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A FEW WAYS TO DESTROY ENTROPIC CHAOTICITY ON

KAC’S SPHERE∗

AMIT EINAV†

Abstract. In this work we discuss a few ways to create chaotic families that are not entropically
chaotic on Kac’s Sphere. We present two types of examples: limiting convex combinations of an en-
tropically chaotic family with a particularly ‘bad’ non-entropic family, and two explicitly computable
families that vary rapidly with N , causing loss of support on the sphere or high entropic tails.
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1. Introduction

In his 1956 paper, [11], Kac introduced the concept of chaotic families (or ‘the
Boltzmann property’ in his words) as a condition on the initial data to the solution
of his many-particle, binary collision, stochastic process, from which a caricature of
Boltzmann’s equation arises. Motivated by Boltzmann’s ‘Stosszahlansatz’ assump-
tion, stating that pre-collision particles can be considered to be independent, Kac
defined the chaoticity of a family {FN}N∈N

of probability densities on the sphere

S
N−1

(√
N
)

as follows.

Definition 1.1. A sequence of symmetric probability densities {FN}N∈N
on the

sphere S
N−1

(√
N
)

is said to be f−chaotic if there exists a probability density f such

that

lim
N→∞

Πk(FN )(v1, . . . ,vk)=f⊗k(v1, . . . ,vk) (1.1)

for every k∈N, where Πk(FN ) is the k-th marginal of FN and the limit is taken in
the weak topology induced by bounded continuous functions on R

k.

In what follows we will use the term ‘Kac’s sphere’ (or ‘the sphere’ when context

permits) for SN−1
(√

N
)

. The fact that we deal with a sphere of radius
√
N is crucial

to the process, and quite intuitive. Indeed, if we’re talking about a process involving
N particles with one dimensional velocities, each indistinguishable from the other,
then assuming that a particle (and thus every particle) has a unit of energy leads
to the conclusion that the total energy of the system is N units. By conservation
of energy, which Kac’s model satisfies, the whole system must be restricted to the
sphere.

Definition (1.1) can easily be extended to general measures on the sphere. Indeed,
we only need to define what it means to be symmetric.

Definition 1.2. A measure µN on Kac’s sphere is called symmetric if for any
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measurable function FN and for any permutation τ ∈SN we have that
∫

SN−1(
√
N)

FN (v1, . . . ,vN )dµN =

∫

SN−1(
√
N)

FN

(

vτ(1), . . . ,vτ(N)

)

dµN . (1.2)

Kac considered a model in which N indistinguishable particles, with one dimen-
sional velocities, underwent random binary collisions. His evolution equation for the
probability density of the velocities of the particles was given by

∂FN

∂t
(v1, . . . ,vN )=−N(I−Q)FN (v1, . . . ,vN ), (1.3)

where

QF (v1, . . . ,vN )

=
1

2π
· 2

N(N−1)
·
∑

i<j

∫ 2π

0

F (v1, . . . ,vi(ϑ), . . . ,vj(ϑ), . . . ,vN )dϑ,
(1.4)

with

vi(ϑ)=vicos(ϑ)+vj sin(ϑ),

vj(ϑ)=−vi sin(ϑ)+vj cos(ϑ).
(1.5)

Kac managed to show that chaoticity is the right ingredient to derive Boltzmann’s
equation from his linear N−particle model. He managed to show that (1.1) propa-
gates in time under his evolution equation, and that the evolution equation for the
limit probability density f(v,t) satisfies a caricature of Boltzmann’s equation. Kac
expressed hope that investigating his N−particle linear model would lead to new re-
sults on the Boltzmann’s equation, particularly in the area of trend to equilibrium.
Indeed, it is easy to see that Q is bounded and self adjoint on Kac’s sphere as well as
Q<I. The ergodicity of (1.3) leads to the fact that for every fixed N we have that
limt→∞FN (v1, . . . ,vN ,t)=1. Defining the spectral gap

∆N =inf

{

〈FN ,N(I−Q)FN 〉
‖FN‖

L2(SN−1(
√
N))

FN ⊥1

}

, (1.6)

one can show that if FN (t)=FN (v1, . . . ,vN ,t) solves (1.3), then

‖FN (t)−1‖
L2(SN−1(

√
N))≤ e−∆N t‖FN (0)−1‖

L2(SN−1(
√
N)) . (1.7)

Kac conjectured that liminfN→∞∆N >0 and hoped that it will lead to an exponential
rate of decay for Boltzmann’s equation as a limit equation of his linear model. While
the conjecture was proven to be true (see [2, 5, 10, 12]), the choice of L2 as a reference
distance is catastrophic when considering chaotic families. Intuitively speaking, one
would suspect that chaoticity means (in some sense) that FN ≈f⊗N . As such, we will
have that the L2 norm of FN will be exponentially large. Indeed, one can easily con-
struct a chaotic family FN (0) with ‖FN (0)‖

L2(SN−1(
√
N))≥CN , where C>1, leading

to a relaxation time that is proportional to N .
A different approach, one more amiable to chaoticity, was needed. A natural

quantity to investigate, one that was investigated by Boltzmann himself in his famous
H−theorem, is the entropy. In Kac’s context the entropy is defined as

HN (FN )=

∫

SN−1(
√
N)

FN logFNdσN , (1.8)
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where dσN is the uniform probability measure on the sphere. This is a particular case
of the relative entropy between two probability measures, defined as follows.

Definition 1.3. Given two probability measures µ and ν, we define the relative
entropy

H(µ|ν)=
∫

f logfdν, (1.9)

where f = dµ
dν

, when µ≪ν and H(µ|ν)=∞ otherwise.

The relative entropy has some useful properties. In our context, the most impor-
tant one is the Csiszar-Kullback-Leibler-Pinsker inequality:

‖µ−ν‖2TV ≤2H(µ|ν), (1.10)

which gives us a way to measure distance between measures (and in particular between
probability densities). Notice that much like the log-Sobolev inequality, the constant
appearing in (1.10) is independent of the dimension, giving us a way to uniformly
control the distance!

