
COMMUN. MATH. SCI. c© 2014 International Press

Vol. 12, No. 1, pp. 99–123

NUMERICAL SIMULATIONS OF AN ENERGY-TRANSPORT
MODEL FOR PARTIALLY QUANTIZED PARTICLES∗

PAOLA PIETRA† AND NICOLAS VAUCHELET‡

Abstract. A coupled quantum-classical model describing the transport of electrons confined in
nanoscale semiconductor devices is considered. Using the subband decomposition approach allows
us to separate the transport directions from the confinement direction. The motion of the gas in
the transport direction is assumed to be classical. Then a hierarchy of adiabatic quantum-classical
models is obtained, leading to subband SHE and energy-transport models with explicit expression
of the diffusion coefficients. The energy-transport-Schrödinger-Poisson model is then used for the
numerical simulation of the transport of the electron gas in an ultra-scaled Double-Gate-MOSFET.
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1. Introduction

In nanoscale semiconductor devices, electrons might be extremely confined in one
or several directions, referred to as the confining direction. This leads to a partial
quantization of the energy which can be modelled by the subband decomposition
method [33]. This subband decomposition approach allows one to separate the con-
finement direction from the transport direction. Thanks to the reduction of the dimen-
sion of the transport problem, the computational gain is significant. In the confined
direction electrons behave like waves; the system is at thermodynamical equilibrium
and is described by a statistical mixture of eigenstates of a Schrödinger-Poisson sys-
tem. In the transport direction the transport can be of classical [8, 7] or quantum
[33] nature.

Here, we are interested in deriving adiabatic quantum–classical models accounting
for thermal effects, aiming at accurate and efficient numerical simulation of confined
devices. In [9] several spherical harmonic expansion (SHE) models incorporating
quantum effects are proposed. However, with their strategy the obtained models
have a complicated non-local structure which is not suitable for numerical purposes.
Quantum energy–transport and quantum drift-diffusion models have been derived in
[16] using the strategy of quantum moments, as well as in [26]. These models involve
a quantum chemical potential that depends on the density in a non–local way. In
those references, fully quantum diffusive/hydrodynamic models are derived and then
expanded semiclassically (typically up to O(~2) terms). In this work we deal with a
completely quantum description of the (quantizied) energy in the transverse direction,
and with completely (semi)classical description in the transport directions. This in
particular means that the considered time and space scales allow us to consider both
the transport equation and the collision description in the classical setting. Possible
memory effects for the electron-phonon interaction reported in the literature [19, 36]
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are not taken into account here. We follow the strategy proposed in [7] where the
subband model is derived first, and then a diffusive approximation of the adiabatic
Boltzmann equation is performed to obtain coupled quantum–fluid models (spheri-
cal harmonic expansion and energy–transport). More precisely, the adiabatic Boltz-
mann equation for semiconductors governs the evolution of the distribution function
fn(t,x,k) of the nth subband, denoted by ǫn:

∂tfn+
~
2

m∗
k ·∇xfn−∇xǫn ·∇kfn=Q(f)n,

where the collision operator Q accounts for collisions in the subband, as well as for
transitions between subbands, and considers different kind of collision mechanisms
(collisions with impurities, collisions with phonons and electron-electron collisions).
The diffusive approximation is obtained by assuming that these scattering mechanisms
are predominant. The subband energy–transport (ET) model in [7], directly derived
from the Boltzmann equations (as in e.g. [6] for the classical case), is, however, not
immediately suited for numerical simulations, since the diffusion coefficients are not
given in explicit form and, moreover, the energy relaxation term is not obtained.
Therefore, we propose in this work a suitable description of the dominant collision
mechanisms which allows us to extend the formal derivation of the SHE model given in
[7]. Assuming that the transport is mainly driven by the elastic collisions, a diffusive
approximation of the above Boltzmann equation allows us to derive the SHE model
in the confined case:

N∂tF +∇x ·J−κ∂εF =S(F ),

where N is the density of states, F is the formal limit of the distribution function, J =
−D∇xF is the electronic current, and S is the scattering operator. The confinement in
the transverse direction is taken into account through the expressions of the density
of states, the coefficient κ, and the diffusion coefficient D. Then a new ET model
is formally derived as diffusive limit from this SHE model (in the spirit of [3]) i.e.
assuming the predominance of electron-electron scattering. This ET system governs
the evolution of the particles density ρ and of the energy density ρE , which are defined
through the quasi-Fermi potential energy µ and the temperature T of the system by
the Fermi-Dirac statistics Fµ,T . More precisely,

ρ=

∫

R

N(ε)Fµ,T (ε)dε, ρE=

∫

R

εN(ε)Fµ,T (ε)dε.

The ET system for partially confined particles writes

∂tρ−∇x ·
(
D00∇x

( µ

kBT

)
−D01∇x(

1

kBT
)
)
=0,

∂tρE+
∑

n∈N∗

2πm∗

~2
∂tǫn

∫ +∞

ǫn

Fµ,T (ε)dε−∇x ·
(
D10∇x

( µ

kBT

)
−D11∇x

( 1

kBT

))
=W,

where D is a diffusion matrix, incorporating the quantum confinement in the trans-
verse direction, and W is the relaxation term. The Boltzmann constant is denoted by
kB .

Numerical discretization of classical ET equations has already been studied in
many papers: by using mixed finite elements schemes e.g. in [15, 20, 21, 23, 28, 30],
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ENO schemes in [24], finite difference methods [18, 35], and finite volume schemes in
[13]. In [15, 23], the authors propose a drift-diffusion reformulation which allows one
to use an accurate Sharfetter-Gummel scheme with exponential fitting [11] and, more-
over, to decouple the ET model. However, in this quantum case, the involved form of
the diffusion coefficients does not allow for a decoupled drift-diffusion reformulation.
Then we will use a more traditional approach with mixed finite elements, which can
be directly applied since the obtained ET model turns out to be in symmetric form.
Then, a Gummel type algorithm is used as outer iterations of the solution of the cou-
pled energy-transport-Schrödinger-Poisson model, and the (non-linear) ET discrete
system is solved by means of a Newton scheme. Moreover, passing to the limit in the
energy relaxation term, a subband drift-diffusion equation is recovered in the form of
[8] with a more accurate description of the diffusion coefficients taking into account
the collisional mechanisms (see also [32] for numerical simulations).

The outline of the paper is the following. In Section 2 we set the assumptions
on the collision mechanisms and we briefly present the formal derivation of the SHE
model. Then, we derive from this latter model the novel subband ET model. Fi-
nally, a subband drift-diffusion equation is obtained in the limit when the relaxation
time goes to infinity. Section 3 is devoted to the numerical issues. Subsection 3.1
presents the complete stationary model, the mixed finite elements scheme is described
in Subsection 3.2, and the iterative approach is outlined in Subsection 3.3. Numerical
simulations of an ultra-scaled Double-Gate MOSFET are presented in Subsection 3.4.

