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TRANSPARENT BOUNDARY CONDITIONS FOR LOCALLY
PERTURBED INFINITE HEXAGONAL PERIODIC MEDIA∗

CHRISTOPHE BESSE† , JULIEN COATLÉVEN‡ , SONIA FLISS§ , INGRID

LACROIX-VIOLET¶, AND KARIM RAMDANI‖

Abstract. In this paper, we propose a strategy to determine the Dirichlet-to-Neumann (DtN)
operator for infinite, lossy, and locally perturbed hexagonal periodic media. We obtain a factoriza-
tion of this operator involving two nonlocal operators. The first one is a DtN type operator and
corresponds to a half-space problem. The second one is a Dirichlet-to-Dirichlet (DtD) type operator
related to the symmetry properties of the problem. The half-space DtN operator is characterized
via the Floquet-Bloch transform, a family of elementary strip problems, and a family of stationary
Riccati equations. The DtD operator is the solution of an affine operator valued equation which can
be reformulated as a nonstandard integral equation.
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1. Introduction and problem setting

Periodic media appear in many physical and engineering applications related to
wave type systems. In solid state theory, it is well-known that the existence of in-
sulators and conducting materials can be explained by the periodic properties of the
crystal. More precisely, within the one-electron model of solids, electrons move under
a Hamiltonian with periodic potential yielding the existence of band gaps (see for
example [34, p. 312]). In optics, many devices used in microtechnology and nanotech-
nology involve materials with such electromagnetic properties, known as photonic
crystals. For a general introduction to the physics of photonic crystals, we refer the
interested reader to the monographs [23, 24, 37] or the review paper [8]. Concerning
mathematical aspects related to photonic crystals, see [28]. About twenty years ago,
the analysis of elastic wave propagation in periodically structured media lead to the
concept of phononic crystals (see for instance [31]).

Photonic, phononic, and real crystals (in solids) share many properties, although
they concern materials involving quite different scales and types of waves (acoustic,
electromagnetic, elastic). The main common feature, inherited from the periodic
structure, is the appearance of band-gaps (forbidden bands), i.e. the strong attenua-
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tion of a certain range of frequencies (at least in some directions). This phenomenon
is due to the fact that an incident wave on the crystal is multiply scattered by the
periodic structure, leading to possibly destructive interference (depending on the char-
acteristics of the crystal and the wave frequency).

Most applications involving periodic structures use these band gaps to control
wave propagation properties of materials (see [8] for an extended list of references).
More precisely, the aim can be to prohibit propagation of waves [35], allow propagation
of some frequencies and/or some directions like in optical filters [33], localize waves
by creating a defect in the periodic structure [30, 37], create optical nanocavities [1],
or to guide waves with bends [39], Y–junctions [6], and T–junctions [14].

In the above applications, numerical simulation plays a crucial role in the design of
photonic, phononic, and real crystals. In particular, the problem of determining which
physical and geometrical properties of a perfect or imperfect crystal yield band gaps at
specified frequencies, guiding waves along some desired paths, or trapping them in a
given cavity is computationally challenging. The complexity of designing such devices
is increased by the strong scattering effects involved, due to the high contrast of the
composing materials on the one hand, and the geometric scales (wavelength and size
of the periodic cell) on the other. Therefore, several numerical methods and tools have
been developed to simulate wave propagation in infinite periodic media. A first class
of methods covers problems where the periodicity can be handled via homogenization
techniques [2, 7]. Indeed, when the wavelength is much larger than the period, the
periodic medium behaves asymptotically like a homogeneous one. The unboundedness
of the medium can then be treated analytically using integral equations, Dirichlet-to-
Neumann (DtN) operators or Perfectly Matched Layers (PML) techniques. On the
contrary, a second class of methods keeps the periodicity but considers only

• media which are finite (i.e. constituted of a finite number of periodic cells
embedded in an infinite homogeneous domains) [12, 13, 22, 42, 43];

• media which can be reduced to finite domains. The case of imperfect1 periodic
media has been more intensively investigated [15, 16, 21]. In these works, the
problems considered lead to exponentially decaying solutions, which allows
the truncation of the infinite periodic media.

More recently, DtN operators have been derived for infinite two-dimensional pe-
riodic media containing local defects in [17, 19]. The main assumptions concern the
directions of periodicity (orthogonal), the corresponding periodicity lengths (commen-
surate) and the presence of a dissipative term (arbitrarily small).

In this work, we are interested in the analysis of hexagonal periodic media con-
taining a local defect (see figure 1.1). We call hexagonal periodic medium (also known
as hexagonal lattice) a two dimensional domain where

• the angle between the periodicity directions is π/3;

• the periodicity cell has hexagonal symmetry (see Definition 3.1).

Note that like in [17, 19], one could consider the medium as a periodic one with
two orthogonal directions of periodicity. However, the corresponding periods would
not be commensurate in this case.

Hexagonal lattices appear in quantum mechanics [10, 26, 34], phononics [29, 32,
38], and photonics [9, 11, 20]. Although they concern different applications and in-
volve different types of waves, the corresponding problems are quite similar from the

1A local defect is generally created by changing the local physical/geometrical properties of the
crystal.
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mathematical point of view. Essentially, as far as numerical simulation is concerned,

Fig. 1.1. A locally perturbed photonic crystal with triangular lattice: cross section of an optical
fiber2 (left) and representation of the corresponding hexagonal periodicity cell (right).

the main issue is to determine a transparent boundary condition to reduce the problem
initially set on a very large or unbounded domain to a problem set on a bounded one
containing the defect cell. The differential operators involved are the ones describing
the underlying physics of the problem under consideration, namely

• Quantum mechanics: In a (classical) crystal, the mathematical formulation
of the problem leads to the Schrödinger operator

Au := −∆u+ (V + ip)u, (1.1)

where V denotes the (real) potential in the lattice and p is the Laplace vari-
able.

• Phononics: The operator involved is the elasticity system (see [3, 4, 29,
32, 36, 40])

Au := −divσ(u) + ω2ρu, (1.2)

where u denotes the displacement and σ(u) = C : ε(u) the stress tensor, in
which ε(u) stands for the strain tensor and C the 4th-order elasticity tensor
(ρ and ω respectively denote the mass density and the time frequency).

• Photonics: In this case, electromagnetic propagation is described by the
vector Maxwell’s equations. For two-dimensional photonic crystals, these
equations reduce to the following scalar equations respectively in the cases of
TE (Transverse Electric) and TM (Transverse Magnetic) polarizations:





TE case: Au := ∆u+ ω2n2u,

TM case: Au := −div

(
1

n2
∇u

)
+ ω2u,

(1.3)

where n denotes the index of refraction and ω the wavenumber.
Note that all the above operators involve an elliptic principal part. Moreover, the
time dependence has been eliminated via a Laplace or Fourier transform, leading

2http://en.wikipedia.org/wiki/File:Photonic-crystal-fiber-from-NRL.jpg
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to the appearance of the complex parameter p or the real parameter ω. Perfect
periodic media are described via the operators (1.1), (1.2), or (1.3)—depending on
the considered application—with periodic coefficients (potential, elasticity tensor, and
mass density or index, respectively for classical, phononic, and photonic crystals).

The introduction of a defect in the periodic structure is taken into account by
adding a bounded obstacle or locally perturbing the coefficients. Typically, scattering
by an impurity in a classical crystal (i.e. when the lattice contains a different atom
at one of the lattice points), we have

V = Vper + V0,

where Vper is periodic and V0 is a short range potential describing the local perturba-
tion (see [34, p. 312]).

Ωi

Σi

Σ0

x

y

O
e1

e2

d

Fig. 1.2. The hexagonal periodic medium with defect.

In this paper, we will restrict our study, for the sake of simplicity, to the case of
an infinite photonic crystal Ω = R

2 containing a localized defect in the hexagonal cell
Ωi (whose side length is denoted by d). We denote by Σi = ∂Ωi the boundary of this

cell and by Ωe = Ω \ Ωi its exterior. From the physical point of view, the problem
considered describes the radiation in a photonic crystal of a source localized (typically
a real source) in one cell of the periodic medium. From the mathematical point of
view, this leads to solving a dissipative Helmholtz equation

∆u+ ρu = f, in Ω, (1.4)

where the following assumptions will always be supposed to hold true:

• (A1) ρ is a local perturbation of a hexagonal periodic function ρper. More
precisely:

ρ = ρper + ρ0,

where
– for all x = (x, y) ∈ Ω and all (p, q) ∈ Z

2, ρper (x+ pe1 + qe2) = ρper(x)
with e1 = (3d/2,

√
3d/2) and e2 = (0,

√
3d) the two directions of peri-

odicity of the media (see figure 1.2);
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– ρper and ρ0 have hexagonal symmetry (see Definition 3.2);

– Supp(ρ0) ⊂ Ωi.

• (A2) ρ satisfies the dissipation property

|Im ρ(x)| ≥ ρb > 0, ∀x ∈ Ω. (1.5)

• (A3) The source f is compactly supported in Ωi and has hexagonal symmetry.

Before going any further, let us make some comments about the above assump-
tions. Assumptions (A1) and (A3) concerning the defect (ρ0 and f) are purely
technical and set for the sake of clarity. Indeed, our approach can be generalized to
tackle other types of problems: extended defects (i.e. covering more than one periodic
cell), nonpenetrable defects, or scattering problems by a local inhomogeneity/obstacle
in the crystal. Non symmetric configuration can also be considered (see Remark 2.1
for more details). On the contrary, Assumption (A2) is crucial as explained below.

