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GLOBAL EXISTENCE AND ASYMPTOTIC BEHAVIOR OF A
MODEL FOR BIOLOGICAL CONTROL OF INVASIVE SPECIES VIA
SUPERMALE INTRODUCTION*

RANA D. PARSHADT, SAID KOUACHI#, AND JUAN B. GUTIERREZ$

Abstract. The purpose of this manuscript is to propose a model for the biological control of
invasive species, via introduction of phenotypically modified organisms into a target population. We
are inspired by the earlier Trojan Y Chromosome model [J.B. Gutierrez, J.L. Teem, J. Theo. Bio.,
241(22), 333-341, 2006]. However, in the current work, we remove the assumption of logistic growth
rate, and do not consider the addition of sex-reversed supermales. Also the constant birth and
death coefficients, considered earlier, are replaced by functionally dependent ones. In this case the
nonlinearities present serious difficulties since they change sign, and the components of the solution
are not a priori bounded, in some LP-space for p large, to permit the application of the well known
regularizing effect principle. Thus functional methods to deduce the global existence in time, for
the system in question, are not applicable. Our techniques are based on the Lyapunov functional
method. We prove global existence of solutions, as well as existence of a finite dimensional global
attractor, that supports states of extinction. Our analytical finding are in accordance with numerical
simulations, which we also present.

Key words. Reaction-diffusion system, global existence, Lyapunov functional, global attractor,
invasive species management.
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1. Introduction

Exotic species, commonly referred to as invasive species, are in some instances
capable of establishing a self-sustained population when they propagate to new en-
vironments. Once established, they can be extremely difficult to eradicate, or even
manage [10, 41]. There are numerous cases of harm to the environment and the econ-
omy due to the action of various invasive species [30, 29]. Some well known examples
of these species include the Burmese python in southern regions of the United States,
the cane toad in Australia, and the sea lamprey and round goby in the Great Lakes
region in the northern United States [8]. The cane toad was brought into Australia
from Hawaii in 1935, to control the cane beetle. They multiplied rapidly since their
introduction, and have negatively affected biodiversity in the region [38]. The sea
lamprey entered the great lakes in the 1800s through shipping canals. Their popula-
tion has since exploded [4], and these predators have caused a severe decline in lake
trout and other lake fish populations, adversely affecting various local fisheries. The
Burmese python population has been exponentially on the rise in the Florida glades
since the 1980s. This has been attributed to a number of reasons, such as the exotic
pet trade in Florida. Climatic factors might support their spread to a third of the
United States [32]. Invasive species, aside from being considered one of the great-
est threats to biodiversity, cause agricultural losses worldwide in the range of several
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hundred billion dollars [8]. To date, there have been no completely effective methods
for eradicating or containing these species in real scenarios, in the wild.

It has been observed that the size of a population can be affected as a result
of shifting the sex ratio [12]; for example, by the introduction of large quantities of
sterile males. This approach has the advantage of targeting only the invasive species.
Even though this strategy has been successfully applied toward the control of fish
such as the sea lamprey in the Great Lakes [45], it has been more commonly used
in the control of insects. The release of large numbers of sterile male fruit flies in
Florida reduces the probability that a fertile female will encounter a fertile male and
produce viable progeny. Because male fruit flies do not themselves cause crop damage,
an overwhelming number of sterile males can be released into the environment to
compete with fertile males in matings [20]. If insufficient numbers of sterile males are
released, normal matings may occur in sufficient numbers to maintain the population.

Although changing the sex ratio of a population seems difficult to achieve, a
precedent for reducing a fish population as a result of altered sex ratios through sex
reversal exists in a study involving Chinook salmon in the Columbia River [28]. The
study involved genotype analysis of 50 males and 50 females removed from the river.
DNA from each fish was analyzed for the presence of Y-chromosome specific DNA
using a DNA probe. The study revealed that the 50 males were genotypic XY males
(m) as expected. However, the majority of females also tested positive for the Y-
chromosome DNA sequence, indicating that they were actually genotypic XY males
that had become feminized for an unknown reason, possibly as a result of exposure
to estrogen-like chemicals in the environment [31]. The study highlighted the likely
impact of XY females (f;,) on the population, which was a long-term reduction
in normal XX females (f). This reduction would take place because of a reduced
number of females occurring in progeny resulting from f., mating with m, and also
from the effects of YY males (s, also called supermales) produced from these matings.
This s genotype would be expected to produce only males as progeny resulting from
their matings with f, as shown in figure 1.1. The expected result of having f,, is
a future decline of the population due to a reduction in normal f. Although this
example involves an indigenous species rather than an exotic one, the same principle
is potentially useful as a tool to reduce nonindigenous fish populations in the wild.

m’ | @ SJ{D
) .

Fi1G. 1.1. The left figure shows mating of a (XX) female (f) and a (XY) male (m); the progeny
of this cross produces half females and half males. The right figure shows mating of a (XX) female
(f) and a (YY) supermale (s); this cross always results in male progeny.

It has also been reported that environmental pressure for masculinization would
lead to extinction of fish populations with a XY sex-determination system [18]. Mas-
culinization by exposure to androgens has been reported in the wild [19], and is a
common practice in salmonid industries to produce all-female stocks [17]. The case of
environmental pressure to feminize, in theory at least, produces individuals that are
YY and thus the population contains s.

