
COMMUN. MATH. SCI. c© 2013 International Press

Vol. 11, No. 4, pp. 851–906

UNIQUENESS AND REGULARITY OF STEADY STATES OF THE
BOLTZMANN EQUATION FOR VISCOELASTIC HARD-SPHERES

DRIVEN BY A THERMAL BATH∗

R. J. ALONSO† AND B. LODS‡

Abstract. We study the uniqueness and regularity of the steady states of the diffusively driven
Boltzmann equation in the physically relevant case where the restitution coefficient depends on the
impact velocity including, in particular, the case of viscoelastic hard-spheres. We adopt a strategy
which is novel in several aspects; in particular, our study of regularity does not requires a priori

knowledge of the time-dependent problem. Furthermore, the uniqueness result is obtained in the
small thermalization regime by studying the so-called quasi-elastic limit for the problem. An im-
portant new aspect lies in the fact that no entropy functional inequality is needed in the limiting
process.
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1. Introduction

1.1. General setting. We investigate in the present paper the properties
of the steady states of the spatially homogeneous diffusively driven inelastic Boltz-
mann equation for hard spheres interactions and non-constant restitution coefficient.
More precisely, we consider inelastic hard-sphere particles described by their distri-
bution density F =F (v)>0, v∈R

3, and we consider the case in which F satisfies the
stationary equation

Qe(F,F )+µ∆F =0 (1.1)

for some positive thermalization (or diffusion) coefficient µ>0. Moreover, assume F
has a given mass ̺>0 and vanishing momentum:

∫

R3

F (v)dv=̺,

∫

R3

F (v)vdv=0.

The diffusion operator µ∆vF (v) appearing in (1.1) represents a constant heat bath
which models the uncorrelated random accelerations of particles between collisions.
The quadratic collision operator Qe(F,F ) models the interactions of hard-spheres
by inelastic binary collisions where the inelasticity is characterized by the so-called
normal restitution coefficient e(·) that we shall assume here, in contrast with previous
contributions on the subject, to be non-constant. This restitution coefficient quantifies
the loss of relative normal velocity of a pair of colliding particles after the collision
with respect to the impact velocity. Namely, if v and v⋆ denote the velocities of two
particles before collision, their respective velocities v′ and v′⋆ after collision are such
that

(u′ · n̂)=−(u · n̂)e(|u · n̂|), (1.2)
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where the restitution coefficient e := e(|u · n̂|) is such that 06 e61. The unitary vector
n̂∈S

2 determines the impact direction, that is, n̂ stands for the unit vector that points
from the v-particle center to the v⋆-particle center at the instant of impact. Here

u=v−v⋆, u′=v′−v′⋆

denote respectively the relative velocity before and after collision. Assuming the
granular particles to be perfectly smooth hard-spheres of mass m=1, the velocities
after collision v′ and v′⋆ are given, in virtue of (1.2) and the conservation of momentum,
by

v′=v− 1+e

2
(u · n̂)n̂, v′⋆=v⋆+

1+e

2
(u · n̂)n̂. (1.3)

The main assumption on e(·) we shall need for our analysis is listed in the following;
see [3].

Assumption 1.1. Throughout the paper, we assume that the following hold.

1. The mapping r∈R+ 7→e(r)∈ (0,1] is absolutely continuous and non-
increasing.

2. The mapping r∈R
+ 7→ϑe(r) := r e(r) is strictly increasing.

3. There exist a>0 and γ>0 such that

e(r)≃1−arγ as r≃0. (1.4)

The assumption that e(·) is non-increasing can be relaxed and replaced by the
more general Assumption 3.1 in [6] (notice that, if e(·) is non-increasing, it is proven
in [6, Appendix A] that the Assumption 3.1 is indeed satisfied). In several places in
our analysis, we shall need slightly stronger assumptions on the restitution coefficient
that will be properly stated when needed. When no supplementary assumption is
specified, the stated result is true under the sole Assumption 1.1. Notice that all
these assumptions will be met by the visco-elastic hard-spheres model which is the
most physically relevant model for applications [13]. For such a model, the properties
of the restitution coefficient have been derived in [13, 24]; in particular, e(r) can be
defined explicitly by the series

e(r)=1+

∞∑

k=1

(−1)kakr
k
5 , r>0, (1.5)

where ak>0 for any k∈N are parameters depending on the material viscosity. In
such a case, Assumption 1.1 is met with γ= 1

5 and a=a1.

In the sequel, it shall be more convenient to deal with a second, and equivalent,
parametrization of the post-collisional velocities. Fix v and v⋆ with v 6=v⋆ and let
û=u/|u|. Performing in (1.3) the change of unknown σ= û−2(û · n̂)n̂∈S

2 provides
an alternative parametrization of the unit sphere S2. In this case, the impact velocity

reads |u · n̂|= |u|
√

1−û·σ
2 and the post-collisional velocities v′ and v′⋆ are then given by

v′=v−β u−|u|σ
2

, v′⋆=v⋆+β
u−|u|σ

2
, (1.6)
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where β= 1+e
2 =β

(
|u|
√

1−û·σ
2

)
∈
(
1
2 ,1
]
. This representation allows us to give a pre-

cise definition of the Boltzmann collision operator in weak form by
∫

R3

Qe(f,f)(v)ψ(v)dv

=
1

2

∫

R3×R3×S2

f(v)f(v⋆)

(
ψ(v′)+ψ(v′⋆)−ψ(v)−ψ(v⋆)

)
dσdv⋆dv, (1.7)

for any test function ψ=ψ(v). Here, the post-collisional velocities v′ and v′⋆ are
defined by (1.6). Notice that

|v′|2+ |v′⋆|2−|v|2−|v⋆|2=−|u|2 1− û ·σ
4


1−e

(
|u|
√

1− û ·σ
2

)2

 ,

and thus it follows that (see [6] for details)
∫

R3

Qe(f,f)(v)|v|2dv=−
∫

R3×R3

f(v)f(v⋆)Ψe(|u|2)dvdv⋆60, (1.8)

where the energy dissipation potential Ψe is given by

Ψe(r) :=
r3/2

2

∫ 1

0

(
1−e(√rz)2

)
z3 dz, ∀r>0. (1.9)

Notice that, under Assumption 1.1, the mapping Ψe(·) is convex and non-decreasing
(see again [6]). The functional

Ie(f) :=
∫

R3×R3

f(v)f(v⋆)Ψe(|u|2)dvdv⋆ (1.10)

can be seen as an energy dissipation functional for the operator Qe. In particular,
multiplying (1.1) by |v|2, one sees that

Ie(F )=6µ̺

for any solution F to (1.1) with mass ̺.

Stationary solutions for equation (1.1) in the case of constant restitution co-
efficient have been studied from the mathematical viewpoint by different authors.
Existence of such solutions was shown in [14]. The study of moments and tails was
described in [11]. Uniqueness and stability of these steady states (in the elastic limit)
was presented in [20]. Different kinds of forcing terms have also been considered in the
literature. In particular, for the inelastic Boltzmann equation in self-similar variables
(corresponding to an anti-drift forcing term), stationary solutions correspond to the
so-called homogeneous cooling state and uniqueness, study of the elastic limit, and
convergence to self-similarity were presented in [19]. Uniqueness of steady states for
the Boltzmann equation under the thermalization induced by a host medium with a
fixed Maxwellian distribution was recently presented in [9]. We mention that the case
of dissipative Maxwell molecules has been studied as well in [10] and [12].

Regarding the existence of stationary states, it is not very difficult to extend
the results given in [14] to a non-constant restitution coefficient e(·) and obtain the
existence of a steady solutions for the diffusively driven Boltzmann equation (1.1).
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Theorem 1.2. Assume that the restitution coefficient e(·) satisfies Assumption 1.1.
Then, for any µ>0 and any ̺>0, there exists a nonnegative F =F (v)∈L1

2(R
3)∩

L2(R3) such that

Qe(F,F )+µ∆F =0,

with

∫

R3

F (v)dv=̺ and

∫

R3

vF (v)dv=0.

The proof of this theorem follows the path given for constant inelasticity param-
eters in [14] and can be deduced from the properties of the solution to the Cauchy
problem associated to (1.1). We refer to Appendix B for the main steps of the proof
of Theorem 1.2.

1.2. Scaling argument and formal limit λ→0. Let us discuss the main
concern of the present work, namely, proving the uniqueness of solutions to (1.1),

Qe(F,F )+µ∆F =0,

in the weak thermalization regime, i.e. when the diffusion parameter µ is sufficiently
small. In order to understand this regime and the strategy fix µ>0 and denote by F a
solution to (1.1) with given mass ̺ and vanishing momentum. Introduce the rescaled
solution

Gλ(v)=λ
3F (λv), λ>0 (1.11)

and the rescaled restitution coefficient

eλ(r)= e(λr) ∀r>0.

Since

λ2Qe(F,F )(λv)=Qeλ(Gλ,Gλ)(v) and λ5∆vF (λv)=∆vGλ(v)

for any v∈R
3, one gets that Gλ is a solution to the rescaled stationary problem

Qeλ(Gλ,Gλ)=− µ

λ3
∆vGλ. (1.12)

In other words, for any λ>0 the rescaled distribution Gλ is a solution to the steady
diffusively driven Boltzmann equation with thermalization coefficient µ/λ3 and resti-
tution coefficient eλ (notice that eλ still satisfies Assumption 1.1). For any λ>0, the
solution to (1.1) is unique if and only if the solution to (1.12) is unique. Such a scal-
ing is particularly interesting because, in addition to preserving mass and momentum,
when λ→0 the rescaled restitution coefficient eλ(r) converges pointwise to the elas-
tic restitution coefficient limλ→0eλ(r)=1 for any r>0. Consequently, one formally
expects that

Qeλ(f,f)≃Q1(f,f) as λ→0,

where Q1(f,f) denotes the classical Boltzmann operator for elastic interactions. This
means that the dissipation of energy is expected to vanish as λ→0. Formally, one
sees that if µ>0 is kept fixed the right side of (1.12) will be infinite in the limit
λ→0. In other words, the thermalization µ must be reduced to compensate the loss
of dissipation, i.e. one must choose a diffusion coefficient µ=µλ depending on λ such
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that limλ→0µλ=0. Intuitively, it makes sense to look for a parameter that keeps the
solution’s energy

Eλ=
1

̺

∫

R3

Gλ(v)|v|2dv

of order one in the limit λ→0. Let us investigate the correct scaling by multiplying
(1.12) by |v|2 and integrating over R3 to get

6µλ̺=Ieλ(Gλ),

where Ieλ is the energy dissipation functional associated to the rescaled restitution
coefficient eλ given by

Ieλ(f)=
∫

R3×R3

f(v)f(v⋆)Ψe(λ
2|u|2)dvdv⋆. (1.13)

Since Ψe is convex, a simple use of Jensen’s inequality yields 6µλ̺>̺
2Ψe

(
λ2Eλ

)
.

Moreover,

Ψe(r)≃
ar

3+γ
2

4+γ
as r≃0, (1.14)

from which it follows that λ2Eλ=O(µ
2

3+γ

λ ) as λ≃0. Consequently, to keep the kinetic
energy Eλ of unit order we must have

µ :=µλ=λ
3+γ .

For such a scaling, equation (1.12) becomes

Qeλ(Gλ,Gλ)+λ
γ∆vGλ=0. (1.15)

Note that with our choice of µλ, the limit G0 as λ→0 of Gλ, if it exists, must satisfy

Q1(G0,G0)=0.

In other words, G0 is a suitable Maxwellian with the same mass and momentum that
Gλ. Moreover, using the dissipation functional

6̺=
1

λγ

∫

R3×R3

Gλ(v)Gλ(v⋆)Ψe(λ
2|v−v⋆|2)dvdv⋆, (1.16)

one expects that the limit G0 satisfies

6̺=

∫

R3×R3

G0(v)G0(v⋆)ζ0(|v−v⋆|2)dvdv⋆, (1.17)

with ζ0(r
2)= limλ→0

1
λγ Ψe(λ

2r2) (several properties of such energy dissipation func-
tionals are investigated in Appendix A). With this observation, it is not difficult to
prove that the unique possible limit as λ→0 of Gλ is the Maxwellian distribution

M(v)=
̺

(2πΘ)3/2
exp

(
−|v|2

2Θ

)
(1.18)

for some explicit temperature Θ determined by the above identity (1.17).
The limiting Maxwellian M(v) is called the quasi-elastic limit for this problem.

With this knowledge we will prove uniqueness of solutions for the problem (1.15) when
the rescaling parameter λ is small (lying in an explicit interval). In this sense our
uniqueness result will be valid in the weak thermalization regime.
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1.3. Main results and strategy. Let us state precisely the main problems
we wish to address in this document.
(1) Prove that any solution Gλ to (1.15) satisfies

lim
λ→0

Gλ=M

in some suitable sense. Specifically, find a suitable Banach space X such that
Gλ∈X for any λ>0 and limλ→0‖Gλ−M‖X =0.

(2) Prove that solution Gλ to (1.15) is unique, at least in the weak elastic regime.
That is, determine λ†∈ (0,1) such that Sλ reduces to a singleton as soon as
λ∈ (0,λ†]. We use the symbol Sλ to denote the set of solutions Gλ to (1.15) with
given mass and vanishing momentum.

(3) Provide quantitative answers to the two previous questions. More precisely, find
the rate of convergence of Gλ towards M as well as some estimate for the param-
eter λ†.

The first question is answered with the following theorem (see Theorem 4.1 for a
detailed statement) that can be interpreted as a quasi-elastic limit result.

Theorem 1.3. If e(·) is of class Cm with m>3 (with some additional regularity
properties), one has

lim
λ→0

‖Gλ−M‖Hℓ
k
=0 ∀k>0, ∀ℓ∈ [0,m−2].

The limit M is the Maxwellian given by (1.18) with an explicit temperature Θ given
by (4.1). The convergence also holds in exponential weighted L1-spaces.

The proof of the above result is based upon a compactness argument and requires
a careful investigation of the regularity properties of the solution to (1.15). Our
approach for the study of regularity of solutions to (1.15) differs from the related
contributions on the matter [20, 19], where the regularity of steady solutions is deduced
from the properties of the time-dependent problem (namely on the propagation of
regularity combined with the damping in time of the singularities for solution to the
time-dependent problem; see [22]). In contrast with these results, our methodology
is direct and relies only on the steady equation (1.15). It is not difficult to prove
by a bootstrap argument that any solution Gλ to (1.15) is smooth. However, it is
more delicate to obtain regularity estimates which are uniform with respect to the
parameter λ>0 since the diffusive heating in (1.15) vanishes in the limit λ→0. On
the basis of new regularity estimates of the collision operator (see Theorem 2.5), we
can prove the following proposition.

Proposition 1.4. Under the regularity assumptions on e(·) of Theorem 1.3, one
has

sup
λ∈(0,1]

‖Gλ‖Hℓ
k
<∞ ∀k>0, ℓ∈ (0,m−1].

Theorem 1.3 serves as a fundamental step towards proving the main result of the
paper.

Theorem 1.5. Under suitable regularity assumptions on e(·), there exists λ†∈ (0,1]
such that the set Sλ of solutions to (1.15) with given mass ̺ and vanishing momentum
reduces to a singleton for any λ∈ [0,λ†].
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Theorem 1.5 can be interpreted as an uniqueness result in the quasi-elastic regime
where λ is small. This theorem, however, can also be interpreted as a weak thermal-
ization uniqueness result since in this regime the diffusion parameter µ is small as
well.

Theorem 1.6. Under suitable regularity assumptions on e(·), there exists µ†>0 such
that, for any µ∈ (0,µ†], the steady problem

Qe(F,F )+µ∆F =0

admits an unique solution F for a given mass and vanishing momentum.

The proof of Theorem 1.5 follows the strategy of [20] (see also [19] and [9]).
Essentially, it is based on the knowledge of the quasi-elastic limit problem and on
quantitative estimates of the difference between solutions to the original problem and
the equilibrium state as λ→0. More precisely, let us consider two steady solutions
Gλ,Fλ∈Sλ. Set then Hλ=Fλ−Gλ and define the linearized elastic Boltzmann op-
erator around the limiting Maxwellian M as

L1(h)=Q1(M,h)+Q1(h,M). (1.19)

Observing that L1 is a symmetric operator, one recognizes

L1(Hλ)=

(
Q1(Hλ,M)−Qeλ(Hλ,M)

)
+

(
Q1(M,Hλ)−Qeλ(M,Hλ)

)

+

(
Qeλ(M−Fλ,Hλ)+Qeλ(Hλ,M−Gλ)

)
−λγ∆Hλ,

where we used that Qeλ(Fλ,Fλ)−Qeλ(Gλ,Gλ)=λ
γ∆Hλ. Assume that there exist two

Banach spaces X and Y independent of λ such that

‖Qeλ(f,g)‖X +‖Qeλ(g,f)‖X 6C1‖f‖Y‖g‖Y , (1.20)

‖Q1(f,M)−Qeλ(f,M)‖X +‖Q1(M,f)−Qeλ(M,f)‖X 6C2λ
p‖f‖Y , (1.21)

and

‖∆Hλ‖X 6C3‖Hλ‖Y ∀λ>0 (1.22)

for some constants C1,C2,C3>0, p∈ (0,γ) independent of λ. Notice that (1.22) is too
restrictive for a general function f ∈Y, but it is only assumed for any difference Hλ.
Then,

‖L1(Hλ)‖X 6C1‖Hλ‖Y
(
‖M−Gλ‖Y +‖M−Fλ‖Y

)
+(C2+C3)λ

p‖Hλ‖Y .

If M is the universal limit of the family Sλ, and if one is able to prove that

lim
λ→0

(
‖M−Gλ‖Y +‖M−Fλ‖Y

)
=0, (1.23)

then, for any ε>0, there exists λ0>0 such that

‖L1(Hλ)‖X 6 ε‖Hλ‖Y .
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The strategy concludes by proving that there exists a subspace Ŷ ⊂Y containing the
net {Hλ}λ∈(0,1] such that

‖L1(h)‖X > c0‖h‖Y ∀h∈Ŷ. (1.24)

Thus, for any ε>0, there exists λ0>0 such that

c0‖Hλ‖Y 6 ε‖Hλ‖Y ∀λ∈ (0,λ0).

