2δ} we set uε to 1 in E and 0 in Ω\E. In
{δ< |d|<2δ} we choose uε to smoothly interpolate in such a way thatW(uε)
and |∇uε| are exponentially small in {|d|≥ δ}; see for example [20, Section
4]. Then the Willmore energy Wε(uε) is known to converge to W(E). For
the additional part in the energy we compute in the set {|d|<δ}

w+
(
ε|∇u|

√
2W (u)

) 1
2

v =−q′
(d
ε

)
∆d+

(√
2W
(
q
(d
ε

))
q′
(d
ε

)) 1
2

v = 0,

since in {|d|<δ} we have
√

2W (q) = q′ and v= ∆d as level sets of uε corre-
spond in that region to level sets of d.
In the region {|d|≥2δ} we have w,ε|∇u|

√
2W (u) = 0. Finally, for a carefully

chosen interpolate in the construction of uε, in {δ≤|d|≤2δ} we have that w
and ε|∇u|

√
2W (u) are exponentially small. Furthermore, ∆d=v is controlled

in terms of the principal curvatures of ∂E. This shows the approximation
property for C2-boundaries ∂E.
To deal with the general case we only need to show that W̃=W on sets with
C2-boundaries. This condition is in fact satisfied by [35] and [29].

4. Numerical simulations for the standard diffuse Willmore flow
Numerical investigations of the Willmore flow and related dynamics mainly build

on parametric (sharp-interface) approaches and implicit treatments by level set and
phase-field methods. Parametric approaches for the Willmore flow have been proposed
in [2, 4] for curves and in [34, 19, 3] for curves and surfaces. Generalized Helfrich–
type flows for single- and multicomponent vesicles have been studied with sharp-
interface methods in [13] and [25], respectively. Level set methods have been applied
first in [21] to the Willmore flow. For a comparison of level set and sharp-interface
approaches we refer to [10]. Phase field approximations for the Willmore flow have
been numerically investigated in [22]. For diffuse-interface approximations of Helfrich-
type flows, we refer to [12, 23, 14]. Coupled Helfrich- and Cahn-Hilliard-type flows
have been numerically treated with phase-field models in [37, 28].

In this section, we consider the standard diffuse Willmore flow (1.4) and focus on
situations where (diffuse) interfaces collide. We present numerical results for both a
finite element discretization and a finite difference scheme of the diffuse-interface flow
(1.5).

4.1. Finite element approximation. The discretization is implemented in
the FEM toolbox AMDiS [36]. First, we use linear elements in space and a semi-
implicit time discretization with a linearization of nonlinearities. Furthermore, we
use a uniform grid and discretize (1.5) as a coupled system of two second order PDEs
for the discrete solutions uh and wh and solve the resulting linear system with a
direct solver (UMFPACK, [17]). Thereby, we consider a domain Ω = (−1,1)2⊂R2 and
assume periodic solutions at the boundary ∂Ω. Moreover, we use a simple adaptive
strategy in time, where time steps ∆tm∈ [10−7,5 ·10−6] are inversely proportional to
the maximum of the discrete time derivative of the phase-field variable. For the results
presented in this section we have used ε= 0.1.

4.1.1. Symmetric initial condition. As the initial condition, we have
chosen a phase-field function uh(·,0) :Ω→R having nine symmetrically distributed
circular levelsets {uh(·,0) = 1/2} (Figure 4.1, left) with equal radii 0.1. In Figure 4.1,
one can see the contour plots of uh at different times. Thereby discs start to grow
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until the interfaces begin to “feel” each other. Then the interface forms sharp corners.
Our interpretation of such behavior is that the diffuse approximations converge to the
saddle solution of the Allen–Cahn equation discussed in Section 2. As the diffuse
mean curvature for saddle solutions vanishes, such corners carry very little diffuse
Willmore energy.

Fig. 4.1. Evolution of “standard” diffuse-interface Willmore flow (1.5): Discrete phase-field
uh for different times t= 0, t≈0.0019, t≈0.0024, t≈0.0037.