A number of models have considered control of invasive species through the ad-
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dition of engineered individuals that drive the population to local extinction. Among
these strategies, the Daughterless Carp [3] and the Trojan Sex Chromosome [9, 35, 36],
have been particularly well studied. The first strategy aims to causing extinction via
the release of individuals with insertions of aromatase inhibitor genes. The latter
strategy tries to cause extinction via the constant release of sex-reversed supermales,
denoted r in (1.4), into a target population. Both strategies have the difficulty of re-
quiring sophisticated biological techniques of genetic manipulation, and phenotypical
identification. We briefly recount the TYC model [35]

1
8tf:DAf+§fm6L75f, (1.1)
oym=DAm+ (;fm+;rm+fs> BL—dm, (1.2)
0;s=DAs+ (;rm—&—rs) BL—0s, (1.3)
Oyr=DAr+p—dr, (1.4)

with the boundary conditions

f=m=s=r=0 on R" x9Q. (1.5)

Here QC R? is a bounded domain. Also L=1— w , where K is the
carrying capacity of the ecosystem, D is a diffusivity coefficient, 3 is a birth coefficient
and ¢§ is a death coefficient. We prescribe suitable initial data. Notice, due to the
presence of the logistic control term, the components are a priori uniformly bounded,
and we have a maximum principle, or L control on the individual components
f, m, r, and s of the system [36]. The results derived in [9, 35, 36] are done so via
the use of this estimate, coupled with standard energy methods.

In the current manuscript we study a model for biological control, where we
remove the logistic type term, present in the prior model. We also assume nonlinear
and functionally dependent birth and death rates, instead of the constant coefficient
birth and death rates assumed earlier. In this case the current system poses serious
mathematical difficulties, as the nonlinearities change sign, and neither the f nor m
component of the solution is a priori bounded in some LP space. The eradication
strategy works as follows. A genetically modified individual, denoted s (YY), bearing
two Y chromosomes, is introduced at a rate u(s) to a target population of an invasive
species containing normal females and males, denoted as f and m respectively. Mating
between the introduced s and the invasive female f, always leads to a male progeny m.
This generates a disproportionate number of males over time. The higher incidence
of males decrease the female to male ratio. Ultimately, the number of f decline to
zero, causing local extinction. This strategy is relevant to organisms with an XY sex-
determination system, in which males carry one X chromosome and one Y chromosome
(XY), and females carry two X chromosomes (XX). The primary purpose of the
current manuscript is to show that extinction is always possible, via the proposed
strategy, even in a population which is not governed by a logistic type control term.

The control method is modeled via the following system of reaction diffusion
equations:

atf:dlAf+gl(f)mvs)fm_g2(fam78)f7 (16)
Om=daAm+ gs(f,m,s)fm+gs(f,m,s)fs—gs(f,m,s)m, (1.7)
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Ors=dzAs+(s) —gs () s, (1.8)
in RT x ), with the boundary conditions
O f=0,m=0,5=0, on RT x990, (1.9)

where Q is an open bounded domain in RY with smooth boundary 9, and 8, denotes
the outward normal derivative on 9Q2. Note that the results we have derived in
the current manuscript, for global existence and global attractor, are valid even for
Dirichlet boundary conditions. The choice of boundary condition depends on the
application at hand. The Neumann boundary condition is used more often, as the
Dirichlet boundary condition is left to applications where there is annihilation/death
of species on the boundary. It could be used if we were implementing the proposed
strategy in a physical domain where a poison such as rotenone (actively used as a
toxic control in fisheries), has been sprayed around the boundary, forcing the species
that reach the boundary to die.
dy, do, and d3 are the diffusion coefficients. The initial data

£(0,2) = fo(z), m(0,2) =mo(z), s(0,2) =sg(x) in (1.10)

are assumed to be nonnegative and uniformly bounded on 2.

The mating rates g1, g3, and g4, and death rates g and g5 are assumed nonlinear,
and have polynomial growth.

Equation (1.8) is independent of the two first equations. It is the heat equation
under homogeneous Neumann boundary conditions. Under standard conditions on
the reaction term rj3:

+oo
0%[p(s) — go (s) 5] ds
< _— = N .
5:2 <0 and /( )M(S)—QG )5 +o0; (1.11)

z€EN

see [5].
The solution of (1.8) with the given boundary conditions exists globally in time
and is bounded on (),

[5(t, )|l <Soo(t) in R, (1.12)

where s., is a bounded function on bounded subsets of R™.

As aforementioned the mathematical difficulty in analyzing (1.6)-(1.8) is that the
reaction terms do not have a constant sign. This means that none of the equations
are good in the sense that neither f nor m is a priori bounded or at least bounded
in some LP-space for p large, so that one cannot apply the well known regularizing
effect.