2. Formal derivation of adiabatic fluid-quantum models

2.1. The quantum-kinetic framework. We will assume in this work that
the confinement direction is one dimensional whereas the transport takes place in a
two dimensional domain. The domain is denoted Ω=ω× [0,ℓ] with ω⊂R

2. The first
two directions, called x∈ω, correspond to the classical description of the gas, whereas
in the third direction z∈ [0,ℓ] quantum effects occur. The quantum confinement of the
electron gas is described thanks to the eigen-elements of the 1D Schrödinger operator.
They are denoted (ǫn,χn)n∈N∗ and solve the following eigenvalue problem:





−
~
2

2

d

dz

(
1

m∗

d

dz
χn

)
+(U+Uc)χn=ǫnχn,

χn(x, ·)∈H
1
0 (0,ℓ),

∫ ℓ

0

χnχn′ dz= δnn′ .

(2.1)

In this equation ~ is the reduced Planck constant, m∗ the effective mass, and Uc

is a given confining potential. It is known that the eigenvalues ǫn in (2.1) form
an increasing sequence tending to +∞. These functions depend on the potential
energy defined by U =−eV , where e is the elementary charge and V denotes the
self-consistent electrostatic potential which solves the Poisson equation

div x,z(εR(x,z)∇x,zV )=
e

ε0
(Ne−ND). (2.2)

Here εR(x,z) denotes the relative permittivity, ε0 the permittivity constant in vacuum,
ND(x,z) is the prescribed doping density, and Ne(t,x,z) is the electron density. This
density is described by a sequence of distribution functions (fn)n∈N∗ describing the
repartition on each subband for the classical direction x∈ω and the corresponding
momentum variable k∈R

2. It is written as

Ne(t,x,z)=

+∞∑

n=1

(∫

R2

fn(t,x,k)dk

)
|χn|

2(t,x,z).
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The evolution of distribution functions is governed by a classical transport model
in the x direction parallel to the gas. The total energy of the nth subband is defined
by

εn(t,x,k)=
|k|2~2

2m∗
+ǫn(t,x). (2.3)

Therefore the energy-band diagram of the semiconductor crystal is spherically sym-
metric and strictly monotone with respect to |k|. Then the Brillouin zone (which
represents the elementary cell of the dual lattice L∗) is equal to R

2. Moreover, we
point out that, in contrast with the classical counterpart, the energy-band depends
on space and time. In a kinetic collisional framework, the distribution function fn of
the nth subband satisfies the rescaled Boltzmann transport equation [4, 32]:

α2∂tf
α
n +α(∇kεn ·∇xf

α
n −∇xεn ·∇kf

α
n )=Qld(f

α)n+
α2

β
Qe(f

α)n, (2.4)

whereQld is the collision operator for the lattice defect collisions andQe is the collision
operator for the elastic, nonlinear electron-electron collisions, accounting for intra–
band scattering as well as for transitions between subbands. α and β are dimensionless
parameters that satisfy α≪β≪1.

The main classes of lattice-defects that we shall consider are impurities and
phonons [1]:

Qld(f)=Qimp(f)+Qph(f).

The elastic character of the impurity scattering leads to

Qimp(f)n(k) :=
∑

n′∈N∗

∫

R2

Φimp
n,n′(k,k

′)δ(εn(k)−εn′(k′))(fn′(t,x,k′)−fn(t,x,k))dk
′,

where δ is the Dirac measure and the dependence on t, x of ε and Φimp has been
omitted. The cross-section is assumed to be symmetric: Φimp

n,n′(k,k′)=Φimp
n′,n(k

′,k).

The electron-phonon collision operator is considered as

Qph(f)n(k)

=
∑

n′∈N∗

∫

R2

Φph
n,n′(k,k

′)
([

(Nph+1)δ(εn(k)−εn′(k′)+α2εph)

+Nphδ(εn(k)−εn′(k′)−α2εph)
]
fn′(k′)(1−ηfn(k))

−
[
(Nph+1)δ(εn′(k′)−εn(k)+α

2εph)

+Nphδ(εn′(k′)−εn(k)−α
2εph)

]
fn(k)(1−ηfn′(k′))

)
dk′,

where again Φph
n,n′(k,k′)=Φph

n′,n(k
′,k), εph is the phonon energy, η≥0 is a dimension-

less distribution function scaling factor, and the terms 0≤1−ηfn≤1 express the Pauli
exclusion principle. Nph is the phonon occupation number, given by the Bose-Einstein
statistics

Nph=
(
eα

2εph/(kBTL)−1
)−1

, (2.5)
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with TL the lattice temperature and kB the Boltzmann constant. Formally expanding
the phonon collision operator in powers of α2, we get

Qα
ph(f)=Qph,0(f)+α

2Qα
ph,1(f),

where Qα
ph,1 is of order 1 when α goes to 0.

We point out that the extension of the classical Fermi’s Golden Rule to the sub-
band case for the description of the electron phonon interaction disregards possible
memory effects reported in the literature in the quantum setting [19, 36] and consid-
ered, e.g., in the non-local collision operator of the quantum SHE model presented in
[9]. Here we are accounting for partial quantization of energy induced by the confine-
ment, but the considered time and length scale of the transport phenomena allows
for a classical description.

The electron-electron collision operator is given by [34]

Qe(f)n(k)

=
∑

n′,r,s

∫

(R2)3
Φe

n,n′,r,s(k,k
′,k1,k

′
1)δ(εn+εn′,1−ε

′
r−ε

′
s,1)δ(k+k1−k

′−k′1)

[f ′rf
′
s,1(1−ηfn)(1−ηfn′,1)−fnfn′,1(1−ηf

′
r)(1−ηf

′
s,1)]dk

′dk1dk
′
1.

(2.6)

The notation fn′,1, f
′
r, and f

′
s,1 stands for fn′(k1), fr(k

′), and fs(k
′
1), respectively.

We define then the elastic collision operator

Q0(f)n =Qimp(f)n+Qph,0(f)n

=
∑

n′∈N∗

∫

R2

Φ0
n,n′(k,k′)δ(εn(k)−εn′(k′))(fn′(k′)−fn(k))dk

′,
(2.7)

where Φ0
n,n′ =Φimp

n,n′ +(2Nph+1)Φph
n,n′ . We set

Qα
1 (f)=Q

α
ph,1(f)+

1

β
Qe(f). (2.8)

Then the kinetic equation, starting point for the diffusive limits, is written in the
following form:

α2∂tf
α
n +α(∇kεn ·∇xf

α
n −∇xεn ·∇kf

α
n )=Q0(f

α)n+α
2Qα

1 (f
α)n. (2.9)

2.2. Definitions and notations. We first recall the coarea formula: for any
C1 function g :B 7→R, and any test function ψ∈C0(B), we have

∫

B

ψ(k)dk=

∫

R

(∫

g−1(ε)

ψ(k)
dSε(k)

|∇g(k)|

)
dε,

where dSε(k) denotes the Euclidean surface element on the manifold g−1(ε). We
denote dNε(k)=dSε(k)/|∇g(k)|. Taking g(k)= |k|2~2/(2m∗), the set of possible wave
vectors of electrons belonging to the n-th subband and having total energy ε is given
by Sε−ǫn ={k∈R

2 s.t. |k|2=2m∗
~
−2(ε−ǫn)} and dNε−ǫn =

dSε−ǫn

|k|~2/m∗
, where dSε−ǫn

is the surface measure of the ball Sε−ǫn . The coarea formula leads to

∑

n∈N∗

∫

R2

ψn(k)dk=
∑

n∈N∗

∫ +∞

ǫn

(∫

Sε−ǫn

ψn(k)dNε−ǫn(k)

)
dε (2.10)
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and

∑

n∈N∗

∫

R2

ψn(k)δ(ǫn+
|k|2~2

2m∗
−ε)dk=

∑

n∈N∗

∫

Sε−ǫn

ψn(k)dNε−ǫn(k).