Fig. 4.2. Evolution of “standard” diffuse-interface Willmore flow (1.5): Discrete phase-field
uh for different times t= 0, t≈0.0039, t≈0.1038, t≈0.3338.

4.1.2. Non-symmetric initial condition. In Figure 4.2, similar phenomena
can be observed for non symmetric initial conditions. The discrete Willmore energy
is plotted in Figure 4.3. For large times t this energy

e(t) :=Wε(uh(·,t))

is close to 0.

4.1.3. Two circles initial condition. As a further example, we consider
an initial condition with two circles with radii 0.2 and 0.3. Contour plots of uh at
different times are shown in Figure 4.4, where after collision of interfaces a transversal
intersection appears.

4.2. Finite differences implementation. In this subsection, we implement
the standard diffuse Willmore flow using finite differences, and observe the same
unexpected behavior in 2D as in the previous subsections: the colliding interfaces
form a “cross”, even though this should be precluded by the sharp-interface energy.
Therefore, it seems unlikely that this surprising behavior is due to a numerical artifact:
it appears to be an intrinsic feature of the standard approximation (1.4). However, we
also provide simulations in three dimensions that suggest that this phenomenon might
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Fig. 4.3. Evolution of “standard” diffuse-interface Willmore flow (1.5): Diffuse Willmore
energy e(t) =Wε(uh(·,t)) versus time t.

Fig. 4.4. Evolution of “standard” diffuse-interface Willmore flow (1.5): Discrete phase-field
uh for different times t= 0, t≈0.003, t≈0.0045, t≈0.0200.

be two dimensional only: the standard diffuse-interface model inspired by De Giorgi’s
conjecture appears to lead to a topological change (mergers) when two typical surfaces
collide in 3D. This is in keeping with some of the numerical experiments carried out
by Du et al. in [22, 23]. Whether Gamma-convergent numerical approximations, such
as the one due to Bellettini [6] or the new one presented in this paper in Section 3,
also lead to a topological change in 3D under these circumstances will be investigated
subsequently in Section 5. See also Section 7 for a discussion of why topological
changes are in fact more likely in 3D than in 2D for gradient descent of the L1

relaxation of Willmore energy.
In 2D, the results presented in Figure 4.5 are for the diffuse-interface energy

Wε(u)+γHε(u),

where the second term is included to ensure a uniform bound of the diffuse surface
area (note however that for evolutions with well-behaved initial conditions this is often
automatically satisfied, as for example in the simulations above).
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Our scheme for its L2 gradient flow is

un+1−un

δt
=−∆hw

n+

{
1

ε2
W ′′(un)+γ

}
wn, (4.1)

where

wn :=ε∆hu
n− 1

ε
W ′(un), (4.2)

and ∆h is the standard centered differences discretization of the Laplacian on a uni-
form grid. This is an explicit time stepping scheme, the stability (CFL) condition
(upper bound on the time step size δt) for which scales as (δx)4 as δx→0+.

Alternatively, we have the following semi-implicit version:

un+1−un

δt
=−ε∆2

hu
n+1 +

1

ε
∆h

(
W ′(un)

)
+

{
1

ε2
W ′′(un)+γ

}
wn (4.3)

where wn is again as in (4.2). At each time step, un+1 is solved for via the discrete
Fourier transform. This scheme appears to be stable for much larger time step sizes
than (4.1). In the interest of minimizing the possibility of numerical artifacts, we
refrain from further attempts to improve the computational efficiency of the schemes
used here, even though there is no shortage of classical techniques for doing so.

Numerical simulations using scheme (4.3) are shown in Figure 4.5. The computa-
tional domain was [0,1]2, and the diffuse-interface parameter was chosen to be ε= 0.03.
The spatial resolution was 200×200. The parameter γ was taken to be 1

4 . The results
testify to the same surprising qualitative behavior as in simulations of sections 4.1.1
and 4.1.3. Thus, this appearance of crossings when interfaces collide appears to be a
robust, inherent feature of the standard diffuse-interface approximation.