In the case when the nonlinearities have a constant sign many results have been
obtained: When 7 (f,v)=—fm? (which implies the uniform boundedness of f) and
ra(f,m) = fm?, N. Alikakos [2] established global existence and L°*-bounds of pos-
itive solutions when 1< < ("Hﬂ K. Masuda [33] showed that the solutions exist
globally for every f>1. S. L. Hollis, R. H. Martin and M. Pierre [16] established
global existence of positive solutions for system (1.6)-(1.7) with the boundary condi-
tions

of om

>\1f+(1—)\1)6777:517)\Qm-l-(l—)\g)ain:ﬁg on R*x@ﬂ, (113)
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where
0<A, A<, A1=X=1,5,>0, and 82 >0, or \y =Xy =01 =062=0,
under the conditions of the uniform boundedness of f on [0,Tjmax] X €, and
r1(u,v)+ra(u,v) <C(u,v) (u+v+1), for all u>0 and v >0, (1.14)

with 1 and 7 can change sign and where C(u,v) is positive and uniformly bounded
function defined on R*x R*. Haraux and A. Youkana [13] simplified the proof of K.
Masuda [33], while using techniques based on Lyapunov functionals and while taking

nonlinearities 71 (f,m)=— r1(f,m)=—fR(m) satisfying the condition
1
. [log( +R<v>>] N
v—r+00 v

where R(v) >0 for all v>0. S. Kouachi and A. Youkana [24] generalized the results
of A. Haraux and A. Youkana [13] while adding —cAf to the right-hand side of the
second equation of system (1.6)-(1.9) and the condition

lim {log (1+71(u,v))

] <a*, for anyu >0, (1.15)
v

v—+00
where R(u,v)>0 for all u, v>0 and

B 2d,d;
n(dy = d2)? || foll o

This condition reflects the weak exponential growth of the reaction term f. One
notices that condition (1.15) is insufficient to prove global existence for solutions to
system (1.6)-(1.9) and authors usually impose that r; (or r2) also satisfies the following
analogous condition:

*

«

r1(u,v) (or ro(u,v)) <C'(u,v) (u+v+1), for all u>0 and v>0. (1.16)

In the case when the nonlinearities do not have a constant sign, there are not many
results in the literature; A. J. Morgan [34] generalized the results of [16] to show
that solutions of the m-components reaction diffusion systems exist globally (m >2)
where also, in our case (m=2), he imposed condition (1.15) on f and f+g¢ under
the boundary conditions (1.16). S. L. Hollis [15] extended the results, under the same
conditions, to the boundary conditions (1.16), but he took

0<A1,A2<1, 8120 and 32 >0.

See [11] for related results. In [24, 27, 1], we generalized the above results respectively
for two, three, and finally m components systems:

afi
ot

‘diAfi:ri(flwnafm) in ]R+><Q; iil,...,m, (117)

under the unique condition

ZDiri(fla---af’rn) SO

i=1

1+§:fi] (1.18)

=1
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for all positive constants D, sufficiently large, where C' is positive constant and we
showed the global existence without imposing the boundedness of one of the compo-
nents of the solution.

It is usual that under the action of diffusion, dynamical systems tend to smooth
out. However, an inherent difficulty in the system (1.6)-(1.9) is that the asymptotic
sign condition in vector version

limsupF(s)-s<C (1.19)

(where C'is a positive constant and F is the nonlinear term, representing the reaction),
is not satisfied. This is again primarily due to the fact that the nonlinearities may
change sign. Usually this condition plays a key role in the dissipation process, and thus
if it is satisfied, then it often leads to the existence of a global attractor for the system.
This opposite signed nonlinearity, however, best represents the biological process at
work. That is, the rate of increase of f and m happen with rate gi, g3, and g4, while
the loss or death of f and m happen with rate g» and g5. From a mathematical
point of view, this opposite signed coupling causes extensive problems in proving
existence of a global attractor. Essentially, showing asymptotic compactness of the
semigroup in question is not straightforward. Certain methods have been proposed in
the literature to overcome these difficulties. Recently You in [46, 47, 48] has studied
the asymptotic dynamics of various autocatalytic reaction-diffusion systems such as
Brusselator system and Gray-Scott equations. The key similarity in these systems,
and the system we consider, is that the asymptotic sign condition in vector version
is again not satisfied. You has devised an elegant technique, based on a Kuratowski
measure decomposition, that enables one to get around this hindrance in order to
prove the existence of a global attractor for the various systems he considers. Our
approach in the current manuscript differs quite significantly from these decomposition
methods. The Lyapunov function technique enables us to derive the L?” bounds on
the solution. Via these estimates, the H' bounds are derived, and subsequently the
asymptotic compactness of the semigroup in question is shown, which leads to the
existence of a global attractor.

The current manuscript is organized as follows. In Section 1 we have introduced
the general problem of invasive species, and the relevant literature as concerns their
control. In Section 2 we define certain preliminaries. In Section 3 we give the proof
of global existence for the generalized system considered. In Section 4, this proof is
modified to tackle a system where the reaction terms are polynomials. In Section 5,
we discuss the asymptotic behavior of the system, and show the existence of a global
attractor. Section 6 discusses the finite dimensionality of this attractor. In Section 7
we numerically simulate the system, to test our analytical findings. Finally we make
various concluding remarks in Section 8.

2. Notations and preliminary observations

It is well known that to prove global existence of solutions to (1.6)-(1.8) (see Henry
[14]), it suffices to derive a uniform estimate of [|ri(f,m,s)||, and [lr2(f,m,s),on
[0,T*[ for some p>N/2. Our aim is to construct polynomial Lyapunov functionals
(see S. Kouachi and A. Youkana [24] and S. Kouachi [23]) for the solution (f,m) of
system (1.6)-(1.7), so as to estimate their L —norms and thus deduce global existence.