Definition 2.1. We will use the following notations:

• The density of states is defined by

N(t,x,ε) :=
∑

n∈N∗

∫

Sε−ǫn

dNε−ǫn(k)=2π
m∗

~2
N (t,x,ε),

where N (t,x,ε)=max{n∈N
∗ / ǫn(t,x)≤ ε}, with the convention of

N (t,x,ε)=0 if ε<ǫ1(t,x).

• The Fermi-Dirac function is given by

Fµ,T (t,x,ε)=

(
η+exp

(
ε−µ

kBT

))−1

.

• We introduce the following two Hilbert spaces:

L
2 :={f =(fn)n∈N∗ ,

+∞∑

n=1

∫

R2

|fn(k)|
2dk<+∞},

endowed with the natural scalar product

〈f,g〉=
∑

n∈N∗

∫

R2

fn(k)gn(k)dk,

and

L
2
F ={f ∈L2(R) s.t.

∫

R

f2(ε)
dε

F(ε)(1−ηF(ε))
<+∞},

endowed with the weighted scalar product defined by

〈f,g〉F =

∫

R

f(ε)g(ε)
dε

F(ε)(1−ηF(ε))
.

We will make the following assumption on the cross-section.

Assumption 2.2. The coefficient Φ0
n,n′ satisfies, for λ0 and λ1 two positive constants,

0<λ0<Φ0
n,n′N(t,x,εn)<λ1, Φ0

n,n′(k,k′)=Φ0
n′,n(k

′,k),

where N is the density of state defined above.

2.3. First macroscopic scaling: The spherical harmonic expansion
model. For the sake of completeness of this work, we present in this section
the limit α→0 of the kinetic equation (2.9). All calculations will be done formally
and we refer the reader to [7], where the rigorous derivation is studied. We consider
the Hilbert expansion

fα=f0+αf1+α2f2+ · · · .
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By linearity of the operator Q0 and by identifying the terms of equal powers of α in
(2.9), we obtain

Q0(f
0)=0, (2.11)

Q0(f
1)n=

~
2k

m∗
·∇xf

0
n−∇xǫn ·∇kf

0
n, (2.12)

Q0(f
2)n=∂tf

0
n+

~
2k

m∗
·∇xf

1
n−∇xǫn ·∇kf

1
n−Q

0
1(f

0)n, (2.13)

where Q0
1 is obtained by taking α=0 in the expression (2.8).

We will then make use of the following properties of the collision operator (see
[7]).

Proposition 2.3. Under Assumption 2.2, the elastic collision operator Q0 defined
in (2.7) satisfies the following properties:

1. The linear operator Q0 :L
2 7→L

2 is a bounded, symmetric, non-positive oper-
ator.

2. For any bounded function ψ :R 7→R, we denote ψ(ε)n(k)=ψ(
|k|2~2

2m∗
+ǫn).

Then,

∀f ∈L
2, Q0(ψ(ε)f)=ψ(ε)Q0(f).

3. The kernel of Q0 is the set

Ker Q0={f ∈L
2, s.t. ∃ψ :R→R, f =ψ(ε)}.

4. The range R(Q0) is closed and coincides with the orthogonal complement of
the kernel of Q0 given by

(Ker Q0)
⊥={f ∈L

2, s.t.
∑

n∈N∗

∫

Sε−ǫn

fn(k)dNε−ǫn(k)=0, for a.e. ε≥ǫ1}.

From Proposition 2.3 and (2.11), we deduce that f0 is an energy dependent func-
tion:

f0n(t,x,k)=F (t,x,εn).

Choosing ψ :R→R such that kψ(ε)∈L
2, we deduce from Proposition 2.3 that there

exists a unique solution ξ=(ξ1,ξ2) with ξi in (Ker Q0)
⊥ such that

−Q0(ξi)=
~
2ki
m∗

ψ(ε), i=1,2.

We introduce Θ such that ξ=Θψ(ε). From the second item of Proposition 2.3, Θ is
independent of the choice of the function ψ. Then, the unique solution in (Ker Q0)

⊥

of equation (2.12) is given by

f1n(t,x,k)=−Θn(t,x,k) ·∇xF (t,x,εn). (2.14)

Finally, the solvability condition of equation (2.13) is that the right hand side belongs
to (Ker Q0)

⊥. This leads to

∑

n∈N∗

∫

Sε−ǫn

(∂tf
0
n+∇kεn ·∇xf

1
n−∇xǫn ·∇kf

1
n−Q

0
1(f

0)n)dNε−ǫn(k)=0, (2.15)
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for a.e. ε≥ǫ1. Let us denote

Se(F )=
∑

n∈N∗

∫

Sε−ǫn

Qe(F )ndNε−ǫn(k), and S1(F )=
∑

n∈N∗

∫

Sε−ǫn

Q0
ph,1(F )ndNε−ǫn(k).

(2.16)
Multiplying (2.15) by an energy-dependent test function φ(ε) and integrating with
respect to the variable ε, we obtain for the first term

∫ ∞

ǫ1

∑

n∈N∗

∫

Sε−ǫn

∂tf
0
ndNε−ǫn(k)φ(ε)dε

=

∫ ∞

ǫ1

∑

n∈N∗

∫

Sε−ǫn

(∂tF +∂εF∂tǫn)dNε−ǫn(k)φ(ε)dε

=

∫ ∞

ǫ1

N∂tFφ(ε)dε+

∫ ∞

ǫ1

∂εF

(
∑

n∈N∗

∂tǫn

∫

Sε−ǫn

dNε−ǫn(k)

)
φ(ε)dε.

Using the coarea formula (2.10), we deduce that

∫ ∞

ǫ1

(
∑

n∈N∗

∫

Sε−ǫn

(∇kεn ·∇xf
1
n−∇xǫn ·∇kf

1
n)dNε−ǫn(k)

)
φ(ε)dε

=
∑

n∈N∗

∫

R2

(∇x ·(
~
2k

m∗
f1n)−∇k ·(f

1
n∇xǫn))φ(εn)dk

=∇x ·
(∑

n∈N∗

∫
R2

~
2k

m∗
f1nφ(εn)dk

)

=−

∫ ∞

ǫ1

∇x ·

(
∑

n∈N∗

∫

Sε−ǫn

~
2k

m∗
⊗ΘndNε−ǫn(k) ·∇xF

)
φ(ε)dε,

where the last identity is a consequence of (2.14). We define the diffusion matrix by

D(t,x,ε) :=
∑

n∈N∗

∫

Sε−ǫn

~
2k

m∗
⊗ΘndNε−ǫn(k), (2.17)

and the current density by

J(t,x,ε)=−D(t,x,ε) ·∇xF (t,x,ε). (2.18)

With these notations, we get that in the distributional sense, equation (2.15) is equiv-
alent to the spherical harmonic expansion (SHE) model

N∂tF +∇x ·J−κ∂εF =
1

β
Se(F )+S1(F ), (2.19)

where κ is given by

κ(t,x,ε)=−2π
m∗

~2
∂t

(
∑

n∈N∗

(ε−ǫn)
+

)
. (2.20)

The notation u+=max{0,u} denotes the positive part of u. We recall moreover a
property of the diffusion matrix D stated in Lemma 2.8 of [7]. We point out that the
effect of the confinement is reflected in the special form of the coefficients of (2.19),
which involve the subband energies.
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Lemma 2.4. The diffusion matrix D(t,x,ε) defined in (2.17) is a symmetric and
nonnegative 2×2 matrix.