Remark 1.1. The dissipative case is physically relevant and guarantees, from the
mathematical point of view, the uniqueness of the solution. Otherwise, one has to
close the problem with a suitable radiation condition which is not available for periodic
media. In [12], the analysis is carried out if the wavenumber is complex, with nonzero
imaginary or real part, but in the stop bands where uniqueness of the solution is also
guaranteed.

As far as we know, the nondissipative case has only been studied for waveguides
[25] and partially for squared media [17] through the question of the limiting ab-
sorption principle. Therefore, investigating the dissipative case is a necessary and
preliminary step before treating the nonlossy case.

The main goal of this paper is to propose a method to solve (1.4) in the infinite
domain Ω under assumptions (A1)-(A2)-(A3). The main steps of our approach are
presented in a formal way in the next section.

2. Formal presentation of the method
For the reader’s convenience, we describe in this section the broad outlines of

our approach in order to help the reader get an overview of the proposed strategy.
Willfully, we decided to focus on the description of the mains steps of the method and
to skip in this part all the technical details related to the functional framework.

Our approach is adapted from the one used in [17] for the case of square lattices.
The key idea is to reduce problem (1.4), which is set in the unbounded domain Ω, to
a boundary value problem set in the cell Ωi containing the defect. To achieve this,
we need to derive a suitable transparent boundary condition on Σi associated with a
DtN operator Λ. More precisely, we note that the restriction ui := u |Ωi ∈ H1(Ωi)
solves the interior boundary value problem





∆ui + ρui = f, in Ωi,

∂ui

∂νi
+ Λui = 0, on Σi,

where νi is the outgoing unit normal to Ωi and Λ denotes the DtN operator defined
by

Λφ = − ∂ue(φ)

∂νi

∣∣∣∣
Σi

, (2.1)
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in which ue(φ) ∈ H1(Ωe) is the unique solution of the exterior problem

{
∆ue(φ) + ρue(φ) = 0, in Ωe,

ue(φ) = φ, on Σi.
(2.2)

The core of the paper is thus devoted to the computation of this DtN operator Λ.
First of all, let us emphasize that, due to the symmetry properties of the original
problem (2π/3 rotational invariance; see Assumptions (A1) and (A3)), it suffices to
compute this DtN operator Λ for Dirichlet data φ on Σi with hexagonal symmetry
(see Section 3 for more details). In this section, we restrict our analysis from now on
to such symmetric data.

In order to describe the different steps of our method, we need to introduce some
additional notation. Let ΣH be the boundary depicted in figure 2.1 and let ΩH be

ΣH

uH(φ)
∣∣
ΣH = φ

uH(φ)

ΩH

ΣH

ΛH(φ)
∣∣
ΣH =

∂uH(φ)

∂νH

∣∣∣∣
ΣH

uH(φ)

ΩH

ΛH

Fig. 2.1. The half-space DtN operator ΛH .

the half-space to the right of ΣH . Given a Dirichlet data φ on ΣH , we define the
half-space DtN operator ΛH by setting (see figure 2.1)

ΛHφ =
∂uH(φ)

∂νH

∣∣∣∣
ΣH

, (2.3)

where νH is the outgoing unit normal to ΩH and uH(φ) is the unique solution in
H1(∆,ΩH) of the half-space problem

(PH)

{
∆uH(φ) + ρuH(φ) = 0, in ΩH ,

uH(φ) = φ, on ΣH .
(2.4)

The second important ingredient needed is the DtD operator D2π/3 defined from the
boundary Σi to ΣH (see figure 2.2) by the formula

D2π/3φ = ue(φ)|ΣH , (2.5)

where ue(φ) is the unique solution of the exterior problem (2.2) for a given Dirichlet
data φ on Σi.
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Σi
Ωi Ωi

ΣH

φ

ue(φ)

ue(φ)|ΣH

D2π/3

Fig. 2.2. The DtD operator D2π/3.

Step 1: Factorization of the DtN operator Λ. With the above notation, it
is clear that given a Dirichlet data φ on Σi, the functions ue(φ) and uH(D2π/3φ) are
both solutions of the half-space homogeneous Helmholtz problem

∆U + ρU = 0,

with the same Dirichlet condition on ΣH , namely D2π/3φ. The uniqueness of the
solution of this problem implies that

ue(φ) |ΩH = uH(D2π/3φ),

and, in particular, the corresponding normal derivatives coincide on the part of the
boundary Σi ∩ ΣH where they are both defined, yielding

Λφ|Σi∩ΣH = ΛH
(
D2π/3φ

)∣∣
Σi∩ΣH , (2.6)

the remaining part of Λφ on Σi being recovered using hexagonal symmetry. The
above relation constitutes the starting point of our strategy: the DtN operator Λ
can be computed via the factorization formula (2.6). We provide in Theorem 4.1 a
more precise statement of this factorization result, paying particular attention to the
functional framework. Thus, our problem is now reduced to the computation of the
half-space DtN operator ΛH and the DtD operator D2π/3 for well prepared data (i.e.
having 2π/3 rotational invariance).

Step 2: Characterization of the DtN operator ΛH . In order to compute
the half-space DtN operator ΛH , the first key ingredient is the (partial) Floquet-
Bloch transform in the vertical direction (see §.5.1). More precisely, applying it to the
Helmholtz half-space problem (2.4), we will see that it suffices to consider the case of
k−quasiperiodic Dirichlet data φ on ΣH , that is

φ(y + qL) = φ(y)eiqkL, ∀y ∈ R, ∀q ∈ Z,
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where L =
√
3d denotes the period in the vertical direction and k ∈ (−π/L, π/L).

From now on we will thus restrict our analysis to k-quasiperiodic Dirichlet data.
The second important tool we need is the so-called propagation operator Pk,

defined as follows (see Section 5.2.1). For any k-quasiperiodic Dirichlet data φ on
ΣH , Pk φ is nothing but the trace of the solution uH(φ) of (2.4) on the translated

vertical boundary Σ̃H = ΣH + e1 (see Assumption (A1)). The main advantage of
this operator is that it allows us to determine the solution uH(φ) of the half-space
problem in any cell from the knowledge of uH(φ) on a reference cell. More precisely,

C00
C10

C01 C20

C02

Ω0

Fig. 2.3. Description of the half-space ΩH and its periodicity cells.

with the notation given in figure 2.3, we can prove thanks to a uniqueness argument,
that

uH(φ)
∣∣
Cpq

= eiqkL uH((Pk)
pφ)

∣∣
C00

.

According to the above relation, solving the half-space problem amounts to determin-
ing the propagator Pk and the values of uH(φ) but only in the reference cell C00. For
the latter, by linearity, this can be achieved by solving two elementary cell problems
set in C00 (see Section 5.2.2). Regarding the determination of the propagator operator
Pk, we proceed as follows (see Section 5.2.3). Writing the matching of the normal

derivatives of the solution uH(φ) across a suitable part of the interface Σ̃H , we will
show that Pk solves a stationary Riccati equation.

Step 3: Characterization of DtD operator D2π/3. While the determination
of the half-space DtN operator ΛH described in Step 2 essentially uses the periodicity
properties of the medium, the determination of the DtD operator D2π/3 crucially uses
its hexagonal symmetry. More precisely, we show in Theorem 6.1 that D2π/3 solves an
affine operator-valued equation (see equation (6.1) in Theorem 6.1) that is well-posed.
In order to handle this equation from a practical point of view, we use once again
Floquet-Bloch variables instead of the physical ones. Doing so, we reduce this affine
equation to the solution of a set of nonstandard constrained integral equations (see
equations (6.9)).
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Remark 2.1. Nonsymmetric defects (i.e without hexagonal symmetry assumptions
on ρ0 and f) can also be considered, but the treatment becomes more intricate.
Indeed, by loosing the symmetry on the data, we loose the symmetry of the solution
of the Helmholtz equation (1.4) and this essentially modifies Step 3. The construction
of the DtN operator Λ would then require the determination of not only one but three
DtD operators. Moreover, these operators are obtained as solutions of a system of
three coupled nonstandard integral equations. A complete treatment of this general
situation is beyond the scope of this paper but can be achieved by following the
approach outlined in [17, Appendix 3] in the case of a nonsymmetric square lattice.

The precise description of the three steps briefly outlined above involves many
technical details related to the functional framework that needs to be carefully set-
tled for the DtN and DtD operators. In Section 3, we collect some notational and
mathematical background related to geometries with hexagonal symmetry. Section 4
provides the factorization result (Theorem 4.1), which plays a key role in our method
for computing the DtN operator Λ. The next two sections are devoted to the analysis
of the two nonlocal operators ΛH and D2π/3 involved in the factorization. More pre-
cisely, Section 5 deals with the half-space DtN operator ΛH , while the DtD operator
D2π/3 is studied in Section 6. An algorithm will be given in conclusion to summarize
this construction.

3. Hexagonal symmetry and related results

3.1. Definitions and functional framework.

Definition 3.1. A domain O of R2 has hexagonal symmetry if there exists a rotation
of angle 2π/3, denoted Θ2π/3, for which O is invariant.

In the above definition, the center of the rotation is not specified to simplify the
notation. In the following, this center will always be the center of gravity of O.

Remark 3.1. If a domain O of R2 has hexagonal symmetry, its boundary ∂O also
has hexagonal symmetry.

Definition 3.2. Let O be an open set with hexagonal symmetry and let g be a real
or complex valued function defined on O. Then, g has hexagonal symmetry if

g = g ◦Θ2π/3.