The usual norms in spaces LP(£2), L*°(Q), and C (ﬁ) are respectively denoted by

= / ju() P d, (2.1)
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= . 2.2
Jull o =mazlu(z)| (2.2

Also, in all subsequent estimates C, C;,i=1,2,... are generic constants that can
change in value from line to line, and sometimes within the same line if so required.
Since the nonlinear right hand side of (1.6)-(1.7) is continuously differentiable on Rt x
R, then for any initial data in C () or LP(2), p€ (1,+00), it is easy to check directly
its Lipschitz continuity on bounded subsets of the domain of a fractional power of the

operator
—diA 0
(52 0 23

Under these assumptions, the following local existence result is well known; see A.
Friedman [6], D. Henry [14], A. Pazy [37], and J. Smoller [42].

THEOREM 2.1.  The system (1.6)-(1.8) admits a unique, classical solution (f,m,s)
on [0, Timax[X Q. If Tiax < 00, then

A oo + s oo + () oo} =00, (2.4)

where Tinax denotes the eventual blowing-up time in L>°(Q).

3. Statement and proof of the main results
For the global existence of the system of coupled equations (1.6)-(1.7), we intro-
duce the following functional used in S. Kouachi [26]:

P
tHL(t)z/ZC;Gifimp_idx, (3.1)
o =0
where {ei}ieN is a real positive increasing sequence satisfying
0042 )
2 >d, i=0,1,...p—2, (3.2)
i+1
where
(d1+ d2)2
d>-——— 3.3
4dyds (3:3)
REMARK 3.1. Condition (3.2) implies that
0,>Kd", i=0,1,....
For the reaction terms we suppose that
lim  ——2%5 i, (3.4)
[f1+|ml+s| =400 g1 (93m + ga5) f
or
gsm + 93 <+oo for all s >0 and lim LIS (3.5)
|[fl+m]=too g2 |f [ lm |+ s|—+o0 g1 f

The main result of the paper is the following theorem.
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THEOREM 3.1. If (f(t,.),m(t,.)) is any positive solution of the problem (1.6)-
(1.7), then under conditions (3.2)-(3.4) or (3.5), the functional L(t) given by (3.1) is
decreasing on the interval [0, Tinax]-

Proof. By differentiating L with respect to ¢ and then by simple use of Green’s
formula we obtain

() =1+, (3.6)
where
p—2
I=—p(p— 1)20;72 /JfleLZ)_?_Z <d19i+2 ik
i=0 A
+(d1+d2)9i+1VfVm+d20i|Vm\2>dx (3.7)
and

p—1
J:/ [PZ(GiHTl(f,m,S)+9i7”2(f,m75))01i;_1fimpli] dx. (3-8)

Q =0

By choosing a sequence satistying (3.2) and (3.3), it is easy to verify that the quadratic
form with respect to (V f,Vm) is positive, which implies I <0.
For the second integral we have

Oiv1(grfm—gaf )+0i(gsfm+gafs—gsm)
=[0i1191fm—0,gsm]|+ [—0ir192f +0; (gsfm~+gafs))
=[0iv191f —0igs|m+[—0i1192+0i (g3m+gas)] f,

so that J <0 if we choose
9¢+1g1f — 91‘95 <0 and — 9i+1gg +0; (ggm +g45) <0, (39)
which can be written as

gsm+gas _bit1 _ g5

. 3.10

g2~ 0 Taf (3.10)

Under conditions (1.12) and (3.4), the interval {%‘;g“,ggﬁ} becomes sufficiently
large. We choose the sequence {6;} satisfying (3.10) and (3.2) at the same time. This

proves the theorem. 0
By application of the preliminary observations, we have the following result.

COROLLARY 3.2. If the reaction terms are continuously differentiable on Ri, then
all positive solutions of (1.6)-(1.9) with initial data in LP(Q) are in L°°(0,T*;LP())
for allp>1.

Proof. 1If p is an integer, the proof is an immediate consequence of Theorem 3.1

and the trivial inequality

/(df(tm)—l—m(t,x))pdnglL(t) on [0,7*[, =0, 1,...,p, (3.11)
)
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where C is a positive constant depending on p. In the general case one uses, besides
the well known Holder inequality,

p
7‘
r—p

/(df(t,x)+m(t,x))pdxﬁ(|Q|) T /(df(t,x)—i—m(t,x))T ,1=0, 1,...,p, (3.12)

Q Q

where r is the first integer such that r >p, and |Q] is the measure of the set Q. O

If we suppose that the reaction terms are of polynomial growth,
lg: (fym,s)| < Co(f,m,s) [l—i-f—i-m—i—s]l on Rz’r, i=1,...,6, (3.13)

where Cj is a positive and bounded function on bounded subsets of Ri, then we have
the following result.

PROPOSITION 3.3.  If the reaction terms are of polynomial growth satisfying con-
ditions (1.11) and (3.4), then all positive solutions of (1.6)-(1.9) with initial data in
L>°(Q) are global.