By definition HN (FN )=H
(

FNdσN |dσN
)

, and as such

∫

|FN −1|dσN ≤
√

2HN (FN ), (1.11)

so the entropy can serve as a tool to measure convergence in Kac’s context.
Another very appealing property of the entropy is its extensivity. Due to the

properties of the logarithm one can hope that if FN is f -chaotic then, in some way,

HN (FN )≈N ·H(f |γ), (1.12)

where γ(x)= e
− x2

2√
2π

is the standard Gaussian (the appearance of the Gaussian should

not be too surprising—it is a known fact that the uniform measure on Kac’s sphere
is γ-chaotic).

At this point one can define a ‘spectral gap’ for the entropy, and see if it yields
better results than the linear theory. Assuming that FN is a symmetric probability
density that solves (1.3) one can define

ΓN =inf

{ 〈N(I−Q)FN , logFN 〉
HN (FN )

}

, (1.13)

and conclude that

HN (FN (t))≤ e−ΓN tHN (FN (0)). (1.14)

If ΓN >C>0 for all N , then we can combine (1.14) with (1.10) and (1.12) and get
relaxation time that is proportional to logN , which is a fantastic result. The con-
jecture of the existence of such a constant is called ‘The many-particle Cercignani’s
Conjecture’, following a similar conjecture for Boltzmann’s equation (see [7]) trying
to find a constant C>0 such that

− d

dt
H(f(t))≥CH(f(t)), (1.15)
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where f(t) is the solution to Boltzmann’s equation. Unfortunately, if we impose
no restrictions on the probability densities, then the conjecture is not true and in
fact ΓN ≈ 1

N
, putting us in the same place as the linear spectral gap (see [15, 8, 9]).

This obviously leads to many very interesting questions about possibilities of the
conjecture being true under plausible restrictions on FN such as finite moments and
decay conditions.

While Kac’s model is a big step forward in kinetic theory, it has some flaws. The
model was one dimensional, and as such could not conserve energy and momentum
at the same time. Another problem with the model was the simplistic collision kernel
and was unable to deal with physical kernels, depending on the velocities of the
particles. In 1967 McKean extended the model to the case where the velocities were
d−dimensional, with d>1, and showed that, similar to the original model, the real
Boltzmann equation arises from Kac’s model in an extended array of collisional kernels
(see [13]), though the restriction that the kernel would be independent of the velocities
was still imposed, leaving the interesting cases of hard spheres and true Maxwellian
molecules unsolved.

In a remarkable recent paper, [14], Mischler and Mouhot introduced a new ab-
stract method that allowed them to tackle many unsolved questions in the subject,
including the velocity dependent cases mentioned above. They managed to show
quantitative and uniform in time propagation of chaos in weak measure distance,
propagation of entropic chaos (soon to be defined), and quantitative estimation of
relaxation rates that are independent of the number of particles. There is more to be
said and explored in the subject, but their work is a huge leap forward in the desired
direction.

At this point we will leave Kac’s models and program aside, and concentrate on
the problem we wish to deal with. More information about the topic and the related
spectral gap problem and entropy-entropy production ratio can be found in [2, 3, 4, 5]
and the excellent [16, 14].

We start by defining the concept of entropic chaoticity. Motivated by (1.12) we
introduce the following, more general, definition.

Definition 1.4. A family of symmetric probability measures {µN}N∈N
on Kac’s

sphere is said to be entropically chaotic if it is µ−chaotic and

lim
N→∞

H(µN |dσN )

N
=H(µ|γ). (1.16)

The above definition was introduced by Carlen, Carvalho, Le Roux, Loss, and Villani
in [4]. The authors noted that the concept of entropic chaoticity is stronger than that
of mere chaoticity as it involves all of the variables, and not just a finite number of
them. We refer the reader to [4] for more interesting details, and beautiful results,
about entropic chaoticity. The case where H(µ|γ)=∞ is somewhat of a pathological
case and so in the following we will only talk about cases where H(µ|γ) is finite.

It is worth noting that in his original paper ([11]) Kac was aware of the extensivity
property of the entropy, and while he did not define entropic chaoticity, he figured it
would play an important role in his model (he thought that it would help establish a
satisfactory derivation of Boltzmann’s H−theorem).

In our paper, we will be solely interested in the ‘functional’ case where µN =
FNdσN and µ=f(x)dx.

At this point one might ask oneself, “Are there any chaotic and/or entropically
chaotic families?” A partial solution to this question was already given by Kac in [11]:
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He noted that probability densities of the form

FN (v1, . . . ,vN )=

∏N
i=1f(vi)

∫

SN−1(
√
N)
∏N

i=1f(vi)dσ
N

(1.17)

are f−chaotic under some severe conditions on f (very strong integrability condi-
tions). Note that this type of family seems very reasonable; intuitively speaking it
is an independent family on the entire space which is being restricted to the sphere,
causing some (hopefully small in the limit) correlations to appear.

In [4] the authors have managed to prove the following significant extension of
Kac’s result.

Theorem 1.5. Let f be a probability density on R such that f ∈Lp(R) for some p>1,
∫

R
x2f(x)=1 and

∫

R
x4f(x)dx<∞. Then the family of densities defined in (1.17) is

f−chaotic. Moreover, it is f−entropically chaotic.

Recently, Carrapatoso has extended this result to the more realistic McKean
model, conditioned to the Boltzmann sphere instead of the Kac’s sphere (see [6]).

As we saw before, entropic chaoticity is a very intuitive concept that arises natu-
rally when one investigates relationships between the relaxation rates to equilibrium
in the N -particle model and its mean field limit. We would like to understand the
concept better and explore the delicate balance required for entropic chaoticity to
hold. In order to do that, we explore in this paper ways to construct families of
probability densities that are chaotic but not entropically chaotic, noting the reasons
for that. Our first result is the following:

Theorem 1.6. Let f satisfy the conditions of Theorem 1.5. Then there exists an
f−chaotic family that is not entropically chaotic.