This proves that Hλ=0 for any λ∈ (0,λ0). Notice that λ0 would become explicit if
we are able to make explicit the rate of convergence of (1.23).

To summarize, the proof reduces to finding Banach spaces X and Y for which the
above equations (1.20)–(1.24) hold. We warn the reader here that (1.24) will have to
be slightly modified because a priori the energy of the difference Hλ is not necessarily
zero. This technical detail is overcome by introducing a suitable lifting operator of
L1; see [20] for the original implementation of this idea. We can already anticipate
that the strategy will be applied to the following weighted L1-spaces:

X =L1(ma)=L
1(R3 ;ma(v)dv) and Y=L1

1(ma)=L
1(R3 ;ma(v)

√
1+ |v|2dv),

where the exponential weight function ma is given by

ma(v)=exp(a|v|) , a>0.

The most technical parts of the proof will be the λ-uniform regularity of Gλ and the
continuity estimate (1.21) with respect to the restitution coefficient. These aspects
have been proved for constant restitution coefficients in [20], however, their extension
to the case of a variable restitution coefficient will be delicate and require a series of
new technical results.

Finally, explicit estimates on the rate of convergence of the rescaled solution Gλ

towards the elastic limitM can be found a posteriori by seeking a nonlinear inequality
satisfied by ‖Gλ−M‖Y . More precisely, we shall prove that there exist some explicit
constants C1,C2>0 such that

‖Gλ−M‖Y 6C1λ
p+C2‖Gλ−M‖2Y ∀λ∈ (0,1].

Combining this estimate with the convergence of Gλ towards M will lead to the
existence of some λ†∈ (0,1] such that

‖Gλ−M‖Y 6C3λ
p ∀λ∈ (0,λ†],

for a suitable exponent p>0 and explicit constant C3.
We stress here that in contrast with the reference [20], the present manuscript

provides an approach which does not rely on entropy estimates. Consequently, it
requires neither exponential pointwise lower bounds nor strong regularity properties
in the steady state. In particular, it is well-suited for problems in which no regularity
of the steady solution is available; see [7] for an example of this situation.

1.4. Organization of the paper. The plan of the paper is the following. In
Section 2, we establish new regularity estimates of the collision operator Q+

e gener-
alizing known results for the elastic case [16, 27, 22] and for the inelastic case with
constant restitution coefficient [18, 17]. Section 3 is devoted to studying regularity
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properties of the steady solution Gλ∈Sλ. In particular, we study moments [11, 17, 6],
general weighted Sobolev regularity given in Proposition 1.4, and a technical result
on the difference of two solutions; see Proposition 3.8. Moreover, we also address in
this section the fundamental problem of the continuity properties of Qeλ with respect
to the inelasticity parameter, proving the convergence of Qeλ(f,g) towards Q1(f,g)
as λ→0 in different norms. Several of these results are non-trivial extensions of those
in [19] given for constant restitution coefficient. Others, like Proposition 3.10, are
new. Section 4 contains the main results of the paper, namely the elastic limit re-
sult Theorem 1.3, the uniqueness result Theorem 1.5, and their quantitative versions.
In Appendix A, we present several technical results used throughout the paper and
Appendix B contains a proof of Theorem 1.2 on existence of steady profiles adapted
from [14].

1.5. Notation. Let us introduce the notations we shall use in the sequel.
Throughout the paper we shall use the notation 〈·〉=

√
1+ | · |2. We denote, for any

p∈ [1,+∞), η∈R, and weight function ̟ : R3→R
+, the weighted Lebesgue space

Lp
η(̟)=

{
f :R3→R measurable; ‖f‖Lp

η(̟) :=

(∫

R3

|f(v)|p 〈v〉pη̟(v)dv

)1/p

<+∞
}
.

Similarly, we define the weighted Sobolev space Wk,p
η (̟), with k∈N, using the norm

‖f‖
W

k,p
η (̟)=


∑

|s|≤k

‖∂sf‖p
Lp

η(̟)




1/p

.

The symbol ∂s denotes the partial derivative associated with the multi-index s∈N
3:

∂s=∂s1v1
∂s2v2

∂s3v3
. The order of the multi-index being defined as |s|=s1+s2+s3. In the

particular case p=2 we denote Hk
η(̟)=Wk,2

η (̟), and whenever ̟(v)≡1, we shall

simply use Hk
η. This definition can be extended to Hs

η for any s≥0 by using the
Fourier transform.

2. Regularity properties of the collision operator

The smoothing properties of the gain operator Q+
e (f,f) have been investigated in

our previous contribution [6]. However, for the results we have in mind, we shall need
the regularity of the bilinear operator Q+

e (f,g) rather than the one of the quadratic
one. To do so, we shall use a slightly different approach than the one we used in
[6]. In particular, our main purpose here is to extend [6, Theorem 4.1] to smooth
kernels which are not compactly supported ; in such a case, the price to pay for the
control of large velocities consists in additional moment estimates. Precisely, using
the notations of Appendix A, let B(u,σ) be a collision kernel of the form

B(u,σ)=Φ(|u|)b(û ·σ),

where Φ(·)>0 and b(·)>0 satisfies (A.3) and (A.4) of the Appendix. Then, one can
define the operator ΓB by

ΓB(ϕ)(x)=

∫

ω⊥

B(z+αe(r)ω,αe(r))ϕ(αe(r)ω+z)dπ(z), x= rω, r>0, ω∈S
2,

(2.1)
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where dπ is the Lebesgue measure over the hyperplane ω⊥ perpendicular to ω, and
αe(·) is the inverse of the mapping s 7→sβe(s), while the kernel B(·, ·) is given by

B(z,̺)= 8Φ(|z|)
|z|(̺βe(̺))2

b

(
1−2

̺2

|z|2
)

̺

1+ϑ′e(̺)
, ̺>0, z∈R

3, (2.2)

with ϑe(·) defined in Assumption 1.1 (2) and ϑ′e(·) denoting its derivative. The oper-
ator ΓB can be seen as an inelastic version of the so-called cold thermostat operator
investigated in [7] (and originally derived in the seminal paper [16]), and plays a crucial
role in the smoothing properties of the gain operator Q+

e because of the representation
formula

Q+
B,e(f,g)(v)=

∫

R3

f(z)[(tz ◦ΓB ◦ tz)g](v)dz ∀f,g, (2.3)

where [tvψ](x)=ψ(v−x) for any v,x∈R
3 and test-function ψ (see [6] for the deriva-

tion of (2.3)). Before investigating the regularity of the full gain operator, we shall
first deal with that of the cold thermostat.

2.1. Regularity properties for cut-off collision kernels. For this section
we assume that the kernel B(u,σ) satisfies

Φ(·)∈C∞(0,∞), b(·)∈C∞
0 (−1,1), and Φ(s)=

{
0 for s<ǫ,
s for s>2ǫ,

(2.4)

for some ǫ>0. We introduce the following definition.

Definition 2.1. We shall say that a restitution coefficient e(·) satisfying Assumption
1.1 belongs to the class Em for some integer m>1 if e(·)∈Cm(0,∞) and

sup
r>0

re(k)(r)<∞ ∀k=1, . . . ,m, (2.5)

where e(k)(·) denotes the k-th order derivative of e(·).
Remark 2.2. For the physically relevant case of visco-elastic hard-spheres, the resti-
tution coefficient e(·) is given by (1.5), but admits also the following implicit repre-
sentation (see [13]):

e(r)+ar
1
5 e

3
5 (r)=1 ∀r>0,

for some a>0. Then, it is possible to deduce from such a representation that e(·)
belongs to the class Em for any integer m>1.

Under these assumptions we have the following generalization of [6, Lemma 4.6].

Lemma 2.3. Assume that e(·) belongs to the class Em for some integer m>2 and that
the collision kernel B(u,σ) satisfies Assumption (2.4). Then, for any 06s6m−2,
there exists C=C(s,ǫ,e) such that

‖ΓB(f)‖Hs+1
η

6C ‖f‖
Hs

η+µ(s)
, ∀η>0 (2.6)

with µ(s)=s+4, and where the constant C(s,ǫ,e) depends only on s, the collision
kernel B, and the restitution coefficient e(·).



R.J. ALONSO AND B. LODS 861

Proof. There is no loss of generality in assuming that s is an integer. The proof
is divided into five steps.

• First step: Change of variables. Recalling [6, Lemma 4.6], we first define

Γ̃B(f)(rω)=ΓB(f)(α
−1
e (r),ω)=ΓB(f)(rβe(r),ω), (2.7)

so that

Γ̃B(f)(rω)=

∫

ω⊥

B(z+rω,r)ϕ(rω+z)dπ(z).

We begin proving the result for Γ̃B instead of ΓB , that is

∥∥∥Γ̃B(f)
∥∥∥
H

s+1
η

6 C̃(s,B,e) ‖f‖
Hs

η+µ(s)
, ∀η>0. (2.8)

The proof of this estimate follows the approach given in [22, Theorem 3.1] where a
similar estimate has been obtained, for µ(s)=0, under the additional assumption that
Φ(·) has support in [ǫ,M ] with M<∞. Our proof will consist essentially in proving
that the weighted estimate (i.e. with µ=µ(s)>0) allows one to take into account
large velocities.

• Second step: Estimates on the radial derivative of Γ̃B . We introduce the radial
Fourier transform RF and the Fourier transform F in R

3 with the formulas

RF [f ](̺w)=(2π)−1/2

∫

R

exp(i̺r)f(rw)dr,

F [f ](ξ)=(2π)−3/2

∫

R3

exp(iv ·ξ)f(v)dv,

and, for any measurable mapping g, we define the Hs+1
η (S2×R) norm of g as

‖g‖2
H

s+1
η (S2×R)

:=

∫

S2

dw

∫

R

〈̺〉2(s+1)|RF [g](̺w)|2d̺.

Then we compute

RF
[
〈r〉η Γ̃Bf

]
(̺w)=(2π)−

1
2

∫

R3

exp(i̺u ·w)〈u ·w〉ηB(u, |u ·w|)f(u)du

=2πF [f(·)Gw(·)](̺w),

where Gw(u)=B(u, |u ·w|)〈u ·w〉η for any u∈R
3. Setting ξ=̺w, since d̺dw=

|ξ|−2dξ, we get

∥∥∥Γ̃Bf
∥∥∥
2

H
s+1
η (S2×R)

=2π

∫

R3

〈ξ〉2s+2|ξ|−2
∣∣∣F
[
f(·)G ξ

|ξ|
(·)
]
(ξ)
∣∣∣
2

dξ.

Now, with µ=µ(s)=s+4, introducing g(v)=f(v)〈v〉µ and Gµ
w(z)= 〈z〉−µGw(z), we

can write the above as

∥∥∥Γ̃Bf
∥∥∥
2

H
s+1
η (S2×R)

=2π

∫

R3

〈ξ〉2s+2|ξ|−2

∣∣∣∣F
[
g(·)Gµ

ξ
|ξ|

(·)
]
(ξ)

∣∣∣∣
2

dξ.
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Using [22, Lemma A.5], we can replace [22, Equation (3.7)] by

∥∥∥Γ̃Bf
∥∥∥
H

s+1
η (S2×R)

6Cs ‖g‖Hs
η
sup
w∈S2

‖Gµ
w(·)‖Hs+2(R3)

=Cs ‖f‖Hs
η+µ

sup
w∈S2

∥∥∥∥B(z, |z ·w|)
〈z ·w〉η
〈z〉η+µ

∥∥∥∥
Hs+2(R3

z)

.
(2.9)

• Third step: Control of the angular derivatives. In order to adapt the analysis
of [22], it suffices to check that there are two positive constants a,b>0 such that

Supp(B)⊂ [a,∞)× [b,∞).

We already saw that this is the case with our assumption on Φ(·) and b(·). We can
straightforwardly apply the reasoning of the op. cit. to get that the j-th angular
derivative of Γ̃Bf can be estimated by the radial derivative of Γ̃Bj

f , where the new
kernel Bj is given by Bj(z,̺)=B(z,̺)zj . This finally leads to (2.8) with

C̃(s,B,e)=Cs(a,b) sup
ν∈N3

|ν|6s+1

sup
w∈S2

∥∥∥∥B(z, |z ·w|)zν
〈z ·w〉η
〈z〉η+µ

∥∥∥∥
Hs+2(R3

z)

. (2.10)

• Fourth step. Let us check that the above quantity is indeed finite, i.e.

Cs(B,ν) := sup
w∈S2

∥∥∥∥B(z, |z ·w|)zν
〈z ·w〉η
〈z〉η+µ

∥∥∥∥
Hs+2(R3

z)

<∞

for any multi-index ν with |ν|6s+1. Observe that, because of our cut-off Assumption
(2.4) together with the fact that b(1−x)=0 for small values of x, the kernel B(z,̺)
vanishes for small values of |z| and ̺. Thus, for a given ν with |ν|6s+1, it suffices
to investigate the regularity properties of the mapping

Fw : z 7−→B(z, |z ·w|)zν 〈z ·w〉
η

〈z〉η+µ

for large values of z (uniformly with respect to w). From the definition of Cs(B,ν),
one needs to compute s+2 derivatives of Fw, which explains the restriction s6m−2.
Recall that, for |z|>ǫ, the expressions of B(·, ·) and Φ(·) yield

Fw(z)=
8b(1−2|ẑ ·w|2)

H(|z ·w|)
zν〈z ·w〉η
〈z〉η+µ

,

where ẑ= z/|z|,

H(r)= rβ2
e (r)(1+ϑ

′
e(r)), r>0.

We recall that b(1−2x2)=0 for |x|6 δ for some δ>0. In particular, for |z|>ǫ, Fw(z) 6=
0⇒ r := |z ·w|>δǫ. Since βe(·)∈ (1/2,1] and ϑ′e>0, it is easy to check that

|Fw(z)|6
32|z||ν|
δǫ〈z〉µ b(1−2|ẑ ·w|2)6 32‖b‖∞

δǫ〈z〉µ−|ν|
∀w∈S

2, |z|>ǫ.
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Since µ−s=4, this proves that supw∈S2 ‖Fw(z)‖L2(R3
z)
<∞. One proceeds in the same

way with the z-derivatives of Fw(z). It is clear that any z-derivative of the rational
expression

Rw(z) :=
zν〈z ·w〉η
〈z〉η+µ

has a faster decay (for |z|→∞) than Rw(z). Therefore, the crucial point is the control
of the derivatives of 1

H(r) . It turns out that

H′(r)

H(r)
=

1

r
+

2β′
e(r)

βe(r)
+

ϑ′′e (r)

1+ϑ′e(r)
=

1

r
+

2e′(r)

1+e(r)
+

2e′(r)+re′′(r)

1+ϑ′e(r)
.

Now, our Assumption (2.5) on the restitution coefficient e(·) implies easily that
H′/H∈L∞([δǫ,∞)) and, as a direct consequence,

d

dr

1

H(r)
∈L∞([δǫ,∞)).

Similar calculations show that, for any k=1, . . . ,m, dk

drk
1

H(r) ∈L∞([δǫ,∞)). Tedious

but simple calculations show then that any z-derivative of Fw(z) can be controlled by
1/|z|µ−|ν|+1 for large |z|. This is enough to prove that Cs(B,ν)<∞.

• Final step: Turning back to the original variables. Following [6], it remains now

to deduce estimates on ΓBf from Γ̃Bf which are linked by formula (2.7). Using polar
coordinates,

‖ΓB(f)‖2Hs
η
=
∑

|j|6s

∫ ∞

0

Fj(̺)̺
2〈̺〉2ηd̺

∫

S2

|∂jvΓ̃B(f)(̺,ω)|2dω,

where (see [6] for details) one can check that for any |j|6k the function Fj(̺) can be
written as

Fj(̺)=Pj(ϑ
(1)
e (̺), . . . ,ϑ(j)e (̺))(1+ϑ(1)e (̺))−nj . (2.11)

Here Pj(y1, . . . ,yj) is a suitable polynomial, nj ∈N, and ϑ
(p)
e denotes the p-th

derivative of ϑe(·). Because of our assumption on e(·) (more precisely, because

limsup̺→∞ϑ
(i)
e (̺)<∞), we see that sup̺∈(0,∞)Fj(̺)=Cj<∞ for any |j|6k. Thus

‖ΓB(f)‖Hs
η
6Cη‖Γ̃B(f)‖Hs

η
, (2.12)

where Cη is an explicit constant involving the L∞ norm of the first s-th order deriva-
tives of αe(·).

Proposition 2.4. Let B(u,σ)=Φ(|u|)b(û ·σ) be a collision kernel satisfying (2.4)
and e(·) be in the class Em (m>2). Then, for any 06s6m−2,

∥∥∥Q+
B,e(f,g)

∥∥∥
H

s+1
η

6C(s,B,e)‖g‖Hs
η+µ(s)

‖f‖L1
2η+µ(s)

,

with constant C(s,B,e) and µ(s)=s+4.
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Proof. One uses the representation formula (2.3) together with Minkowski’s
inequality to get that

‖Q+
B,e(f,g)‖Hs+1

η
6

∫

R3

|f(z)|‖tz ◦Γ◦ tzg‖Hs+1
η

dz.

Now, since ‖tzψ‖HN
k
6 〈z〉k‖ψ‖HN

k
for any ψ∈HN

k , for all N ∈N, and any k>0, one
easily deduces from Lemma 2.3 the conclusion.

2.2. Regularity properties for hard-spheres collision kernel. We now
use the previous result for smooth collision kernels to estimate the regularity properties
of Q+

e (f,g) for true hard-spheres interactions. We shall combine Theorem A.1 of the
Appendix together with the estimates of the previous section to get the following.

Theorem 2.5. Assume that e(·) belongs to the class Em with m>2. Then, for any
ε>0 and any η>0, there exists Ce=C(e,ε,η) such that

‖Q+
e (f,g)‖Hs+1

η

6Ce‖g‖Hs
2η+µ(s)

‖f‖L1
2η+µ(s)

+ε‖f‖Hs
η+3

‖g‖Hs
η+1

+ε
(
‖g‖L1

η+1
‖∂ℓf‖L2

η+1
+‖f‖L1

η+1
‖∂ℓg‖L2

η+1

)
∀|ℓ|=s+16m−1.