Proof. From Corollary 3.2, there exists a positive constant C's such that
/(f(t,x)—i—m(t,x)—i—l)pdeCg, on [0, Tax| (3.14)
Q

for all p>1, and from (3.13) we have
Iri(f,m, )| T2 < Co (f,m,s) (f+m+1)P on [0, Tinax[x9, i=1,....6. (3.15)

Since f and m are in L*>°(0,7*;L7(Q)) for all p>1, we can choose p>1 such that

l+L2 > %, and therefore from the preliminary observations the solution is global. O

REMARK 3.2. In the case when condition (3.4) is not satisfied, we can prove global
existence under more general conditions by changing (3.10) to

Oir191f —0i95s <K0; and —0;1192+0;(g3m+gas) <Ky, (3.16)
so that (3.10) becomes

93m+g43<9i+1<g5+K
g+K T 0; = af

(3.17)

4. The case of polynomial reaction terms
If the reaction terms have polynomial growth

Tl(f,m75) = alfal+1m61+1 _a2fa2+1m52,
T2(f;m75) = agfa3+1m,33+1 +a4f044+1m5457a5fa5m,35+1, (41)
Tg(f,m78) = aﬁsq _a7sp>

that is

g = alfmmﬁl7 o= agfa2+1mﬁ2, g3 :agfo“'smﬁs,
ga=asf*mPs, gs=asfoom !, (4.2)
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where «;, 5;, and a; are positive reals. Condition (3.4) can be written as follows:

as FembBstl 1 g, feambag s, Bs
lim ( 2 1/ ) <400 and lim M:nLoo,
| £]4|m] ——+oo as fo2mb2 [f|+|m|—+ooay fertlmb
(4.3)
which are satisfied if we choose
ag >max{asz,ou}, B2 >max{l+pPs,01}, as>14ai, and f5 > f;. (4.4)

For equation (1.8) with homogeneous Neumann boundary conditions, standard meth-
ods give global existence if we choose

g<lforallp>0orp>g>1. (4.5)
The first condition implies, by comparison methods, that
s(t,.) <3(t,.), (4.6)

where 5(t,.) is the solution of the following problem:

0¢5 —d3sAs = ags, on Rt xQ,
0,5 =0, on RT x 09, (4.7)
5(0,.) = maxs (0,z), on (,

which exists globally in time and is bounded on [[0,T][x€2 for all T'> 0.
For the second condition, we apply Young’s inequality to the term s? to get

ar

§1= gt < LT ma 4 Opgr202 (4.8)
= e
where
1 1 .
—+—=1with 71, 2>1, 1q1=p, and y2q=1, (4.9)
Y172
and this is satisfied if we choose
—1 -1
mn= P~ and 2= b= (4.10)
g—1 P—q
(4.8) implies that
r3 < Cys, for all s>0, (4.11)

which gives global existence and boundedness of s(t,.).
Now we can state the following proposition.

PROPOSITION 4.1.  If the constants «;, B;, i=1,...,5, and p, q, are positive reals
which satisfy conditions (4.4), (4.5), then for all positive parameters aj, j=1,...,7,
and all positive initial data in L>° (), the solutions of (1.6)-(1.9) with reaction terms
given by (4.1) are global.

Proof. The proof is an immediate consequence of Proposition 3.1 and conditions
(4.4) and (4.5). |
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5. Asymptotic behavior and global attractor
In this section we will prove the existence of a global attractor for the reaction
diffusion system (1.6)-(1.9). Recall the following definition.

DEFINITION 5.1.  Consider a semigroup S(t) acting on a reflexive Banach space H.
Then the global attractor AC H for this semigroup is an object that has the following
properties:

i) A is compact in H;
it) A is invariant, i.e. S(t) A=A, t>0;
iii) If B is bounded in H then

dist (S(t)B,A)—0, t— oo.

Next various preliminaries are presented, detailing the phase spaces of interest
and recalling certain standard theory. Let us define our phase spaces of interest.

H=L*(Q)x L*(Q) x L*(Q), V=H(Q) x H'(Q) x H'(Q).

In order to prove the existence of a global attractor we are required to show:
i) There exists a bounded absorbing set in the phase space.
ii) The asymptotic compactness property of the semigroup in question, [44, 43].

These notions are defined next.

DEFINITION 5.2 (Bounded absorbing set). A bounded set B in a reflexive
Banach space H is called a bounded absorbing set if for each bounded subset U of H,
there is a time T=T(U), such that S(t)U CB for all t>T. The number T=T(U)
is referred to as the compactification time for S(t)U. This is essentially the time
after which the semigroup compactifies.

DEFINITION 5.3 (Asymptotic compactness).  The semigroup {S(t)},~q: H —H
associated with a dynamical system is said to be asymptotically compact in H if for
any {uiO,n}:ozl bounded in H, and a sequence of times {t, — o0}, S(t,)uio,n possesses
a convergent subsequence in H.

We will use the functional L to show the compactness of the trajectories
{f(t,.),m(t,.),s(t,.) };>, in the spaces LP(Q2). Using the conditions (3.3) and (3.4), we
can find a constant C; such that

12 plp=1)Ca [ ((d-+m)" 1V (& +m0) ) (51)
Q
and this gives
L(O-+p(p=1Cs [ (& +m) (9 @ +m)*) do <0 (5.2)
Q

by integration with respect to t. We then deduce using (3.11) that

/(df(t,m)+m(t,x))pdx+c5//((df+m)p*2|wdf+m)|2)dxdagL(O). (5.3)
0 Q

Q
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Since d arbitrarily satisfies condition (3.4), the above inequality yields
f(t,.),m(t,.) €L ([0,00[; L7 (2)) NL? ([0,00[;H' (2)). (5.4)

Now, specifically, we will first show a bounded absorbing set in the phase space
L2(2). We see that (5.3), with p=2, yields

I£113 < CLVE> 1. (5.5)

Note that here Cy is independent of time and the initial data, and ¢; is the
compactification time that depends on the initial data, easily determined via Gron-
wall’s inequality. We next aim to show the asymptotic compactness. Let us begin by
multiplying (1.6) by f, and integrating by parts over §2 to obtain