Let O be an open domain with hexagonal symmetry (typically O = Ωe, Ωi and
∂O = Σi). For s ≥ 0, we denote by Hs

2π/3(O) the closed subspace of Hs(O) defined
by

Hs
2π/3(O) = {v ∈ Hs(O), v = v ◦Θ2π/3}. (3.1)

One can easily check that the restriction to H1
2π/3(O) of the trace operator γ0 defined

by

∀u ∈ H1(O), γ0u = u |∂O ∈ H1/2(∂O),

defines a continuous operator from H1
2π/3(O) onto H

1/2
2π/3(∂O).

Finally, let us define the appropriate functional space for the normal trace of a
function with hexagonal symmetry. To achieve this, we introduce the spaces

H1(∆,O) = {u ∈ H1(O) | ∆u ∈ L2(O)}
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and

H1
2π/3(∆,O) = {u ∈ H1

2π/3(O) | ∆u ∈ L2
2π/3(O)}.

The next result expresses in terms of functional spaces the commutativity of the
Laplace operator with the rotation Θ2π/3.

Theorem 3.3. Let O be an open set of R2 with hexagonal symmetry. The Laplace
operator commutes with any unitary transform and maps H1

2π/3(∆,O) onto L2
2π/3(O).

We can now extend Definition (3.1) to the space H−1/2(∂O), where O has hexagonal
symmetry (typically O = Ωe or Ωi and ∂O = Σi).

Definition 3.4. Let O be an open set of R2 with hexagonal symmetry. We define

the closed subspace H
−1/2
2π/3 (∂O) of H−1/2(∂O) by

H
−1/2
2π/3 (∂O) =

{
γ1u =

∂u

∂ν

∣∣∣∣
∂O

, u ∈ H1
2π/3(∆,O)

}
,

where ν is the outgoing unit normal to O.

Obviously, γ1 is a continuous application from H1
2π/3(∆,O) onto H

−1/2
2π/3 (∂O).

3.2. Restriction and extension operators. Let R be the restriction oper-
ator defined by

R : L2(Σi) → L2(Σ0),

φ 7→ φ|Σ0 ,

where Σ0 is the right part of Σi (see figure 1.2). One can easily check that R defines
an isomorphism from the subspace L2

2π/3(Σ
i) := {v ∈ L2(Σi), v = v ◦ Θ2π/3} onto

L2(Σ0) that we shall denote by R2π/3. Its inverse E2π/3 is an extension operator
which can be given explicitly thanks to the rotation Θ2π/3:

∀φ ∈ L2(Σ0),

E2π/3φ
∣∣
Σ0 = φ,

E2π/3φ
∣∣
Θ2π/3Σ0 = φ ◦Θ−2π/3,

E2π/3φ
∣∣
Θ2

2π/3
Σ0 = φ ◦Θ2

−2π/3.

We define the space

H
1/2
2π/3(Σ

0) :=
{
R2π/3φ, φ ∈ H

1/2
2π/3(Σ

i)
}

=
{
φ ∈ H1/2(Σ0), E2π/3φ ∈ H

1/2
2π/3(Σ

i)
}
.

This space is nothing but the space of functions in H1/2(Σ0) which are periodic.

We now explain how to extend the restriction operator R2π/3 to H
−1/2
2π/3 (Σ

i) (see

Definition 3.4). This can be done by duality, noticing that we have

∀φ ∈ L2
2π/3(Σ

i), ∀ψ ∈ L2(Σ0),
(
R2π/3φ, ψ

)
Σ0 =

1

3

(
φ,E2π/3ψ

)
Σi ,
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where (·, ·)Σ0 (resp. (·, ·)Σi) is the scalar product in L2(Σ0) (resp. L2(Σi)). This last

relation suggests an extension of R2π/3 to H
−1/2
2π/3 (Σ

i) by

∀φ ∈ H
−1/2
2π/3 (Σ

i), ∀ψ ∈ H
1/2
2π/3(Σ

0), 〈R2π/3φ, ψ〉Σ0 =
1

3
〈φ,E2π/3ψ〉Σi ,

where 〈·, ·〉Σ0 (resp. 〈·, ·〉Σi) is the duality product between the two spaces [H
1/2
2π/3(Σ

0)]′

and H
1/2
2π/3(Σ

0) (resp. H
−1/2
2π/3 (Σ

i) and H
1/2
2π/3(Σ

i) ). We introduce the closed subspace

of
[
H

1/2
2π/3(Σ

0)
]′
,

H
−1/2
2π/3 (Σ

0) := R2π/3

(
H

−1/2
2π/3 (Σ

i)
)
,

and conclude that R2π/3 is a linear continuous map from H
−1/2
2π/3 (Σ

i) onto H
−1/2
2π/3 (Σ

0).

Analogously, E2π/3 can be extended to a linear continuous mapping from

H
−1/2
2π/3 (Σ

0) onto H
−1/2
2π/3 (Σ

i):

∀ψ ∈ H
−1/2
2π/3 (Σ

0), ∀φ ∈ H
1/2
2π/3(Σ

i), 〈E2π/3ψ, φ〉Σi = 3〈ψ,R2π/3φ〉Σ0 .

3.3. Symmetry properties for the exterior problem. Using the defini-
tions and properties of media and functions with hexagonal symmetries and consid-
ering assumptions (A1) and (A2), one can show the following theorem.

Theorem 3.5. If φ ∈ H
1/2
2π/3(Σ

i), then the unique solution ue(φ) of (2.2) belongs to

H1
2π/3(∆,Ω

e) and Λφ ∈ H
−1/2
2π/3 (Σ

i), where Λ is the DtN operator defined in (2.1).

Proof. It suffices to prove that ue(Θ2π/3φ) is also a solution of (2.2) and then
conclude using a uniqueness argument. The last implication follows immediately from
the definition of the normal trace operator.

A consequence of Theorem 3.5 is that Λ maps H1
2π/3(Σ

i) continuously onto

H
−1/2
2π/3 (Σ

i), leading to the natural definition of the DtN operator

Λ2π/3 := Λ|
H

1/2

2π/3
(Σi)

∈ L(H1/2
2π/3(Σ

i), H
−1/2
2π/3 (Σ

i)). (3.2)

Finally, taking into account the assumptions (A1)-(A3) concerning the hexagonal
symmetry of the local perturbation ρ0 and of the source term f , and using a uniqueness
argument, we deduce the following theorem.

Theorem 3.6. Let u be the unique solution of (1.4). Then the restriction ui = u
∣∣
Ωi

of u is the unique solution of the interior boundary value problem





∆ui + ρui = f, in Ωi,

∂ui

∂νi
+ Λ2π/3u

i = 0, on Σi.

The rest of the paper is devoted to the determination of the DtN operator Λ2π/3.
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4. Factorization of the DtN operator
First of all let us recall some useful notation. Let ΣH be the boundary depicted

in figure 2.1 and let ΩH be the half-space to right of ΣH .
Let ΛH ∈ L(H1/2(ΣH), H−1/2(ΣH)) be the half-space DtN operator (see fig-

ure 2.1)

ΛHφ =
∂uH(φ)

∂νH

∣∣∣∣
ΣH

, (4.1)

where νH is the exterior normal to ΩH and uH(φ) is the unique solution in H1(∆,ΩH)
of the half-space problem

(PH)

{
∆uH(φ) + ρuH(φ) = 0, in ΩH ,

uH(φ) = φ, on ΣH .
(4.2)

Let D2π/3 ∈ L(H1/2(Σi), H1/2(ΣH)) be the DtD operator defined by (see figure 2.2)

D2π/3φ = ue(φ)|ΣH , (4.3)

where ue(φ) is the unique solution of (2.2).
Moreover, we need to introduce a restriction operator RH from ΣH to Σ0. As

we need to apply this operator to functions of H−1/2(ΣH), RH must be defined in a
weak sense. We denote by EH ∈ L(L2(Σ0), L2(ΣH)) the extension (by zero) operator
from Σ0 to ΣH :

EHφ =

{
φ, on Σ0,
0, on ΣH \ Σ0.

Let H
1/2
00 (Σ0) be the subspace of H1/2(Σ0) defined by

H
1/2
00 (Σ0) = {φ ∈ H1/2(Σ0) | EHφ ∈ H1/2(ΣH)},

and let H̃−1/2(Σ0) =
(
H

1/2
00 (Σ0)

)′

be its dual space. The restriction operator RH ∈
L(H−1/2(ΣH), H̃−1/2(Σ0)) can then be defined by duality:

〈RHφ, ψ〉
H̃−1/2(Σ0),H

1/2
0,0 (Σ0)

= 〈φ,EHψ〉H−1/2(ΣH),H1/2(ΣH),

∀(φ, ψ) ∈ H−1/2(ΣH)×H
1/2
00 (Σ0). (4.4)

The main result of this section reads as follows.

Theorem 4.1. The operator RH ◦ΛH ◦D2π/3 maps H
1/2
2π/3(Σ

i) into H
−1/2
2π/3 (Σ0), and

Λ2π/3 ∈ L(H1/2
2π/3(Σ

i), H
−1/2
2π/3 (Σ

i)), defined by (3.2), admits the factorization

∀φ ∈ H
1/2
2π/3(Σ

i), Λ2π/3 φ = E2π/3 ◦RH ◦ ΛH ◦D2π/3φ,

where

• D2π/3 ∈ L(H1/2(Σi), H1/2(ΣH)) is the DtD operator defined by (4.3),

• ΛH ∈ L(H1/2(ΣH), H−1/2(ΣH)) is the half-space DtN operator defined by
(4.1),
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• RH ∈ L(H−1/2(ΣH), H̃−1/2(Σ0)) is the restriction operator defined by (4.4),

• E2π/3 ∈ L(H−1/2
2π/3 (Σ0), H

−1/2
2π/3 (Σ

i)) is the extension (by symmetry) operator

defined in Section 3.2.