(2.13)

Proof. Notice that, for hard-spheres interactions, one has B(u,σ)=Φ(|u|)b(û ·σ)
with Φ(|u|)= |u|∈L∞

−1 and b(s)=1/4π for any s∈ (−1,1). In particular, for any η>0,
both the constant C2,1,η,1(b) and C2,2,η,1(b) appearing in (A.5) are finite. Let us now
fix η>0 and ε>0 and split the kernel into four pieces,

B(|u|,û ·σ)=ΦS(|u|)bS(û ·σ)+ΦS(|u|)bR(û ·σ)
+ΦR(|u|)bS(û ·σ)+ΦR(|u|)bR(û ·σ), (2.14)

with the following properties:

(i) bS and ΦS are smooth and satisfy the assumptions of the previous section.

(ii) bR(s) :=
1
4π −bS(s) is the angular remainder satisfying

C2,1,η,1(bR)6 ε and C2,2,η,1(bR)6 ε.

(iii) ΦR(|u|)= |u|−ΦS(|u|) is the magnitude remainder satisfying

‖ΦR‖L∞ 6
ε

(C2,1,η,1(bS)+C2,2,η,1(bS))
.

Notice that, in contrast to previous approaches, the last point is made possible because
ΦS(|u|)= |u| for large |u|, which makes ΦR compactly supported. Thus, on the basis
of relation (2.14), one splits Q+

e into the following four parts using obvious notations:

Q+
e =Q+

SS+Q+
SR+Q+

RS+Q+
RR.

We shall then deal separately with each of these parts. First, we know that

‖Q+
SS(f,g)‖Hs+1

η
6Cm,n,e‖g‖Hs

η+µ
‖f‖L1

2η+µ
∀m,n.
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Fig. 2.1. Smooth kinetic and angular kernel

Second, let us estimate Q+
SR. Since

∂ℓQ+
SR(f,g)(v)=

ℓ∑

ν=0

(
ℓ
ν

)
Q+

SR(∂
νf,∂ℓ−νg)

for any multi-index ℓ with |ℓ|6s+1, one gets

‖Q+
SR(f,g)‖2Hs+1

η
6Cs

∑

|ℓ|6s+1

ℓ∑

ν=0

(
ℓ
ν

)
‖Q+

SR(∂
νf,∂ℓ−νg)‖2L2

η
.

We treat differently the cases |ℓ|=s+1 and |ℓ|<s+1. According to Theorem A.1, if
|ℓ|6s one has, for any |ν|6 |ℓ|,

‖Q+
SR(∂

νf,∂ℓ−νg)‖L2
η
6C2,1,η,1(bR)‖ΦS‖L∞

−1
‖∂νf‖L1

η+1
‖∂ℓ−νg‖L2

η+1

6 ε‖∂νf‖L1
η+1

‖∂ℓ−νg‖L2
η+1

,

where we used the Assumption (ii) with the fact that ‖ΦS‖L∞
−1

61. Recall the general
estimate

‖g‖L1
k
6 τθ‖g‖L2

k+3/2+θ
∀k>0, ∀θ>0, (2.15)

where the universal constant τθ is given by τθ=‖〈·〉−
3
2−θ‖L2 <∞. Taking for simplic-

ity θ=1/2 and since |ℓ|6s,

∑

|ℓ|<s+1

ℓ∑

ν=0

(
ℓ
ν

)
‖Q+

SR(∂
νf,∂ℓ−νg)‖L2

η
6Asε‖f‖Hs

η+3
‖g‖Hs

η+1

for some constant As>0 depending only on s. In the case |ℓ|=s+1, argue in the
same way to obtain

‖Q+
SR(∂

νf,∂ℓ−νg)‖L2
η
6 ε‖f‖Hs

η+3
‖g‖Hs

η+1
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for any 0< |ν|< |ℓ|. If ν=0 one still has

‖Q+
SR(f,∂

ℓg)‖L2
η
6C2,1,η,1(bR)‖f‖L1

η+1
‖∂ℓg‖L2

η+1
.

Additionally, for ν= ℓ we use Theorem A.1 with (p,q)=(2,1) to get

‖Q+
SR(∂

ℓf,g)‖L2
η
6C2,2,η,1(bR)‖g‖L1

η+1
‖∂ℓf‖L2

η+1
.

Therefore,

‖Q+
SR(f,g)‖Hs+1

η

6Asε
(
‖f‖Hs

η+3
‖g‖Hs

η+1
+‖g‖L1

η+1
‖∂ℓf‖L2

η+1
+‖f‖L1

η+1
‖∂ℓg‖L2

η+1

)
∀|ℓ|=s+1.

Third, argue in the same way using the smallness Assumption (ii) to prove that

‖Q+
RR(f,g)‖Hs+1

η

6Asε
(
‖f‖Hs

η+3
‖g‖Hs

η+1
+‖g‖L1

η+1
‖∂ℓf‖L2

η+1
+‖f‖L1

η+1
‖∂ℓg‖L2

η+1

)
∀|ℓ|=s+1.

Finally, the estimate for Q+
RS follows from the fact that ‖ΦR‖L∞ is small:

‖Q+
RS(f,g)‖Hs+1

η

6Asε
(
‖f‖Hs

η+2
‖g‖Hs

η
+‖g‖L1

η
‖∂ℓf‖L2

η
+‖f‖L1

η
‖∂ℓg‖L2

η

)
|ℓ|=s+1.

Combining all these estimates and replacing Asε with ε we get (2.13).

Remark 2.6. Recall that, by virtue of our scaling argument, we will have to apply
the above regularity result for the scaled restitution coefficient eλ. Arguing as in [6,
Corollary 4.14] we can prove without major difficulty that supλ∈(0,1]Ceλ <∞, where
Ceλ is the constant appearing in (2.13) for the scaled restitution coefficient eλ.

3. Properties of the steady state
The purpose of this Section is to establish all of the general a posteriori properties

of the family (Gλ)λ of solutions to (1.15) that will be necessary to establish the
uniqueness result. Of course, this analysis will require fine properties of the collision
operator Qeλ associated to the rescaled restitution coefficient eλ, in particular, its
behavior as λ→0. Throughout this section, Gλ denotes any solution to (1.15) with
λ∈ [0,1]. There is no loss in generality in assuming from now on that

̺=

∫

R3

Gλ(v)dv=1 ∀λ∈ (0,1].

We shall define, for any λ∈ (0,1], the solution set:

Sλ=

{
Gλ∈L1

2 ;Gλ solution to (1.15) with

∫

R3

Gλ(v)dv=1 and

∫

R3

vGλ(v)dv=0

}
. (3.1)

Recall that our choice of scaling implies that for any Gλ∈Sλ, the energy identity is
given by (see (1.16))

6=
1

λ3+γ

∫

R3×R3

Gλ(v)Gλ(v⋆)Ψe(λ
2|v−v⋆|2)dvdv⋆ ∀λ∈ (0,1], (3.2)
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where Ψe has been defined in (1.9). We deduce from (1.14) that, for fixed r>0,

1

λ3+γ
Ψe(λ

2r2)≃ a

4+γ
r3+γ as λ≃0.

Intuitively, one gets then that, for λ≃0,

6≃ a

4+γ

∫

R3×R3

Gλ(v)Gλ(v⋆)|v−v⋆|3+γ dvdv⋆.

The use of Jensen’s inequality proves that the moment of order 3+γ of Gλ remains
bounded uniformly with respect to λ,

m 3+γ
2
(λ)=O(1),

where the moments are defined as

mp(λ)=

∫

R3

Gλ(v)|v|2pdv p>1. (3.3)

Existence of higher moments for Gλ is the objective of the following section; see also
Lemma A.5 in the Appendix, which properly justify above computations.

3.1. Moment estimates. Recall that our choice of scaling is such that

sup
06λ61

m1(λ)= sup
06λ61

Eλ=Emax<∞.

By a simple induction argument, this actually implies that all of the moments of Gλ

are uniformly bounded.

Proposition 3.1. For any p>0, there exists Cp>0 such that

sup
06λ61

mp(λ)6Cp.

Proof. Let p>1 be fixed. Multiplying equation (1.15) by ψ(v)= |v|2p and
integrating over R3, we get

−λγ
∫

R3

Gλ(v)∆|v|2pdv=
∫

R3

Qeλ(Gλ,Gλ)(v) |v|2pdv.

Since ∆|v|2p=2p(2p+1)|v|2p−2, using Lemma B.1, there are two positive constants
kp,Ap>0 independent of λ such that

−2p(2p+1)λγmp−1(λ)6−kp̺m
p+

1
2
(λ)+Apm 1

2
(λ)mp(λ) ∀λ>0.

Since m 1
2
(λ)6

√Eλ6
√Emax for any λ∈ (0,1), we see that there are two positive

constants C1,p, C2,p>0 independent of λ such that

m
p+

1
2
(λ)6C1,pmp(λ)+C2,pmp−1(λ) ∀λ∈ (0,1], ∀p>1.

Both supλ∈(0,1)m1(λ)=Emax and supλ∈(0,1]m0(λ)=1 are finite; thus, a simple induc-
tion yields the conclusion for any p∈N. The result extends then to any parameter
p>0 by interpolation.
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Proposition 3.2. There exist Emin>0 and c0>0 such that infλ∈[0,1]Eλ=Emin>0
and

∫

R3

Gλ(v⋆)|v−v⋆|dv⋆> c0〈v〉 ∀v∈R
3, ∀λ∈ [0,1].

Proof. Note that Ψe(x)≃Cx3/2 as x→∞ for some positive C>0. Additionally,
using (1.14), there exists a positive constant K>0 such that Ψe(r

2)6Kr3+γ for any
r>0. According to (3.2), it follows that

66K

∫

R3×R3

Gλ(v)Gλ(v⋆)|v−v⋆|3+γ dvdv⋆.

Therefore,

inf
λ>0

m 3+γ
2

(λ)= c>0. (3.4)

Knowing (3.4), it is a standard procedure to deduce the result from Proposition 3.1.

Proposition 3.3. There exist positive constants A>0 and M>0 such that any
solution Gλ to (1.15), with λ∈ (0,1], satisfies

∫

R3

Gλ(v)exp
(
A|v| 32

)
dv6M. (3.5)

Proof. The proof follows the lines of the analogous result [11, Theorem 1] for
constant restitution coefficient. It consists in proving that there exist K>0 such that

sup
λ∈(0,1]

mp(λ)6Γ

(
4

3
p+

1

2

)
Kp ∀p>1, (3.6)

where Γ(·) is the gamma function and mp(λ) is defined in (3.3). In order to prove
(3.6), note that

−2p(2p+1)λγmp−1(λ)=

∫

R3

Qeλ(Gλ,Gλ)(v)|v|2pdv ∀p>1, λ∈ (0,1].

One can estimate the right side thanks to [6, Proposition 2.7]:

∫

R3

Qeλ(Gλ,Gλ)(v)|v|2pdv6−(1−κp)mp+ 1
2
(λ)+κpSp(λ),

where

Sp(λ)=

[ p+1
2 ]∑

k=1

(
p
k

)(
mk+1/2(λ)mp−k(λ)+mk(λ)mp−k+1/2(λ)

)
.

Here [p+1
2 ] denotes the integer part of p+1

2 and κp∈ (0,1) is independent of λ and
satisfies κp=O(1/p) as p→∞. Then, one sees that [11, Equations (4.6) and (4.11)]
hold with µ=λγ ∈ (0,1]. At this point, we can resume exactly the proof of [11] by
noticing that all the estimates there are uniform with respect to the coefficient µ
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appearing in front of the thermal bath. In other words, we obtain (3.6) with a positive
constant K>0 which is independent of λ. This is enough to get (3.5).

One actually can make more precise the above estimates by evaluating the differ-
ence of two solutions to (1.15). A simple adaptation of [20, Proposition 2.7, Step 1]
gives the following estimate.

Proposition 3.4. For any s∈ [0, 32 ] there exist some positive constants rs>0 and
Ms>0 such that

∫

R3

|Gλ(v)−Fλ(v)|exp(rs |v|s) dv6Ms‖Gλ−Fλ‖L1
1

∀λ∈ (0,1], (3.7)

for any Fλ,Gλ∈Sλ.

3.2. Sobolev estimates. We prove now that the family (Gλ)λ is uniformly
bounded in any Sobolev space Hℓ. We begin by showing uniform L2

k-estimates of Gλ

for sufficiently small λ.

Proposition 3.5. For any k>0, one has Ak := supλ∈(0,1]‖Gλ‖L2
k
<∞.

Proof. First, observe that for any test function ψ(v), integration by parts yields

−
∫

R3

∆Gλ(v)Gλ(v)ψ(v)dv=

∫

R3

|∇Gλ(v)|2ψ(v)dv−
1

2

∫

R3

Gλ(v)
2∆ψ(v)dv.

Fix k>0 and multiply equation (1.15) by Gλ(v)〈v〉2k. Apply the above identity to
ψ(v)= 〈v〉2k and use the inequality ∆ψ(v)62k(2k+1)〈v〉2(k−1) to obtain

λγ‖∇Gλ‖2L2
k
6

∫

R3

Qeλ(Gλ,Gλ)(v)Gλ(v)〈v〉2kdv+(2k2+k)λγ‖Gλ‖2L2
k−1

. (3.8)

Applying [6, Corollary 4.14] with p=2 and η=k, we see that there exist θ∈ (0,1),
z >0, and Ceλ >0 depending only on eλ such that for any δ>0,

∫

R3

Q+
eλ
(Gλ,Gλ)(v)Gλ(v)〈v〉2kdv

6Ceλδ
−z‖Gλ‖1+2θ

L1
k

‖Gλ‖2(1−θ)

L2
k

+δ‖Gλ‖L1
2+k

‖Gλ‖2L2
k+1/2

.

The same reasoning as in [6, Corollary 4.15] shows that 1

sup
λ∈(0,1)

Ceλ <∞.

Therefore, there exist θ∈ (0,1) such that for any λ∈ (0,1) and δ>0 one can find some
Kδ>0 independent of λ for which it holds that

∫

R3

Q+
eλ
(Gλ,Gλ)(v)Gλ(v)〈v〉2kdv

6Kδ‖Gλ‖1+2θ
L1

k
‖Gλ‖2(1−θ)

L2
k

+δ‖Gλ‖L1
2+k

‖Gλ‖2L2
k+1/2

∀λ∈ (0,1).

1With the notation of [6, Corollary 4.15], one can prove that for any compact interval I⊂ (0,∞)

it follows that maxk=0,1‖D
kGeλ (·)‖L∞(I)=O(1) as λ≃0, where Geλ (r)=

r

(1+ϑ′
eλ

(r))βeλ (r)
. In

particular, limλ→0Ceλ =C0>0.
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Second, estimate the loss term using Proposition 3.2. Indeed,

∫

R3

Q−
eλ
(Gλ,Gλ)(v)Gλ(v)〈v〉2kdv=

∫

R3×R3

|v−v⋆|G2
λ(v)Gλ(v⋆)〈v〉2kdvdv⋆

> c0

∫

R3

G2
λ(v)〈v〉2k+1dv= c0‖Gλ‖2L2

k+1/2
.

Thus, plugging the previous two estimates into (3.8),

λγ‖∇Gλ‖2L2
k
6Kδ‖Gλ‖1+2θ

L1
k

‖Gλ‖2(1−θ)

L2
k

+
(
δ‖Gλ‖L1

2+k
−c0

)
‖Gλ‖2L2

k+1/2

+(2k2+k)λγ‖Gλ‖2L2
k−1

∀λ∈ (0,1].

Using the notation of Proposition 3.1 and choosing δ= c0/2C2+k, one sees that there
exists Ck=KδC

1+2θ
k >0 such that

λγ‖∇Gλ‖2L2
k
6Ck‖Gλ‖2(1−θ)

L2
k

− c0
2
‖Gλ‖2L2

k+1/2
+(2k2+k)λγ‖Gλ‖2L2

k−1
∀λ∈ (0,1].

In particular,

c0
2
‖Gλ‖2L2

k+1/2
6Ck‖Gλ‖2(1−θ)

L2
k

+(2k2+k)λγ‖Gλ‖2L2
k−1

.

The case k=0 follows directly from this estimate, i.e.

sup
λ∈(0,1]

‖Gλ‖L2 <∞. (3.9)

Assume now k>1. For any R>0, it can be checked that

‖Gλ‖2L2
k−1

6R2k−2‖Gλ‖2L2 +R−3‖Gλ‖2L2
k+1/2

.

Hence, choosing R=
(

4
c0
λγ(2k2+k)

)1/3
we get

c0
4
‖Gλ‖2L2

k+1/2
6Ck‖Gλ‖2(1−θ)

L2
k

+Bk(λ)‖Gλ‖2L2 ,

with Bk(λ)=(2k2+k)λγR2k−2. In particular, using (3.9) there exists some positive
constant Ak :=Bk(1)supλ∈(0,1)‖Gλ‖2L2 >0, independent of λ, such that

c0
4
‖Gλ‖2L2

k+1/2
6Ak+Ck‖Gλ‖2(1−θ)

L2
k

∀λ∈ (0,1].

This yields the result.

Since Gλ∈L2
1∩L1

1, Theorem A.1 shows that Qeλ(Gλ,Gλ)∈L2. The equation

−λγ∆Gλ=Qeλ(Gλ,Gλ) (3.10)

implies that ∆Gλ∈L2. Thus, a bootstrap argument shows the smoothness of Gλ.
This reasoning will not help us find λ-uniform Sobolev estimates since the diffusive
heating in (3.10) will vanish in the formal limit λ→0.
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Theorem 3.6. Assume that e(·) belongs to the class Em for some integer m>2.
Then, for any k>0 and integer ℓ∈ [0,m−1],

sup
λ∈(0,1]

‖Gλ‖Hℓ
k
<∞.