Remark 2.5. We end this section with a particular choice of the cross–section Φ0
n,n′ ,

which allows us to explicitly compute the diffusion matrix. If the cross-section is an
energy-dependent function, which, due to (2.7), needs only to be defined on the set
{εn′(k′)= εn(k)} and which is given by

Φ0
n,n′(t,x,k,k′)=Φ0(t,x,εn),

then, after a straightforward computation, we have that

Θn(t,x,k)=
1

Φ0(t,x,εn)N(t,x,εn)
∇kεn.

Therefore, the diffusion matrix defined in (2.17) has the expression

D(t,x,ε)=
π~2/m∗

Φ0(t,x,ε)N(t,x,ε)

∑

n∈N∗

(ε−ǫn)
+ Id. (2.21)

2.4. Second macroscopic scaling: The energy-transport model. We
start from the SHE model (2.19) and we assume that the electron-electron collision
operator is dominant with respect to the second order correction of the phonon colli-
sion operator and therefore β≪1, in order to obtain an ET model. Passing through
the SHE model, instead of starting directly from the Boltzmann equation, allows one
to get an explicit expression of the coefficients, which is needed for numerical pur-
poses. Moreover, the considered dominant scattering mechanisms provide an energy
relaxation term in the macroscopic limiting model.

The formal limit β→0 in (2.19) is again performed by means of a Hilbert expan-
sion

F =F 0+βF 1+ · · · .

Identifying equal powers of β implies

Se(F0)=0, (2.22)

N∂tF
0+∇xJ

0−κ∂εF
0−S1(F

0)=DF 0Se(F
1), (2.23)

where DF 0Se denotes the Fréchet derivative of Se at F 0.
We summarize below some useful properties of the collision operator Se defined

in (2.16) and of its Fréchet derivative.

Proposition 2.6. Under micro-reversibility assumptions on the cross-section Φe,
the operator Se satisfies the following properties:

(i) For all f,g∈L2(R), we have

∫

R

Se(f)(ε)g(ε)dε

=−
1

4

∑

n,n′,r,s

∫

(R2)4
Φe

n,n′,r,sδεδk[f(εr(k
′))f(εs(k

′
1))(1−ηf(εn(k)))(1−ηf(εn′(k1)))
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−f(εn(k))f(εn′(k1))(1−ηf(εr(k
′)))(1−ηf(εs(k

′
1)))]

[g′r+g
′
s,1−gn−gn′,1]dkdk1dk

′dk′1.

(ii) Its kernel is given by

Ker Se={f ∈L2(R) ; ∃µ(t,x),T (t,x) s.t. f(t,x,ε)=Fµ,T (t,x,ε)},

where Fµ,T is the so-called Fermi-Dirac distribution function (see Definition 2.1).

Proposition 2.7. The linear operator DFSe satisfies

(i) DFSe is bounded, symmetric, non-positive on L
2
F .

(ii) The kernel of DFSe is given by

Ker (DFSe)=Span{F(1−ηF),F(1−ηF)ε}.

(iii) The range of DFSe is closed and we have

R(DFSe)= Ker (DFSe)
⊥=

{
f ∈L

2
F ;

∫

R

f(ε)

(
1
ε

)
dε=0

}
.

These properties are an easy consequence of Proposition 3.16, Proposition 3.17,
and Proposition 3.19 of [7], using the fact that

∫

R

Se(f)(ε)g(ε)dε =

∫ +∞

ǫ1

∑

n∈N∗

∫

Sε−ǫn

Qe(f)n(ε)g(ε)dNε−ǫn(k)dε

=
∑

n∈N∗

∫ +∞

ǫn

∫

Sε−ǫn

Qe(f)n(ε)g(ε)dNε−ǫn(k)dε

=
∑

n∈N∗

∫

R2

Qe(f)n(εn)g(εn)dk,

where we use the coarea formula (2.10) for the last identity.

Formal derivation of energy-transport model. Let us come back to the formal
limit β→0 in (2.19). Thanks to Proposition 2.6, equation (2.22) implies that there
exist µ(t,x) and T (t,x) such that

F 0(t,x,ε)=Fµ,T (t,x,ε). (2.24)

From Proposition 2.7 we deduce that equation (2.23) admits a solution if and only if

∫

R

(N∂tF
0+∇x ·J

0−κ∂εF
0−S1(F

0))

(
1
ε

)
dε=0. (2.25)

For the first term, the definition of the density of states N (see Definition 2.1) implies
that N(t,x,ε)=2πm∗

~2 n if ε∈ [ǫn,ǫn+1), and vanishes for ε<ǫ1. Then

∫

R

N∂tF
0

(
1
ε

)
dε =

∑

n∈N∗

∫ ǫn+1

ǫn

2π
m∗

~2
n∂tF0

(
1
ε

)
dε

=∂t

(∫

R

NF 0

(
1
ε

)
dε

)
−2π

m∗

~2

∑

n∈N∗

∂tǫnF
0(ǫn)

(
1
ǫn

)
.
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Using the expression of the current (2.18), we can rewrite the second term of (2.25):

∫

R

∇x ·J
0

(
1
ε

)
dε=−∇x ·

[∫

R

D(t,x,ε) ·∇xF
0(t,x,ε)

(
1
ε

)
dε

]
.

From (2.20), we deduce

∫

R

κ∂εF
0

(
1
ε

)
dε

=
∑

n∈N∗

∫ ∞

ǫn

2π
m∗

~2
∂tǫn∂εF

0

(
1
ε

)
dε

= −
∑

n∈N∗

2π
m∗

~2
∂tǫnF

0(ǫn)

(
1
ǫn

)
−
∑

n∈N∗

2π
m∗

~2
∂tǫn

∫ ∞

ǫn

F 0(ε)

(
0
1

)
dε,

where we use an integration by parts for the last identity. Finally, the solvability
condition (2.25) writes in the following form:

∂t

(∫

R

NF 0

(
1
ε

)
dε

)
+
∑

n∈N∗

2π
m∗

~2
∂tǫn

∫ ∞

ǫn

F 0(ε)

(
0
1

)
dε

−∇x ·

[∫

R

D(t,x,ε) ·∇xF
0(t,x,ε)

(
1
ε

)
dε

]
=

∫

R

S1(F
0)

(
1
ε

)
dε.

(2.26)
Let us denote by ρ and ρE the charge density and the energy density, respectively,

associated to the Fermi-Dirac distribution function Fµ,T :

ρµ,T (t,x) :=

∫

R

NFµ,T (t,x,ε)dε=
∑

n∈N∗

∫

R2

Fµ,T (t,x,εn)dk, (2.27)

ρEµ,T (t,x) :=

∫

R

NFµ,T (t,x,ε)εdε=
∑

n∈N∗

∫

R2

εnFµ,T (t,x,εn)dk. (2.28)

We can state easily that for a Fermi-Dirac function, we have

∇xFµ,T (t,x,ε)=−Fµ,T (1−ηFµ,T )

(
ε∇x

( 1

kBT

)
−∇x

( µ

kBT

))
.