S BT B=ar [ for2m® ido—ay [ formisdn, (56)

We now use the positivity of f,m along with Hélder’s inequality to obtain

S S NBHIAB < anll 1532 Il 1y <O (5.7)

This follows via the a priori LP bound on the solutions, from (5.3), and hence
in particular for p=max(2(a1+2),2(51 +1)). Note that the LP bounds follow for L?
initial data by the regularizing property of the semigroup [37]. Now we integrate (5.7)
in the time interval from [¢,¢+ 1] for any ¢ >¢; to obtain

t+1
||f(t+1)|\§+/ IV fl3ds < Cs + | f(1)]3 < Co, Wt 211 (5.8)
t

Thus we have the following uniform integral in time bound:
t+1
/ IV fl13ds < Cg, Vt>t, (5.9)
t

and using the mean value theorem for integrals we obtain the bound
[[Vf(t*)||3ds < Cg, Vt, t* € [t,t+1],Vt>1;. (5.10)

We next multiply (1.6) by —Af and integrate by parts over {2 to obtain

2dt|‘vf||2+||AfH2_a1/fa1+1 51+1( Af do — a2/focz+l 52( Af)
(5.11)

Then employing Young’s inequality yields

I 4\Af\|%+2\|f||4<”“>+2|\ [

2 dt 4(a1+1) B1+1)

1 9 4(on+1) 4(B2)
+Z||Af||2+2||f\|4(a§+1)+2|| ||4(52),

which, via the a priori LP bounds on the solutions, and hence in particular for
p=max(4(a; +1),4(61+1),4(az+1),4(52)), leads to

d 4(a1+1 4(81+1 4 +1 4
ZIVAB+IALIB <Al ) +4llmllaE D) +4llFllsen ) + 4Allml 35 < .

(5.12)
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Now using the Sobolev embedding of H?(2) < H*(£) we obtain
d
ZIIVIAE-GillvilE<C. (5.13)

The uniform Gronwall lemma [44] via integration in the time interval [t*,¢] yields
the following uniform bound:

C
VA< & +Co vzt (5.14)

This follows via (5.9), (5.10).
We now state the following theorem.

THEOREM 5.4.  Consider the reaction diffusion system described via (1.6)-(1.9).
Under conditions (3.2)-(3.4) or (3.5), there exists a (H,H) global attractor A for the
system . This is compact and invariant in H, and it attracts all bounded subsets of H
in the H metric.

Proof. We have shown global existence via Proposition 3.3. Thus there exists
a well defined semigroup {S(t)},5o: H — H. The equation (5.5) demonstrates the

existence of bounded absorbing sets in H. Thus given a sequence { f(),n};l'o:1 that is
bounded in L?(9), we know that for ¢ >¢* (where t* appears in (5.10)),

S(t)(fon) CBCHY (). (5.15)

Here B is the bounded absorbing set in H!(£). Now for n large enough ¢, >t*, and
thus for such ¢,, we have

S(tn)(fon) CBC H' (). (5.16)
This implies that we have the following uniform bound, via (5.14):

1S (tn) (fon)lm1 (o) <C, (5.17)

which implies via standard functional analysis theory (see [44, 43]) the existence of a
subsequence still labelled S(¢,,)(fuo,,) such that

S(tn)(fon) = f in H'(). (5.18)
This yields, via the compact Sobolev embedding of

V—H, (5.19)
that

S(tn)(fon) = f in L*(). (5.20)

Analogous estimates and convergences can be derived for the m and s compo-
nents. This yields the asymptotic compactness of the semigroup {S(t)},~, in H. The
theorem is now proved. B 0

REMARK 5.1. It is interesting to note that the attractor is a one point attractor,
that is given a set of parameters, the solution converges in long time to a steady
state. This may not be a spatially uniform state. However, it supports the extinction
state for an appropriate range of parameters, thus validating the success of the control
strategy. The details of this can be seen in Section 7.
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6. Finite Dimensionality of the global attractor

In this section we show that the Hausdorff and fractal dimensions of the global
attractor for the reaction diffusion system (1.6)-(1.9) are finite. Recall the following
definitions.

DEFINITION 6.1 (Fractal dimension).  Consider a subset X of a Banach space
H. If X is compact, the fractal dimension of X, denoted d;(X), is given by

N(X
dy(X)=limsup logN(X,€)

o log(L) (6.1)

Here N(X,e) denotes the minimum number of closed balls of radius €, required to
cover X. Note ds(X) can take the value +00.

DEFINITION 6.2 (Hausdorff dimension).  Consider a subset X of a Banach space
H. If X is compact, the Hausdorff dimension of X, denoted dgy(X), is given by

dH(X):(iir;%{d:Hd(X)zo}. (6.2)
Here
HYX) =lim pu(X,d,€), (6.3)
e—0
where
u(X,d,e):inf{er:rige cdeQUiB(xi,ri)} (6.4)

and B(z;,r;) are balls with radius r;.