In particular, if e(·) belongs to the class Em with m>3 one has supλ∈(0,1]‖Gλ‖L∞
k
<∞

for any k>0.

Proof. Use induction over |ℓ|∈N. Proposition 3.5 shows that the result is true
if |ℓ|=0. Let then |ℓ| :=s+1>0 be fixed and assume that for any k>0 there exists
Ck>0 such that

max
|ν|6s

sup
λ∈(0,1]

‖∂νGλ‖L2
k
6Ck. (3.11)

Observe that differentiating equation (1.16) ℓ-times yields

−λγ∆∂ℓGλ=∂
ℓQeλ(Gλ,Gλ).

Multiplying this equation by ∂ℓGλ(v)〈v〉2k and integrating over R
3 we get, as in

Proposition 3.8,

λγ‖∇∂ℓGλ‖2L2
k
6

∫

R3

∂ℓQeλ(Gλ,Gλ)(v)∂
ℓGλ(v)〈v〉2kdv+(2k2+k)λγ‖∂ℓGλ‖2L2

k
.

(3.12)
Fix k> 1

2 . One has

∫

R3

∂ℓQ+
eλ
(Gλ,Gλ)(v)∂

ℓGλ(v)〈v〉2kdv6‖∂ℓQ+
eλ
(Gλ,Gλ)‖L2

k− 1
2

‖∂ℓGλ‖L2

k+1
2

6‖Q+
eλ
(Gλ,Gλ)‖Hs+1

k− 1
2

‖∂ℓGλ‖L2

k+1
2

,

since |ℓ|=s+1. One estimates the Sobolev norm of Q+
eλ
(Gλ,Gλ) by using Theorem

2.5 applied to η=k− 1
2 . Precisely, for any ε>0,

‖Q+
eλ
(Gλ,Gλ)‖Hs+1

k− 1
2

6C(ε)‖Gλ‖Hs
2k+s+3

‖Gλ‖L1
2k+s+3

+ε‖Gλ‖Hs

k+5
2

‖Gλ‖Hs

k+1
2

+ε

(
‖Gλ‖L1

k+1
2

‖∂ℓGλ‖L2

k+1
2

+‖Gλ‖L1

k+1
2

‖∂ℓGλ‖L2

k+1
2

)
.

Using the uniform bounds in Hs
k given by (3.11), together with Proposition 3.5 and

the uniform L1
k bounds, one notes that there exist αk,βk>0 such that

‖Q+
eλ
(Gλ,Gλ)‖Hs+1

k− 1
2

6αk+εβk ‖∂ℓGλ‖L2

k+1
2

∀λ∈ (0,1].

Therefore,
∫

R3

∂ℓQ+
eλ
(Gλ,Gλ)(v)∂

ℓGλ(v)〈v〉2kdv6αk‖∂ℓGλ‖L2

k+1
2

+εβk ‖∂ℓGλ‖2L2

k+1
2

. (3.13)

Regarding the loss part of the collision operator, first note that

∂ℓQ−
eλ
(Gλ,Gλ)=

ℓ∑

ν=0

(
ℓ
ν

)
Q−

eλ
(∂νGλ,∂

ℓ−νGλ).
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For any |ν| 6= |ℓ|, integration by parts yields

∣∣Q−
eλ
(∂νGλ,∂

ℓ−νGλ)(v)
∣∣= |∂νGλ(v)|

∣∣∣∣
∫

R3

∂ℓ−νGλ(v⋆)|v−v⋆|dv⋆
∣∣∣∣

6 |∂νGλ(v)| ‖∂ℓ−ν−1Gλ‖L1 ,

where ℓ−1=(ℓ1−1,ℓ2,ℓ3) for any multi-index ℓ=(ℓ1,ℓ2,ℓ3). Using again the control
of L1 norms by weighted L2-norms (see inequality (2.15)), we get

∣∣Q−
eλ
(∂νGλ,∂

ℓ−νGλ)(v)
∣∣6 τ |∂νGλ(v)|‖∂ℓ−ν−1Gλ‖L2

2

for some universal constant τ >0 independent of λ. The induction hypothesis (3.11)
implies that this last quantity is uniformly bounded, and by using the Cauchy-Schwarz
inequality we obtain

∑

|ν|<|ℓ|

(
ℓ
ν

)∫

R3

Q−
eλ
(∂νGλ,∂

ℓ−νGλ)(v)∂
ℓGλ(v)〈v〉2kdv

6C2

∑

|ν|<|ℓ|

(
ℓ
ν

)
‖∂νGλ‖L2

k
‖∂ℓGλ(v)‖L2

k
6Ck,ℓ‖∂ℓGλ‖L2

k
∀λ∈ (0,1],

for some positive constant Ck,ℓ independent of λ. Second, whenever ν= ℓ we have,
according to Proposition 3.2, the lower bound

∫

R3

Q−(∂ℓGλ,Gλ)(v)∂
ℓGλ(v)〈v〉2kdv> c0‖∂ℓGλ‖2L2

k+1
2

.

Thus, summarizing, inequality (3.12) reads

λγ‖∇∂ℓGλ‖2L2
k

6Ck,ℓ‖∂ℓGλ‖L2
k
+αk‖∂ℓGλ‖L2

k+1
2

+εβk ‖∂ℓGλ‖2L2

k+1
2

+Ck‖∂ℓGλ‖L2
k
−c0‖∂ℓGλ‖2L2

k+1
2

+(2k2+k)λγ‖∂ℓGλ‖2L2
k

∀λ∈ (0,1].

Choose ε>0 such that εβk=
c0
2 . We note that, after neglecting the gradient term

in the above left side and bounding all L2
k norms by L2

k+ 1
2

norms, there exists some

positive constant Ak>0 such that

c0
2
‖∂ℓGλ‖2L2

k+1
2

6Ak‖∂ℓGλ‖L2

k+1
2

+(2k2+k)λγ‖∂ℓGλ‖2L2
k

∀λ∈ (0,1].

Finally, following the proof of Proposition 3.5, we get that supλ∈(0,1]‖∂ℓGλ‖L2

k+1
2

<∞
for any k> 1

2 .

Remark 3.7. In the constant restitution case, uniform regularity estimates were
obtained using the propagation of regularity and damping with time of singularities
for solution to the time-dependent problem. More precisely, using the fact that the
solution to

∂tf(t,v)=Qα(f,f)(t,v)+(1−α)∆vf(t,v)
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can be written as f(t,v)=fS(t,v)+fR(t,v), where fS is smooth and the reminder fR
is small in some appropriate norm; see [22]. Our approach applies to such a case,
yielding a much more direct proof of these estimates.

The proof of Theorem 3.6 can be easily modified to get an estimate of the differ-
ence of solutions to (1.15).

Proposition 3.8. Assume that e(·) belongs to Em for some m>3. For any integer
ℓ∈ [0,m−1], there exist some positive constant Cℓ>0 such that

‖Fλ−Gλ‖Hℓ 6Cℓ‖Fλ−Gλ‖L1
1

∀λ∈ (0,1], (3.14)

for any Gλ,Fλ∈Sλ. As a consequence, there exists a positive constant Ca>0 such
that

‖Fλ−Gλ‖Wℓ,1(ma)6Ca‖Fλ−Gλ‖L1(ma) ∀a∈ [0, 32 ], λ∈ (0,1], (3.15)

where the weight ma :=ma(v)=exp(a|v|).
Proof. We follow the induction argument of [20, Proposition 2.7], and only give

the details for the initial step ℓ=0. Set Hλ=Fλ−Gλ; we aim therefore to control
‖Hλ‖L2 by ‖Hλ‖L1

1
. Notice that Hλ satisfies

Qeλ(Hλ,Fλ)+Qeλ(Gλ,Hλ)=−λγ∆Hλ, ∀λ∈ [0,1].

Multiplying this identity by Hλ and integrating over R3 yields

λγ‖∇Hλ‖2L2 +

∫

R3

Q−(Hλ,Fλ)Hλdv

=

∫

R3

(
Q+

eλ
(Hλ,Fλ)+Q+

eλ
(Gλ,Hλ)

)
Hλ(v)dv−

∫

R3

Q−(Gλ,Hλ)Hλdv.

From Proposition 3.2 one has

∫

R3

Q−(Hλ,Fλ)Hλdv> c0‖Hλ‖2L2
1
2

.

In addition,

∫

R3

Q−(Gλ,Hλ)Hλdv6

∫

R3

Gλ(v)|Hλ(v)|dv
∫

R3

|Hλ(v⋆)| |v−v⋆|dv⋆6C‖Hλ‖2L1
1
,

where the constant C depends only on the L∞ norm of Gλ, which is uniformly
bounded. In order to control the gain operator, split the angular kernel b(s)= 1

4π
into b(s)= b1(s)+b2(s), with b1(s) :=

1
4π1(−1+δ,1−δ)(s) for some δ>0 to be determined

latter on. Using Young’s inequality (see Theorem A.2),

∫

R3

(
Q+

eλ
(Hλ,Fλ)+Q+

eλ
(Gλ,Hλ)

)
Hλ(v)dv

6‖Q+
eλ,b1

(Hλ,Fλ)+Q+
eλ,b1

(Gλ,Hλ)‖L∞‖Hλ‖L1

+‖Q+
eλ,b2

(Hλ,Fλ)+Q+
eλ,b2

(Gλ,Hλ)‖L2

− 1
2

‖Hλ‖L2
1
2

6C(b1)
(
‖Fλ‖L∞

1
+‖Gλ‖L∞

1

)
‖Hλ‖2L1

1
+C(b2)

(
‖Fλ‖L1

1
+‖Gλ‖L1

1

)
‖Hλ‖2L2

1
2

.
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Fix ε>0. From the explicit expression of both C(b1) and C(b2) provided by Theorem
A.2, one notes that it is possible to choose δ>0 such that C(b2)6 ε (recall that b is
bounded). Summarizing, for any ε>0,

λγ‖∇Hλ‖2L2 +c0‖Hλ‖2L2
1
2

6 ε‖Hλ‖2L2
1
2

+C(ε)‖Hλ‖2L1
1
,

where C(ε) is a positive constant independent of λ. Choosing ε= c0
2 we deduce that

‖Hλ‖2L2
1
2

6
2C(ε)

c0
‖Hλ‖2L1

1
∀λ∈ (0,1],

which gives the result for ℓ=0. To extend these estimates to higher order derivatives,
one proceeds by induction, using Theorem 3.6, which yields (3.14). To deduce estimate
(3.15), recall the interpolation inequality given in [20, Appendix B] (note a misprint
in the op. cit. where the exponents 1/8 have been replaced by 1/4): For any a>0
and ℓ>0, there exist C(a,ℓ)>0 such that

‖h‖Wℓ,1(ma)≤C ‖h‖1/8
Hℓ0

‖h‖1/8L1(mb)
‖h‖3/4L1(ma)

∀h∈Hℓ0 ∩L1(mb),

where ℓ0 :=8ℓ+ 35
2 and b=12a. According to Proposition 3.4, there exists some c>0

such that ‖Hλ‖L1(mb)6 c‖Hλ‖L1
1
for any λ∈ (0,1]. Moreover, (3.14) implies that the

Hℓ0 -norm of Hλ can be controlled from above by ‖Hλ‖L1
1
. Combining these estimates,

we get

‖Hλ‖Wℓ,1(ma)6C(a,ℓ)‖Hλ‖1/4L1
1
‖Hλ‖3/4L1(ma)

∀λ∈ (0,1],

which yields the desired conclusion.

3.3. Continuity properties of Q+
eλ

as λ→0. We investigate in this section
the continuity of the gain part Q+

e (f,g) with respect to the restitution coefficient.
We shall prove that, for sufficiently smooth functions f and g, the collision opera-
tor Q+

eλ
(f,g) converges strongly towards Q+

1 (f,g) as λ→0 in a suitable norm to be
specified.

Proposition 3.9. For any k>0, there exist some explicit constants C(γ,k) and
C̃(γ,k) such that

‖
(
Q+

eλ
(f,g)−Q+

1 (f,g)
)
〈v〉k‖H−1 6C(γ,k,a)λγ‖f‖L1

k+γ+2
‖g ‖L2

k+γ+2
, (3.16)

‖
(
Q+

eλ
(f,g)−Q+

1 (f,g)
)
〈v〉k‖H−1 6 C̃(γ,k)λγ‖f‖L2

k+γ+2
‖g‖L1

k+γ+2
. (3.17)

Proof. Fix λ>0, a test function φ∈H1, and define ψ(v)= 〈v〉kφ(v). Use the
weak form of Q+

eλ
(f,g)−Q+

1 (f,g) to get
∫

R3

(
Q+

eλ
(f,g)−Q+

1 (f,g)
)
(v)ψ(v)dv

=
1

2π

∫

R3×R3×S2

|u · n̂|f(v)g(v⋆)
(
ψ(v(λ))+ψ(v

(λ)
⋆ )−ψ(v′)−ψ(v′⋆)

)
dvdv⋆dn̂,

where (v(λ),v
(λ)
⋆ ) denotes the post-collisional velocities associated to the restitution

coefficient eλ, while (v′,v′⋆) denotes the post-collisional velocities for elastic interac-
tions, that is,

v′=v−(u · n̂)n̂ , v′⋆=v⋆+ (u · n̂)n̂,
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v(λ)=v−βλ (u · n̂)n̂ , v
(λ)
⋆ =v⋆+βλ (u · n̂)n̂,

with βλ=βλ(|u · n̂|)= 1+eλ(|u·n̂|)
2 . Set

Iλ=

∫

R3×R3×S2

|u · n̂|f(v)g(v⋆)
(
ψ(v(λ))−ψ(v′)

)
dvdv⋆dn̂,

and define

ζ= ζ(u,n̂,λ)=v(λ)−v′= 1−eλ
2

(u · n̂)n̂.

According to Assumption 1.1,

ℓγ(e)=sup
r>0

1−e(r)
rγ

<∞.

Thus, for any u, n̂, and λ,

|ζ|6 ℓγ(e)

2
λγ |u · n̂|γ+1.

Moreover, for any fixed v, v⋆, and n̂,

ψ(v(λ))−ψ(v′)=
∫ 1

0

∇ψ(v′+sζ) ·ζds.

These two observations lead to

Iλ6
ℓe(γ)

2
λγ
∫

R3×R3×S2

dvdv⋆dn̂

∫ 1

0

|u · n̂|γ+2f(v)g(v⋆) |∇ψ(v′+sζ)| ds.

At this point it is important to recognize that for any fixed s∈ (0,1] the integral

∫

R3×R3×S2

|u · n̂|γ+2f(v)g(v⋆) |∇ψ(v′+sζ)| dvdv⋆dn̂

is just the weak form of the gain part of some peculiar Boltzmann-like operator.
Indeed, set ϕ(v)= |∇ψ(v)| and V ′

s =v
′+sζ (notice that V ′

s depends on u, n̂, λ, and
s), and observe that

V ′
s =v− β̃s (u · n̂)n̂

for some parameter

β̃s= β̃s(|u · n̂|)=(1−s)+sβλ(|u · n̂|)∈ (1/2,1].

Therefore, V ′
s is in fact a new post-collisional velocity associated to the above β̃s. We

compute, for any s∈ (0,1],

∫

R3×R3×S2

|u · n̂|γ+2f(v)g(v⋆) |∇ψ(v′+sζ)| dvdv⋆dn̂

=

∫

R3×R3×S2

|u · n̂|γ+2f(v)g(v⋆)ϕ(V
′
s )dvdv⋆dn̂=

∫

R3

Q+
B0,ẽs

(f,g)(v)ϕ(v)dv,
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where the collision kernel B0 is given by B0(u,n̂)= |u · n̂|γ+2 and the restitution coef-

ficient ẽs is such that β̃s=
1+ẽs
2 . Since

ϕ(v)6 〈v〉k|∇φ(v)|+k〈v〉k−1|φ(v)|
6max(1,k)(|∇φ(v)|+ |φ(v)|)〈v〉k,

one has, for any s∈ (0,1),

∫

R3×R3×S2

|u · n̂|γ+2f(v)g(v⋆) |∇ψ(v′+sζ)| dvdv⋆dn̂

6max(1,k)

∫

R3

Q+
B0,ẽs

(f,g)(v)(|∇φ(v)|+ |φ(v)|)〈v〉kdv.

As a consequence, thanks to the Cauchy-Schwarz inequality,

Iλ6
√
2max(1,k)ℓγ(e)λ

γ‖φ‖H1

∫ 1

0

‖Q+
B0,ẽs

(f,g)‖L2
k
ds. (3.18)

It remains to estimate the norm ‖Q+
B0,ẽs

(f,g)‖L2
k
for any s∈ (0,1). This is simply

done using Theorem A.1:

‖Q+
B0,ẽs

(f,g)‖L2
k
6C(ẽs)‖f‖L1

k+γ+2
‖g‖L2

k+γ+2
.

Theorem A.1 shows that C(ẽs) only depends on the value at zero of the restitution
coefficient. Since ẽs(0)=1 for any s one gets that C(ẽs) is independent of the variable
s. Thus, estimate (3.16) follows from (3.18). Exchanging the roles of f and g in
Theorem A.1 gives the second estimate.

We use the equivalence of norms (that follows using Fourier transform)

‖∇ϕ‖2
H−1 +‖ϕ‖2

H−1 =‖ϕ‖2L2 , (3.19)

valid for any ϕ∈L2, to strengthen Proposition 3.9.

Proposition 3.10. For any ℓ∈N and k>0 there exists C(γ,k,ℓ) such that

‖Q+
eλ
(f,g)−Q+

1 (f,g)‖Hℓ
k

6C(γ,k,ℓ)λγ
(
‖f‖

W
1,ℓ
k+γ+2

‖g‖
H

ℓ+1
k+γ+2

+‖f‖
H

ℓ+1
k+γ+2

‖g‖
W

1,ℓ
k+γ+2

)

holds for any λ∈ [0,1].

Proof. Since

∇Q+
eλ
(f,g)=Q+

eλ
(∇f,g)+Q+

eλ
(f,∇g), (3.20)

and the same is true for Q+
1 (f,g), it suffices to apply Proposition 3.9 and identity

(3.19) conveniently to each term to get the conclusion for ℓ=1. Use induction to
obtain the result for higher derivatives ℓ>1.