Then equation (2.26) reads, using
∫
R
S1(F)dε=0,

∂tρµ,T −∇x ·J1=0, (2.29)

∂t(ρEµ,T )+
∑

n∈N∗

2π
m∗

~2
∂tǫn

∫ ∞

ǫn

Fµ,T (t,x,ε)dε−∇x ·J2=W, (2.30)

where we denote

J1 :=

∫

R

D(t,x,ε) ·∇xFµ,T (t,x,ε)dε=D00∇x

( µ

kBT

)
−D01∇x

( 1

kBT

)
, (2.31)

J2 :=

∫

R

εD(t,x,ε) ·∇xFµ,T (t,x,ε)dε=D10∇x

( µ

kBT

)
−D11∇x

( 1

kBT

)
, (2.32)
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and where the diffusion coefficients are defined by

Dij(t,x)=

∫

R

D(t,x,ε)εi+jFµ,T (1−ηFµ,T )dε, for i,j=0,1, (2.33)

with D being defined in (2.17). The system (2.29)–(2.33) forms the energy-transport
model in the transport direction for a partially confined electron gas. We recover
the general form for energy-transport models for semiconductors (see [3, 4, 25] and
references therein). The right hand side of the energy equation (2.30) is the so-called
relaxation term W defined by

W :=

∫

R

εS1(Fµ,T )dε=
∑

n∈N∗

∫ +∞

ǫn

(∫

Sε−ǫn

Q0
ph,1(f)ndNε−ǫn(k)

)
εdε. (2.34)

As for the SHE model (2.19), the presence of the subband energies in the diffusion
matrix and in the relaxation term reflects the effect of the confinement in the transport
equation.

Then we have the following important property for the diffusion matrix which is
an easy consequence of expression (2.33) and Lemma 2.4.

Lemma 2.8. The diffusion matrix

D :=

(
D00 D01

D10 D11

)

is symmetric and positive definite.

Remark 2.9. After straightforward calculations, we can have an explicit expression
of ρ and ρE . In fact,

ρµ,T (t,x)=
∑

n∈N∗

∫ ǫn+1

ǫn

2π
m∗

~2
nFµ,T (t,x,ε)dε

=
2πm∗kBT

η~2

∑

n∈N∗

log
(
1+ηexp

(µ−ǫn
kBT

))
, (2.35)

ρEµ,T (t,x)=
∑

n∈N∗

2π
m∗

~2
n

∫ ǫn+1

ǫn

εFµ,T (t,x,ε)dε,

if η>0. For Boltzmann statistics η=0, we have

ρµ,T (t,x)=
2πm∗kBT (t,x)

~2

∑

n∈N∗

exp
(µ(t,x)−ǫn(t,x)

kBT (t,x)

)
, (2.36)

ρEµ,T (t,x)=
∑

n∈N∗

2π
m∗

~2
kBT (t,x)(ǫn(t,x)+T (t,x))exp

(µ(t,x)−ǫn(t,x)
kBT (t,x)

)
. (2.37)
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2.5. Relaxation term W. The relaxation term defined in (2.34) measures
the influence of the interaction of phonons with the charge carriers. In [32] we have
formally established that a diffusion limit of the kinetic Boltzmann transport equation
coupled to the subband model in the scaling of dominant phonon-electron interaction
leads to a drift-diffusion system in the transport direction coupled to the subband
model. Using the coarea formula we can rewrite (2.34) as

W =
∑

n∈N∗

∫

R2

εnQ
0
ph,1(Fµ,T )dk.

Moreover, we have

∑

n∈N∗

∫

R2

εnQ
α
ph(Fµ,T )ndk

=
∑

n,n′

∫

R4

Φph
n,n′(k,k

′)([(Nph+1)δ(εn−ε
′
n′ +α2εph)

+Nphδ(εn−ε
′
n′ −α2εph)]εnF

′
n′(1−ηFn)

−[(Nph+1)δ(ε′n′ −εn+α
2εph)+Nphδ(ε

′
n′ −εn−α

2εph)]εnFn(1−ηF
′
n′))dkdk′,

where the notation ε′n′ , Fn, and F ′
n′ stands, respectively, for εn′(k′), Fµ,T (εn), and

Fµ,T (ε
′
n′). Since the Fermi-Dirac distribution function is energy-dependent, we have

∑

n∈N∗

∫

R2

εnQ
α
ph(Fµ,T )ndk

=
∑

n,n′

∫

R4

Φph
n,n′(k,k

′)(1−ηF ′
n′)(1−ηFn)([(Nph+1)δ(εn−ε

′
n′ +α2εph)

+Nphδ(εn−ε
′
n′ −α2εph)]εnM

′
n′

−[(Nph+1)δ(ε′n′ −εn+α
2εph)+Nphδ(ε

′
n′ −εn−α

2εph)]εnMn)dkdk
′,

whereMn= e
(µ−εn)/(kBT ) is the Maxwellian and it satisfies Fn=Mn(1−ηFn). More-

over,

∑

n∈N∗

∫

R2

εnQ
α
ph(Fµ,T )ndk

=
∑

n,n′

∫

R4

Φph
n,n′(k,k

′)(1−ηF ′
n′)(1−ηFn)

(δ(εn−ε
′
n′ +α2εph)[(Nph+1)M ′

n′ −NphMn]εn

−δ(ε′n′ −εn+α
2εph)[(Nph+1)Mn−NphM

′
n′ ](ε′n′ +α2εph))dkdk

′.

By changing the variable εn with ε′n′ in the first term of the sum, we notice that only
the α2-factor term does not vanish in this last identity, which can be rewritten as

∑

n,n′

∫

R4

Φph

n,n′(1−ηF
′
n′)(1−ηFn)εphδ(εn−ε

′
n′ −α

2
εph)[NphM

′
n′ −(Nph+1)Mn]dkdk

′

=
∑

n,n′

∫

R4

Φph

n,n′(1−ηF
′
n′)(1−ηFn)εphδ(εn−ε

′
n′ −α

2
εph)NphMn

(

e
α2εph
kBT −e

α2εph
kBTL

)

dkdk
′
,
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where the phonon occupation number Nph is defined in (2.5). Letting α→0, we have

that Nph(e
α2εph/kBT −eα

2εph/kBTL)→TL(
1
T − 1

TL
). Thus

W =TL

( 1

T
−

1

TL

)∑

n,m

∫

R4

Φph
n,n′(k,k

′)Fn(1−ηFn)εphδ(εn−ε
′
n′)dkdk′. (2.38)

The following lemma proves that W is a temperature relaxation term which re-
laxes T to the lattice temperature TL.

Lemma 2.10. Let W be defined in (2.34). Then, we have

W ·(T −TL)≤0.

Proof. The proof of this result is an immediate consequence of (2.38).