We will provide upper bounds on these dimensions in terms of parameters in the
model. There is a standard methodology to derive these estimates. We consider a
volume element in the phase space, and try and derive conditions that will cause it to
decay as time goes forward. If A is the global attractor of the semigroup {S(t)},~,
in H associated with (1.6)-(1.9), we can define

I ,
qn(t) = sup sup f/ Tr(AU(T)+F (S(1)ug) o Qn(7)dr, (6.5)
uo€A  g;eH,||g;l|=1,1<i<n t Jo
where
@n =limsupgy,(¢). (6.6)
t—o00

Here F is the nonlinear map in (1.6)-(1.9). @, is the orthogonal projection of the
phase space H onto the subspace spanned by U (t),Us(t),--,Un(t), with

Ul(t) :L(S(t)uo)gla 1= 1,2,771

L(S(t)ug) is the Fréchet derivative of the map S(t) at ug, with t fixed. Also for this
model, L(S(t)ug)g=U(t)=(F,M,S), where u=(f,m,s) is a solution to (1.6)-(1.9),
¢j= (qﬁ}d)g,) are an orthonormal basis for the subspace Q,,(7)H, and (F,M,S) are
strong solutions to the variational equations for the reaction diffusion system (1.6)-
(1.9). These are given by

887‘? =AF+a1(p +1)fa1+1m51M+a1(a1 +1)fa1mﬁl+1F
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—az(ﬂg)fo‘ﬁlmBrlM—az(ag—i-l)fanﬁzF,

M

% =AM +a3(Bs+1) f**T'm» M+ ag(as+1) fomP I F
+a4fa4+1[mﬂ45+ﬁ4sm54_1M]+a4(a4+1)m54sf"4F
—a5(55—l—1)]”&577”L55+1M—a5(045)]“"5_1m55+1F7

gf =AS+agqs? 'S —arps’ 'S, (6.7)
F(0)=n, M(0)=¢, S(0)=¢. (6.8)

We recall the following lemma from [44], which will be useful to derive the requisite
estimates.

LEMMA 6.3. If there is an integer n such that q, <0, then the Hausdorff and fractal
dimensions of A, denoted dg(A) and dp(A), satisfy the following estimates:

dH(A) Sn,
dF(A) SQTL.

Our aim is thus clear. We will derive exactly the conditions that enforce ¢, <0
for (6.5). However, without loss of generality, we will assume dy =1, do=1, dz=1.
We begin our estimates.

Tr(AU(T) + F (S(T)ug) 0 Qn(7)
:Z3<A¢j<7>,¢jm>+<F’ (S(r)u0)e; (7). 85(r))

:—3Z|V¢>J W2+ Ti+Jo+ Js. (6.9)
Here

BEY [ (B 01 (1)) + aran D7 k)
=ile

—as(B2) f T MO T G (1) 3 () — ag(aa + 1) f 2 m 9} (1)
<0|f|2&1|m|fgﬁt11)|¢ (r >|4+01|f|;§0;g+1 Il 452163 (1) 4162 (7).

<CZ|¢J ‘4+<Clz|¢3
<CZ|¢J )2 +Cin. (6.10)
Then J; and J3 are estimated likewise and we obtain

J2<CZ|¢>j Y2+ Con (6.11)

Jj=1
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and

Js<C |;(7)[5+Can. (6.12)

j=1
Recall the Gagliardo-Nirenberg interpolation inequality [43],
|Blwrr () < Cloyra o) |8l (o) for $€W™(Q), (6.13)

provided p,q,r>1, 0<0<1, and

k—"ge<m—”>—(1—e)”, where n=. (6.14)
P q r

Now we consider exponents such that,

WhP(Q)=LYQ), W™4(Q)=H*(Q), L"(Q)=L*(Q), (6.15)
and
9:1. (6.16)

Thus we obtain
65(r) 3 < 965 (D13 |63 (DI <CI905(7)13 (6.17)
Using Young’s inequality on the above, we obtain
CIV6;(r)lS <2V, (D +Cn, (6.18)
where C' depends on the various parameters above. Thus we obtain the estimate
Tr(AU () +F (S(7)uo) 0 Qn(7)

<=3 |Ve;(T)3+2|Ve, ()3 +Cn. (6.19)
j=1

Now, via the generalized Sobolev-Lieb-Thirring inequalities [44], we obtain

wlov

n n
> IV ()3 zmm. (6.20)
j=1

Here K, depends only on the shape and dimension of 2. Thus we obtain

Tr(AU(T)+F (S(T)ug) 0 Qn(T)

n
<-K;

7 +Cn, (6.21)
€3

for 7>0, ug € A, where C=C(a;,b;,;,06:), 1=1,2,....
We now obtain

1 t ’
qn(t) = sup sup 7/ Tr(AU(T)+F (S(m)ug) o Qn(1)dr
wEAgicH,||lg:||=1,1<i<n  Jo
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5
ns
Q%

<-K;

—&—C’(ai,bi,ai,ﬁi)n Vit > 0. (6.22)

This yields

5

qn:limsup§—K1%+(C(ai,bi7ai,ﬁi))n<0 (6.23)
t—o00 3
if the integer n satisfies
3
iabia iy 1 2
n—1< (W) Q| <n. (6.24)
1

We can now state the following result as a direct application of Lemma 6.3.