Fig. 4.5. Gradient flow for the standard diffuse-interface approximation of Willmore energy,
using the finite differences scheme 4.3.

We now turn to some 3D simulations, again with the standard diffuse-interface
approximation (1.5). The natural analogue of the two disks initial condition in three
dimensions is two disjoint spheres. However, unlike disks in 2D, spheres in 3D are
stationary under Willmore flow, and would in fact shrink to naught in the presence
of even the slightest additional penalty on perimeter (i.e. when γ>0). We therefore
add an expansionary bulk energy term:

Wε(u)+γHε(u)−α
∫
udx, (4.4)

with α>0. Schemes (4.1) and (4.3), which correspond to the α= 0 case, adapt trivially
to the α 6= 0 case.
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Figure 4.6 shows that the inclusion of the expansion term in 2D does not alter
the formation of a cross (and failure to merge and become regular) for the two disk
initial data. This simulation was carried out with the same parameters as before and
α= 15.

Fig. 4.6. Willmore flow with perimeter penalty and volumetric expansion term, simulated using
a finite differences discretization of the standard diffuse-interface approximation.

Figure 4.7 shows simulations in 3D with two disjoint spheres of equal size as ini-
tial data. The parameters were ε= 0.06, γ= 1

4 , and α= 15. The spatial resolution
was 100×100×100. The volumetric term leads to expansion of the spheres, which
eventually touch. Unlike the 2D situation, the two surfaces merge and become in-
stantaneously regular.

Fig. 4.7. 3D simulations with the standard diffuse-interface approximation of Willmore flow,
together with a volumetric expansion term.

5. Numerical simulations with Bellettini’s approximation

In this section, we provide numerical experiments in the plane with Bellettini’s
Gamma-convergent approximation (2.3), and investigate what happens at topological
changes. In the interest of isolating potential numerical artifacts from inherent be-
havior of Willmore flow that results from this approximation, we keep the numerical
scheme as simple as possible: it is a straight-forward finite differences discretization,
with explicit time stepping. Unsurprisingly, computations with this scheme are very
slow, owing to the extremely stringent stability restriction on the time step size. How-
ever, they appear to be also very robust. In particular, a discrete form of the energy
is observed to decrease at every time step. Due to the delicate nature of the ques-
tion (topological changes in a fourth order gradient flow for a curvature dependent
functional!), we give full details of the implementation.
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We will work with the following regularized version of (2.3):

Wε,δ(u) :=
1

2

∫ 
(
∇· ∇u√

|∇u|2 +δ

)2

+γ


(
ε

2
|∇u|2 +

1

ε
W (u)

)
dx. (5.1)

Here γ>0 is added to ensure a uniform bound for Hε(uε), necessary for Gamma-
convergence to the L1-relaxation of the Willmore functional. For simplicity, our ex-
position is restricted to R2 below; extension to arbitrary dimensions is straightforward.
To begin with, the L2 gradient flow for (5.1) leads to the following evolution:

∂tu=− ∂

∂x

(
(u2
y+δ)∂x(κδhε)−uxuy∂y(κδhε)

(|∇u|2 +δ)
3
2

)

− ∂

∂y

(
(u2
x+δ)∂y(κδhε)−uxuy∂x(κδhε)

(|∇u|2 +δ)
3
2

)
+
ε

2
∇·
(

(κ2
δ+γ)∇u

)
− 1

2ε
(κ2
δ+γ)W ′(u), (5.2)

where

κδ :=∇·

(
∇u√
|∇u|2 +δ

)
(5.3)

and hε denotes the diffuse surface area density, hε(u) = ε
2 |∇u|

2 +ε−1W (u).