2.6. Formal derivation of drift-diffusion equation. In the case where
the electron-phonon scattering is dominant, after a rescaling we have W = 1

γ W̃ with

a parameter γ≪1. Then equation (2.30) with expression (2.38) implies that formally
in the limit γ→0, we have T =TL. Then (2.29) leads to the well-known drift-diffusion
model

∂tρµ−∇x

(
D00

kBTL
∇xµ

)
=0. (2.39)

Moreover, assuming η=0, the equilibrium is then given by the Boltzmann statistics.
We deduce therefore from (2.36) that for T =TL,

ρµ=2π
m∗

~2
kBTLe

µ/kBTL

∑

n∈N∗

e−ǫn/kBTL . (2.40)

Then

∇xρµ=
1

kBTL
ρµ∇xµ+ρµ

∇x(
∑

ne
−ǫn/kBTL)∑

ne
−ǫn/kBTL

.

We can introduce as in [8] the effective potential energy defined by

Vs=−kBTL log
( ∑

n∈N∗

e−ǫn/kBTL

)
. (2.41)

Then, we have

ρµ∇xµ=(kBTL∇xρµ+ρµ∇xVs) ,

such that, denoting D=D00/ρµ, we recover from (2.39) the standard formulation of
the drift-diffusion system [8]:

∂tρµ−∇x ·(D(kBTL∇xρµ+ρµ∇xVs))=0. (2.42)

Remark 2.11. We conclude the section by noting the similarities and the differ-
ences between the classical and the partially confined energy-transport model. Due
to partial confinement in the z direction, the electron density in the transport direc-
tion contains T as factor rather than T 3/2 (see (2.35)). Moreover, we point out that
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the system (2.29)-(2.33) in the variables µ/kbT , −1/kbT is in symmetric form, with
the electric forces appearing in the diffusion coefficients through the eigenenergies
ǫn (which in turn depend on the electrostatic potential). In the partially confined
framework, the diffusive limiting process brought directly to a set of variables which
can be interpreted as dual entropy variables (using the denomination of nonequilib-
rium thermodynamics [17, 27]). In this framework, T can be interpreted as electron
temperature, and the variable µ as quasi-Fermi potential energy. This fact is clear
considering the drift-diffusion model (2.42). Indeed, using the effective potential en-
ergy Vs defined in (2.41), we can write the electron density (2.40) as

ρµ=2π
m∗

~2
kBTLe

(µ−Vs)/kBTL ,

which gives the classical relation between electron density and quasi-Fermi energy. A
chemical potential can then be defined as µchem=µ−Vs.

3. Numerical simulation
The device we are modelling in this work is a nanoscale Double-Gate MOSFET

(Metal Oxide Semiconductor Field Effect Transistor), as in [32]. This device consists
of a silicon film, characterized by two highly doped regions near the Ohmic contacts
(denoted by source and drain) and an active region, called channel, with lower doping.
The silicon film is sandwiched between two thin layers of silicon dioxide SiO2, each
of them with a gate contact.

Source Drain

Si Si

Gate

Gate

V

x=Lx=0

z=l

N−

z=0

SiO2

2SiO

DSV

GS

ox

lSi

l

oxl

L C L DL S

Si
N+ N+

Fig. 3.1. Schematic representation of the modeled device.

We assume invariance in the x2 direction (infinite boundary conditions), so that
the problem is studied in a (x1,z)-domain. The device occupies a region of a 2D
domain denoted by Ω=[0,L]× [0,ℓ]. A schematic representation of the device is shown
in figure 3.1.

3.1. Energy-transport–Schrödinger–Poisson system. In the following,
we describe the collisional transport in the Double-Gate MOSFET, schematized in
figure 3.1, by means of the energy-transport model (2.29)–(2.33). The confinement
is described by the subband decomposition approach, which involves the resolution
of the eigenvalue problem (2.1), taking also into account the presence of the oxide.
Moreover, in order to provide explicitly computable diffusion and relaxation terms,
the following physical assumptions will be used.
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Assumption 3.1.

• (H1) The cross-sections Φ0 and Φph are assumed to be energy dependent
functions and to have the following expression (see [3, 5, 15]):

Φ0
n,n′(t,x,k,k′)=φ0(t,x)εsn, Φph

n,n′(t,x,k,k
′)=φph(t,x)εsn, (3.1)

with −2<s<2. In the physical literature, the values s=0 and s=1/2 have
been used [14, 25, 29].

• (H2) The electron density and the energy are assumed to be given by non-
degenerate Boltzmann statistics, i.e. η=0, as in (2.36), (2.37).

Using Assumption (H1), we deduce that the diffusion matrix (2.21) has the fol-
lowing expression:

D(t,x,ε)=
1

φ0(t,x)εsN (ε)

∑

n∈N∗

(ε−ǫn)
+ Id, (3.2)

where N (ε)=max{n∈N
∗ / ǫn≤ ε} is the number of non-zero terms in the sum (see

Definition 2.1). Moreover, thanks to the coarea formula in (2.38), we have

W =−4π2εph

(
1−

TL
T

)∫ +∞

ǫ1

φphεsN 2(ε)F(ε)(1−ηF(ε))dε,

which, under Assumption (H2), reads

W =−4π2εph

(
1−

TL
T

)
eµ/(kBT )

∫ +∞

ǫ1

φphεsN 2(ε)e−ε/(kBT )dε.

By defining

W0=4π2εph

∫ +∞

ǫ1

φphεsN 2(ε)e−ε/(kBT )dε, (3.3)

we have the compact expression

W =−W0

(
1−

TL
T

)
eµ/(kBT ). (3.4)

Assumption (H2) implies also that the density of charge carriers Ne(t,x,z) is given
by

Ne=
∑

n∈N∗

∫

R2

Fµ,T (t,x,
|k|2~2

2m∗
+ǫn)dk|χn|

2=
2πm∗kBT

~2

∑

n∈N∗

e(µ−ǫn)/kBT |χn|
2.

Finally, the coupled subband energy-transport model under Assumption 3.1 is
given by: Find µ(t,x), T (t,x), (ǫn(t,x),χn(t,x)) for n≥1, and V (t,x,z) such that

∂tρµ,T −∇x ·J1=0, in (0,L), (3.5)

∂t(ρEµ,T )+
∑

n∈N∗

2π
m∗

~2
∂tǫnkBT (t,x)e

(µ−ǫn)/kBT −∇x ·J2=W, in (0,L), (3.6)
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



−
~
2

2

d

dz

(
1

m∗

d

dz
χn

)
−(eV −Uc)χn=ǫnχn, in (0,ℓ),

χn(t,x, ·)∈H
1
0 (0,ℓ),

∫ ℓ

0

χnχn′ dz= δnn′ ,

(3.7)

divx,z(εR∇x,zV )=
e

ε0

(
2πm∗kBT

~2

∑

n∈N∗

e(µ−ǫn)/kBT |χn|
2−ND

)
, in Ω, (3.8)

where the expressions of ρµ,T and Eµ,T with respect to the unknowns are given in
(2.36)–(2.37). In (3.7) the effective mass m∗ takes different values in the Si and
in the SiO2 domain. Moreover, Uc represents a given potential barrier between the
silicon and the oxide. The currents J1 and J2 are given by the expressions

J1=D00∇x

( µ

kBT

)
−D01∇x

( 1

kBT

)
, (3.9)

J2=D10∇x

( µ

kBT

)
−D11∇x

( 1

kBT

)
, (3.10)

where, under Assumption 3.1, the diffusion coefficients are given by

Dij =
1

φ0

∑

n∈N∗

∫ +∞

ǫn

εi+j−s(ε−ǫn)

N (ε)
e(µ−ε)/kBT dε.