THEOREM 6.4.  Consider the reaction diffusion equation described via (1.6)-(1.9).
Under conditions (3.2)-(3.4) or (3.5), the global attractor A of the system is of finite
dimension. Furthermore, explicit upper bounds for its Hausdorff and fractal dimen-
sions are given as follows:

dpr(A) < <W>2|Q+L (6.25)
K

dF(A)§2<(O(C”’bi’O‘WBi)>2|Q|+2. (6.26)
K

Proof.  The theorem is an immediate consequence of the estimate derived in
(6.24) and Lemma 6.3. d

7. Numerical simulations

We now provide the results of numerical simulations on (1.6) -(1.9). The system is
simulated via a finite difference scheme. We integrate the system of reaction-diffusion
equations by the method of lines by first discretizing the second derivatives using
second-order centered finite differences and then integrating the resultant system of
ODEs by the explicit third order TVD Runge-Kutta method of Gottlieb and Shu [7].
For an equation written as u; =L (u), the Runge-Kutta method takes the form

. —u" + AtL(u"), (7.1)
u2:u1+% [—3L(u”)—|—L(u1)], (72)
u"+1:u2+% [~L(u")~L(u')+8L(u?)]. (7:3)

The above scheme was implemented in MATLAB R2010. We simulate with various
initial conditions, and try various parameters, to obtain the spatio-temporal profiles
of the solutions. The reaction terms in the simulations are as in (4.1). The results
are presented in figures 7.1, 7.2, 7.3. We ensure that the conditions (4.4) for global
existence are met. The details of parameters used are tabulated in table 7.1. We
would like to point out that all of the simulations performed have been refined several
times on grids with 300, 600, 900, and 1200 points. These refinements lead to the
same general shape and structure of the figures. The time step was chosen so as to
maintain the stability condition dt = \h?/max(d;,d2,d3), where h =7 /m, m being the
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female population density

o
time o space

male population density supermale population density

supermale
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200

0o
time space time cpace

Fi1G. 7.1. The densities of the three species as a surface plot is shown. Uniform initial data is
prescribed. The supermale is introduced as a constant source with low death rate.
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FiG. 7.2. The densities of the three species as a surface plot is shown. Uniform initial data is
prescribed. The supermale is introduced as a constant source with high death rate.
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female population density

male population density supermale population density

F1G. 7.3. The densities of the three species as a surface plot is shown. Uniform initial data is
prescribed. Note, here the extinction state is seen.

fig 2 | fig 3| fig 4
dq 0.001 | 0.001 | 0.0001
d> | 0.001 | 0.001 | 0.001
ds | 0.00001 | 0.001 | 0.0001
ay 0.01 0.01 1.5
as 0.8 0.8 2
as 0.01 0.01 0.5
as 0.001 | 0.001 0.2
as 0.4 0.4 5
ag 0.01 0.001 | 0.01
ar 0.001 0.1 2
(631 1 1 0
(%) 1 1 0
a3 1 1 0
Qg 1 1 0
as 2 2 1
B 1 1 0
Bs 2 2 1
Bs 1 1 0
Ba 1 1 0
Bs 1 1 1

TABLE 7.1. Parameters used in simulations.
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number of grid points (thus in our simulations we try m = 300,600,900,1200). A needs
to be small for numerical stability. In this case A < 0.5 will work. We choose A=0.4
for a grid with 300 points. Thus the time step varied as we refined the grid several
times. However, the step size for the plots shown in figures 7.1, 7.2, 7.3 is 0.0442.
These plots are shown for a spatial grid of 300 points.

We notice that the asymptotic behavior is essentially a one point attractor, that is,
for a given set of parameters, the solutions in long time tend towards a steady state
(not necessarily spatially uniform in all components). In particular, the extinction
state is also seen, via figure 7.3, thus validating the control strategy.

The results of the simulations are illustrated next.

8. Conclusions

The use of Trojan sex chromosomes is an approach for eradicating invasive species
that have a XY sex determination system and for which it is feasible to force sex rever-
sal. It was clearly established that extinction is possible in the supermale dynamical
system as a function of the rate p of introduction of supermales (s). The TYC sys-
tem depends upon parameters that can be deduced from observations, including the
carrying capacity (K), the death coefficient (g1, g, g3), and the birth coefficient (ga,
g5, gs). Further refinement of these parameters should be made as field data becomes
available.

The existence of a bounded absorbing set indicates that for either eradication or
invasion the final state of the population is stable. Via (5.14) we showed that given the
initial population and values for the parameters, it is possible to find an explicit time
such that for times greater than this, there exists a state of local extinction in which
the population is confined to finite sized sets in H, i.e. there is a compact subset of
the phase plane that attracts all trajectories in the dynamical system with the bounds
proposed. Knowing the analytical form of these sets helps guide the exploration of
the parameter space.

The analysis of global attractors can be helpful to estimate times to extinction in
complex spatial domains. We have determined that for Neumann boundary conditions
on a connected domain, there exists an extinction state as a result of the introduction
of s. This is also true for Dirichlet boundary conditions. However, more complicated
geometries or mixed boundary conditions could have an influence in coexistence or
extinction. In order to increase the level of sophistication of the eradication strategy,
the distribution of s individuals could be variable in space as opposed to the constant
level that has been studied, i.e. s could be a population density dependent function
intended to minimize the introduction of s individuals and therefore minimize costs
of implementation.

The viability of YY individuals remains an open question. The supermale model
assumes that phenotypes are stable after maturation, but this could be problematic
for species whose sex determination involves many genes, or when there is environ-
mental pressure to feminization or masculinization. Another potential problem is
hybridization with compatible species, which would extend the eradication pressure
beyond the initial target; however, this effect should disappear by the interruption of
the influx of s.

All in all, we have shown that introduction of phenotypically manipulated su-
permales into a established population can lead to local extinction. Moreover, this
can be done even if the population dynamics of the species involved is not governed
by a logistic type control term. This theoretical result is an assurance for biologists
who might pursue sex reversal for detrimental exotic species.
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