Working on a uniform spatial grid with periodic boundary conditions, let D+ and
D− denote the standard forward and backward difference quotients in the direction
of their subscript. Let un denote the solution at the n-th time step. Let’s start with
the discretization of the diffuse surface area density hε(u):

M(u) =
ε

4

((
D+
x u
)2

+
(
D−x u

)2
+
(
D+
y u
)2

+
(
D−y u

)2)
+

1

ε
W (u). (5.4)

The denominator in the curvature term κδ can be discretized in any one of the fol-
lowing four ways (we’ll use all):

Du±,±=

√
(D±x u)2 +(D±y u)2 +δ, (5.5)

where the first and second ± in the superscript of Du refer to the signs of difference
quotients in the x and the y directions, respectively. The superscript will be dropped
for convenience below, whenever it is just ±,±. The choice of sign for the difference
quotient in each coordinate direction in (5.5) determines the signs of all subsequent
difference quotients, as indicated with ± or ∓ signs below. Approximation to the
curvature term κδ can be obtained as

K±,±(u) =D∓x

(
D±x u

Du

)
+D∓y

(
D±y u

Du

)
, (5.6)

where the superscripts of K indicate the signs for the difference quotients in the x
and y directions, respectively.
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Next, define

A±,±1 (u) :=D∓x

(
[D±x (K(u)M(u))]

[
(D±y u)2 +δ

]
(Du)3

)

−D∓y
(

[D±x (KM)](D±x u)(D±y u)

(Du)3

)
,

A±,±2 (u) :=D∓y

([
D±y (K(u)M(u))

][
(D±x u)2 +δ

]
(Du)3

)

−D∓x

([
D±y (K(u)M(u))

]
(D±x u)(D±y u)

(Du)3

)
,

(5.7)

where superscripts of A1 and A2 indicate once again the chosen signs for the difference
quotients in the x and y directions, in that order. Let

A∗1(u) :=A+,+
1 (u)+A+,−

1 (u)+A−,+1 (u)+A−,−1 (u),

A∗2(u) :=A+,+
2 (u)+A+,−

2 (u)+A−,+2 (u)+A−,−2 (u).
(5.8)

Define also the discrete squared curvature:

K2
∗(u) :=

1

4

(
(K+,+(u))2 +(K+,−(u))2 +(K−,+(u))2 +(K−,−(u))2

)
. (5.9)

Let

A3(u) :=−ε
2

{
D−x
(
(K2
∗+γ)D+

x u
n
)

+D−y
(
(K2
∗+γ)D+

y u
n
)

+D+
x

(
(K2
∗+γ)D−x u

n
)

+D+
y

(
(K2
∗+γ)D−y u

n
)}

+
1

ε

(
K2
∗+γ

)
W ′(un). (5.10)

Finally, our update scheme is

un+1−un

δt
=−

(
A1(un)+A2(un)+

1

2
A3(un)

)
. (5.11)

With time step size δt>0 chosen small enough compared to the spatial grid size, this
scheme is guaranteed to decrease the following discrete form of the energy:∑

i,j

(
K2
∗(u

n
i,j)+γ

)
M(uni,j), (5.12)

as can be easily verified by differentiating (5.12) with respect to time, and summing
by parts a few times. Of course, it must be mentioned that the convergence of energy
(5.12) to, say, (5.1) as the grid size and the regularization parameter δ are appropri-
ately sent to 0 has not been established rigorously; we merely give some numerical
evidence. In 2D, the computational domain was [0,1]2 with a spatial resolution of
100×100. Periodic boundary conditions were used.

The parameters were chosen to be ε= 0.045, γ= 1
2 , and δ= 0.01. As an initial

guess, u0 was taken to be the characteristic function of the union of two disjoint
disks. During the evolution, the disks are observed to initially expand as disks, as
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expected. However, once they are within a small distance (related to the diffuse-
interface thickness ε) of each other, they are unable to get any closer. Topological
changes appear to be precluded; in particular, neither a merger subsequently leading
to a smooth evolution occurs (as was previously seen in various numerical implemen-
tations of Willmore flow via implicit representations), nor the formation of a corner
as with the De Giorgi approximation. Instead, the curves continue to expand, but are
no longer circles.