The method to prove this theorem is one of a limiting convex combination, and will
be described in Section 2. This is not the only way to destroy chaoticity. A different
way is to create families that depend on N strongly, and not only as an increase of the
number of variables. Our next two results will deal with two explicitly computable
families of probability densities that fail entropic chaoticity for this reason.

Theorem 1.7. Let fN (v)= δNM 1
2δN

(v)+(1−δN )M 1
2(1−δN )

(v), where Ma(v)=
e
− v2

2a√
2πa

and δN = 1
Nη with η close to 1. Then the family of probability densities defined in

(1.17) is M 1
2
−chaotic but not entropically chaotic.

We will see that the reason behind this failure is that the rapid change of N causes
the family to ‘lose support at infinity’. The last result we will show is the following.

Theorem 1.8. Let FN =
∑N

i=1 |vi|N
ZN

, where ZN is the appropriate normalization func-
tion. Then {FN}N∈N

is M 1
2
−chaotic but not entropically chaotic.

The reason behind this failure will be too high an entropic tail.
The paper is structured as follows: Section 2 will describe the idea of limiting

convex combination and will show how exactly such an idea will be useful in building
chaotic families that are not entropically chaotic. Sections 3 and 4 will apply that
idea to build our first two examples. The first using concentration methods with the
natural coordinates on the sphere and the second using the stereographic projection
and a process of ‘pushing’ the function to ‘infinity’. Section 5 will provide a few
technical lemmas that will help us with explicit computation on the sphere, while in
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Section 6 we will prove Theorem 1.7. In Section 7 we will prove Theorem 1.8 as well
as introduce another family of polynomials that is entropically chaotic (to stress the
effect of the varying power). Lastly, in Section 8 we will discuss a few closing remarks.

2. Limiting convex combinations

The concept of convexity is not alien to that of chaoticity or entropy. Several
counterexamples to known conjectures (such as Cercignani’s conjecture) have been
built using a convex combination of special stationary states (see [1]). Recently, the
author has used a similar idea, but with convex coefficients that depend on N , in order
to find an explicit bound to the entropy-entropy production ratio (see [8, 9])—this
idea is behind what we will call ‘limiting convex combination’.

Definition 2.1. Let {GN}N∈N
and {FN}N∈N

be families of probability densities on

S
N−1

(√
N
)

and let {αN}N∈N
be a sequence of real numbers such that 0<αN <1 for

all N ∈N, and limN→∞αN =0. Then the family of probability densities

CN =(1−αN )GN +αNFN (2.1)

is called the limiting convex combination of GN and FN .

We will start with a few simple properties of the limiting convex combination.

Lemma 2.2. Let {GN}N∈N
and {FN}N∈N

be symmetric probability densities on

S
N−1

(√
N
)

. If {GN}N∈N
is g−chaotic then any limiting convex combination of GN

and FN is g−chaotic.

Proof. This is immediate by the definition and the fact that
∣

∣

∣

∫

SN−1(
√
N)FNφdσN

∣

∣

∣
≤‖φ‖∞.

Remark 2.1. Notice that in Lemma 2.2 there is no requirement of chaoticity on
FN , only that of symmetry! This shows how weak the condition of chaoticity is with
respect to limiting convex combination.

What of entropic chaoticity? Can we get any result similar to our previous lemma?
The answer to this question is Yes, but more than that—we can find simple conditions
when limiting convex combinations are not entropically chaotic.

Lemma 2.3. Let {GN}N∈N
be a g−entropically chaotic family of probability densities

and {FN}N∈N
be symmetric probability densities on Kac’s sphere. Then

(i) If limsupN→∞
HN (FN )

N
<∞ then any limiting convex combination of GN and FN

is g−entropically chaotic.

(ii) If liminfN→∞
HN (FN )

N
=∞ then there exists a limiting convex combination of

GN and FN that is not g−entropically chaotic but is g−chaotic.

Corollary 2.4. If GN and FN are entropically chaotic then so is any limiting
convex combination of them.

Proof. [Proof of Lemma 2.3.] The g−chaoticity of any limiting convex combina-
tion was established in Lemma 2.2 so we only need to check the additional condition
of entropic chaos.

(i) Since the function H(x)=x logx is convex we find that

HN (CN )≤ (1−αN )HN (GN )+αNHN (FN ). (2.2)
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Thus

limsup
N→∞

HN (CN )

N
≤H(g|γ)+limsup

N→∞
αN ·HN (FN )

N
=H(g|γ). (2.3)

On the other hand, since CN is g−chaotic we have that

H(g|γ)≤ liminf
N→∞

HN (CN )

N
(2.4)

(see [4] for the proof). Combining (2.3) and (2.4) yields the desired result.

(ii) Since the logarithm is an increasing function, and FN and GN are nonnegative,
we find that

HN (CN )≥ (1−αN )log(1−αN )+(1−αN )HN (GN )

+αN logαN +αNHN (FN ).
(2.5)

Thus,

liminf
N→∞

HN (CN )

N
≥H(g|γ)+liminf

N→∞
αN ·HN (FN )

N
. (2.6)

Since liminfN→∞
HN (FN )

N
=∞ we can easily pick αN such that

liminfN→∞
HN (CN )

N
>C for any C>0, as well as C=∞. This completes

the proof.

Lemma 2.3 gives us the tool to find chaotic families that are not entropically
chaotic: we only need to find a family of symmetric probability densities {FN}N∈N

such that liminfN→∞
HN (FN )

N
=∞. That is exactly what we will do in the following

two section. This allows us to prove Theorem 1.6.

Proof. [Proof of Theorem 1.6.] This is immediate from Lemma 2.3 and Theorem
1.5.