It is actually possible to extend these estimates to the smaller space L1(ma) with
exponential weights

ma(v) :=exp(a|v|) , v∈R
3, a>0. (3.21)
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We work with exponent 1 for simplicity even if, as suggested also by Proposition 3.3,
it is likely that our results are still valid for general weights of the form exp(a|v|p)
with 06p< 3

2 . The advantage of the following result with respect to the previous one
is that it involves the derivative of only one of the functions f or g. Precisely, one
has the following extension of [19, Proposition 3.2].

Theorem 3.11. There exists an explicit constant λ0∈ (0,1) such that, for any a>0,
there exists C(γ,a)>0 for which

‖Q+
eλ
(f,g)−Q+

1 (f,g)‖L1(ma)6C(γ,a)λ
γ

8+3γ ‖f‖L1
1(ma)‖g‖W1,1

1 (ma)
∀λ∈ (0,λ0)

(3.22)
and

‖Q+
eλ
(f,g)−Q+

1 (f,g)‖L1(ma)6C(γ,a)λ
γ

8+3γ ‖g‖L1
1(ma)‖f‖W1,1

1 (ma)
∀λ∈ (0,λ0).

Proof. The proof follows the argument of the analogue [19, Proposition 3.2],
where the crucial estimate is provided by Proposition A.2 (see Appendix A). Precisely,
as in the op. cit., for any given v,v⋆∈R

3, w=v+v∗ 6=0, and σ∈S
2, we define the angle

χ∈ [0, π2 ] by cosχ := |σ · ŵ|. Let δ∈ (0,1) and R>1 be fixed and let bδ ∈W1,∞(−1,1)
such that bδ(s)= bδ(−s) for any s∈ (0,1) and

bδ(s)=

{
1, if s∈ (−1+2δ,1−2δ),

0, if s /∈ (−1+δ,1−δ),

with, moreover,

06 bδ(s)61 and |b′δ(s)|6
3

δ
∀s∈ (−1,1).

Let us define also ΘR(r)=Θ(r/R) with Θ(x)=1 on [0,1], Θ(x)=1−x for x∈ [1,2],
and Θ(x)=0 on [2,∞). We define the sets A(δ) :={σ∈S

2; sin2χ≥ δ}, B(δ) :={σ∈
S
2 ; û ·σ /∈ (−1+2δ,1−2δ) or sin2χ≤ δ}. With these notations, for any restitution co-

efficient e(·), we split Q+
e into

Q+
e =Q+

B0,e
+Q+

B1,e
+Q+

B2,e
,

where the collision kernels Bi(u,û ·σ), i=0,1,2, are defined by

B2(u,û ·σ)= bδ(û ·σ)ΘR(u)
|u|
4π
, B1(u,û ·σ) :=

|u|
4π

1A(δ) (1−ΘR(|u|)),

and

B0(u,û ·σ)=
|u|
4π

(1−bδ(û ·σ))ΘR(|u|)+
|u|
4π

(1−ΘR(|u|))1Ac(δ).

We shall of course apply this splitting to the restitution coefficients eλ and the elastic
one e≡1, which corresponds to e0. The proof is divided into three steps.

• Step 1. Estimate for Q+
B0,eλ

: We can prove exactly as in [19, Proposition 3.2]
(precisely, using Theorem A.1) that for any λ∈ [0,1) and any δ∈ (0,1) it holds that

∥∥Q+
B0,eλ

(f,g)
∥∥
L1(ma)

62δ‖f‖L1
1(ma)‖g‖L1

1(ma). (3.23)
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• Step 2. Estimate for Q+
B1,eλ

: We can check without difficulty that [19, Lemma
3.3] still holds true for non-constant restitution coefficients eλ with exponent k in

[19, Equation (3.8)] given by k=(1−δ/160) 1
2 , independent of λ. In particular, re-

producing the proof of the op. cit. we get that there exists a constant C>0 such
that

∥∥Q+
B1,eλ

(f,g)
∥∥
L1(ma)

6
C

δ2R
‖f‖L1

1(ma)‖g‖L1
1(ma) ∀λ∈ [0,1], δ∈ (0,1), R>1.

(3.24)
• Step 3. Estimate for the difference Q+

B2,eλ
−Q+

B2,1
: The crucial point is now to

estimate ‖Q+
B2,eλ

(f,g)−Q+
B2,1

(f,g)‖L1(ma) and, as already mentioned, we shall resort
to Proposition A.2 given in Appendix A. Precisely, let φ∈L∞ and ψ(v)=ma(v)φ(v).
Notice that the collision kernel B2(u,û ·σ) satisfies the assumption of Proposition A.2
since supp bδ ⊂ (−1+δ,1−δ). Applying this Proposition to the restitution coefficient
eλ (with fixed λ∈ (0,1]), one sees that there exists Ceλ >0 such that

∣∣∣∣
∫

R3

[
Q+

B2,eλ
(f,g)−Q+

B2,1
(f,g)

]
ψ(v) dv

∣∣∣∣

6Ceλ

∫

R3

Q+
Bγ ,1

(f,g) |ψ(v)|dv+2γ+6ℓγ(eλ)

∫ 1

0

ds

∫

R3

Q+

Bγ ,ẽλs
(f,h) |ψ(v)|dv,

where h(v)=g(v)+ |∇g(v)| while the kernels Bγ and Bγ are given by

Bγ(u,û ·σ)=B2(u,û ·σ)|u|γ , Bγ(u,û ·σ)=max(B2(u,û ·σ), |∇uB2(u,û ·σ)|)|u|γ+2,

and, for any s∈ [0,1], ẽλs (·) is a given restitution coefficient with ẽλs (0)=1 for any
s,λ. One estimates these two integrals using Theorem A.1. Precisely, by Hölder’s
inequality,

∫

R3

Q+
Bγ ,1

(f,g) |ψ(v)|dv6‖Q+
Bγ ,1

(f,g)ma‖L1 ‖φ‖L∞

while, for any s∈ (0,1),

∫

R3

Q+

Bγ ,ẽλs
(f,h)(v)|ψ(v)|dv6‖Q+

Bγ ,ẽλs
(f,h)‖L1 ‖φ‖L∞ .

Now, one notices that

ma(v
′
s)6ma(v)ma(v⋆) and ma(v

′
1)6ma(v)ma(v⋆),

where v′s and v′1 denote the post-collision velocities associated to the restitution co-
efficient ẽλs and e≡1 respectively, so that ‖Q+

Bγ ,1
(f,g)ma‖L1 6‖Q+

Bγ ,1
(maf,mag)‖L1

and

‖Q+

Bγ ,ẽλs
(f,h)‖L1 6‖Q+

Bγ ,ẽλs
(maf,mah)‖L1 .

Since ΘR(|u|)=0 whenever |u|>2R, one has ΘR(|u|)|u|γ 6 (2R)γ for any u∈R
3, and

there exists an universal constant c1>0 such that

‖Q+
Bγ ,1

(maf,mag)‖L1 6 c1R
γ‖maf‖L1

1
‖mag‖L1

1
. (3.25)
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To estimate ‖Q+

Bγ ,ẽλs
(maf,mah)‖L1 , one only notices that the kernel Bγ(u,û ·σ) can

be estimated by

Bγ(u,û ·σ)6
[(

1

R
+

1

δ

)
|u|+1

]
bδ(û ·σ)ΞR(|u|) |u|γ+2

for some positive mapping ΞR(·) such that ΞR(|u|)=0 whenever |u|>2R; the factor
R−1 comes from the derivative of ΘR while the term δ−1 comes from that of bδ. Then,
using as above Theorem A.2 and because ẽλs (0)=1 is independent of s∈ (0,1), one
gets the existence of an universal constant c2>0 such that

‖Q+

Bγ ,ẽλs
(maf,mah)‖L1 6 c2

(
1

R
+

1

δ

)
Rγ+2‖maf‖L1

1
‖mah‖L1

1

or, equivalently,

‖Q+

Bγ ,ẽλs
(maf,mah)‖L1 6 c2

(
1

R
+

1

δ

)
Rγ+2‖maf‖L1

1
‖mag‖W1,1

1
. (3.26)

Finally, using the fact that ℓγ(eλ)6λ
γ ℓγ(e) while, as noticed in Remark A.3, Ceλ 6

c3λ
γ for any λ∈ (0,λ0] for some constructive λ0>0 and some positive constant c3>0,

we finally obtain, combining (3.25) and (3.26), that

‖Q+
B2,eλ

(f,g)−Q+
B2,1

(f,g)‖L1(ma)

6Cλγ
(
1

R
+

1

δ

)
Rγ+2‖f‖L1

1(ma)‖g‖W1,1
1 (ma)

∀λ∈ (0,λ0], (3.27)

for some positive constant C>0. Collecting estimates (3.23)–(3.24)–(3.27), we finally
get that there is some positive C>0 such that

‖Q+
eλ
(f,g)−Q+(f,g)‖L1(ma)

6C

(
δ+δ−2R−1+

Rγ+2λγ

δ
+Rγ+1λγ

)
‖f‖L1

1(ma)‖g‖W1,1
1 (ma)

∀λ∈ (0,λ0), δ >0, R>1. (3.28)

Then, choosing δ and R>1 such that

δ= δ−2R−1=
Rγ+2λγ

δ
=λp

for some p>0, one sees that necessarily p= γ
8+3γ and Rγλγ =λ5p. This gives the

conclusion. One proves the second estimate in exactly the same way.

Notice that, increasing the polynomial weights in the various norms of f and g,
we can get an optimal control rate λγ .

Corollary 3.12. There exists some explicit λ0∈ (0,1) such that for any a>0 there
exists some explicit constant C(γ,a)>0 for which

‖Q+
eλ
(f,g)−Q+

1 (f,g)‖L1(ma)6C(γ,a)λ
γ‖f‖L1

k(ma)‖g‖W1,1
k (ma)

∀λ∈ (0,λ0),

(3.29)
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and

‖Q+
eλ
(f,g)−Q+

1 (f,g)‖L1(ma)6C(γ,a)λ
γ‖g‖L1

k(ma)‖f‖W1,1
k (ma)

∀λ∈ (0,λ0),

where k=γ+ 10
3 .

Proof. The proof follows the lines given for Theorem 3.11. Let us explain the
small changes. Bounding directly ΘR by 1 allows to replace estimate (3.25) by

‖Q+
Bγ ,1

(maf,mag)‖L1 6 c1‖maf‖L1
γ+1

‖mag‖L1
γ+1

.

In the same way, for some given 1<k<γ+3 to be determined later, one can replace
estimate (3.26) by

‖Q+

Bγ ,ẽλs
(maf,mah)‖L1 6 c2

(
1

R
+

1

δ

)
Rγ+3−k‖maf‖L1

k
‖mag‖W1,1

k
.

With such a choice, (3.27) becomes

‖Q+
B2,eλ

(f,g)−Q+
B2,1

(f,g)‖L1(ma)6Cλ
γ

(
1

R
+

1

δ

)
Rγ+3−k‖f‖L1

k(ma)‖g‖W1,1
k (ma)

+Cλγ ‖f‖L1
γ+1(ma)‖g‖L1

γ+1(ma) ∀λ∈ (0,λ0]

and, collecting all the estimates as above, we get

‖Q+
eλ
(f,g)−Q+(f,g)‖L1(ma)

6C

(
δ+δ−2R−1+

Rγ+3−kλγ

δ
+Rγ+2−kλγ+λγ

)
‖f‖L1

s(ma)‖g‖W1,1
s (ma)

∀λ∈ (0,λ0), δ >0, R>1,

where s=max(k,γ+1). One looks now for k∈ (1,γ+2) for which it is possible to
choose δ, R>1 such that

δ= δ−2R−1=
Rγ+3−kλγ

δ
=λγ ,

and we get that, necessarily, k=γ+ 10
3 . In this case, Rγ+2−kλγ =λ5γ and we obtain

(3.29).

4. Uniqueness
We are now in position to prove the uniqueness of the solution to (1.15) for

sufficiently small λ, that is, that there exists λ†>0 such that for any λ∈ (0,λ†) the
stationary problem (1.15) admits a unique solution Gλ with unit mass and vanishing
momentum. The strategy of proof has been sketched in the Introduction and we shall
refer to Section 1.3 for the main steps of the proof. In particular, a crucial point
consists in proving and quantifying the convergence of (Gλ)λ towards an universal
limit M. This is the object of the following paragraph.

4.1. The limit λ→0: Non-quantitative version. Using the continuity
properties, specifically Theorem 3.11, and a compactness argument, we establish a
first convergence result, non-quantitative in the sense that no rate of convergence is
provided.
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Theorem 4.1. Assume that e(·) belongs to the class Em with m> 7
2 . For any k>0

and ℓ∈ [0,m−1], one has

lim
λ→0

‖Gλ−M‖Hℓ
k
=0,

where M is the Maxwellian

M(v)=(2πΘ)−
3
2 exp

(
−|v|2

2Θ

)
.

The Maxwellian’s temperature Θ is given by

Θ=

(
6(4+γ)

a2
γ
2m3+γ

) 2
3+γ

, (4.1)

where m3+γ is the (3+γ)-th moment of a normalized Gaussian:

m3+γ =π
− 3

2

∫

R3

exp

(
−|v|2

2

)
|v|3+γ dv=2

3+γ
2

Γ
(
3+ γ

2

)

Γ
(
3
2

) .

Proof. The proof is divided in several steps and essentially based upon a com-
pactness argument through Theorem 3.6.

• First step: Compactness argument. Let us choose m−1> ℓ> 5
2 and k0>1 in

Theorem 3.6. There clearly exists a sequence (λn)n with λn→0 and G0∈Hℓ
k such

that (Gλn
)n converges weakly, in Hℓ

k0
, to G0 (notice that, a priori, the limit function

G0 depends on the choice of ℓ and k0). Using the decay of Gλ guaranteed by the
polynomially weighted Sobolev estimates, we can prove, thanks to a simple localization
argument (and using compact embedding for Sobolev spaces), that the convergence
is actually strong in H1

k for any 06k<k0:

lim
n→∞

‖Gλn
−G0‖H1

k
=0. (4.2)

Indeed, since supλ∈(0,1)‖Gλ−G0‖Hℓ
k0

<∞, for any fixed 06k<k0 and any ε>0,

there is R>0 large enough such that

sup
λ∈(0,1)

‖Gλ−G0‖H1
k(B

c
R)6 ε, (4.3)

where BR={v∈R
3 , |v|6R} and Bc

R its complementary. Let G̃λn
and G̃0 denote the

restrictions of Gλn
and G0 to the ball BR. Since ℓ> 5

2 , according to the Rellich-
Kondrachov compactness theorem [1, Theorem 6.2, p.144], the embedding Hℓ(BR) →֒
H1(BR) is compact so that there is a subsequence of (G̃λn

)n that converges strongly
to G̃0 in H1(BR). Since G̃0 is the unique limit of all subsequences, it is actually the
whole sequence (G̃λn

)n that converges to G̃0 in H1(BR). Combining this with (4.3)
yields (4.2).

• Second step: Identification of the limit G0. Let us prove now that the above
limit G0 is actually a Maxwellian distribution with temperature Θ. To do so, one uses
(1.15) to get

‖Qeλ(Gλ,Gλ)‖L2 =λγ‖∆vGλ‖L2 ∀λ>0
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and, since supλ∈(0,1]‖∆vGλ‖L2 6 supλ∈(0,1]‖Gλ‖H2 =:C0<∞ according to Theorem
3.6, we get

‖Qeλ(Gλ,Gλ)‖L2 6C0λ
γ ∀λ∈ (0,1). (4.4)

Now, from the identity Q−
1 (Gλ,Gλ)=Q−

eλ
(Gλ,Gλ), one has ‖Qeλ(Gλ,Gλ)−

Q1(Gλ,Gλ)‖L2 =‖Q+
eλ
(Gλ,Gλ)−Q+

1 (Gλ,Gλ)‖L2 , so that

‖Q1(Gλ,Gλ)‖L2 6‖Q+
eλ
(Gλ,Gλ)−Q+

1 (Gλ,Gλ)‖L2 +‖Qeλ(Gλ,Gλ)‖L2 .

Combining the above estimate (4.4) with Proposition 3.10, we get

‖Q1(Gλ,Gλ)‖L2 6C0λ
γ+C1λ

γ‖Gλ‖2H1
2

for some positive constant C1>0 independent of λ. Using again Theorem 3.6, we get
that there exists some explicit constant C2>0 such that

‖Q1(Gλ,Gλ)‖L2 6C2λ
γ ∀λ∈ (0,1].

In particular the sequence (Gλn
)n constructed in the first step satisfies

lim
n→∞

‖Q1(Gλn
,Gλn

)‖L2 =0.

Since Gλn
→G0 strongly in L2

1, we get easily that

Q1(G0,G0)=0,

i.e. G0 is a Maxwellian distribution. By conservation of mass and momentum, we
get that G0 has unit mass and zero momentum and it remains only to determine
its temperature Θ. To do so, we shall use equation (1.16) and Lemma A.5. With
the notations of Lemma A.5, equation (1.16) writes as Iλ(Gλ)=6 for any λ∈ (0,1].
Applying Lemma A.5 with f1=g1=Gλn

, f2=g2=G0 (with for simplicity δ=1), and
estimating the weighted L1-norms by L2-norms (using equation (2.15) with θ= 1

2 for
instance) we get that, for any ε>0, there is n0>1 such that

|I0(G0)−6|6C1‖Gλn
−G0‖L2

5+γ
+C2ε ∀n>n0,

for some positive constants C1,C2>0 independent of n, where we used that k0>6+γ
and the uniform estimates on ‖Gλ‖L2

5+γ
. Letting n go to infinity, we get that I0(G0)=

6. Therefore,

6=Cγ

∫

R3×R3

G0(v)G0(v⋆)|v−v⋆|3+γ dvdv⋆

=CγΘ
3+γ
2

∫

R3×R3

M(v)M(v⋆)|v−v⋆|3+γ dvdv⋆,

where M(·) is the normalized Maxwellian M(v)=π− 3
2 exp

(
− |v|2

2

)
. Some algebra

yields 6=CγΘ
3+γ
2 2

γ
2m3+γ , from which we deduce (4.1), and thus G0=M.