Next, we explore what happens in 3D. Once again, as in Section 4.2, we include a
volumetric expansion term so that spheres would grow. Figure 5.2 shows computations
with two parallel cylinders as the initial condition, which in fact corresponds to a 2D
computation; the difference from the experiment of Figure 5.1 is the inclusion of the
volumetric expansion term. We see that even in the presence of the additional driving
force bringing the interfaces into collision, topological change is precluded, just as in
the 2D experiment of Figure 5.1.

On the other hand, Figure 5.3 shows simulations with two disjoint spheres as the
initial condition. The computational domain is [0,1]3 and the spatial resolution is
50×50×50. The parameters were chosen to be ε= 0.12, γ= 1

4 , and δ= 0.01. In this
case, the spheres merge once they come into contact (i.e. “feel” each other due to the
diffuse-interface thickness). See the remark in Section 7 for an explanation of why
this topological change is not precluded.

Fig. 5.1. Evolution of disks under L2 gradient flow (in the bulk) for Bellettini’s approximation
to the Willmore energy. Topological changes appear to be precluded: the disks do not merge. After
getting within a small distance of each other (related to diffuse-interface thickness), they continue
their expansion, but are no longer circles.

Fig. 5.2. Evolution of cylinders under L2 gradient flow for Bellettini’s approximation of Will-
more energy, with a bulk energy term encouraging expansion added. The evolution is essentially 2D;
the only real difference from the simulation of Figure 5.1 is the inclusion of the bulk energy term.
Just like in the no bulk energy term case of Figure 5.1, the cylinders cannot merge even though they
come into contact, despite the additional driving force that slams interfaces into each other.
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Fig. 5.3. Evolution of spheres under L2 gradient flow for Bellettini’s approximation of Willmore
energy, with a bulk energy term encouraging expansion added. The spheres expand and touch, and
unlike in the 2D experiment with disks shown in Figure 5.1 or the 3D experiment with cylinders
shown in Figure 5.2, the topological change takes place: the spheres merge, and the surface becomes
instantaneously regular.

6. Modified diffuse-interface Willmore flow
In the following, we consider the modified diffuse approximation of the Willmore

energy (3.3) and the corresponding L2-gradient flow.
This modification by an additional ‘penalty’ term offers some extra flexibility

compared to alternative energies such as (2.3). As long as solutions are close to the
optimal-profile construction the correction is negligible. One could therefore ‘switch
off’ the additional term as long as Aε is small, or only use the extra forcing in regions
where Aε is large. This might help to reduce computational costs, as the remaining
standard term is much easier to deal with. If solutions start to deviate from the
optimal profile, only the property that the extra term blows up could be used. One
therefore might need much less accuracy in computing this term and might be able to
choose different numerical relaxation or discretization parameters than for the term
Wε in the total energy Fε. Here however we only aim at a proof of concept and do
not exploit such possibilities or quantify this hypothesis.

6.1. Modified Willmore energy. In order obtain a simpler variational
derivative than we would obtain from (3.2), we assume |ε∇u|≈

√
2W (u) and introduce

an additional energy

Ãε(u) :=
1

2ε1+α

∫
Ω

(
−ε∆u+ε−1W ′(u)︸ ︷︷ ︸

=:w

+
√

2W (u)∇· ∇u
|∇u|︸ ︷︷ ︸

=:v

)2

dx, (6.1)

where α≤1. Whereas the analysis in Section 3 does not cover this case, our numerical
simulations show that this choice works equally well. In the following we therefore
will use the diffuse Willmore energy

F̃ε(u) :=Wε(u)+Ãε(u),

and will analyze numerically this functional and the corresponding L2-gradient flow.
We expect that a Gamma-convergence result as in Theorem 3.1 also holds for F̃ε,
but the analysis in this case is much more difficult and will be subject to future
investigations.