3. First example: Concentration

Motivated by Lemma 2.3 and ideas of concentration in [1], we now construct
the first family of symmetric probability measures on the sphere that has superlinear
entropic rate of increase. In order to do that we will use the natural coordinates on
the sphere.

One can easily show that if g is a function depending only on φ1, the elevation
angle from the preferred axis, then

∫

Sk−1(R)

g(φ1)dσ=
Γ
(

k
2

)

Γ
(

k−1
2

)√
π

∫ π

0

g(φ1)sin
k−2(φ1)dφ1. (3.1)

We will now construct our first example. Given any probability density ϕ on R with

supp(ϕ)⊂
(

0, 12
)

we define ϕǫ(x)=
1
ǫ
·ϕ
(

x
ǫ

)

and bǫ(φ)=
Γ(N−1

2 )
√
π

Γ(N
2 )

· ϕǫ(φ)
sinN−2(φ)

. Let

FN =
1

2N

2N
∑

i=1

bǫN (ξi), (3.2)

where ξi is the elevation angle with respect to a given i−th pole (i.e. vi=±
√
N) and

ǫN is a sequence converging to zero.
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Theorem 3.1. The family of probability densities {FN}N∈N
defined in (3.2) satisfies

lim
N→∞

HN (FN )

N
=∞ (3.3)

for any positive sequence {ǫN}N∈N
that converges to zero.

Proof. Clearly FN is symmetric, and due to (3.1) and its definition we find that
FN is a probability density. Next we notice that due to symmetry and the fact that
bǫN (ξi) are supported on disjoint sets we have that

HN (FN )=

∫

SN−1(
√
N)

bǫN (ξ1)log(bǫN (ξ1))dσ
N −N log2

=

∫ π

0

ϕǫN (ξ)log(ϕǫN (ξ))dξ+log

(

Γ
(

N−1
2

)√
π

Γ
(

N
2

)

)

−(N−2)

∫ π

0

ϕǫN (ξ)log(sin(ξ))dξ−N log2. (3.4)

Using a change of variables ξ= ξ
ǫN

and the fact that the support of ϕ is in
(

0, 12
)

,
we find that for N large enough

∫ π

0

ϕǫN (ξ)log(ϕǫN (ξ))dξ=

∫ π

0

ϕ(ξ)log(ϕ(ξ))dξ− logǫN , (3.5)

as well as
∫ π

0

ϕǫN (ξ)log(sin(ξ))dξ=

∫ π

0

ϕ(ξ)log

(

sin(ǫNξ)

ǫNξ

)

dξ

+logǫN +

∫ π

0

ϕ(ξ)log(ξ)dξ. (3.6)

When N is large we find that 0< sin(ǫNξ)
ǫNξ

≤1, and so (3.6) implies that

∫ π

0

ϕǫN (ξ)log(sin(ξ))dξ≤ logǫN +

∫ π

0

ϕ(ξ)log(ξ)dξ. (3.7)

Combining (3.4), (3.5), (3.7), and the approximation
Γ(N−1

2 )
√
π

Γ(N
2 )

=
√

2π
N

(

1+O
(

1
N

))

,

we find that

HN (FN )≥
∫ π

0

ϕ(ξ)log(ϕ(ξ))dξ+
log
(

2π+O
(

1
N

))

2
− logN

2
−N log2

−(N−2)

∫ π

0

ϕ(ξ)log(ξ)dξ−(N−1)logǫN . (3.8)

Thus

liminf
N→∞

HN (FN )

N
≥ liminf

N→∞
(− logǫN )− log2−

∫ π

0

ϕ(ξ)log(ξ)dξ, (3.9)

proving the result.
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4. Second example: The stereographic projection

Much like the previous section, we will once again construct a family of probability

densities that satisfies limN→∞
HN (FN )

N
. This time, however, we’d like to try and use

R
N−1 as our basis for construction and for that we will employ the stereographic

projection.
Given a function ζ(x) on R

N−1 we define its i−th extension to the sphere SN−1(R)
as

Ji,R(v1, . . . ,vN )=

∣

∣S
N−1

∣

∣R2N−2

(R+vi)
N−1

ζ ◦S−1
i (v1, . . . ,vN ), (4.1)

where Si is the stereographic projection from R
N−1 to S

N−1(R) with the i−th axis
as the axis of symmetry. It is known that under Si we have

|x|2+R2=
2R3

R+vi
(4.2)

and

dsR=

(

2R2

R2+ |x|2
)

dx1 . . .dxN−1. (4.3)

Using (4.1), (4.2), and (4.3) we find that

∫

SN−1(R)

Ji,R(v1, . . . ,vN )log(Ji,R(v1, . . . ,vN ))dσN
R

=

∫

RN−1

ζ(x1, . . . ,xN−1)log(ζ(x1, . . . ,xN−1))dx1 . . .dxN−1

+
(

log
(∣

∣S
N−1

∣

∣

)

−(N−1)log(2R)
)

∫

RN−1

ζ(x1, . . . ,xN−1)dx1 . . .dxN−1

+(N−1)

∫

RN−1

log
(

|x|2+R2
)

ζ(x1, . . . ,xN−1)dx1 . . .dxN−1. (4.4)

In the case where ζ is a probability density on R
N−1, we use the approximation

∣

∣S
N−1

∣

∣=
(

2π
e

)
N
2 · 1+O( 1

N )
√
2πN

N−2
2

to see that

HN (Ji,
√
N )

N

=

∫

RN−1 ζ(x1, . . . ,xN−1)log(ζ(x1, . . . ,xN−1))dx1 . . .dxN−1

N

+

(

log
(

2π
e

)

2
− logN+

3logN

2N
− log

(

2π
(

1+O
(

1
N

)))

2N
− (N−1)

N
log(2)

)

· (N−1)

N
·
∫

RN−1

log
(

|x|2+N
)

ζ(x1, . . . ,xN−1)dx1 . . .dxN−1. (4.5)

The key observation here is that all of the integrals except the last one are invariant
under translation, and the last integration can be increased by shifting the bulk of ζ
to infinity.
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We are now ready to construct our second example: let ζ be any symmetric
probability density on R that is supported on [0,1]. Define

ζN (x1, . . . ,xN−1)=

N−1
∏

i=1

ζ(xi−βN ), (4.6)

where βN will be chosen shortly, and

FN (v1, . . . ,vN )=

∑N
i=1Ji,N (v1, . . . ,vN )

N
, (4.7)

with Ji,N defined by (4.1) with ζ= ζN and R=
√
N .