Proof. Let φ ∈ H
1/2
2π/3(Σ

i). From the definition of D2π/3, the functions u
e(φ) |ΩH

and uH(D2π/3φ) satisfy the half-space Helmholtz problem (4.2) with the same Dirich-
let condition on ΣH , namely ψ = D2π/3φ. The uniqueness of the solution of this
problem implies that ue(φ) |ΩH = uH(D2π/3φ) and, in particular, the traces of their
normal derivatives on Σ0 coincide, yielding

R2π/3

(
− ∂ue(φ)

∂νi

∣∣∣∣
Σi

)
= (RH ◦ ΛH ◦D2π/3)φ,

where R2π/3 is the restriction (by symmetry) operator defined in Section 3.2. This
relation proves the first part of the theorem. For the second part, we just use that
E2π/3 is the inverse of R2π/3.

In Section 5, we explain how to compute the half-space DtN operator with the
help of an adapted version of the Floquet-Bloch transform defined in 5.1.1 and the
resolution of a family of half-space problems (4.2) with k−quasiperiodic boundary
conditions. Section 6 deals with the characterization of the DtD operator D2π/3. The
computation of D2π/3 a priori requires to compute the solutions ue of the exterior
problem (2.2) defined in an unbounded domain. We explain, using the half-space
problem and the properties of the problem, how to obtain a characterization of this
operator which avoids the solution of the exterior problem.

5. Characterization of the half-space DtN operator
In this section, we tackle the Dirichlet half-space problem. In other words, for

any φ ∈ H1/2(ΣH) we want to compute the solution uH(φ) in H1(∆,ΩH) of

(PH)

{
∆uH(φ) + ρuH(φ) = 0, in ΩH ,

uH(φ) = φ, on ΣH ,

(see figure 2.1 for notations). We will deduce a characterization of the half-space DtN
operator ΛH ,

ΛHφ =
∂uH(φ)

∂νH

∣∣∣∣
ΣH

,

where νH is the exterior normal to ΩH .

Remark 5.1. The half-space problem is not only interesting as a step of our ap-
proach to analyze transparent boundary conditions for locally perturbed hexagonal
periodic media. Indeed, it also appears naturally in transmission problems between
a homogeneous medium and a hexagonal periodic one (see [5] where such problems
are considered for the case of one dimensional periodic media and [18] for the case of
square lattices.)

We develop a method for computing the solution of (4.2) and the operator ΛH

by adapting the method developed in [17, 19]. In these works, the half-space solution
and the half-space DtN operator are computed using the Floquet Bloch transform.
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More precisely, this is done via the resolution of a family of waveguide problems
with quasiperiodic conditions, each waveguide solution being computed thanks to the
resolution of elementary cell problems and a stationary Riccati equation. In our case,
this approach cannot be directly transposed since

• the waveguide boundary would not correspond to a physical boundary (see
the shaded domain of figure 5.1);

• computing D2π/3 would be much more intricate (see Remark 6.4). This is
the more important reason.

Instead, the half-space problem is handled by solving a family of half-space prob-
lems with k−quasiperiodic boundary conditions.

5.1. The half-space problem: From arbitrary data to quasiperiodic
data.

5.1.1. The Floquet-Bloch (FB) transform and its properties. Follow-
ing [17, 28], we recall below the definition of the FB transform and state without
proof its main properties.

Set K = R × (−π/L, π/L). The FB transform of period L (here L =
√
3d) is

defined by

F : C∞
0 (R) → L2

QP(K),

φ(y) 7→ Fφ(y; k) =
√

L

2π

∑

q∈Z

φ(y + qL)e−ıqkL,

where L2
QP(K) is the set of functions f̂ ∈ L2

loc such that for any k ∈ (−π/L, π/L),
f̂(·, k) is k− quasi-periodic, i.e. f̂(y+nL, k) = f̂(y, k)eınkL. We equip this space with
the norm of L2 (K0), where K0 = (−L/2, L/2)× (−π/L, π/L).

The operator F can be extended as an isometry between L2(R) and L2
QP(K):

∀φ, ψ ∈ L2(R), 〈Fφ,Fψ〉L2
QP(K) = 〈φ, ψ〉L2(R).

This transform is an indispensable tool for the study of PDE with periodic coefficients
because it commutes with

• any differential operator;

• the multiplication by any periodic function with period L.

The FB transform is invertible and the inversion formula is given by

∀y ∈ R, φ(y) =

√
L

2π

π/L∫

−π/L

Fφ(y; k)dk. (5.1)

Next we define the partial FB transform in the y-direction in the half-space ΩH :

Fy : L2(ΩH) → L2
QP

(
ΩH ×

(
−π
L
,
π

L

))
,

u(x, y) 7→ Fyu(x, y; k),

with

∀x, (Fyu)(x, ·; ·) = F [u(x, ·)] ,
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and L2
QP

(
ΩH × (−π/L, π/L)

)
is the set of square integrable functions f̂ , locally in the

y− direction, such that for any k ∈ (−π/L, π/L), f̂(·, k) is k− quasi-periodic in the

y−direction, i.e. f̂(·, y + nL, k) = f̂(·, y, k)eınkL. We equip this space with the norm
of L2

(
ΩW × (−π/L, π/L)

)
, where ΩW = ΩH ∩ {y ∈ (−L/2, L/2)} (see figure 5.1). It

ΩWΣℓ
00

Fig. 5.1. The domain ΩW and its left boundary Σℓ
00.

is easy to see that the partial FB transform Fy defines an isomorphism from L2(ΩH)
into L2

QP

(
ΩH × (−π/L, π/L)

)
.

Now we want to know how the Floquet Bloch transform is defined or can be ex-
tended to the other functional spaces appearing in our study (H1(ΩH ,△), H1/2(ΣH),
and H−1/2(ΣH)). To make a rigorous presentation, we need to introduce the so called

k-quasiperiodic extension operator EQP
k ∈ L

(
L2(ΩW ), L2

unif (Ω
H)

)
(k being a param-

eter between −π/L and π/L) defined by

∀u ∈ L2(ΩW ), ∀q ∈ Z, ∀(x, y) ∈ ΩW , EQP
k u(x, y + qL) = u(x, y) eıqkL,

where L2
unif (Ω

H) is the normed space defined by

L2
unif (Ω

H) :=

{
u ∈ L2

loc(Ω
H), sup

q∈Z

∫

ΩW+qe2

|u|2 < +∞
}
.

A natural functional space which appears is the set of locally L2, k−quasiperiodic
functions defined in ΩH , denoted L2

k(Ω
H) and characterized by

L2
k(Ω

H) = EQP
k

(
L2(ΩW )

)
.

We can introduce the corresponding k-quasiperiodic restriction operator

RQP
k ∈ L

(
L2
k(Ω

H), L2(ΩW )
)

defined by

∀uk ∈ L2
k(Ω

H), RQP
k uk := uk|ΩW .

Noting that

L2(ΩW ) = RQP
k

(
L2
k(Ω

H)
)
,

it is easy to see that L2
k(Ω

H) and L2(ΩW ) are isomorphic. We can then consider
L2
k(Ω

H) as a Hilbert space when it is endowed with the inner product of L2(ΩW ).
More precisely, we define the scalar product on L2

k(Ω
H) as follows:

∀(uk, vk) ∈ L2
k(Ω

H)2, (uk, vk)L2
k(Ω

H) =
(
RQP

k uk, R
QP
k vk

)
L2(ΩW )

.
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Next we define smooth quasiperiodic functions in ΩH ,

C∞
k (ΩH) =

{
u ∈ C∞(ΩH), u(x, y + L) = u(x, y)eıkL, ∀(x, y) ∈ ΩH

}
,

and smooth quasiperiodic functions in ΩW ,

C∞
k (ΩW ) = RQP

k

(
C∞
k (ΩH)

)
.

Let H1
k(Ω

W ) (resp. H1
k(∆,Ω

W )) be the closure of C∞
k (ΩW ) in H1(ΩW ) (resp. in

H1(∆,ΩW )) equipped with the norm of H1(ΩW ) (resp. the norm of H1(∆,ΩW )),
and let H1

k(Ω
H) (resp. H1

k(∆,Ω
H)) be defined by

H1
k(Ω

H) = EQP
k

(
H1

k(Ω
W )

) (
resp. H1

k(△,ΩH) = EQP
k

(
H1

k(∆,Ω
W )

))
,

which we also equip with the norm of H1(ΩW ) (resp. the norm of H1(∆,ΩW )).

Remark 5.2. The functions of H1
k(Ω

H) are nothing but the k−quasiperiodic exten-
sions of functions in H1

k(Ω
W ). Therefore they are H1 in any horizontal strip but not

in the vertical ones.

Let us denote (see figure 5.1)

Σℓ
00 := ΣH ∩ ΩW

(
6= Σ0

)
,

and let us define H
1/2
k (Σℓ

00) by

H
1/2
k (Σℓ

00) :=
{
u|Σℓ

00
, u ∈ H1

k(Ω
W )

}
,

equipped with the graph norm. We define the space H
1/2
k (ΣH) as the k−quasiperiodic

extensions of functions of H
1/2
k (Σℓ

00):

H
1/2
k (ΣH) = EQP

k

(
H

1/2
k (Σℓ

00)
)
,

which we equip with the norm of H
1/2
k (Σℓ

00).

The space H
1/2
k (Σℓ

00) is a dense subspace of H1/2(Σℓ
00), and the embedding from

H
1/2
k (Σℓ

00) onto H1/2(Σℓ
00) is continuous. We can then define the dual space of

H
1/2
k (Σℓ

00), which we call H
−1/2
k (Σℓ

00). According to Green’s formula, we can show
that

H
−1/2
k (Σℓ

00) =

{
−∂u
∂ν

∣∣∣∣
Σℓ

00

, u ∈ H1
k(∆,Ω

W )

}
.