6.2. Computation of the additional energy. We compute the additional
energy

a(t) := Ãε(uh(·,t))
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with α= 0 during a simulation similar to the one in Figure 4.1. The only difference
is that we have used 4th order finite elements. Furthermore, we have regularized

1

|∇u|
;

1√
|∇u|2 +δ

,

with δ= 0.1 in order not to divide by zero. Again we use a uniform grid with 652 = 4225
vertices leading to 66049 degrees of freedom for each unknown. In Figure 6.1 (left),
one can see the energy decrease of e(t) =Wε(uh(·,t)) during time with values very
close to zero for large times. Figure 6.1 (right) displays the expected blow up of the
additional energy a(t) = Ãε(uh(·,t)) when the interfaces begin to “feel” each other.
This behavior serves as a motivation to study the modified flow of the energyWε+Ãε
in the following.
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Fig. 6.1. Evolution of “standard” diffuse-interface Willmore flow (1.5): Willmore energy e(t) =
Wε(uh(·,t)) (left), additional energy a(t) = Ãε(uh(·,t)) (right) versus time t.

 0.1

 0.2

 0.3

 0.4

 0  0.01  0.02

R

t

radius R(t)

numerics
analysis

Fig. 6.2. Evolution of modified flow (6.2): Radius of growing circle versus time: Analytic
expression and results of modified diffuse-interface flow.

6.3. Modified flow. Here, we consider the L2-gradient flow

ε∂tu=−δ(Wε+Ãε)
δu

(6.2)
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of the energy Wε(u)+Ãε(u). We introduce

v :=
√

2W (u)∇· ∇u
|∇u|

=∇·
(√

2W (u)
∇u
|∇u|

)
−
(√

2W (u)
)′|∇u|

and obtain the variational derivative

δÃε
δu

=
1

ε1+α

(
−ε∆(v+w)+ε−1W ′′(u)(v+w)+

(√
2W (u)

)′√
2W (u)

v(v+w) (6.3)

+∇·(B(u,∇u)(∇v+∇w))
)
,

where

B(u,∇u) :=

√
2W (u)

|∇u|

(
I− ∇u
|∇u|

⊗ ∇u
|∇u|

)
.

Thereby, I= (δij)ij denotes the unit matrix.
In order to numerically treat the modified flow (6.2), we split the time interval

[0,T ] by discrete time instants 0 = t0<t1< ·· ·<tM =T , from which one gets the time
steps ∆tm := tm+1− tm, m= 0,1,. ..,M−1. Moreover, we apply the following operator
splitting type ansatz for time-discrete functions u(m), v(m), w(m) at time instant tm:

1. Compute v(m) via

v(m) =∇·

(√
2W (u(m))

|∇u(m)|
∇u(m)

)
−
(√

2W (u(m))

)′
|∇u(m)|. (6.4)

2. Solve for u(m+1) and w(m+1) in

ε
u(m+1)−u(m)

∆tm

=∆w(m+1)−ε−2W ′′(u(m))w(m+1)− 1

ε1+α

(
−ε∆(v(m) +w(m+1))

+ε−1W ′′(u(m))(v(m) +w(m+1))

+

√
2W (u(m))

′√
2W (u(m))

v(m)(v(m) +w(m+1))

+∇·(B(u(m),∇u(m))(∇v(m) +∇w(m+1)))
)
, (6.5)

w(m+1) =−ε∆u(m+1) +ε−1W ′′(u(m))u(m+1)

+ε−1W ′(u(m))−ε−1W ′′(u(m))u(m). (6.6)

Thereby, for δ,δW >0, we regularize

1

|∇u(m)|
;

1√
|∇u(m)|2 +δ

,

1√
2W (u(m))

;
1√

2W (u(m))+δW

for all terms of these forms appearing in (6.4)–(6.6). In addition to the previous
parameters, we have used δW = 0.01.
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Fig. 6.3. Evolution of modified flow (6.2): Discrete phase-field uh for different times t= 0,
t≈0.0012, t≈0.0024, t≈0.0045.
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Fig. 6.4. Evolution of modified flow (6.2): Total energy f(t) =Wε(uh(·,t))+Ãε(uh(·,t)) versus
time t.