Theorem 4.1. The family of probability densities {FN}N∈N
defined in (4.7) satisfies

lim
N→∞

HN (FN )

N
=∞ (4.8)

for any sequence {βN}N∈N
such that limN→∞ |βN |=∞.

Proof. By its definition FN is a symmetric probability density. Next we observe
that

∫

RN−1

ζN (x1, . . . ,xN−1)log(ζN (x1, . . . ,xN−1))dx1 . . .dxN−1

=(N−1)

∫

R

ζ(x)log(ζ(x))dx, (4.9)

and due to symmetry and monotonicity of the logarithm we have that

HN (FN )=

∫

SN−1(
√
N)

J1,N (v1, . . . ,vN )log

(

∑N
i=1Ji,N (v1, . . . ,vN )

N

)

dσN

≥HN (J1,N )− logN. (4.10)

Combining (4.5), (4.9), and (4.10), along with the fact that if x∈ supp(ζN ) then

|x|2≥ (N−1)(|βN |−1)
2
, we have that

liminf
N→∞

HN (FN )

N
≥
∫

R

ζ(x)log(ζ(x))dx+
log(2π)−1

2
− log2

+liminf
N→∞

(

− logN+
N−1

N
· log

(

N+(N−1)(|βN |−1)
2
)

)

=

∫

R

ζ(x)log(ζ(x))dx+
log(2π)−1

2
− log2

+liminf
N→∞

(

N−1

N
· log

(

1+

(

N−1

N

)

·(|βN |−1)
2

))

, (4.11)

proving the desired result.

The following sections will be of different flavour. We will no longer use the
limiting convex combination idea but focus our attention on explicitly computable
families of densities on the sphere.
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5. Marginals of densities on the sphere

In this short section we will mention and prove some simple theorems about
integration on the sphere, along with ways to identify marginals and chaoticity.

We start with an important Fubini-type formula, whose proof can be found in [8].

Lemma 5.1. Let F be a continuous function on S
n−1 (r) then

∫

Sn−1(r)

Fdσk
r =

∣

∣S
n−j−1

∣

∣

|Sn−1| · 1

rn−2
·
∫

∑j
i=1 |vi|2≤r2

(

r2−
j
∑

i=1

|vi|2
)

n−j−2
2

(

∫

Sn−j−1
(√

r2−∑j
i=1 |vi|2

)

Fdσ
n−j√

r2−∑j
i=1 |vi|2

)

dv1 . . .dvj .(5.1)

An immediate corollary is the following.

Corollary 5.2. Let FN be continuous on S
N−1

(√
N
)

then

Πk (FN )(v1, . . . ,vk)=

∣

∣S
N−k−1

∣

∣

|SN−1| ·

(

N−∑k
i=1 |vi|2

)
N−k−2

2

+

N
N−2

2
(

∫

SN−k−1
(√

N−∑

k
i=1 |vi|2

)

FNdσn−k√
N−∑

k
i=1 |vi|2

)

, (5.2)

where f+=max(f,0).

Next, we prove a simple technical lemma that will be very useful in determining
when a family of probability densities is chaotic.

Lemma 5.3. Let {fn}N∈N
be a sequence of non-negative functions on R

k that con-

verges pointwise to a function f ∈L1
(

R
k
)

. If in addition,

lim
n→∞

∫

Rk

fn(x1, . . . ,xk)dx1 . . .dxk=

∫

Rk

f(x1, . . . ,xk)dx1 . . .dxk,

then fn∈L1
(

R
k
)

from a certain n0∈N, and {fn}N∈N
converges to f in L1

(

R
k
)

.

Proof. This follows immediately from the Generalized Dominated Convergence
theorem and the trivial estimation |fn−f |≤fn+f .

From the above lemma we can deduce the following.

Corollary 5.4. Let {FN}N∈N
be a sequence of probability densities on Kac’s sphere.

If there exists a probability density function f on R such that

lim
N→∞

Πk (FN )=f⊗k

pointwise for all k∈N, then FN is f -chaotic.

Proof. This follows immediately from Lemma 5.3 and the fact that
∫

Rk

Πk (FN )(v1, . . . ,vk)dv1 . . .dvk=1=

∫

Rk

f⊗k(v1, . . . ,vk)dv1 . . .dvk (5.3)

for all k,N ∈N.

Armed with our new tools, we are now ready to give two more examples of chaotic
families that are not entropically chaotic.
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6. Third example: An escaping tensorisation

The third example we’ll construct has the intuitive form of a tensorised product
restricted to the sphere with one major difference: the underlying one dimensional
function depends on N in such a way that the family will lose part of its support at
infinity, ruining the entropic chaoticity. Most of the computations presented in this
section are taken from the author’s previous work [8], but a few will be repeated for
the sake of completion.

Our family of interest is defined by (1.17), where fN (v)= δNM 1
2δN

(v)+(1−

δN )M 1
2(1−δN )

(v) with Ma(v)=
e
− v2

2a√
2πa

and δN = 1
Nη , η close to 1. Defining the nor-

malization function as

ZN (fN ,
√
r)=

∫

SN−1(r)

N
∏

i=1

fN (vi)dσ
N
r , (6.1)

we see that

FN (v1, . . . ,vN )=

∏N
i=1fN (vi)

ZN (fN ,
√
N)

. (6.2)

The goal of this section is to prove Theorem 1.7, showing that {FN}N∈N
is chaotic, but

not entropically chaotic. In order to do that we require a few additional computations
and technical lemmas, first amongst them is an explicit asymptotic expression to the
normalization function ZN . This part is quite lengthy and technical and is fully
proved in [8]. As such, we will content ourselves with stating the final result.