To define the space of k-extensions of functions in H
−1/2
k (Σℓ

00), we need to define the

extension operator EQP
k on H

−1/2
k (Σℓ

00) in a weak sense. Actually, this can be done

by duality by setting for all (ψ0, φk) ∈ H
−1/2
k (Σℓ

00)×H
1/2
k (ΣH)

〈EQP
k ψ0, φk〉(H1/2

k (ΣH)
)
′

,H
1/2
k (ΣH)

= 〈ψ0, R
QP
k φk〉H−1/2

k (Σℓ
00),H

1/2
k (Σℓ

00)
.

Finally, we define H
−1/2
k (ΣH) = EQP

k

(
H

−1/2
k (Σℓ

00)
)
. We can now state the following

results.
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Theorem 5.1. Fy is an isomorphism from XH onto

XQP :=
{
û ∈ L2

(
−π/L, π/L;XH

)
| for a.e. k ∈ (−π/L, π/L), û(·; k) ∈ XH

k

}
,

equipped with the norm ‖û‖2XQP
=

∫ π/L

−π/L

‖û(·; k)‖2XH
k
dk, where

• XH = H1(ΩH), XQP = H1
QP

(
ΩH × (−π/L, π/L)

)
, and XH

k = H1
k(Ω

H);

• XH = H1(△,ΩH), XQP = H1
QP

(
△; ΩH × (−π/L, π/L)

)
, and

XH
k = H1

k(△,ΩH);

• XH = H1/2(ΣH), XQP = H
1/2
QP

(
ΣH × (−π/L, π/L)

)
, and XH

k = H
1/2
k (ΣH).

Finally, we can extend by duality the definition of Fy to the space H−1/2(ΣH)

introducing the dual of H
1/2
QP

(
ΣH × (−π/L, π/L)

)

H
−1/2
QP

(
ΣH × (−π/L, π/L)

)

:=
{
ψ̂ ∈ L2 (−π/L, π/L; X) | ∀k ∈ (−π/L, π/L), ψ̂(·; k) ∈ H

−1/2
k (ΣH)

}
,

where X = EQP
0

((
H

1/2
00 (Σℓ

00)
)′
)
.

According to Theorem 5.1, the partial FB transform Fy defines an isomorphism

from H1/2(ΣH) onto H
1/2
QP

(
ΣH × (−π/L, π/L)

)
. Using the Riesz representation the-

orem, the FB transform can then be extended by duality as an isomorphism from

H−1/2(ΣH) onto H
−1/2
QP

(
ΣH × (−π/L, π/L)

)
; see [19] for more details.

5.1.2. Application to the half-space problem. The above results imply
that for almost every k in (−π/L, π/L), we have

∀φ ∈ H1/2(ΣH), φ̂k := Fyφ(·; k) ∈ H
1/2
k (ΣH),

∀ψ ∈ H−1/2(ΣH), ψ̂k := Fyψ(·; k) ∈ H
−1/2
k (ΣH),

∀uH ∈ H1(∆,ΩH), ûHk := Fyu
H(·; k) ∈ H1

k(∆,Ω
H).

The following theorem is a direct consequence of the properties of the FB transform
given in the previous section.

Theorem 5.2. Let uH(φ) be the solution of problem (PH) (see equation (4.2)).

For every k ∈ (−π/L, π/L), ûHk
(
φ̂k

)
:= Fy

(
uH(φ)

)
(·; k) is the unique solution

H1
k(∆,Ω

H) of the half-space problem with the k-quasiperiodic boundary condition

φ̂k = Fyφ(·; k).
Using the inversion formula (5.1), we can recover uH(φ) in the whole domain ΩH

for any Dirichlet condition φ ∈ H1/2(ΣH):

uH(φ) =

√
L

2π

∫ π/L

−π/L

ûHk
(
φ̂k

)
dk. (5.2)

Then we can show the following theorem, which expresses that the half-space DtN
operator ΛH can be described in terms of a family of “quasiperiodic” half-space DtN
operators.
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Theorem 5.3. The half-space DtN operator ΛH is given by

∀φ ∈ H1/2(ΣH), ΛHφ =

√
L

2π

∫ π/L

−π/L

Λ̂H
k φ̂k dk, (5.3)

where Λ̂H
k is k−quasiperiodic half-space DtN operator, defined by

Λ̂H
k φ̂k =

∂ûHk
(
φ̂k

)

∂νH

∣∣∣∣∣
ΣH

. (5.4)

According to relations (5.2) (resp. (5.3)), the solution of the half-space problem
(resp. the half-space DtN operator) for arbitrary boundary data φ is obtained by
superposing the corresponding solutions (resp. DtN operator) for quasiperiodic data.
The next subsection is devoted to solving such problems.

5.2. Solution of the half-space problem for quasiperiodic boundary
data. Let k be in (−π/L, π/L). We explain here how to compute the solu-

tion of (PH) (see (4.2)) for k−quasiperiodic boundary data φ := φ̂k ∈ H
1/2
k (ΣH).

We have seen in the previous sections (see in particular Theorems 5.2 and 5.3) that

for any φ̂k ∈ H
1/2
k (ΣH), (4.2) admits a unique solution ûHk (φ̂k) ∈ H1

k(∆,Ω
H) and

Λ̂H
k φ̂k ∈ H

−1/2
k (ΣH).

This half-space problem is in some sense the counterpart of the waveguide problem
with k−quasiperiodic conditions used in [17, 19] to determine the half-space DtN
operator for the case of a square periodicity cell. In [17, 19], the basic tools are
the resolution of elementary cell problems and a stationary Riccati equation whose
solution is a so-called propagation operator.

Let us begin with some notation. Let C00 be a periodicity cell whose boundary
meets the vertical boundary ΣH . Given p ∈ N, q ∈ Z, we introduce the vector
Vpq = pe1 + qe2 (see Assumption (A1) in Section 1 and figure 1.2 for the definition
of the directions of periodicity e1 and e2). The cell Cpq of the periodic half-space can
then be defined by translation of the reference cell (see figure 2.3) as

∀p ∈ N, q ∈ Z, Cpq = C00 +Vpq.

We will denote by Ωp the vertical “strip” containing the cell Cp0:

Ωp =
⋃

q∈Z

Cpq.

In the following, for a cell of periodicity Cpq, we introduce the oriented boundaries
described in figure 5.2.
Finally, using the k-quasiperiodic restriction operator RQP

k and the k-quasiperiodic

extension operator EQP
k defined in Section 5.1.1, we recall that H

1/2
k (ΣH) is isomor-

phic to H
1/2
k (Σℓ

00).

5.2.1. The propagation operator. We can now introduce the operator Pk

defined by

∀φ0k ∈ H
1/2
k (Σℓ

00), Pk φ
0
k = ûHk (EQP

k φ0k)
∣∣∣
Σℓ

10

,
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Cpq CpqΣℓ
pq

Γ+
pq

Γ−
pq

Fig. 5.2. Notations used for a periodicity cell.

C00
C10

φ0k

Pk φ
0
k

Fig. 5.3. Description of the propagation operator.

where ûHk (EQP
k φ0k) is the unique solution of (PH) (see (4.2)) with boundary condition

the k−quasiperiodic extension of φ0k: E
QP
k φ0k.

Remark 5.3. For the sake of simplicity, we will often identify throughout the paper
functional spaces of functions acting on Σℓ

pq, with the same spaces acting on Σℓ
00.

Typically, H
1/2
k (Σℓ

pq) for arbitrary (p, q) ∈ N×Z will be identified with H
1/2
k (Σℓ

00).

The operator Pk, considered now as a bounded linear operator from H
1/2
k (Σℓ

00)
onto itself (see Remark 5.3), is called a “propagation operator”. Indeed, the solution
can be reconstructed in any cell of the medium from its values in the reference cell
C00 and the knowledge of Pk, as shown in the next result.

Theorem 5.4. For any k−quasiperiodic condition φ̂k ∈ H
1/2
k (ΣH), the solution

ûHk (φ̂k) of (4.2) is given by

∀p ∈ N, q ∈ Z, ûHk (φ̂k)
∣∣∣
Cpq

= eıqkLûHk (EQP
k Pp

k R
QP
k φ̂k)

∣∣∣
C00

. (5.5)

Proof. First of all, it is clear that the periodicity and the well-posedness of the
problem in the vertical direction implies that for any q ∈ Z, we have

ûHk (φ̂k)
∣∣∣
C0q

= eıqkL ûHk (φ̂k)
∣∣∣
C00

. (5.6)

In the horizontal direction, due to the periodicity and the well-posedness of problem
(4.2), we note that the value of u on the cell C10 is related to the one on the cell C00
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as follows:

ûHk (φ̂k)
∣∣∣
C10

= ûHk (EQP
k Pk R

QP
k φ̂k)

∣∣∣
C00

. (5.7)

By induction, one easily gets that, for all p ∈ N,

ûHk (φ̂k)
∣∣∣
Cp0

= ûHk (EQP
k Pp

k R
QP
k φ̂k)

∣∣∣
C00

. (5.8)

Combining relations (5.6) and (5.8) yields the claimed result (5.5).

The next result collects some useful properties of the propagation operator Pk.

Corollary 5.5. The operator Pk ∈ L(H1/2
k (Σℓ

00)) is a compact operator with spectral
radius strictly less than one.

Proof. The compactness of Pk ∈ L(H1/2
k (Σℓ

00)) follows easily from interior
regularity and Sobolev compactness embedding arguments.