The relaxation term W is given by (3.4).
This system is complemented with initial and boundary conditions. In particular,

at the ohmic contacts and at the gate (see figure 3.1), we will impose Dirichlet bound-
ary conditions for the potential; otherwise we fix homogeneous Neumann boundary
conditions, which model isolating conditions.

V (x,z) =VGate, for z∈{0,ℓ},x∈Gate, (3.11)

V (x,z) =VD, for x∈{0,L},z∈ (0,ℓ), (3.12)

∂V

∂ν
=0, elsewhere, (3.13)

where ν is the outward unit normal. Since the transport occurs only in the longitudinal
direction, we just have to impose boundary conditions in x=0 and x=L for µ and
T . The temperature is assumed to be at the lattice temperature TL, thus

T (x)=TL, for x∈{0,L}. (3.14)

Then, we consider that the surface density of the charge carriers is almost constant
near the frontiers x=0 and x=L and given by N b

s . The surface density being the
integral over z of the total density (N b

s =N
+×ℓSi), we deduce

µ(x)=µb :=kBTL log

(
N b

s~
2

2πmkBTL
∑

ne
−ǫn/kBTL

)
, for x∈{0,L}. (3.15)

3.2. Stationary system. Let us introduce the notations

u=
µ

kBT
, v=−

1

kBT
. (3.16)
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Then we can rewrite the expressions of the current (3.9)–(3.10) as

J1=D00(u,v)∇xu+D01(u,v)∇xv, (3.17)

J2=D10(u,v)∇xu+D11(u,v)∇xv, (3.18)

where the diffusion coefficients are given by

Dij(u,v)=
1

φ0

∑

n∈N∗

∫ +∞

ǫn

εi+j−s(ε−ǫn)

N (ε)
eu+εv dε. (3.19)

We define the relaxation coefficient in the same way:

W0(u,v)=4π2εph

∫ +∞

ǫ1

φphεsN 2(ε)e(ε−µ)v dε. (3.20)

Then, the stationary version of the energy-transport subband system (3.5)–(3.6)
in variable u and v writes

−∇x(D00(u,v)∇xu+D01(u,v)∇xv)=0, (3.21)

−∇x(D10(u,v)∇xu+D11(u,v)∇xv)=−W0(u,v)(1+kBTLv) . (3.22)

Boundary conditions (3.14)–(3.15) become

v(x)=vb :=−
1

kBTL
, for x∈{0,L},

and

u(x)=ub := log

(
N b

s~
2

2πmkBTL
∑

ne
−ǫn/kBTL

)
, for x∈{0,L}.

3.3. Numerical approach for the energy-transport system. We intro-
duce a partition of [0,L] with nodes xi, i=0, · · · ,Nx, and a partition of [0,ℓ] with nodes
zj , j=0, · · · ,Nz. We assume that the partitions are uniform and denote h=xi−xi−1.
Then, we mesh the domain [0,L]× [0,ℓ] with rectangular triangles using the nodes
(xi,zj) previously defined. The Schrödinger equations and the Poisson equation are
discretized with conforming P 1 finite elements. We shall use the notation q=(qi),
i=0, · · · ,Nx for a vector in R

Nx+1 associated with the nodal values in xi, i=0, · · · ,Nx.

We consider here in detail the discretization scheme for the equations governing
u and v, assuming first that the eigenenergies ǫn are known. Using the notations

U =(u,v)⊤, J =(J1,J2)
⊤, W (U)=(0,W0(u,v)(1+kBTLv))

⊤,

equations (3.17)-(3.18) and (3.21)-(3.22) can be written in compact form as

J =D(U)∇xU, ∇x ·J =W (U). (3.23)

Denoting by Ui an approximation of U(xi), we take the piecewise constant approxi-
mation of U given, in the interval Ii := (xi−1,xi), by

U i=
Ui−1+Ui

2
.
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and define the piecewise constant diffusion coefficients and relaxation terms as

Dkl=Dkl(U), for k,l=0,1, W =W (U). (3.24)

We are going to use a mixed finite element discretization of lowest order in hy-
bridized form [10] (see also [20, 21] for applications to ET). Let us introduce the
following finite dimensional spaces:

Xh={σ∈L2((0,L)) : σ(x)=ai+bi(x−xBi
) in Ii, i=1, . . . ,Nx},

Yh={ξ∈L2((0,L)) : ξ is constant in Ii, i=1, . . . ,Nx},

Zh,χ={q=(qi), i=0, . . . ,Nx, s.t. q0=χ(0), qNx
=χ(L)},

where xBi
denotes the central point of the interval Ii, and χ is prescribed.

Then, the mixed-hybrid formulation of (3.23) reads as follows: Find Jh∈X2
h,

Ph∈Y
2
h , and Uh∈Zh,ub

×Zh,vb
such that

Nx∑

i=1

(∫

Ii

φh ·D(U i)
−1

Jhdx+

∫

Ii

Ph ·∇xφhdx− [φh ·Uh]
xi

xi−1

)
=0, (3.25)

Nx∑

i=1

(∫

Ii

Ψh ·∇xJhdx−

∫

Ii

W (U i) ·Ψhdx

)
=0, (3.26)

−
Nx∑

i=1

[µh ·Jh]
xi

xi−1
=0, (3.27)

for all φh∈X
2
h, Ψh∈Y

2
h , and µh∈Z

2
h,0. Equation (3.25) is derived from the weak

formulation of the first equations in (3.23); (3.26) comes from the weak form of the
second equations in (3.23); and finally, (3.27) imposes the continuity of the currents
at the nodes.

Thanks to the discontinuity of the spaces Xh and Yh, we can apply static con-
densation in order to reduce the size of the discrete system and obtain an algebraic
system for the variable Uh only. More precisely, choosing first the test functions

φh=

{
(1,0)⊤ in Ii,
(0,0)⊤ elsewhere,

and φh=

{
(0,1)⊤ in Ii,
(0,0)⊤ elsewhere,

in (3.25), and then analogously choosing Ψh in (3.26), we obtain the piecewise linear
(discrete) current

Jh|Ii =D(U i)
Ui−Ui−1

h
+W (U i)(x−xBi

). (3.28)

Imposing continuity at the nodes (through (3.27)) we obtain the final system

−D(U i)Ui−1+(D(U i)+D(U i+1))Ui−D(U i+1)Ui+1=−
h2

2
(W (U i)+W (U i+1)),

(3.29)
for i=1, . . . ,Nx−1. We point out explicitly that, since the first component ofW (U) is
null, the approximation of the current J1 is piecewise constant (see (3.28)) and that,
thanks to (3.27), it is indeed globally constant.

System (3.29) forms a non-linear system in the unknown (u,v) that can be solved
using a Newton algorithm. We point out that the Jacobian corresponding to this
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non-linear system can be easily computed after noticing that, from the expressions
(3.24) and (3.19), we have

∂D
i

kℓ

∂ui
=
∂D

i

kℓ

∂ui−1
=

1

2
D

i

kℓ,
∂D

i

kℓ

∂vi
=
∂D

i

kℓ

∂vi−1
=

1

2
D

i

kℓ+1,

and that similar relations hold for the partial derivatives of W
i
.