Lemma 6.1. Let ZN defined as in (6.1). Then

ZN (fN ,
√
u)=

2√
NΣN |SN−1| |u|N−2

2







e
− (u−N)2

2NΣ2
N

√
2π

+λN (u)






, (6.3)

where Σ2
N = 3

4δN (1−δN ) −1 and limN→∞ (supu |λN (u)|)=0.

Using this approximation we can now discuss the chaoticity of FN .

Lemma 6.2. The family of probability densities {FN}N∈N
is M 1

2
−chaotic.

Proof. Using Corollary 5.2 and the definition of the normalization function we
find that

Πk (FN )(v1, . . . ,vk)=

∣

∣S
N−k−1

∣

∣

|SN−1| ·

(

N−∑k
i=1 |vi|2

)
N−k−2

2

+

N
N−2

2

·
ZN−k

(

fN ,

√

N−∑k
i=1 |vi|2

)

ZN (fN ,
√
N)

·
(

k
∏

I=1

fN (vi)

)

. (6.4)

Combining this with (6.3) yields

Πk (FN )(v1, . . . ,vk)=

√

N

N−k
·
e
− (k−

∑k
i=1 |vi|

2)
2

2(N−k)Σ2
N +λN−k

(

N−∑k
i=1 |vi|2

)

1+λN (N)
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(

k
∏

I=1

fN (vi)

)

χ∑

k
i=1 |vi|2≤N (v1, . . . ,vk). (6.5)

From Lemma 6.1 we see that limN→∞ (sup |λN−j |)=0 for any fixed j, and by its
definition and our choice of δN we have that limN→∞Σ2

N =∞. We conclude that

lim
N→∞

Πk (FN )(v1, . . . ,vk)=M⊗k
1
2

(v1, . . . ,vk) (6.6)

pointwise, as fN clearly converges to M 1
2
pointwise. This is enough to prove the

desired result due to Corollary 5.4.

Next, we compute the rescaled N−particle entropy of FN .

Lemma 6.3.

lim
N→∞

HN (FN )

N
=

log2

2
. (6.7)

We will give a quick sketch of the proof, and direct the reader to [8] for full details.

Proof. Due to symmetry, Lemma 5.1, and Lemma 6.1, we have that

HN (FN )

N
=

∣

∣S
N−2

∣

∣

|SN−1| ·
∫

√
N

−
√
N

(

N−v21
)

N−3
2

N
N−2

2

·
ZN−1

(

fN ,
√

N−v21

)

ZN (fN ,
√
N

·fN (v1)log(fN (v1))dv1−
log
(

ZN (fN ,
√
N)
)

N

=

√

N

N−1

∫

√
N

−
√
N

e
− (1−v2

1)
2

2(N−1)Σ2
N +λN−1

(

N−|v1|2
)

1+λN (N)
·fN (v1)log(fN (v1))dv1

+
log
(√

2πΣN

∣

∣S
N−1

∣

∣N
N
2

)

− log(2(1+λN (N)))

N
. (6.8)

Using the Generalized Dominated Convergence theorem one can show that

∫

√
N

−
√
N

e
− (1−v2

1)
2

2(N−1)Σ2
N +λN−1

(

N−|v1|2
)

1+λN (N)
·fN (v1)log(fN (v1))dv1

−→
N→∞

∫

R

M 1
2
(v1)log

(

M 1
2
(v1)

)

dv1. (6.9)

That, along with approximation for
∣

∣S
N−1

∣

∣, gives the desired result.

Proof. [Proof of Theorem 1.7.] From Lemma 6.2 we know that FN isM 1
2
−chaotic,

and from Lemma 6.3 we know that limN→∞
HN (FN )

N
= log2

2 . However, a simple com-

putation shows that H
(

M 1
2
|γ
)

= log2
2 − 1

4 , completing the proof.

7. Fourth example: Varying polynomials

The last example we will provide in this paper is a family of probability densities
on the sphere that is made of symmetric polynomials with varying degrees, constrained
to the sphere. Surprisingly enough, we can compute the normalization function very
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easily in this case and we will see that the reason for this example’s failure to be
entropically chaotic is its ‘large’ entropic tails.

In order to emphasize the effect of varying powers in our subsequent paragraphs
we will define two families of probability densities, both of similar ‘flavour’ but with
very different properties (one was mentioned in Theorem 1.8).

Let

fN,m(v1, . . . ,vN )=
N
∑

i=1

|vi|m, (7.1)

where m>0. Denote by fN =fN,N and let ZN,m,ZN be the appropriate normalization
functions on Kac’s sphere.

Our main two families of interest are

FN,m(v1, . . . ,vN )=
fN,m(v1, . . . ,vN )

ZN,m

,

FN (v1, . . . ,vN )=
fN (v1, . . . ,vN )

ZN

,

(7.2)

where m is fixed in the first family. The main result of this section is the following,
which we will also prove Theorem 1.8.

Theorem 7.1. The family of probability densities {FN,m}
N∈N

, defined in (7.2), is
γ−entropically chaotic while the family {FN}N∈N

is M 1
2
−chaotic, but not entropically

chaotic.

The proof of this theorem will involve a few steps. We start with a few computa-
tions.