By definition of the space H1
k(△,ΩH) (see Remark 5.2), ûHk (φ̂k) satisfies

∫

ΩW

|ûHk (φ̂k)|2 < +∞

for any φ̂k ∈ H
1/2
k (ΣH). Due to the k-quasiperiodicity of ûHk (φ̂k), the above relation

is equivalent to

∫

∪p∈N Cp0

|ûHk (φ̂k)|2 < +∞.

Moreover, using Theorem 5.4, we have

∫

∪p∈N Cp0

|ûHk (φ̂k)|2 =
∑

p∈N

∫

Cp0

|ûHk (φ̂k)|2

=
∑

p∈N

∫

C00

|ûHk (EQP
k Pp

k R
QP
k φ̂k)|2 .

Consequently, if λ is eigenvalue of Pk and ϕ an associated eigenvector, combining the
last two relations for φ̂k = ϕ shows that


∑

p∈N

|λ|p



∫

C00

|ûHk (ϕ)|2 < +∞,

from which we get that

|λ| < 1.

According to Theorem 5.4, the solution of the half-space problem (4.2) for a
k−quasiperiodic Dirichlet condition is completely determined on the whole domain
ΩH as soon as it is known on the reference periodicity cell C00, provided the propa-
gation operator Pk is also known.
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5.2.2. Elementary problems. Like in [17, 19], introducing elementary
problems allows us to restrict the half-space problem for quasiperiodic boundary data
to the determination of the propagation operator Pk.

More precisely, given φ0k ∈ H
1/2
k (Σℓ

00), let us introduce the solutions of the fol-
lowing problems set in the vertical strip Ω0 =

⋃
q∈Z

C0q:
• Eℓ

k(φ
0
k) ∈ H1

k(∆,Ω0) is the unique solution of (see figure 5.4)




∆Eℓ
k(φ

0
k) + ρEℓ

k(φ
0
k) = 0, in Ω0,

Eℓ
k(φ

0
k) = φ0k, on Σℓ

00,

Eℓ
k(φ

0
k) = 0, on Σℓ

10;

(5.9)

• Er
k(φ

0
k) ∈ H1

k(∆,Ω0) is the unique solution of (see figure 5.4)




∆Er
k(φ

0
k) + ρEr

k(φ
0
k) = 0, in Ω0,

Er
k(φ

0
k) = 0, on Σℓ

00,

Er
k(φ

0
k) = φ0k, on Σℓ

10.

(5.10)

Let us emphasize that the boundary conditions are described only for the two left
lateral sides of C00 and C10, as the boundary condition on Σℓ

0q (resp. on Σℓ
1q) for

q ∈ Z
∗ follows directly from the one on Σℓ

00 (resp. on Σℓ
10) by k−quasiperiodicity. We

C00
Eℓ

k

∣∣
Σℓ

00
= φ0k

Eℓ
k

∣∣
Σℓ

10
= 0

C00
Er

k|Σℓ
00

= 0

Er
k|Σℓ

10
= φ0k

Fig. 5.4. The two strip problems for Eℓ
k (on the left) and Er

k (on the right).

also introduce the elementary cell solutions

eℓk(φ
0
k) = Eℓ

k(φ
0
k)
∣∣
C00

and erk(φ
0
k) = Er

k(φ
0
k)
∣∣
C00

.

Conversely, it is clear that Eℓ
k(φ

0
k) and E

r
k(φ

0
k) are uniquely determined by the above

elementary cell solutions due to their quasiperiodicity. Therefore, in practice, one
simply needs to solve the corresponding cell problems set in the reference periodicity
cell C00. One might thus wonder why we have introduced the strip problems and
not directly the cell problems. In fact, it turns out that viewing the elementary cell
solutions as restrictions of the strip problems leads to more compact and simpler
expressions in the following.

The main advantage of these elementary problems lies in the fact that, by linearity
of (4.2), one has

ûHk (φ̂k)
∣∣∣
Ω0

= Eℓ
k(R

QP
k φ̂k) + Er

k(PkR
QP
k φ̂k),

and then in the reference cell

ûHk (φ̂k)
∣∣∣
C00

= eℓk(φ
0
k) + erk(Pkφ

0
k). (5.11)
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5.2.3. The Ricatti equation for the determination of the propagation
operator. Assuming the elementary cell solutions are known, it remains to de-
termine the propagation operator Pk. To this end, we use the same strategy as in
[17]. In short, the equation characterizing the propagation operator Pk is obtained
by writing the continuity of the normal derivative of ûHk across each boundary Σℓ

pq,
which is ensured by Theorem 5.4.

To this end, we introduce four local DtN operators associated to the elementary
problems (5.9) and (5.10). We refer the reader to Section 5.1.1 for the definition of

the spaces H
1/2
k (Σℓ

00) and H
−1/2
k (Σℓ

00).

Definition 5.6. We introduce the following local DtN operators

T ij
k ∈ L

(
H

1/2
k (Σℓ

00), H
−1/2
k (Σℓ

00)
)
, i, j ∈ {ℓ, r},

where for all φ0k ∈ H
1/2
k (Σℓ

00):

T ℓℓ
k φ0k = ∇Eℓ

k(φ
0
k) · ν

∣∣
Σℓ

00
T ℓr
k φ0k = ∇Eℓ

k(φ
0
k) · ν

∣∣∣Σℓ
10

T rℓ
k φ0k = ∇Er

k(φ
0
k) · ν

∣∣∣Σℓ
00

T rr
k φ0k = ∇Er

k(φ
0
k) · ν

∣∣∣Σℓ
10

where ν is the outgoing unit normal to C00.

Eℓ
k(φ

0
k)

φ0k

0

Eℓ
k(φ

0
k)

T ℓℓ
k φ0k

T ℓr
k φ0k

Er
k(φ

0
k)

φ0k
0 Er

k(φ
0
k)

T rℓ
k φ0k

T rr
k φ0k

Fig. 5.5. The four local DtN operators.

The characterization of the operator Pk is then given by the following result.

Theorem 5.7. The propagation operator Pk is the unique compact operator of

L(H1/2
k (Σℓ

00)), with spectral radius strictly less than 1, which solves the stationary
Riccati equation

T rℓ
k P2

k + (T ℓℓ
k + T rr

k )Pk + T ℓr
k = 0. (5.12)

Proof. The proof involves two steps: we first show that Pk satisfies (5.12) and
then we prove that (5.12) has a unique solution with spectral radius strictly less than
1.

Step 1: Pk satisfies (5.12). First of all, according to Corollary 5.5, Pk is an

operator in L(H1/2
k (Σℓ

00)) with spectral radius strictly less than 1. Moreover, using
the continuity of the normal derivative of ûHk , along with equations (5.7) and (5.11),

we obtain that for any φ0k ∈ H
1/2
k (Σℓ

00),

(
∇Eℓ

k(φ
0
k) +∇Er

k(Pkφ
0
k)
)
· ν

∣∣
Σℓ

10
= −

(
∇Eℓ

k(Pkφ
0
k) +∇Er

k(P2
kφ

0
k)
)
· ν

∣∣
Σℓ

00
,
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which gives

T ℓr
k (φ0k) + T rr

k (Pkφ
0
k) = −T ℓℓ

k (Pkφ
0
k)− T rℓ

k (P2
kφ

0
k).

Since φ0k ∈ H
1/2
k (Σℓ

00) is arbitrary, we get

T ℓr
k + (T rr

k + T ℓℓ
k )Pk + T rℓ

k P2
k = 0,

which is exactly (5.12).

Step 2: Uniqueness for (5.12). This result follows immediately from the unique-

ness of the solution of (4.2). Indeed, assume that P ∈ L(H1/2
k (Σℓ

00)) has a spectral
radius strictly less than 1 and satisfies

T rℓ
k P2 + (T ℓℓ

k + T rr
k )P + T ℓr

k = 0.

Then, one can easily show that for any φ̂k ∈ H
1/2
k (ΣH), the function v, defined in

each cell Cpq, p ∈ N, q ∈ Z, by

v
∣∣
Cpq

= eıqkLeℓk(PpRQP
k φ̂k) + erk(Pp+1RQP

k φ̂k),

belongs to H1
k(∆,Ω

H) (thanks to the definition of eℓk and erk and using the fact that
P is a solution of the Riccati equation with spectral radius strictly less than 1) and
solves (4.2). Then, the uniqueness of the solution of (4.2) in H1

k(∆,Ω
H) implies that

v = ûHk (φ̂k),

and by the definitions of v and Pk, we deduce that P = Pk.

By Theorem 5.4 and expression (5.11), solving the elementary problems (5.9)-
(5.10) and the Riccati equation (5.12) allows us to reconstruct cell by cell the unique
solution of (PH) (see (4.2)) in the case of quasiperiodic boundary data.

Finally, we deduce from the above analysis the expression of the DtN operator
for quasiperiodic boundary condition.

Proposition 5.8 (DtN operator for quasiperiodic boundary data). If the data

φ̂k ∈ H
1/2
k (ΣH), then the DtN operator is given by

Λ̂H
k φ̂k = EQP

k T ℓℓ
k RQP

k φ̂k + EQP
k T rℓ

k Pk R
QP
k φ̂k. (5.13)

5.2.4. Additional tools. We conclude this subsection by introducing four
local Dirichlet-to-Dirichlet (DtD) operators associated to the cell C00 that will be
needed in the sequel.