• Final step: Convergence of the whole net (Gλ)λ. We conclude the proof by
showing that

lim
λ→0

‖Gλ−M‖H1 =0.
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Argue by contradiction, assuming that this does not hold. Then, there exists ǫ0>0
and a sequence (λn)n converging to zero such that

‖Gλn
−M‖H1 > ǫ0 ∀n∈N.

We just proved above that (Gλn
)n admits a subsequence (Gλnj

)j converging strongly

in H1 to M. Therefore,

ǫ06‖Gλnj
−M‖H1 −→

j→∞
0,

which is a contradiction. This proves that the full net (Gλ)λ converges to M strongly
in any H1. We proceed along the same path (using a version of Rellich-Kondrachov
Theorem for higher-order Sobolev spaces) to prove that the convergence actually holds
in any weighted Sobolev space Hℓ

k, k>0 and ℓ∈ [0,m−1].

This convergence in Sobolev spaces can be extended easily to weighted L1-spaces
with exponential weights. Recall that, for any a>0, we denote

ma(v)=exp(a|v|), v∈R
3.

Corollary 4.2. Assume that e(·) belongs to the class Em with m> 7
2 . For any a>0

and any k>0,

lim
λ→0

‖Gλ−M‖L1
k(ma)

=0.

Proof. Taking ℓ> 3
2 in the above theorem, observe that by classical Sobolev

embedding,

lim
λ→0

‖Gλ−M‖L∞ =0.

The proof follows by using interpolation. First, observe that the convergence holds in
exponential weighted L2-spaces

∫

R3

|Gλ(v)−M(v)|2mb(v)dv6Cb‖Gλ−M‖L∞ −→0 as λ→0,

where Cb := supλ∈(0,1]‖Gλ−M‖L1(mb)
is finite for any b>0 thanks to Proposition 3.3.

Then, using H”older’s inequality, for any b,a>0,

‖Gλ−M‖L1
k(ma)6

(∫

R3

|Gλ(v)−M(v)|2mb(v)dv

) 1
2
(∫

R3

mb(v)
−1m2

a(v)〈v〉2kdv
) 1

2

.

The last integral in the right side is finite provided b>2a; therefore, the L1 conver-
gence follows from the L2 convergence just proved.

4.2. Uniqueness result. On the basis of the above convergence result, we
are in position to apply our general strategy as explained in Section 1.3. Recall that,
for any given λ∈ (0,1] and Gλ,Fλ∈Sλ, we set

Hλ=Fλ−Gλ.
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We must determine Banach spaces X and Y for which the estimates (1.20) – (1.24)
hold true. The analysis of the previous section suggests the choice

X =L1(ma), Y=L1
1(ma)

for some exponential weight ma(v)=exp(a|v|), a>0. Indeed, Proposition 3.11 and
Corollary 4.2 already ensure that (1.21) and (1.23) are fulfilled. The fact that (1.20)
stands is a classical property of Boltzmann operator with hard-spheres interaction
(see [5, Theorem 12]). Since

‖∆Hλ‖X 6‖Hλ‖W2,1(ma),

one sees that estimate (1.22) holds because of Proposition 3.8 (precisely, inequality
(3.15)). Now, property (1.24) is a consequence of the following spectral property of
L1, first established in [21].

Proposition 4.3. The spectrum of the linearized operator L1 in X (with domain
D(L1)=Y) has the following structure:

1. 0 is a simple eigenvalue of L1 associated to the null set

N (L1)=Span(M,v1M,v2M,v3M, |v|2M);

2. the continuous spectrum of L1 is given by (−∞,−ν0], where

ν0=inf
v

∫

R3

|v−v⋆|M(v⋆)dv⋆;

3. the non zero eigenvalues of L1 are all negative and can accumulate only at
−ν0. Consequently, L1 admits a positive spectral gap ν >0.

In particular, if

X̂ ={f ∈X ;

∫

R3

f dv=

∫

R3

vf dv=

∫

R3

|v|2f(v)dv=0}, Ŷ=Y∩X̂ ,

then N (L1)∩Ŷ={0} and L1 is invertible from Ŷ to X̂ with explicit estimates for∥∥L −1
1

∥∥
X̂→Ŷ

. Consequently, inequality (1.24) holds true with c0=
∥∥L −1

1

∥∥
X̂→Ŷ

.

Remark 4.4. The proof of the above proposition can be seen as a consequence of some
general comparison principle that asserts that the linearized collision operator enjoys
the same spectral properties in X , and in the largest Hilbert space H=L2(M−1). A
simple proof of Proposition 4.3 can also be recovered from [9].

The difference Hλ=Fλ−Gλ does not necessary belong to Ŷ since we do not
know a priori that Gλ and Fλ share the same kinetic energy. Consequently, we need
a slight modification of the strategy developed in Section 1.3 to state our main result,
regarding uniqueness of the steady state.

Theorem 4.5. Let e(·) belong to the class Em for some integer m>4. There exists
λ†∈ (0,1] such that

Sλ=

{
Gλ∈L1

2 ;Gλ solution to (1.15) with

∫

R3

Gλ(v)dv=1 and

∫

R3

vGλ(v)dv=0

}

reduces to a singleton for any λ∈ [0,λ†).



R.J. ALONSO AND B. LODS 885

Proof. We explained in the previous paragraph that the estimates (1.20), (1.21),
(1.22), (1.23), and (1.24) of the general strategy are fulfilled with X =L1

1(ma) and
Y=L1

1(ma) for any a>0. Let us fix ε>0 and reproduce the computations of Section
1.3. It follows that there exists λ0∈ (0,1) such that

‖L1(Hλ)‖X 6 ε‖Hλ‖Y ∀λ∈ (0,λ0). (4.5)

Let us now introduce the following lifting of the operator L1 into an invertible operator

A : h 7→Ah=(A1h;A2h)∈R×X̂ , (4.6)

where the second component A2h=L1h, while the first component A1 is defined by

A1h=2I0(M,h)=2

∫

R3×R3

M(v)h(v⋆)ζ0
(
|v−v⋆|2

)
dvdv⋆.

We refer to the Appendix A for notations. Since Gλ and Fλ share the same mass and
momentum, one deduces from Lemma A.7 that

Hλ=Fλ−Gλ=A−1AHλ=A−1 (A1(Hλ);A2(Hλ)) ,

with an explicit estimate of the norm ‖A−1‖. Since A−1 maps R×X to Y, we get

‖Hλ‖Y 6‖A−1‖max

(∣∣A1(Hλ)
∣∣ ; ‖A2(Hλ)‖X

)
. (4.7)

Still using the notations of Appendix A, one readily has

A1(Hλ)=I0(M−Fλ,Hλ)+I0(M−Gλ,Hλ)

+

(
I0(Fλ+Gλ,Fλ−Gλ)−Iλ(Fλ+Gλ,Fλ−Gλ)

)
.

Now, it is clear that

|I0(M−Fλ,Hλ)+I0(M−Gλ,Hλ)|
6Cγ

(
‖M−Fλ‖L1

3+γ
+‖M−Gλ‖L1

3+γ

)
‖Hλ‖L1

3+γ

6Cγ (‖M−Fλ‖X +‖M−Gλ‖X )‖Hλ‖Y ∀λ∈ (0,1].

Consequently, applying then Lemma A.5 with f1=f2=Fλ+Gλ and g1=g2=Fλ−
Gλ, we get the existence of constant C>0 and some λ1∈ (0,1) such that

|A1(Hλ)|6C (ε+‖M−Fλ‖X +‖M−Gλ‖X )‖Hλ‖Y ∀λ∈ (0,λ1). (4.8)

In particular, on the basis of (1.23), there exists λ2∈ (0,λ1) such that

|A1(Hλ)|62Cε‖Hλ‖Y ∀λ∈ (0,λ2).

Using now (4.5) together with (4.7), we deduce that

‖Hλ‖Y 6 εmax(1,2C)‖A−1‖‖Hλ‖Y ∀λ∈ (0,λ†),

where λ†=min(λ0,λ2). Taking ε>0 small enough yields therefore the desired unique-
ness: Hλ=0 for any λ∈ (0,λ†).
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4.3. Quantitative version of the uniqueness result. We derive in this
section a quantitative version of the Theorem 4.1, which shall result in a quantitative
estimate of the above parameter λ†.

Proposition 4.6. Let e(·) belongs to the class Em with m>4. Assume moreover
that there exist two positive constants a,b>0 and two exponents γ >γ>0 such that

|e(r)−1+arγ |6brγ for any r>0. (4.9)

For any a>0, there exist some explicit λ0∈ (0,1), c0,c1>0, and exponent α=
min(γ,γ−γ)>0 such that the estimate

‖Gλ−M‖L1(ma)6 c0λ
α+c1‖Gλ−M‖2L1

1(ma)
∀λ∈ (0,λ0)

holds for any Gλ∈Sλ.

Proof. We apply a slight modification of the proof of Theorem 4.5 where, instead
of estimating the difference of two solutions to (1.15), we estimate the difference
Gλ−M. Recall that A is the lifting operator given by (4.6). Thus,

Gλ−M=A−1A(Gλ−M)=A−1 (A1(Gλ−M);A2(Gλ−M)) ,

where the norm of ‖A−1‖ is explicit. In particular, since A−1 maps R×X̂ to Y, we
get

‖Gλ−M‖Y 6‖A−1‖max

(∣∣A1(Gλ−M)
∣∣;‖A2(Gλ−M)‖X

)
. (4.10)

Let us estimate separately the two terms A1(Gλ−M) and A2(Gλ−M). On the one
hand,

A1(Gλ−M)=2I0(M,Gλ−M)

=I0(M−Gλ,Gλ−M)+

(
I0(Gλ,Gλ)−Iλ(Gλ,Gλ)

)
,

where we used the fact that I0(M,M)=Iλ(Gλ,Gλ)=6. Now, it is clear that

|I0(M−Gλ,Gλ−M)|6Cγ‖Gλ−M‖2L1
3+γ

.

Moreover, according to Lemma A.6 and under Assumption (4.9),
∣∣∣∣I0(Gλ,Gλ)−Iλ(Gλ,Gλ)

∣∣∣∣6C0λ
α‖Gλ‖2L1

3+γ+γ

for some explicit constant C0>0 and exponent α=min(γ,γ−γ)>0. Therefore, since
supλ∈(0,1]‖Gλ‖2L1

3+γ
, with the notations of the previous section

|A1(Gλ−M)|6C1λ
α+Cγ‖Gλ−M‖2L1(ma)

∀λ∈ (0,1], (4.11)

for some positive constant C1>0. On the other hand,

A2(Gλ−M)=Q1(Gλ−M,M−Gλ)+Q1(Gλ,Gλ)

=Q1(Gλ−M,M−Gλ)+(Q1(Gλ,Gλ)−Qeλ(Gλ,Gλ))+Qeλ(Gλ,Gλ)

=Q1(Gλ−M,M−Gλ)+(Q1(Gλ,Gλ)−Qeλ(Gλ,Gλ))−λγ∆Gλ.
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Therefore, using Corollary 3.12, there exist an explicit λ0∈ (0,1) and constants
C2,C3>0 such that

‖A2(Gλ−M)‖L1(ma)6C1‖Gλ−M‖2L1
1(ma)

+C2λ
γ‖Gλ‖L1

γ+10
3

(ma)‖Gλ‖W1,1

γ+10
3

(ma)

+λγ‖Gλ‖W2,1(ma) ∀λ∈ (0,λ0). (4.12)

Using interpolation, similar to the proof of (3.15), and Proposition 3.4 we obtain

sup
λ∈(0,1]

(
‖Gλ‖W1,1

γ+10
3

(ma)
+‖Gλ‖W2,1(ma)

)
<∞.

Hence, inequality (4.12) reads

‖A2(Gλ−M)‖L1(ma)6C1‖Gλ−M‖2L1
1(ma)

+C3λ
γ ∀λ∈ (0,λ0),

for explicit constants C1,C3>0. Combining this estimate with (4.11) and (4.10) yields
the desired conclusion.

Theorem 4.7. Assume that e(·) satisfies (4.9) and belongs to the class Em with
m>4. Fix the exponential weight ma(v)=exp(a|v|) with a>0. There exist an explicit
λ⋆∈ (0,1) and constant c>0 such that

‖Gλ−M‖L1(ma)6 cλ
α ∀λ∈ (0,λ⋆),

where Gλ∈Sλ and α=min(γ,γ−γ).
Proof. The proof follows from Proposition 4.6 and the non-quantitative conver-

gence Theorem 4.1. Indeed, recall the estimate

‖Gλ−M‖L1
1(ma)6 c0λ

α+c1‖Gλ−M‖2L1
1(ma)

∀λ∈ (0,λ0), (4.13)

for some explicit constants c0,c1>0. Then, since limλ→0‖Gλ−M‖L1
1(ma)

=0, there

is some a priori non explicit λ⋆∈ (0,λ0) such that

c1‖Gλ−M‖L1
1(ma)

6
1

2
∀λ∈ (0,λ⋆). (4.14)

Therefore, estimate (4.13) becomes

‖Gλ−M‖L1
1(ma)62c0λ

α ∀λ∈ (0,λ⋆). (4.15)

This gives a posteriori an explicit estimate for λ⋆ since the optimal λ⋆ will be the
one for which (4.14) and (4.15) are identity, which yields the estimate λ⋆> (4c0c1)

− 1
α .

Since all the parameters c0, c1, and α happen to be explicitly computable, we get the
result.

Remark 4.8. We wish to emphasize here several points about our approach. First,
recall that in the case of constant restitution coefficient, the approach of [20] yields
directly quantitative results. This was possible thanks to a clever application of
Cercignani’s conjecture for the elastic Boltzmann operator derived in [26]. This al-
lowed us to compare the entropy dissipation functional and the distance to a given
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Maxwellian distribution, more specifically, the distance to the elastic limit. The dis-
advantage of this approach is that requires pointwise exponential lower bounds and
high regularity for the associated steady solution. Such lower bounds are related to
the spreading property of the collision operator and their technical extension to the
case of non-constant restitution coefficient is not trivial. In contrast, the strategy
here does not uses entropy techniques at all, and therefore it requires neither point-
wise lower bounds nor regularity assumptions. This makes it well-suited for problems
in which no regularity of the steady solution is available; see [7].

It is easy to deduce explicit estimates for the parameter λ† in Theorem 4.5 under
the above Assumption (4.9) on e(·).
Theorem 4.9. If e(·) belongs to the class Em for some integer m>4 and satisfies
(4.9), then there is an explicit parameter λ†∈ (0,1] such that Sλ reduces to a singleton
for any λ∈ [0,λ†).

Proof. Recall that the only non-quantitative part in the strategy described
in Section 1.3 was the convergence rate of Gλ towards M. It is made explicit now
thanks to Theorem 4.7 and, resuming the above strategy, one gets that there exists
some explicit C0>0 such that

‖L1(Hλ)‖X 6C0λ
α‖Hλ‖Y ∀λ∈ (0,λ⋆),

where Hλ=Fλ−Gλ with Fλ,Gλ∈Sλ and λ⋆ is the parameter in Theorem 4.7. Recall
that λ⋆ can be estimated from below in an explicit way. Using Theorem 4.7 one can
replace (4.8) in the proof of Theorem 4.5 by the following quantitative estimate:

|A1(Hλ)|6C1λ
α‖Hλ‖Y ∀λ∈ (0,λ⋆),

where C1>0 is an explicit constant. Then, resuming the proof of Theorem 4.5 yields

‖Hλ‖Y 6C2λ
α‖Hλ‖Y ∀λ∈ (0,λ⋆),

where C2=max(C0,C1)‖A−1‖>0 is explicit. We see therefore that Hλ=0 ensures

that λ<λ†=min
(
λ⋆,C

−1/α
2

)
.

The above uniqueness result in the quasi-elastic limit λ→0 translates to a weak
thermalization uniqueness result.

Theorem 4.10. For any restitution coefficient e(·) belonging to the class Em with
m>4 and satisfying (4.9), there exists some explicit µ†>0 such that for any µ6µ†,
there exists a unique solution F to

Qe(F,F )+µ∆F =0,

with
∫
R3F (v)dv=1 and

∫
R3 vF (v)dv=0.

Proof. The proof is a simple consequence of our scaling choice. Indeed, Theorem
4.9 asserts that, for λ<λ†, the steady problem

Qeλ(Gλ,Gλ)+λ
γ∆Gλ=0

admits an unique solution with unit mass and vanishing momentum. Performing the
backward scaling F (v)=λ−3Gλ

(
λ−1v

)
, one gets that there exists an unique solution

F with unit mass and vanishing momentum to the problem

Qe(F,F )+λ
3+γ∆F =0
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whenever λ<λ†. This clearly yields the conclusion with µ†=
(
λ†
)3+γ

.

Appendix A. Properties of the collision operator. We collect in this Ap-
pendix some facts about the Boltzmann collision operator important in their own
right. Some of the properties of Qe that we will establish here are known and some
others new. We shall consider a collision operator with more general collision kernel
than the hard-spheres case considered in the paper—more precisely, a collision kernel
B(u,σ) of the form

B(u,σ)=Φ(|u|)b(û ·σ). (A.1)

The kinetic potential Φ(·) is a suitable nonnegative function in R
3 and the angular

kernel b(·) is assumed in L1(−1,1). The associated collision operator QB,e is defined
through the weak formulation

∫

R3

QB,e(f,f)(v)ψ(v)dv=
1

2

∫

R3×R3

f(v)f(v⋆)AB,e[ψ](v,v⋆) dv⋆dv, (A.2)

for any test function ψ=ψ(v), where

AB,e[ψ](v,v⋆)=

∫

S2

(
ψ(v′)+ψ(v′⋆)−ψ(v)−ψ(v⋆)

)
B(u,σ)dσ

with v′,v′⋆ defined in (1.6). For any fixed vector û, the angular kernel defines a measure
on the sphere through the mapping σ∈S

2 7→ b(û ·σ)∈ [0,∞], and we will assume it to
satisfy the renormalized Grad’s cut-off assumption

‖b‖L1(S2)=2π‖b‖L1(−1,1)=1. (A.3)

For technical reasons, we shall also assume that

b̃ : x∈ [−1,1] 7−→ b̃(x)= b(x)+b(−x) is non-decreasing. (A.4)

A particularly relevant model is the one of hard-spheres corresponding to Φ(|u|)= |u|
and b(û ·σ)=1/4π. For this particular model we shall simply denote the collision
operator QB,e by Qe.