Lemma 7.2. Let m>−1. Then

∫

SN−1(r)

|v1|mdσN
r =

rm ·Γ
(

N
2

)

·Γ
(

m+1
2

)

√
π ·Γ

(

N+m
2

) . (7.3)

Proof. Using Lemma 5.1 we find that

∫

SN−1(r)

|v1|mdσN
r =

∣

∣S
N−2

∣

∣

|SN−1| ·
1

rN−2

∫ r

−r

|v1|m
(

r2−v21
)

N−3
2 dv1

=
2rmΓ

(

N
2

)

√
πΓ
(

N−1
2

)

∫ 1

0

xm
(

1−x2
)

N−3
2 dx, (7.4)

where we used the substitution v1= rx and the formula
∣

∣S
N−1

∣

∣= 2π
N
2

Γ(N
2 )

. The integral

representation of the Beta function

B(x,y)=2

∫ π
2

0

sin2x−1(θ)cos2y−1(θ)dθ, (7.5)

and the identity B(x,y)= Γ(x)Γ(y)
Γ(x+y) , simplify (7.4) to the desired result.

Corollary 7.3.

ZN,m=
N ·2m

2 ·Γ
(

m+1
2

)

√
π

·(1+ǫN ), (7.6)
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ZN =
N

N+2
2

2N−1
, (7.7)

where ǫN goes to zero as N goes to infinity.

Proof. We start by noticing that due to symmetry and Lemma 7.2 we have that

ZN,m=N ·
∫

SN−1(
√
N)

|v1|mdσN =
N

m+2
2 ·Γ

(

N
2

)

·Γ
(

m+1
2

)

√
π ·Γ

(

N+m
2

) . (7.8)

Next, we see that the approximation Γ(z)= zz−
1
2 ·e−z ·

√
2π
(

1+ 1
12z + . . .

)

for large z,
leads to

Γ
(

N
2

)

Γ
(

N+m
2

) =
1+ǫN
(

N
2

)
m
2
, (7.9)

where ǫN goes to zero as N goes to infinity. Combining (7.8) and (7.9) yields (7.6).
Similarly, by plugging m=N in (7.3) we find that

ZN =N ·
∫

SN−1(
√
N)

|v1|NdσN =
N

N+2
2 ·Γ

(

N
2

)

·Γ
(

N+1
2

)

√
π ·Γ(N)

. (7.10)

The known formula Γ(z) ·Γ
(

z+ 1
2

)

=21−2z ·√π ·Γ(2z), together with (7.10), yields
(7.7).

We are now ready to start proving Theorem 7.1.

Lemma 7.4. The family of probability densities {FN,m}
N∈N

is γ−entropically chaotic.

Proof. In [4] the authors showed that if {FN}N∈N
is a symmetric family of

probability densities such that limN→∞
HN (FN )

N
=0, then the family is γ−entropically

chaotic (they have actually proved something stronger than that). Thus, we only need
to show that

lim
N→∞

HN (FN,m)

N
=0. (7.11)

Indeed, from (7.6) we see that limN→∞
log(ZN,m)

N
=0, and since on Kac’s sphere

fN,m(v1, . . . ,vk)≤N
m
2 , we find that

0≤HN (FN,m)

=
1

ZN,m

∫

SN−1(
√
N)

fN,m(v1, . . . ,vk)log(fN,m(v1, . . . ,vk))dσ
N − logZN,m

≤ m logN

2
− logZN,m, (7.12)

which shows (7.11).

We now turn our attention to the family {FN}N∈N
.
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Lemma 7.5. The family of probability densities {FN}N∈N
is M 1

2
−chaotic.

Proof. We start with Corollary 5.2 and the k−th marginal:

Πk (FN )(v1, . . . ,vk)

=

∣

∣S
N−k−1

∣

∣

|SN−1| ·

(

N−
∑k

i=1 |vi|2
)

N−k−2
2

+

N
N−2

2 ·ZN

·
(

k
∑

i=1

|vi|N +(N−k)

∫

SN−k−1
(√

N−∑

k
i=1 |vi|2

)

|vk+1|NdσN−k√
N−∑

N
i=1 |vi|2

)

.

(7.13)

Next, we use Lemma 7.2 to find that

∫

SN−k−1
(√

N−
∑

k
i=1 |vi|2

)

|vk+1|NdσN−k√
N−

∑

k
i=1 |vi|2

=
N

N
2 ·Γ

(

N−k
2

)

·Γ
(

N+1
2

)

√
π ·Γ

(

N− k
2

)

(

1−
∑k

i=1 |vi|2
N

)
N
2

.

(7.14)

The known asymptotics of the Gamma function allows us to approximate Γ
(

N−k
2

)

,

Γ
(

N+1
2

)

, and Γ
(

N− k
2

)

and find that

∫

SN−k−1
(√

N−∑

k
i=1 |vi|2

)

|vk+1|NdσN−k√
N−∑

k
i=1 |vi|2

=
N

N
2 ·2 k

2

2N−1

(

1−
∑k

i=1 |vi|2
N

)
N
2

(1+ǫN ).

(7.15)

Combining (7.7), (7.9), (7.13), and (7.15) we find that

Πk (FN )(v1, . . . ,vk)

=

(

1−
∑k

i=1 |vi|2
N

)
N−k−2

2

+








2N−1 ·∑k
i=1 |vi|N

(2π)
k
2 ·N N+2

2

+

(

1− k

N

)

·

(

1−
∑k

i=1 |vi|2
N

)
N
2

π
k
2









·(1+ǫN ).

(7.16)

Clearly, we have that

Πk (FN )(v1, . . . ,vk) −→
N→∞

M⊗k
1
2

(v1, . . . ,vk) (7.17)

pointwise, which finishes the proof due to Corollary 5.4.

Before we show the final stage in the proof of Theorem 7.1 we require the following
technical lemma.
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Lemma 7.6.

∫

SN−1(
√
N)

|v1|N log
(

|v1|N
)

dσN ≥ ZN · logN
2

− ZN · log2
2

·(1+ǫN ), (7.18)

where ǫN goes to zero as N goes to infinity.