Fig. 6.5. Evolution of modified flow (6.2): Discrete phase-field uh for different times t= 0,
t≈0.0010, t≈0.0030, t≈0.1046.

As a first test, we observe that the modified flow yields a reasonable approximation
of Willmore flow in the case of a growing circle. In Figure 6.2, we compare numerical
results with the analytic expression for a circle growing according to Willmore flow.
Thereby, we use an initial radius R(0) = 0.1 and plot the radius R(t) versus time. In
Figure 6.3, we see numerical results for this flow showing the phase-field variable u
for a symmetric initial condition with nine circles with equal radii 0.1 as in Figure
4.1. The final picture shows the nearly stationary solution. Figure 6.4 shows the
energy decrease for this example. In Figure 6.5 the nonsymmetric initial condition
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Fig. 6.6. Evolution of modified flow (6.2): Discrete phase-field uh for different times t= 0,
t≈0.003, t≈0.0049, t≈0.0199.
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Fig. 6.7. Evolution of modified flow (6.2). Left: level curve {uh = 1/2} at times t= 0 and
t≈2.2462 and plot of the shifted version Γ1 of the analytic minimizer from [26]. Right: level curve
{uh = 1/2} at times t= 0 and t≈2.2462 and shifted version Γ2 of the analytic minimizer from [26].

from Figure 4.2 has been used. Again, the nearly stationary discrete solution at time
t≈0.016 shows that self intersections are prohibited for this modified flow.

In Figure 6.6 the initial condition with two circles is not symmetric as in Figure
4.4. The circles grow until the interfaces “feel” each other. The modified energy
prevents the level sets from forming self intersections. The contour plots in Figure
6.6 are taken at similar times as in Figure 4.4.

In the gradient flow simulations for Bellettini’s energy and the modified energy Fε
we have often observed that circles upon collision keep touching and evolve to an ellipse
type shape. We expect that such shapes represent suitable elastica. In a final example,
we therefore compare (nearly) stationary states in our numerical simulations with
graphs of minimal elastic energy [26] that present possible optimal configurations. In
[26], Linnér and Jerome prove the existence of a unique graph of minimal elastic energy
amongW 2,2-regular graphs over [0,1] that have finite length, that start with horizontal
slope in (x,y) = (0,0) and reach the line {x= 1} with vertical slope. Moreover, Linnér
and Jerome provide an explicit formula for this minimizer that can be compared with
shapes that we obtain as stationary configurations in our simulations. With this
aim we have chosen the rectangular domain Ω= (−1.1,1.1)×(−2.2,2.2) with periodic
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boundary conditions and an ellipse as initial condition, such that we expect the level
set Γh :={uh= 1

2} to stop growing in the x-direction at x≈±1. In Figure 6.7 we see
level sets {uh= 1

2} at times t= 0 and t≈2.2462, where the configurations have become
nearly stationary. By symmetry, at the touching point with the vertical boundary of
Ω the level line Γh has vertical slope and its lower right quarter therefore can be
compared to appropriately shifted versions of the analytic minimizer from [26]. First
we consider a shift such that the line {x= 1} is reached at (x,y) = (1,0); see the curve
Γ1 in Figure 6.7 (left). Second we consider a shift such that the analytic minimizer
and Γh (at the final time) agree at the bottom point; see the curve Γ2 in Figure 6.7
(right). We observe a pretty good agreement between the final configuration of our
simulations and the analytic minimizer, indicating that equilibrium configurations of
our simulations in fact consist of unions of elastica.

7. Discussion

We have analyzed the behavior of different diffuse approximations of the Willmore
flow in situations where diffuse interfaces collide. Different scenarios emerge. In
level set approximations the respective phases typically merge (not investigated here,
but see the results presented in [21]) at the moment of collision. For the standard
diffuse approximation on the other hand we have demonstrated that (at least in
two dimensions) transversal intersections of diffuse interfaces are preferred. As an
alternative we have introduced two new diffuse approximations with again different
behavior: after collision the phases keep touching, away from the touching points the
interfaces evolve to elastica.