A.1. Convolution-like estimates for Q+
B,e. We begin by recalling some of

the regularity and integrability properties of the gain part Q+
e established in [6] and

[4]. We start first with Young-like estimates in Lp
η with η>0.

Theorem A. 1 (Alonso-Carneiro-Gamba [4]). Assume that the collision ker-
nel B(u,σ)=Φ(|u|)b(û ·σ) satisfies (A.3) and Φ(·)∈L∞

−k for some k∈R. In addition,
assume that e(·) fulfills Assumption 1.1. Let 16p,q,r6∞ with 1/p+1/q=1+1/r.
Then, for any α>0, there exists Cp,r,α,k(b) such that

‖Q+
B,e(f,g)‖Lr

α
6Cr,p,α,k(b)‖Φ‖L∞

−k
‖f‖Lp

α+k
‖g‖Lq

α+k
,

where the constant Cr,p,α,k(b) is given by

Cr,p,α,k(b)= ck,α,r

(∫ 1

−1

(
1−s
2

)−3/2r′

b(s)ds

) r′

q′
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×
(∫ 1

−1

(
1+s

2
+(1−β0)2

1−s
2

)− 3
2r′

b(s)ds

) r′

p′

(A.5)

for some numerical constant ck,α,r independent of b and e(·), and with β0=β(0)=
1+e(0)

2 .

Theorem A.1 has been modified in [6] to provide Lp
η bounds with η60.

Theorem A. 2. Assume that the collision kernel B(u,σ)=Φ(|u|)b(û ·σ) satisfies
(A.3) and Φ(·)∈L∞

−k for some k∈R. In addition, assume that e(·) fulfills Assumption
1.1. Then, for any 16p6∞ and η∈R, there exists Cη,p,k(B)>0 such that

∥∥∥Q+
B,e(f,g)

∥∥∥
Lp

η

6Cη,p,k(B)‖f‖L1
|η+k|+|η|

‖g‖Lp
η+k

,

where the constant Cη,p,k(B) is given by

Cη,p,k(B)= ck,η,p γ(η,p,b)‖Φ‖L∞
−k
,

with a constant ck,η,p>0 depending only on k, η, and p. Furthermore, the dependence
on the angular kernel is given by

γ(η,p,b)=

∫ 1

−1

(
1−s
2

)−
3+η+
2p′

b(s)ds, (A.6)

where 1/p+1/p′=1 and η+ is the positive part of η. Similarly, there exists

C̃η,p,k(B)>0 such that

∥∥∥Q+
B,e(f,g)

∥∥∥
Lp

η

6 C̃η,p,k(B)‖g‖L1
|η+k|+|η|

‖f‖Lp
η+k

,

where the constant C̃η,p,k(B) is given by

C̃η,p,k(B)= c̃k,η,p γ̃(η,p,b)‖Φ‖L∞
−k

for some constant c̃k,η,p>0 depending only on k, η, and p. The dependence on the
angular kernel is given by

γ̃(η,p,b)=

∫ 1

−1

(
1+s

2
+(1−β0)2

1−s
2

)−
3+η+
2p′

b(s)ds,

where 1/p+1/p′=1 and β0=β(0)=
1+e(0)

2 .

Corollary A. 1. Assume that the collision kernel B(u,σ)=Φ(|u|)b(û ·σ) satisfies
(A.3) and Φ(·)∈L∞

−k for some k∈R. In addition, assume that e(·) fulfills Assumption
1.1. Then, for any 16p6∞ and η∈R, there exists a numerical constant Ck,η,p>0
(which does not depend on B(·, ·)) such that

∥∥∥Q+
B,e(f,f)

∥∥∥
Lp

η

6Ck,η,p‖b‖L1(S2)‖Φ‖L∞
−k

‖f‖L1
|η+k|+|η|

‖f‖Lp
η+k

.
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A.2. Useful change of variables for non-constant restitution coefficient.
We establish here several changes of variables that are useful for the study of the

continuity properties given in Section 3.3.

Definition A. 1. A restitution coefficient e(·) : r 7→e(r)∈ [0,1] is said to belong to
the class C0 if e(·) satisfies the following.

1. The mapping r∈R+ 7→e(r)∈ (0,1] is absolutely continuous and non-
increasing.

2. The mapping r∈R
+ 7→ϑe(r) := r e(r) is strictly increasing.

3. e(0)=1.

Moreover, for a given γ >0, we shall say that e(·) belongs to the class Cγ if it
belongs to C0 and there exists a>0 such that

e(r)≃1−arγ as r≃0.

Remark A. 1. Recall that if e(·) belongs to the class Cγ then

ℓγ(e) :=sup
r>0

1−e(r)
rγ

<∞.

Lemma A. 1. Define βe(r)=
1+e(r)

2 and the mapping

ηe : r∈R
+ 7−→ rβe(r).

Then, e(·) belongs to the class C0 if and only if ηe(·) is strictly increasing and differ-
entiable with

r

2
6ηe(r)6 r ,

1

2
6η′e(r)6

ηe(r)

r
for any r>0 and η′e(0)=1.

Equivalently, the inverse mapping αe(·) of ηe(·) satisfies

r6αe(r)62r ,
αe(r)

r
6α′

e(r)62 for any r>0 and α′
e(0)=1.

Lemma A. 2. [17, Lemma 2.3] For any σ∈S
2 and δ∈ (0,2), define the cone

Ωδ =Ωδ(σ)=

{
u∈R

3 \{0} ; û ·σ>δ−1

}
. (A.7)

Define the mapping Φσ as

Φσ : u∈R
3 7−→Φσ(u)=

u+ |u|σ
2

.

Then, Φσ is a C∞-diffeomorphism from Ωδ onto Ωδ⋆ , where δ⋆=1+
√

δ
2 and with

Jacobian Jσ(u)=
1
8 (1+ û ·σ) . Its inverse mapping ϕσ =Φ−1

σ is given by ϕσ(w)=2w−
|w|
ŵ ·σσ.

With the notations of Lemma A.1 and Lemma A.2 we can establish the following
change of variables formula which generalizes [17, Proposition 3.2].
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Lemma A. 3. For a given restitution coefficient e(·) in the class C0, one defines the
mapping

Πe : w 7→z=βe(|w|)w=
1+e(|w|)

2
w=Πe(w).

Then, for any δ>0, Πe is a C∞-diffeomorphism from Ωδ onto itself with Jacobian
Je(|z|) given by

Je(̺)=
1

2
(1+ϑ′e (αe(̺)))β

2
e (αe(̺)) ∀̺>0. (A.8)

The inverse mapping πe=Π−1
e is given by

πe(z)=
αe(|z|)
|z| z=

z

βe(αe(|z|))
.

If one combines the two applications Πe ◦Φσ we get the change of variables

u 7−→z=βe (|Φσ(u)|)Φσ(u),

which is a C∞-diffeomorphism from Ωδ onto Ωδ⋆ . Its inverse mapping is given by

z 7−→ ζe(z)=ϕσ ◦πe(z),

with Jacobian given by Jσ(ζe(z))Je(z). One has

ζe(z)=µe(z)ϕσ(z) with µe(z)=
αe(|z|)
|z| .

Proof. The properties of Πe are proven by direct calculations and noticing that
if z=Πe(w), then

ẑ= ŵ and |w|=αe(|z|).

With this identity, one can computes the Jacobian of the transformation passing
to polar coordinates. The final expression of ζe(z) is immediate after noticing that
ϕσ(rw)= rϕσ(w) for any r>0 and any w∈R

3.

Remark A. 2. Observe that for e(·) belonging to C0, since ϑ′e(r)= re′(r)+e(r)61
for any r>0 and βe(r)∈ [ 12 ,1], one has the universal bound

1

8
6Je(̺)61 ∀̺>0. (A.9)

Lemma A. 4. Let e(·) be a restitution coefficient in the class C0 and let s∈ [0,1].
Then, there exists a restitution coefficient ẽs(·) belonging to C0 such that

1+s(µe(z)−1)=µẽs(z) ∀z∈R
3,

where µe has been defined in Lemma A.3.

Proof. Define µ(z)=1+s(µe(z)−1)=(1−s)+sµe(z), and recall that

µe(z)=
αe(|z|)
|z| .
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In order to prove that there exists ẽs(·) in the class C0 such that µ=µẽs , thanks to
Lemma A.1, it suffices to prove that the mapping α : r 7→ (1−s)r+sαe(r) satisfies

r6α(r)62r ,
α(r)

r
6α′(r)62 for any r>0 and α′(0)=1.

Since αe satisfies all these properties, it follows that the same is true for α.

The following proposition is reminiscent of the so-called cancellation Lemma for
the classical Boltzmann operator [2, 25].

Proposition A. 1. Let e(·) be a given restitution coefficient belonging to the class
C0, and let

B(u,û ·σ)=Θ(|u|)b(û ·σ)

be a given collision kernel with Θ(r)>0 and b(s)= b(−s) with suppb∈ [−1+δ,1−δ]
for some δ>0. Let Q+

B,e and Q+
B,1 denote the positive part of the collision operator

associated to B with restitution coefficient e(·) and elastic interactions respectively.
For any test function ψ and any given f,g, one has

∫

R3

[
Q+

B,e(f,g)−Q+
B,1(f,g)

]
ψ dv

=
1

2

∫

R3

f(v)dv

∫

S2

dσ

∫

Ω⋆
δ

ψ(v+z)

[
1

Je(|z|)
Fv,σ (ζe(z))−Fv,σ(ϕσ(z))

]
dz,

(A.10)

where Fv,σ(u)=Θ(|u|)̃b(û ·σ)g(v+u) with b̃(û ·σ)= b(û·σ)
Jσ(u)

= 8b(û·σ)
1+û·σ , u∈R

3.

Proof. We set for simplicity

Ie=

∫

R3

Q+
B,e(f,g)(v)ψ(v)dv and I1=

∫

R3

Q+
B,1(f,g)ψ(v)dv.

Thus,

Ie=
1

2

∫

R3×R3×S2

B(u,û ·σ)f(v)g(v⋆)ψ(v′e)dvdv⋆dσ,

where u=v−v⋆ and v′e=v−β(|u|
√

1−û·σ
2 )u−|u|σ

2 is the post-collisional velocity asso-

ciated to e(·). In particular, the change of variables v⋆→u yields

Ie=
1

2

∫

R3

f(v)dv

∫

S2

dσ

∫

R3

B(u,û ·σ)g(v−u)ψ(v′e)dvdudσ.

The change of variables u→−u in the last integral gives

Ie=
1

2

∫

R3

f(v)dv

∫

S2

dσ

∫

Ωδ

Θ(|u|)b(û ·σ)g(v+u)ψ
(
v+β (|Φσ(u)|)Φσ(u)

)
du,

where we used that, for fixed σ, the support of b is included in [−1+δ,1−δ], so that
the variable u belongs to the cone Ωδ defined by (A.7). With the notations of Lemma
A.3, we perform the change of variables z=Πe ◦Φσ(u) in the previous integral to get

Ie=
1

2

∫

R3

f(v)dv

∫

S2

dσ

∫

Ω⋆
δ

ψ(v+z)
1

Je(|z|)
Fv,σ (ζe(z)) dz, (A.11)
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where Fv,σ(u)=Θ(|u|)̃b(û ·σ)g(v+u). In the same way, for the particular case of elas-
tic interactions (i.e. for e≡1), since ζ1(z)=ϕσ(z) and J1(|z|)=1, one simply has

I1=
1

2

∫

R3

f(v)dv

∫

S2

dσ

∫

Ω⋆
δ

ψ(v+z)Fv,σ (ϕσ(z)) dz,

which clearly gives (A.10).

Proposition A. 2. Under the assumptions of Proposition A.1, if e(·) belongs to the
class Cγ for some γ >0, then there exists Ce>0 such that

∣∣∣∣
∫

R3

[
Q+

B,e(f,g)−Q+
B,1(f,g)

]
ψ dv

∣∣∣∣6Ce

∫

R3

Q+
Bγ ,1

(f,g) |ψ(v)|dv

+2γ+6ℓγ(e)

∫ 1

0

ds

∫

R3

Q+

Bγ ,ẽs
(f,h) |ψ(v)|dv,

where h(v)=g(v)+ |∇g(v)|. The kernels Bγ and Bγ are given by

Bγ(u,û ·σ)=B(u,û ·σ)|u|γ , Bγ(u,û ·σ)=max(B(u,û ·σ), |∇uB(u,û ·σ)|)|u|γ+2.

Moreover, ẽs(·) is a given restitution belonging to the class C0 for any s∈ [0,1].

Proof. Using the notation of the Proposition A.1, we set De= Ie−I1. Thanks
to (A.10), we may split De as De=De,1+De,2, with

De,1=
1

2

∫

R3

f(v)dv

∫

S2

dσ

∫

Ω⋆
δ

ψ(v+z)

[
Fv,σ (ζe(z))−Fv,σ (ϕσ(z))

]
dz

Je(|z|)

and

De,2=
1

2

∫

R3

f(v)dv

∫

S2

dσ

∫

Ω⋆
δ

ψ(v+z)

[
1

Je(|z|)
−1

]
Fv,σ (ϕσ(z)) dz.

We begin estimating |De,1| which is the more involved part. For fixed v,σ, we use the
representation formula

Fv,σ(V )−Fv,σ(U)=

∫ 1

0

∇Fv,σ(U+s(V −U)) ·U ds

with V = ζe(z) and U =ϕσ(z) to get

[
Fv,σ (ζe(z))−Fv,σ (ϕσ(z))

]

=(µe(z)−1)

∫ 1

0

ϕσ(z) ·∇Fv,σ

(
ϕσ(z)+s(µe(z)−1)ϕσ(z)

)
ds.

Therefore

De,1=
1

2

∫

R3

f(v)dv

∫

S2

dσ

∫

Ω⋆
δ

ψ(v+z)(µe(z)−1)
dz

Je(|z|)

·
∫ 1

0

ϕσ(z) ·∇Fv,σ (ϕσ(z)+s(µe(z)−1)ϕσ(z)) ds.
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Now, according to Lemma A.4, for any s∈ [0,1] there exists a restitution coefficient
ẽs(·) in C0 such that µẽs(z)=1+s(µe(z)−1). Therefore,

ϕσ(z)+s(µe(z)−1)ϕσ(z)= ζẽs(z)

and, performing the backward change of variable z 7→u= ζ−1
ẽs

(z) with Jacobian dz=
Jσ(u)Jẽs(Πẽs ◦Φσ(u))du, we get

De,1=4

∫ 1

0

ds

∫

R3

|f(v)|dv
∫

S2

dσ

∫

Ωδ

ψ (v+Πẽs ◦Φσ(u))

[
µe(Πẽs ◦Φσ(u))−1

]

×(1+ û ·σ)Jẽs(Πẽs ◦Φσ(u))

Je(Πẽs ◦Φσ(u))
∇Fv,σ (u) ·ϕσ

(
Πẽs ◦Φσ(u)

)
du.

Since ẽs(·) is a restitution coefficient in the class C0, thanks to the universal bounds
(A.9) we see that

sup
u∈R3

s∈(0,1),σ∈S2

(1+ û ·σ)Jẽs(Πẽs ◦Φσ(u))

Je(Πẽs ◦Φσ(u))
616<∞.

Moreover, it is easy to see that

∣∣µe(z)−1
∣∣= |z|

βe(αe(|z|))
|1−βe(αe(|z|))|6 ℓγ(e) |z|αe(|z|)γ 62γℓγ(e)|z|γ+1 ∀z∈R

3.

Since |Πẽs ◦Φσ(u)|6 |Φσ(u)|6 |u| and |ϕσ

(
Πẽs ◦Φσ(u)

)
|6 |u|, we get

|De,1|62γ+6ℓγ(e)

∫

R3

|f(v)|dv
∫

S2

dσ

∫

Ωδ

|ψ(ṽs)||u|γ+2du

∫ 1

0

|∇Fv,σ(u)| ds,

where ṽs=v+Πẽs ◦Φσ(u). One can check that

|u|γ+2 |∇Fv,σ(u)|6Bγ(u,û ·σ)(g(v+u)+ |∇g(v+u)|)=Bγ(u,û ·σ)h(v+u).

Therefore, performing again the change of variable u→−u, we obtain

|De,1|62γ+6ℓγ(e)

∫ 1

0

ds

∫

R3×R3×S2

|f(v)|Bγ(u,û ·σ)h(v−u)|ψ(v′s)|dvdudσ,

where v′s=v+Πẽs ◦Φσ(−u)=v−βẽs
(
|u|
√

1−û·σ
2

)
u−|u|σ

2 is the post-collisional veloc-

ity associated to the restitution coefficient ẽs. This proves that

|De,1|62γ+4ℓγ(e)

∫ 1

0

ds

∫

R3

Q+

Bγ ,ẽs
(f,h)(v)|ψ(v)|dv, (A.12)

where Q+

Bγ ,ẽs
is the collision operator associated to the kernel Bγ and the restitution

coefficient ẽs. For the estimate of |De,2| it is enough to prove that there exists Ce>0
such that

[
1

Je(|z|)
−1

]
6Ce|z|γ ∀z∈R

3. (A.13)
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Indeed, if (A.13) holds then

|De,2|6Ce

∫

R3

|f(v)|dv
∫

S2

dσ

∫

Ω⋆
δ

|ψ(v+z)| |Fv,σ (ϕσ(z)) | |z|γ dz.