Proof. Using equation (5.1) we see that

∫

SN−1(
√
N)

|v1|N log
(

|v1|N
)

dσN

=N ·
∣

∣S
N−2

∣

∣

|SN−1| ·
1

N
N−2

2

∫

√
N

−
√
N

|v1|N
(

N−v21
)

N−3
2 log |v1|dv1

=N ·
∣

∣S
N−2

∣

∣

|SN−1| ·N
N
2

∫ 1

−1

|x|N
(

1−x2
)

N−3
2 log

(√
N |x|

)

dx, (7.19)

where we used the change of variables v1=
√
Nx. Similarly one can show that

ZN

N
=

∫

SN−1(
√
N)

|v1|NdσN =

∣

∣S
N−2

∣

∣

|SN−1| ·N
N
2

∫ 1

−1

|x|N
(

1−x2
)

N−3
2 dx, (7.20)

and thus
∫

SN−1(
√
N)

|v1|N log
(

|v1|N
)

dσN

=
ZN · logN

2
+N ·

∣

∣S
N−2

∣

∣

|SN−1| ·N
N
2

∫ 1

−1

|x|N
(

1−x2
)

N−3
2 log |x|dx.

(7.21)

Using the simple inequality tα logt≥− 1
α·e for t>0 and fixed α>0, we find that

∣

∣S
N−2

∣

∣

|SN−1|

∫ 1

−1

|x|N
(

1−x2
)

N−3
2 log |x|dx

≥− Γ
(

N
2

)

√
πΓ
(

N−1
2

) · 1

α ·e

∫ 1

−1

|x|N−α
(

1−x2
)

N−3
2 dx

=− Γ
(

N−α+1
2

)

Γ
(

N
2

)

√
π ·α ·e ·Γ

(

N− α
2

) .

(7.22)

Using the asymptotic expression of the Gamma function again, one can show that
∣

∣S
N−2

∣

∣

|SN−1|

∫ 1

−1

|x|N
(

1−x2
)

N−3
2 log |x|dx≥−2

α
2 (1+ǫN )

2N−1 ·α ·e . (7.23)

Choosing α= 2
log2 to optimize (7.23), we conclude that

∣

∣S
N−2

∣

∣

|SN−1| ·N
N+2

2

∫ 1

−1

|x|N
(

1−x2
)

N−3
2 log |x|dx≥−ZN · log2

2
·(1+ǫN ). (7.24)

The desired result follows from (7.21) and (7.24).

Finally, we have the following lemma.
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Lemma 7.7. The family of probability densities {FN}N∈N
is not entropically chaotic.

Proof. We saw that {FN}N∈N
is M 1

2
-chaotic so we only need to show that

lim
N→∞

HN (FN )

N
6=H

(

M 1
2
|γ
)

. (7.25)

Indeed, using symmetry, the monotonicity of the logarithm, and equations (7.7) and
(7.18), we find that

HN (FN )

N
=

1

N ·ZN

∫

SN−1(
√
N)

(

N
∑

i=1

|vi|N
)

log

(

N
∑

i=1

|vi|N
)

dσN

− logZN

N
≥ 1

ZN

∫

SN−1(
√
N)

|v1|N log
(

|v1|N
)

dσN

− (N+2)logN

2N
+

(N−1)log2

N

≥ logN

2
− log2

2
·(1+ǫN )− (N+2)logN

2N
+

(N−1)log2

N
. (7.26)

Thus

liminf
N→∞

HN (FN )

N
≥ log2

2
, (7.27)

and since H
(

M 1
2
|γ
)

= log2
2 − 1

4 our proof is complete.

Remark 7.1. Equation (7.26) is exactly why we say that the above example has
‘high entropic tails’. The estimation provided in it shows that the rescaled N−particle
entropy is too high, due to varying power of the polynomial.

Proof. [Proof of Theorem 7.1.] This follows immediately from lemmas 7.4, 7.5,
and 7.7.

8. Final remarks

While we hope this paper provided a bit of insight into the sensitive nature of
entropic chaoticity, there are still many interesting questions on the subject. We
present here a few remarks and questions that arose while working on this paper.

• In the examples given in sections 6 and 7 we found that both families of
probability densities were M 1

2
−chaotic. Since on Kac’s sphere we have that

1=
1

N

∫

SN−1(
√
N)

(

N
∑

i=1

|vi|2
)

FN (v1, . . . ,vN )dσN

=

∫

R

|v1|2Π1 (FN )(v1)dv1,

(8.1)

and
∫

R
|v|2M 1

2
(v)dv= 1

2 , something was lost in the limit. This brings the
following questions to mind:

Question: If a family of probability densities on the sphere, {FN}N∈N
, is

f−chaotic with
∫

R
|v|2f(v)dv<1, can it be entropically chaotic?

We believe the answer is negative.
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• In light of the above question, one might try and change the dependence in N

of the polynomial power in Section 7 to one that will allow convergence with-
out loss of energy. An attempt to pick a power αN such that limN→∞

αN

N
=0,

will not be helpful as it will lead to entropic chaoticity with γ as a marginal
limit. It seems that N is exactly the power where things break abruptly.

• One can try and replace the definition of entropic chaoticity in the case where
the limit measure µ has probability density f with something that might seem
more natural. In that case, we define FN as in (1.17) (when it makes sense)
and say that µN is entropically chaotic if

lim
N→∞

H (µN |FN )

N
=0, (8.2)

i.e. the rescaled ‘distance’ between the measure and the intuitive restricted
tensorisation of the limit function goes to zero. When f is nice enough (sat-
isfying the conditions of Theorem 1.5 and a bit more), one can show that the
new definition is equivalent to the one we presented here (see [4, 6]), however
the new definition might be able to deal with infinities more easily and might
be less delicate to changes.

Question: Are the definitions always equivalent? If not, when and how do
they differ?
We’d like to point out that in our computable examples the limit function
was nice enough to warrant the equivalence of the definitions.

The idea of varying functions in accordance to N is the key idea behind many of
our constructions and we believe that it is the main way to destroy ‘good’ properties,
or to get horrible decay rates. We believe that such phenomena will not happen if the
core function will remain fixed, something that has more of a physical intuition to it,
and we’re looking forward to following any advances made on the matter.
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