Whereas all approximations converge to the same evolution as long as phases re-
main well separated, the kind of approximation determines the evolution past collision
of interfaces. Here is a summary of these behaviors:

Method Disks in R2 Spheres in R3

Standard “Cross” formation Merger
Level set Merger Merger
Bellettini No merger Merger

New approx. No merger Not investigated (we expect mergers)

Although there appears to be agreement in the case of spheres, it is reasonable to
assume that the discrepancies in the two dimensional handling of topological changes
would manifest themselves also in 3D with more general surfaces.

The expected behavior through these topological changes, and therefore the choice
of the approximation, may depend on the specific application. For example, in image
processing applications such as inpainting (see e.g. [11]), it is often desired that col-
liding interfaces merge in 2D. Indeed, in the important work [15], the Willmore energy
is utilized to drive interfaces towards collisions and mergers. In other applications,
for instance in the segmentation of medical images (see e.g. [1]), it may be desirable
to prevent merging of colliding interfaces.

Our new approximation and that of Bellettini [5] agree in the handling of topolog-
ical changes considered here for Willmore flow. Indeed, for these Gamma-convergent
approximations, we argue that the observed limit flow describes the only reasonable
evolution that is continuous with respect to the L1-topology and keeps decreasing the
Willmore energy. In contrast, typical ‘mergers’ do not share this property. In fact,
let us assume that we have a sequence of Jordan curves (γk)k∈N that approximates
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γk

γ̃k

Fig. 7.1. Left: Curve γk and modification γ̃k. Right: Limit of the modified curves.

the union of two touching balls

S = {(x,y)∈R2 : (x+1)2 +y2 < 1}∪{(x,y)∈R2 : (x−1)2 +y2 < 1}

in L1-distance. Assume for simplicity that the γk are symmetric with respect to the
x-axis, that the upper half is given as a nonnegative graph, and that the convergence
is in an C0-sense outside a region {(x,y)∈R2 : |x|<1−δ}. We then can modify the
curves by replacing the part below the x-axis by a circular arc that touches γk in
its intersection points with the x-axis (see Figure 7.1). By construction the modified
curves γ̃k are C1-Jordan curves that are piecewise C2. As the radius of the attached
half-circles approaches 2 with k→∞ there exists a constant C>0 independent of k
such that

W(γ̃k)≤W(γk)+C. (7.1)

On the other hand the sets enclosed by γ̃k converge in L1-distance to
(
S∩R2

+

)
∪(

B(0,2)∩R2
−
)
, where R2

± denote the upper and lower half-plane, respectively. This
however is a set with exactly one simple cusp point. By [7, Theorem 6.4] this implies
that

lim
k→∞

W(γ̃k) =∞.

From (7.1) we deduce therefore that the elastica energy of γk blows up, too.
In 3D the behavior of diffuse Willmore flows in situations where diffuse interfaces

collide is different from the two dimensional case: two spheres that are initially disjoint
but forced to come in contact via a volumetric expansion term are likely to merge
under gradient descent for the L1 relaxation of Willmore energy. Indeed, using e.g.
catenoid “necks”, of the form

y=acosh

(
x−b
a

)
,

with a and b are appropriately chosen, we can “connect” two spheres at the moment
of contact with an arbitrarily small neck that is tangent to the spheres after slightly
shifting them if necessary, while decreasing the energy. Note that the catenoid neck,
regardless of its scale, has no elastica energy at all, since it happens to be a minimal
surface and thus has vanishing mean curvature. To be more precise, the foregoing
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discussion shows that it is easy to construct a continuous in L1 map from the interval
[0,1] into sets in R3 that deforms the union of two spheres in contact to a C2 surface
topologically equivalent to the sphere, while decreasing the Willmore energy during
the deformation.
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