Definition 5.9. We define the local DtD operators by setting, for all φ0k ∈ H
1/2
k (Σℓ

00),

Dℓ+
k φ0k = Eℓ

k(φ
0
k)

∣∣∣Γ+
00

and Dℓ−
k φ0k = Eℓ

k(φ
0
k)

∣∣∣Γ−

00
,

Dr+
k φ0k = Er

k(φ
0
k)

∣∣∣Γ+
00

and Dr−
k φ0k = Er

k(φ
0
k)

∣∣∣Γ−

00
.

Identifying Σℓ
00, Γ

−
00, and Γ+

00, the above operators will be considered as bounded linear

operators from H
1/2
k (Σℓ

00) onto H
1/2(Σℓ

00).
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Eℓ
k(φ

0
k)

φ0k

0

Eℓ
k(φ

0
k)

Dℓ+
k φ0k

Dℓ−
k φ0k

Er
k(φ

0
k)

φ0k
0 Er

k(φ
0
k)

Dr+
k φ0k

Dr−
k φ0k

Fig. 5.6. The four local DtD operators.

Using Theorem 5.4 and expression (5.11) we obtain the following result.

Corollary 5.10. For any φ̂k ∈ H
1/2
k (ΣH), for any p ∈ N and q ∈ Z, we have

ûHk (φ̂k)
∣∣∣Γ+

pq
= eıqkL

[
Dℓ+

k Pp
k R

QP
k φ̂k +Dr+

k Pp+1
k RQP

k φ̂k

]
,

ûHk (φ̂k)
∣∣∣Γ−

pq
= eıqkL

[
Dℓ−

k Pp
k R

QP
k φ̂k +Dr−

k Pp+1
k RQP

k φ̂k

]
.

6. Characterization of the DtD operator
This section is devoted to the determination of the DtD operator D2π/3. We

first show in Section 6.1 that it solves an affine equation involving an operator DH

associated with the half-space problem. Using the FB transform, we derive a semi-
analytic expression for DH in Section 6.2. Finally, we deduce in Section 6.3 an
equivalent integral formulation of the affine equation which is more suitable for future
numerical approximation.

6.1. The affine equation. First of all let us introduce some useful notation
(see figure 6.1): ΣH = Σ− ∪ Σ0 ∪ Σ+, Σ−

2π/3 = Θ2π/3Σ
−, Σ+

2π/3 = Θ−2π/3Σ
+, where

the center of the rotations Θ±2π/3 is the center of Ωi. Let us recall that ΩH is the
half-space at the right of ΣH .

We recall that D2π/3 is defined by (see figure 2.2)

D2π/3 : H1/2(Σi) −→ H1/2(ΣH),
φ 7−→ ue(φ) |ΣH .

We first remark that D2π/3 belongs to the affine space:

LΣ0 =
{
L ∈ L(H1/2

2π/3(Σ
i), H1/2(ΣH)), ∀φ ∈ H

1/2
2π/3(Σ

i) Lφ|Σ0 = φ|Σ0

}
.

Let us introduce DH , called the half-space DtD operator, which is defined by
DH : H1/2(ΣH) −→ H1/2(ΣH),

ψ 7−→





DHψ
∣∣
Σ−

≡ uH(ψ)
∣∣
Σ−

2π/3

,

DHψ
∣∣
Σ0 ≡ uH(ψ)

∣∣
Σ0
,

DHψ
∣∣
Σ+ ≡ uH(ψ)

∣∣
Σ+

2π/3

,

where we have identified Σ− and Σ−
2π/3, Σ

+ and Σ+
2π/3 while taking into account the

directions shown in figure 6.1.
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Σ0

Σ+

Σ−
2π/3

Σ+
2π/3

Σ−

C00

Fig. 6.1. Symmetry axis.

Remark 6.1. The range of DH is included in H1/2(ΣH) because for any ψ ∈
H1/2(ΣH), DHψ is nothing but the trace of the H1 function uH(ψ) on the broken
line Σ−

2π/3 ∪ Σ0 ∪ Σ+
2π/3 (identifying ΣH with Σ−

2π/3 ∪ Σ0 ∪ Σ+
2π/3).

We have then the following fundamental theorem.

Theorem 6.1. The operator D2π/3 is the unique solution of the following problem:

Find D ∈ LΣ0 such that D = DH ◦D. (6.1)

Remark 6.2. Note that since LΣ0 is an affine space, the problem (6.1) is an affine
problem, even though the equation is linear.

Proof. Existence: We prove that the operator D2π/3 is a solution of (6.1). We
have already seen that

ue(φ) |ΩH = uH(D2π/3φ). (6.2)

Moreover, since φ is in H
1/2
2π/3(Σ

i), ue(φ) is in H1
2π/3(Ω

e). In particular,

• Σ−
2π/3 = Θ2π/3Σ

−, which implies ue(φ)|Σ−

2π/3
≡ ue(φ)|Σ− , and then

uH(D2π/3φ)|Σ−

2π/3
= ue(φ)|Σ− using (6.2);

• ue(φ)|Σ0 = φ|Σ0 ;

• Σ+ = Θ2π/3Σ
+
2π/3, which implies ue(φ)|Σ+ ≡ ue(φ)|Σ+

2π/3
, and then

ue(φ)|Σ+ = uH(D2π/3φ)|Σ+
2π/3

using (6.2).
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Using the definition of DH , we obtain that D2π/3 solves (6.1).

Uniqueness: Let D be an operator from H
1/2
2π/3(Σ

i) into H1/2(ΣH) such that for

all φ ∈ H
1/2
2π/3(Σ

i), Dφ|Σ0 = 0, and suppose D satisfies

DH ◦D −D = 0. (6.3)

We prove that D = 0. Let φ ∈ H
1/2
2π/3(Σ

i) and v0 = uH(Dφ) be defined in ΩH . We

have in particular

v0 |Σ0 = uH(Dφ) |Σ0 = Dφ |Σ0 = 0.

Now we build a function in the half-space Ω2π/3 = Θ2π/3Ω
H by setting v2π/3 =

v0(Θ2π/3x). By a classical argument, since v0 is a solution of (4.2) in ΩH , it is clear
that v2π/3 is solution of

∆v2π/3 + ρv2π/3 = 0, in Ω2π/3,

while v0|Σ0 = 0 implies v2π/3

∣∣∣Θ2π/3Σ0 = 0. We are going to show that v0 and v2π/3

coincide in ΩH ∩ (Θ2π/3Ω
H). The difference d2π/3 = v0 − v2π/3 satisfies

∆d2π/3 + ρd2π/3 = 0, in ΩH ∩ (Θ2π/3Ω
H), (6.4)

with boundary condition

d2π/3 |Σ+ = v0 |Σ+ − v2π/3 |Σ+ = v0 |Σ+ − v0

∣∣∣Σ+
2π/3

,

d2π/3

∣∣∣Σ−

2π/3
= v0

∣∣∣Σ−

2π/3
− v2π/3

∣∣∣Σ−

2π/3
= v0

∣∣∣Σ−

2π/3
− v0 |Σ− ,

since Σ+ = Θ2π/3Σ
+
2π/3, Σ

−
2π/3 = Θ2π/3Σ

−, and v2π/3 = v0(Θ2π/3). Using the defini-

tion of v0, we have

d2π/3 |Σ+ = uH(Dφ) |Σ+ − uH(Dφ)
∣∣∣Σ+

2π/3
,

which gives, using the definitions of uH and DH ,

d2π/3 |Σ+ = Dφ |Σ+ −DH ◦Dφ |Σ+ ,

and then by (6.3)

d2π/3 |Σ+ = 0. (6.5)

In the same way, we have

d2π/3

∣∣∣Σ−

2π/3
= uH(Dφ)

∣∣∣Σ−

2π/3
− uH(Dφ) |Σ− ,

and then, using again the definition of uH and DH ,

d2π/3

∣∣∣Σ−

2π/3
= Dφ

∣∣∣Σ−

2π/3
−DH ◦Dφ

∣∣∣Σ−

2π/3
= 0. (6.6)

A uniqueness argument for the Dirichlet problem (6.4), (6.5), (6.6) yields v2π/3 = v0
in ΩH ∩ (Θ2π/3Ω

H).
With the same argument, we can construct three solutions v0, v2π/3, v4π/3 of

the Helmholtz equation in the respective domains ΩH , Θ2π/3Ω
H , and Θ4π/3Ω

H , and
which coincide in the domains where they are jointly defined:
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• v0 = v2π/3 in ΩH ∩ (Θ2π/3Ω
H);

• v2π/3 = v4π/3 in (Θ2π/3Ω
H) ∩ (Θ4π/3Ω

H);

• v4π/3 = v0 in (Θ4π/3Ω
H) ∩ ΩH .

Thus we can construct a function Ue ∈ H1(Ωe) defined in Ωe by

Ue
∣∣
Θkπ/3Ωe = vkπ/3, k ∈ {0, 2, 4},

so that Ue is an H1-function which satisfies

∆Ue + ρUe = 0, in Ωe,

with homogeneous Dirichlet condition on Σi. From the uniqueness for the exterior
problem we get Ue = 0 in Ωe, and therefore Dφ|Σi = Ue|Σi = 0. This concludes the
proof of Theorem 6.1.

6.2. Characterization of the half-space DtD operator. Let us recall the
definition of DH :

DH : H1/2(ΣH) −→ H1/2(ΣH),

ψ 7−→





DHψ |Σ− ≡ uH(ψ)
∣∣∣Σ−

2π/3
,

DHψ |Σ0 ≡ uH(ψ) |Σ0 ,

DHψ |Σ+ ≡ uH(ψ)
∣∣∣Σ+

2π/3
,

where we have identified Σ− and Σ−
2π/3, Σ

+ and Σ+
2π/3 while taking into account the

directions shown in figure 6.1.
Thanks to the results of Section 5, we can give a semi-analytic expression for the

DtD operator DH .