Remark 3.2. The expression (3.19) is not practical for numerical purposes. How-
ever, with the definition N (ε)=max{n∈N

∗ :ǫn≤ ε} , we have

Dij(u,v) =
1

φ0

+∞∑

n=1

+∞∑

m=n

∫ ǫm+1

ǫm

(ε−ǫn)ε
i+j−s

m
eu+εv dε

=
1

φ0

+∞∑

m=1

∫ ǫm+1

ǫm

(ε−

∑m
n=1ǫn

m
)εi+j−seu+εv dε,

by interchanging the sums over m and n. We can rewrite this as

Dij(u,v)=
1

φ0

∫ +∞

ǫ1

εi+j+1−seu+εv dε

+
1

φ0

+∞∑

m=1

(∑m−1
n=1 ǫn

m−1
−

∑m
n=1ǫn

m

)∫ +∞

ǫm

εi+j−seu+εv dε,

with the convention that
∑m−1

n=1 ǫn/(m−1)=0 for m=1. Then, in the actual nu-
merical computation, we can get an accurate approximation of Dij by truncating the
infinite sum to a finite number of eigenmodes. In fact, (ǫn)n forms an increasing
sequence going to +∞. Thus, since v<0, we have that (eǫnv)n fast decreases to 0.

3.4. Algorithm. We are now ready to describe the algorithm used for the
numerical resolution of the stationary subband energy-transport model. The first
step of the algorithm is the computation of the thermal equilibrium solution, with
no applied drain-source bias. In this case the temperature and the Fermi level are
constant along the device, and therefore the problem reduces to solving the Poisson
equation (3.8) for a given temperature and Fermi level, which can be computed thanks
to the boundary conditions. The computed potential at thermal equilibrium is used
as starting data for the following Gummel [22] iteration process:

1. Let Vold be a given potential.

2. We solve the eigenvalue problem (3.7) on each vertical slice of the domain by
diagonalization of the Hamiltonian. Therefore we obtain the set {χn(xi,zj)}
and {ǫn(xi)}.

3. We implement the Newton procedure which has been described above for the
computation of (u,v).

4. We compute the density of charge carriers corresponding to the right hand
side of (3.8):

Ne=
∑

n∈N∗

2π
m∗

~2

eu

v
eǫnv|χn|

2.

We are then able to solve the Poisson equation (3.8) with boundary condition
(3.11). Indeed, due to the strong coupling of the entire system, the simple
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Parameter Value Length Value

N+ 1026m−3 LS 10nm
N− 1021m−3 LC 30nm
Uc 3 eV LD 10nm

εR[Si] 11.7 ℓox 3nm
εR[SiO2] 3.9 ℓSi 5nm

Table 3.1. Table of the main physical values.

resolution of equation (3.8) does not provide a converging algorithm. Follow-
ing [12] a Gummel iteration algorithm is used, which amounts to computing
the new potential Vnew by solving the following modified Poisson equation:

div(εR∇Vnew)+
e

ε0
Ne

Vnew
Vref

=
e

ε0

(
Ne(1−

Vold
Vref

)−ND

)
, in Ω, (3.30)

with Vref =kBTL/e.
5. We repeat the last three steps until the quantity ‖Vold−Vnew‖L∞ becomes

sufficiently small. Once the convergence is reached, we increment the applied
drain-source bias VDS of 0.02 V and start a new iteration.

3.5. Numerical results. In this section we present and comment on the
numerical results. The modeled device is schematized in figure 3.1 and the physical
values are chosen as the ones in [32], which are recalled in table 3.1. We take Nx=50
points in the transport direction and Nz =50 in the confined direction for all the tests.
The results are presented for s= 1

2 in (3.1), which corresponds to the so-called Chen
model [14].
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Fig. 3.2. Left: I−VDS characteristics for VG=0V and VG=0.2V . The solid line corresponds
to φph=10−4/φ0, and the dashed line corresponds to φph=105/φ0, which is a good approximation
to the drift-diffusion model. Right: Temperature T −TL in the device for φph=105/φ0. We see that
the variations of the temperature are of order 10−6 K.

Some other physical coefficients should be determined. The effective mass is
m∗=0.19me with me the electron mass, the lattice temperature is TL=300K, and
the scattering coefficient for the elastic collisions is the one used in [32] φ0= 1

µ0ni
,
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different width of the Silicon in the DG-MOSFET with VG=0V (right).
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Fig. 3.4. Variation of the temperature with respect to VDS for a Gate voltage VG=0V (left)
and VG=0.2V (right).

where the low field mobility is taken as µ0=0.12m2V −1s−1 and the intrinsic density
is given by ni=1010m−2. We have to fix the value of the scattering coefficient φph for
the electron-phonon interaction. As noticed in Subsection 2.6, when φph→+∞, the
model converges formally to the subband drift-diffusion system presented in [8, 32]. It
is then interesting to compare the numerical results for large and small values of φph.
Figure 3.2 displays the I−VDS characteristics for φph=10−4/φ0 and φph=105/φ0.
As expected and as noticed in [2], the energy-transport model gives higher currents
compared with the drift-diffusion model, due to the electron velocity overshoot within
the channel. Figure 3.2 (right) displays the curve T −TL with respect to the transport
direction x, where T denotes the temperature, for φph=105/φ0. It confirms that we
are in the drift-diffusion regime, where the temperature is constant.

In the rest of the section, we present the results only for φph=10−4/φ0, which
corresponds to the energy-transport regime. Figure 3.3 displays the computed current
vs drain-source applied bias characteristics with this chosen value. We present in figure
3.3 (left) the characteristics for different numerical values of the Gate voltage VG and
with ℓSi=5 nm. In figure 3.3 (right), we display the characteristics for VG=0 and
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Fig. 3.6. Density of electrons in the device for VDS =0V (left) and VDS =0.5V (right); in this
simulation we take VG=0.2V .

for different geometry of the devices : ℓSi=4, 5, or 7 nm. These characteristics are
comparable to the one obtained in [2, 31, 32]. We present in figure 3.4 the evolution
of the temperature in the device with respect to the drain-source voltage for two
different values of the Gate voltage. Figure 3.5 displays the evolution of the mean
velocity, defined by J1/(qρµ,T ), where the one dimensional density is given in (2.36)
and the current in (3.17). As expected, we notice an overshoot of the velocity at the
frontier between the channel and the drain for high values of VDS .

We plot in figure 3.6 the shape of the density in the device for two different drain-
source voltages. For VDS =0V , we are at equilibrium and the density is symmetric in
the device. For VDS =0.5V , we notice transport of the charge carriers in the device.

4. Conclusion
A coupled quantum–classical model has been obtained for describing the trans-

port of a partially confined electron gas. In a subband decomposition framework,
the transport model is obtained by means of diffusive approximation from adiabatic
quantum-kinetic models. The final system in the transport direction is obtained
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through two steps. First, under the assumption of dominant elastic scattering, a SHE
system is derived (referring to [7]). Then, under dominant electron–electron collisions,
an energy transport model is given, obtaining diffusion coefficients well suited for nu-
merical purposes and with a relaxation term taking into account the electron-phonon
interactions. In particular, with energy dependent cross–section of the collision opera-
tor explicit expression of the diffusion coefficients and of the relaxation term is derived
and used for the numerical simulation of transport in a Double-Gate MOSFET. In the
limit of large electrons-phonons collisions, we recover the model of [32]. We point out
that a saturation of the current is observed without resorting to mobility modeling as
done in [32].
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