Proposition 6.2. For any ψ in H1/2(ΣH) and for any ξ in (−π/L, π/L), we have

Fy(D
H ψ)(·, ξ)

=
L

2π

∫ π/L

−π/L

eıξL
(
Dℓ+

k +Dr+
k Pk

) (
I − Pke

ıξL
)−1

RQP
k ψ̂k dk

+
L

2π

∫ π/L

−π/L

ψ̂k |Σ0 dk (6.7)

+
L

2π

∫ π/L

−π/L

e−ı(k+ξ)L
(
Dℓ−

k +Dr−
k Pk

) (
I − Pke

−ı(k+ξ)L
)−1

RQP
k ψ̂k dk,

where ψ̂k = Fyψ(·, k), and the local DtD operators Dℓ±
k and Dr±

k are given in Defini-
tion 5.9 and Pk is the propagation operator defined in Section 5.2.1.

Remark 6.3. Let us remark that the subscript k of the operators in formula (6.7)
means that they actually depend on the variable k.

Proof. Letting k ∈ (−π/L, π/L), we express first DH ψ̂k for k−quasiperiodic

boundary data ψ̂k ∈ H
1/2
k (ΣH). By the definition of DH , we are then interested in

expressing ûHk (ψ̂k)
∣∣∣Σ−

2π/3
, ûHk (ψ̂k) |Σ0 , and ûHk (ψ̂k)

∣∣∣Σ+
2π/3

. Using notation of Section

5.2, let us remark that

Σ−
2π/3 =

0⋃

n=+∞

Γ+
n0, Σ+

2π/3 =
+∞⋃

n=0

Γ−
n,−(n+1),
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taking into account the directions shown in figures 6.1 and 5.2.
Using Corollary 5.10, we have

• on Σ−
2π/3, for all n ∈ N,

ûHk (ψ̂k)
∣∣∣Γ+

n0
=

(
Dℓ+

k Pn
k +Dr+

k Pn+1
k

)
RQP

k ψ̂k

and DH ψ̂k

∣∣∣Σ−
n

= ûHk (ψ̂k)
∣∣∣Γ+

n0
, where we have denoted Σ−

n = Θ−2π/3Γ
+
n0;

• on Σ0,

DH ψ̂k |Σ0 = ûHk (ψ̂k) |Σ0 = ψ̂k |Σ0 ;

• on Σ+
2π/3, for all n ∈ N,

ûHk (ψ̂k)
∣∣∣Γ−

n,−(n+1)
= e−ı(n+1)kL

(
Dℓ−

k Pn
k +Dr−

k Pn+1
k

)
RQP

k ψ̂k

and DH ψ̂k

∣∣∣Σ+
n

= ûHk (ψ̂k)
∣∣∣Γ−

n,−(n+1)
, where Σ+

n = Θ2π/3Γ
−
n,−(n+1).

For any data ψ ∈ H1/2(ΣH), we use the FB transform and formula (5.2) to obtain

the expression of DHψ “piece by piece” from ψ̂k = Fyψ(·, k):
• on Σ− = ∪n∈NΣ

−
n , for all n ∈ N,

DH ψ
∣∣∣Σ−

n
=

√
L

2π

∫ π/L

−π/L

(
Dℓ+

k Pn
k +Dr+

k Pn+1
k

)
RQP

k ψ̂k dk;

• on Σ0,

DH ψ |Σ0 =

√
L

2π

∫ π/L

−π/L

ψ̂k |Σ0 dk;

• on Σ+ = ∪n∈NΣ
+
n , for all n ∈ N,

DH ψ
∣∣∣Σ+

n
=

√
L

2π

∫ π/L

−π/L

e−ı(n+1)kL
(
Dℓ−

k Pn
k +Dr−

k Pn+1
k

)
RQP

k ψ̂k dk.

We finally apply the FB transform in the y− direction to DH ψ:

Fy(D
H ψ)(·, ξ)

=

√
L

2π

[
0∑

n=∞

DH ψ
∣∣∣Σ−

n
eıξ(n+1)L +DH ψ |Σ0 +

∞∑

n=0

DH ψ
∣∣∣Σ+

n
e−ıξ(n+1)L

]
.

By inverting the integral over (−π/L, π/L) and the sum over n, we are led to use the
following formula:

∑

n∈N

Pn
k e

±ı(n+1)ζL = e±ıζL
(
I − Pke

±ıζL
)−1

, (6.8)

with ζ = k or ζ = k + ξ. Note that this is possible as for every k, Pk is compact
with spectral radius strictly less than 1. Actually, we could prove like in [17] that for
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ρb > 0 (defined in (1.5)), the spectral radius ρ(Pk) of Pk is uniformly bounded in k,
by a constant that is strictly less than 1:

∃C > 0, ∀k ∈
(
−π
L
,
π

L

)
, ρ(Pk) ≤ e−Cρb .

The property

lim
n→+∞

‖Pn
k ‖1/n = ρ(Pk)

for the norm of L(L2(Σℓ
00)) ([41]) implies that for some α ∈]e−Cρb , 1[, j large enough,

we have for all k

‖Pj
k‖ ≤ αj ,

which yields the absolute convergence of the series (6.8). Therefore, for each ζ, I −
Pke

±ıζL is invertible and the sum (6.8) converges uniformly in the norm of L(L2(Σℓ
00)).

Exchanging the order of the integral and the sum is then possible.

Remark 6.4. Our choice of solving a family of k−quasiperiodic half-space prob-
lems instead of a family of k−quasiperiodic half waveguide problems simplifies the
expression of DH . Indeed, expressing uH(φ) on Σ±

2π/3 is much easier by doing so.

6.3. Towards the integral equation. Let us give now more precise details
about the resolution of the affine equation (6.1). Since the operator DH is character-
ized via its FB transform, it makes sense to reformulate (6.1) using the FB transform.

Corollary 6.3. For any φ ∈ H
1/2
2π/3(Σ

i), the function

ψ̂2π/3 := Fy(D2π/3φ) ∈ H
1/2
QP

(
ΣH ×

(
−π
L
,
π

L

))

is the unique solution to the following problem:

Find ψ̂ ∈ H
1/2
QP

(
ΣH ×

(
−π
L
,
π

L

))
such that

(i) ∀ξ ∈
(
−π
L
,
π

L

)
, ψ̂(·, ξ)−

∫ π/L

−π/L

KH(k, ξ) ψ̂(·, k) dk = 0;

(ii)

√
L

2π

∫ π/L

−π/L

ψ̂(·, k) |Σ0 dk = φ |Σ0 ,

(6.9)

where KH(k, ξ) ∈ L
(
H

1/2
k (ΣH), H

1/2
ξ (ΣH)

)
is given by

KH(k, ξ) =
L

2π
eıξL

(
Dℓ+

k +Dr+
k Pk

) (
I − Pke

ıξL
)−1

RQP
k

+
L

2π
RH

+
L

2π
e−ı(k+ξ)L

(
Dℓ+

k +Dr+
k Pk

) (
I − Pke

−ı(k+ξ)L
)−1

RQP
k ,

with RH the restriction operator from ΣH on Σ0 defined in Section 4.
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Relation (6.9)-(i) is the FB transform of equation (6.1), while relation (6.9)-(ii)
expresses in terms of the FB-variables the condition

D2π/3φ |Σ0 = φ |Σ0 .

From a practical point of view, it seems to us that it is easier to solve (6.9) instead of
(6.1). The advantage is the ability to replace the discretization of an infinite set by
the discretization of a compact set.

7. Summary and conclusion
In this paper, we proposed a method to solve scattering problems in infinite

hexagonal periodic media containing local perturbations. We have computed the
Dirichlet-to-Neumann map on the boundary of a bounded domain which respects the
hexagonal geometry. By doing so, the initial problem is reduced to the solution of
a boundary value problem set in a cell containing the defect. The computation of
the DtN map Λ is based on a factorization through a half-space DtN operator ΛH

and a DtD operator D2π/3 (see Theorem 4.1). We sum up below the main steps to

be followed in order to compute Λφ, for given boundary data φ ∈ H
1/2
2π/3(Σ

i) with

hexagonal symmetry.

1. Pre-processing steps

For all k ∈ (−π/L, π/L), (a) Solve the cell problems (5.9)-(5.10);

(b) Compute the local DtN operators
(see Definition (5.6));

(c) Compute the local DtD operators
(see Definition (5.9));

(d) Solve the stationary Riccati equation (5.12);

(e) Compute Λ̂H
k thanks to relation (5.13).

2. Solve integral equation (6.9) using the steps (1)-(c) and (1)-(d) to obtain

ψ̂2π/3 = Fy

(
D2π/3φ

)
.

3. Using relation (5.3),

Λφ =

√
L

2π

∫ π/L

−π/L

Λ̂H
k ψ̂2π/3(·, k) dk.

The number of degrees of freedom for the dual variable k is related to the dissipation
of the media. Indeed, the faster the solution decays, the more regular is its Floquet
transform, yielding to coarse discretization of the dual variable k. For each value
of k, the pre-processing steps only involve the solution of elementary problems set
on bounded domains—leading to sparse matrices—and the solution to the Riccati
equation—leading to full but small matrices (typically the number of nodes on the
lateral boundary Σℓ

00). These steps can be easily parallelized as the problems for
different values of k are decoupled. Solving the integral equation (6.9) constitutes
the main difficulty in implementing the algorithm. Indeed, it involves a full matrix
whose size is the number of discretization points with respect to k times the number
of degrees of freedom on the lateral boundary Σℓ

00. The discretization and numerical
investigation of the problem will be considered in a forthcoming article.
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