Performing the backward change of variables u=ϕσ(z) as before,

|De,2|6Ce

∫

R3

|f(v)|dv
∫

S2

dσ

∫

Ωδ

|ψ(v+Φσ(u))| |Fv,σ (u) | |u|γJσ(u)du,

where we used that |Φσ(u)|6 |u|. Changing again the variable u into −u we get

|De,2|6Ce

∫

R3×R3×S2

Bγ(u,û ·σ)|f(v)| |g(v⋆)| |ψ(v′1)|dvdv⋆dσ,

where v′1 is the post-collisional velocity associated to elastic interactions, that is,

v′1=v− u−|u|σ
2 . This gives

|De,2|6Ce

∫

R3

Q+
Bγ ,1

(f,g)(v) |ψ(v)|dv,

which, combined with (A.12) yields the result. The idea to prove (A.13) is to evaluate
Je(̺) for ̺≃0. Since e(r)≃1−arγ for r≃0, one checks that

1

2
(1+ϑ′e(r))β

2
e (r)≃1+

a(γ−1)

2
rγ for r≃0.

Since αe(̺)≃̺ for ̺≃0, we get Je(̺)≃1+ a(γ−1)
2 ̺γ as ̺≃0. Therefore

sup
̺>0

1−Je(̺)

̺γ
<∞,

and (A.13) follows for some constant Ce depending only on e(·).
Remark A. 3. Notice that, defining as in Section 3 the rescaled restitution coeffi-
cient eλ(r)= e(λr) (λ>0), one sees from the above reasoning that

Jeλ(̺)≃1+
a(γ−1)

2
λγ̺γ as λ→0.

In particular, for λ small enough, the constant Ceλ appearing in the above proposition
satisfies

Ceλ 6a(1−γ)λγ .

This property will be important in Section 3.3.

Example A. 1. Assume e(·) is the restitution coefficient corresponding to visco-
elastic hard-spheres:

e(r)=1+
∞∑

k=1

(−1)kakr
k
5 , r>0.
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Then, setting He(r)=
1

2
(1+ϑ′e(r))β

2
e (r), it is not difficult to prove that there is some

explicit constant C>0 such that

|He(r)−1|6C(1−e(r)), ∀r>0.

In particular, |He(r)−1|6Cℓγ(e)rγ for any r>0, from which we deduce that (A.13)
follows with a constant Ce proportional to ℓγ(e). Since ℓγ(eλ)=λ

γℓγ(e), there exists
some constant c>0 such that Ceλ 6 cλ

γ for any λ∈ (0,1] (not just for λ small enough
as in the previous remark).

A.3. About the energy identity. Recall that, for any solution Gλ to (1.15),
one has the identity

6̺=
1

λ3+γ

∫

R3×R3

Gλ(v)Gλ(v⋆)Ψe(λ
2|v−v⋆|2)dvdv⋆,

where ̺=
∫
R3Gλ(v)dv and Ψe(·) is defined by (1.9). Notice that, for any fixed r>0,

1

λ3+γ
Ψe(λ

2r2)≃ a

4+γ
r3+γ as λ≃0.

Define for simplicity

ζλ(r
2)=

1

λ3+γ
Ψe(λ

2r2) and ζ0(r
2)=

a

4+γ
r3+γ ,

and the two functionals

Iλ(f,g)=
∫

R3×R3

f(v)g(v⋆)ζλ
(
|v−v⋆|2

)
dvdv⋆

and

I0(f,g)=
∫

R3×R3

f(v)g(v⋆)ζ0
(
|v−v⋆|2

)
dvdv⋆.

We will write Iλ(f)=Iλ(f,f) and I0(f)=I0(f,f). Then, one has the following result.

Lemma A. 5. There exists a positive constant Aγ>0 such that, for any δ>0 and
ε>0, there exists λ0∈ (0,1) such that

sup
λ∈(0,λ0)

|Iλ(f1,g1)−I0(f2,g2)|

6ε
(
‖f2‖L1‖g2‖L1 +‖f2‖L1

3+γ+δ
‖g2‖L1

3+γ+δ

)

+Aγ

(
‖f1−f2‖L1

3+γ
‖g1‖L1

3+γ
+‖g1−g2‖L1

3+γ
‖f2‖L1

3+γ

)
.

In particular, if g∈L1
3+γ+δ and f ∈L1

3+γ , then

limsup
λ→0

|Iλ(f)−I0(g)|6Aγ‖f−g‖L1
3+γ

(
‖f‖L1

3+γ
+‖g‖L1

3+γ

)
.
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Proof. Note that |Iλ(f1,g1)−I0(f2,g2)|6D1
λ+D2

λ+D3
λ, where

D1
λ=

∫

R3×R3

|f1(v)−f2(v)| |g1(v⋆)|ζλ
(
|v−v⋆|2

)
dvdv⋆,

D2
λ=

∫

R3×R3

|f2(v)| |g1(v⋆)−g2(v⋆)| ζλ
(
|v−v⋆|2

)
dvdv⋆,

D3
λ=

∫

R3×R3

|f2(v)| |g2(v⋆)|
∣∣ζλ(|v−v⋆|2)−ζ0

(
|v−v⋆|2

)∣∣ dvdv⋆.

Let us investigate separately these three terms. Since there is some positive constant
Kγ>0 such that Ψe(r

2)6Kγr
3+γ , it is clear that ζλ

(
|v−v⋆|2

)
6Kγ |v−v⋆|3+γ 6

2
3+γ
2 Kγ〈v〉3+γ〈v⋆〉3+γ for any (v,v⋆). Therefore

D1
λ62

3+γ
2 Kγ

∫

R3×R3

|f1(v)−f2(v)| |g1(v⋆)|〈v〉3+γ〈v⋆〉3+γ dvdv⋆

=2
3+γ
2 Kγ‖f1−f2‖L1

3+γ
‖g1‖L1

3+γ
.

In the same way,

D2
λ62

3+γ
2 Kγ‖g1−g2‖L1

3+γ
‖f2‖L1

3+γ
.

Regarding the term D3
λ, set ωλ(R)=sup06r6R

∣∣ζλ(r2)−ζ0(r2)
∣∣ for any R>0. It is

clear that for any fixed R>0 one has limλ→0ωλ(R)=0. Let R>0 be fixed and split
D3

λ as

D3
λ=

∫

|v−v⋆|6R

|f2(v)| |g2(v⋆)|
∣∣ζλ(|v−v⋆|2)−ζ0

(
|v−v⋆|2

)∣∣ dvdv⋆

+

∫

|v−v⋆|>R

|f2(v)| |g2(v⋆)|
∣∣ζλ(|v−v⋆|2)−ζ0

(
|v−v⋆|2

)∣∣ dvdv⋆

6ωλ(R)‖f2‖L1‖g2‖L1 +(Kγ+Cγ)

∫

|v−v⋆|>R

|f2(v)| |g2(v⋆)| |v−v⋆|3+γ
dvdv⋆,

where we used the fact that
∣∣ζλ(|v−v⋆|2)−ζ0

(
|v−v⋆|2

)∣∣6 (Kγ+Cγ)|v−v⋆|3+γ for
any (v,v⋆). Consequently, for any δ>0,

D3
λ6ωλ(R)‖f2‖L1‖g2‖L1 +

Kγ+Cγ

Rδ

∫

R3×R3

|f2(v)| |g2(v⋆)| |v−v⋆|3+γ+δdvdv⋆,

that is,

D3
λ6ωλ(R)‖f2‖L1‖g2‖L1 +2

3+γ
2
Kγ+Cγ

Rδ
‖g2‖L1

3+γ+δ
‖f2‖L1

3+γ+δ
.

Taking first R>0 large enough and then λ small enough, we get the conclusion.

Lemma A. 6. Assume that there exist two positive constants a,b>0 and two
exponents γ >γ>0 such that

|e(r)−1+arγ |6brγ for any r>0.

Then, there exist two explicit positive constants Aγ ,Bγ>0 such that
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|Iλ(f1,g1)−I0(f2,g2)|6Aγ

(
‖f1−f2‖L1

3+γ
‖g1‖L1

3+γ
+‖g1−g2‖L1

3+γ
‖f2‖L1

3+γ

)

+Bγ λ
α‖f2‖L1

3+γ+γ
‖g2‖L1

3+γ+γ
∀λ∈ (0,1), (A.14)

where α=min(γ,γ−γ).
Proof. For any λ∈ (0,1] and r>0,

ζλ(r
2)−ζ0(r2)=

r3+γ

2

∫ 1

0

(
1−e2(λrz)
(λrz)γ

−2a

)
z3+γ dz.

Then, under our assumption on e(·), there are three constants A,B,C >0 such that
∣∣ζλ(r2)−ζ0(r2)

∣∣6Aλγ−γr3+γ+Bλγ r3+2γ+Cλγr3+γ+γ ∀λ>0, r>0.

In other words, there is Cγ>0 such that
∣∣∣∣ζλ(|v−v⋆|2)−ζ0(|v−v⋆|2)

∣∣∣∣6Cγλ
α〈v〉3+γ+γ〈v⋆〉3+γ+γ ∀v,v⋆∈R

3×R
3,

where α=min(γ,γ−γ). Consequently,

D3
λ6Cγλ

α‖f2‖L1
3+γ+γ

‖g2‖L1
3+γ+γ

. (A.15)

With this estimate the proof follows as the proof of Lemma A.5.

Remark A. 4. For visco-elastic hard-spheres, the Assumption (4.9) is met with γ= 1
5

and γ= 2
5 . In particular, α= 1

5 .

For a given a>0, define the exponential weight ma(v)=exp(a|v|) and introduce

X =L1(ma) and Y=L1
1(ma).

Define

X̃ =X ∩
{
f :

∫

R3

f(v)dv=

∫

R3

f(v)vdv=0

}
and X̂ = X̃ ∩

{
f :

∫

R3

f(v)|v|2dv=0

}
,

and the operator

A : h∈X̃ 7→Ah=(A1h;A2h)∈R×X̂ ,

where

A1h=2I0(M,h) and A2h=Q1(h,M)+Q1(M,h)=L1h.

The operator A is a suitable lifting operator of L1.

Lemma A. 7. The linear functional

A : Ỹ −→R×X̂

is invertible and the norm ‖A−1‖=‖A−1‖
R×X̂→Ỹ can be estimated explicitly.

Proof. The fact that the mapping A2=L1 : X̃ −→X̂ is invertible with explicit
inverse is a direct consequence of Proposition 4.3 (see [21] for details). Set

℘γ :=

∫

R3×R3

(
|v⋆|2−3Θ

)
M(v)M(v⋆)ζ0(|v−v⋆|2)dvdv⋆
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=Cγ

∫

R3×R3

(
|v⋆|2−3Θ

)
M(v)M(v⋆)|v−v⋆|3+γ dvdv⋆.

Direct inspection shows that ℘γ 6=0 for any γ >0. Arguing as in [20, Lemma 4.3], we

deduce that, for any y∈R, g∈X̂ the unique solution to the equation Ah=(y,g) is
given by h=h1ϕ1+h

⊥, with

h⊥=L
−1
1 g, h1=

1

2℘γ

(
y−A1h

⊥
)
.

This proves the Lemma.

Appendix B. Existence of a steady solution for diffusively driven gran-
ular gases. The main objective of this section is to prove Theorem 1.2, that is, to
prove the existence of an steady solution F to (1.1). The proof (see [14]) is based on
a dynamic version of Tykhonov fixed point theorem and it is achieved by controlling
the L2-norm, the moments, and the regularity of the solution to the time-dependent
problem associated to (1.1). Consider the diffusively driven Boltzmann equation

∂tf(t,v)=Qe(f,f)(t,v)+µ∆f(v,t) t>0, v∈R
3,

f(0,v)=f0(v) v∈R
3, (B.1)

with µ>0 and where the initial datum f0 is a nonnegative velocity distribution sat-
isfying

∫

R3

f0(v)dv=1,

∫

R3

f0(v)vdv=0, and

∫

R3

f0(v)|v|3dv<∞. (B.2)

Notice that if Ef (t) denotes the kinetic energy of f(t,v) at time t>0, that is, Ef (t)=∫
R3 f(t,v)|v|2dv, then it satisfies

d

dt
Ef (t)=−Ie(f(t))+6µ,

where Ie is the energy dissipation functional defined by (1.10) (justifying, a posteriori,
the terminology we used in the core of the paper). Problem (B.1) is well posed due
to the following theorem.

Theorem B. 1. Assume the restitution coefficient e(·) satisfies Assumption 1.1 and
the initial datum f0∈L1(R3)∩L logL(R3) satisfies (B.2). Then, there exists a unique
nonnegative weak solution

f ∈L∞([0,∞),L1
2(R

3)), f logf ∈L∞([0,∞),L1(R3))

to equation (B.1), with the initial condition f(·,0)=f0. Furthermore, if in addition
f0∈L1

2∩L2(R3), then f ∈C∞
b ([t0,∞),S(R3)) for every t0>0.

The proof of Theorem 1.2 can be deduced from Theorem B.1 following the proof
of [14, Theorem 5.2]; thus, we shall only recall the main steps in the proof of Theorem
B.1. The proof will follow the path presented in [14, Theorem 5.1], with the differences
clearly explained.
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B.1. Povzner-type inequalities. We derived in [6] Povzner’s estimates
in the spirit of [11] and [19]. We shall extend this result, using some ideas of [14].
Recall that for any nonnegative function f and test function ψ(v)=Ψ(|v|2) with Ψ
nondecreasing and convex,

∫

R3

QB,e(f,f)(v)ψ(v)dv=
1

2

∫

R3×R3

f(v)f(v⋆)Φ(|u|)AB,e[Ψ](v,v⋆) dv⋆dv,

where

AB,e[Ψ](v,v⋆)=

∫

S2

(
Ψ(|v′|2)+Ψ(|v′⋆|2)−Ψ(|v|2)−Ψ(|v⋆|2)

)
b(û ·σ)dσ

=A+
B,e[Ψ](v,v⋆)−

(
Ψ(|v|2)+Ψ(|v⋆|2)

)
.

The collision cross-section B(u,σ) is given by (A.1) with the normalization Assump-
tion (A.3) (the notation is slightly changed with respect to [6]). Define the velocity

of the center of mass U =
v+v⋆
2

so that

v′=U+
|u|
2
ω and v′⋆=U− |u|

2
ω,

with ω=(1−β)û+βσ. We proved in [6, Equation (2.15)] that the post-collisional
integral can be estimated from above as follows:

A+
B,e[Ψ](v,v⋆)6

∫

{Û ·σ>0}

[
Ψ

(
E
3+ Û ·σ

4

)
+Ψ

(
E
1− Û ·σ

4

)]
b̃(û ·σ)dσ.

Under Assumption (A.4) one can prove (see [11, Lemma 1]) that this integral (involv-

ing Û and û) takes its maximum value whenever Û = û, that is,

A+
B,e[Ψ](v,v⋆)62π

∫ 1

0

[
Ψ

(
E
3+s

4

)
+Ψ

(
E
1−s
4

)]
b̃(s)ds, (B.3)

where b̃(s)= b(s)+b(−s) and E= |v|2+ |v⋆|2. At this point, we shall adopt the view-
point of [14] and assume that Ψ satisfies the following conditions:

Ψ(x)≥0, x>0; Ψ(0)=0, (B.4a)

Ψ is convex, Ψ′′∈L∞
loc((0,∞)), (B.4b)

Ψ′(ax)≤η1(a)Ψ′(x) and Ψ′′(ax)≤η2(a)Ψ′′(x), x>0 a>1, (B.4c)

where η1(·) and η2(·) are locally bounded functions. Then, one has the following
generalization of [14, Lemma 3.3] to non-constant restitution coefficients.

Proposition B. 1. Assume that Ψ(x) satisfies (B.4). Then, for any (v,v⋆)∈R
3×R

3,

KB,e[Ψ](v,v⋆)6A
(
|v|2Ψ′(|v⋆|2)+ |v⋆|2Ψ′(|v|2)

)
−k
(
|v|2+ |v⋆|2

)2
Ψ′′(|v|2+ |v⋆|2),

where A=η1(2), while k>0 is an explicit constant depending only on η2 and on b(·).
For instance, in the hard-sphere case b(·)= 1

4π , then k η2(2)=
5
96 .

Proof. Recall that (see [14, Lemma 3.1]) if Ψ satisfies (B.4), then

Ψ(x+y)−Ψ(x)−Ψ(y)≤A(xΨ′(y)+yΨ′(x)) (B.5)
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and

Ψ(x+y)−Ψ(x)−Ψ(y)≥a0xyΨ′′(x+y), (B.6)

where A=η1(2) and a0=(2η2(2))
−1. Let (v,v⋆) be fixed and write AB,e[Ψ](v,v⋆)=

P[Ψ](v,v⋆)−N [Ψ](v,v⋆), where

P[Ψ](v,v⋆)=

∫

S2

(
Ψ(|v|2+ |v⋆|2)−Ψ(|v|2)−Ψ(|v⋆|2)

)
b(û ·σ)dσ

and

N [Ψ](v,v⋆)=

∫

S2

(
Ψ(|v|2+ |v⋆|2)−Ψ(|v′|2)−Ψ(|v′⋆|2)

)
b(û ·σ)dσ.

Using (B.5) and the normalization Assumption (A.3) one gets directly that

P[Ψ](v,v⋆)6A
(
|v|2Ψ′(|v⋆|2)+ |v⋆|2Ψ′(|v|2)

)
.

Let us estimate N [Ψ](v,v⋆) from below. First, one notices that

N [Ψ](v,v⋆)=Ψ(|v|2+ |v⋆|2)−A+
B,e[Ψ](v,v⋆),

and deduces from (B.3) that

N [Ψ](v,v⋆)>Ψ(E)−2π

∫ 1

0

[
Ψ

(
E
3+s

4

)
+Ψ

(
E
1−s
4

)]
b̃(s)ds, E= |v|2+ |v⋆|2.

Second, since
∫ 1

0
b̃(s)ds= 1

2π , according to (A.3) one can write

N [Ψ](v,v⋆)>2π

∫ 1

0

[
Ψ(E)−Ψ

(
E
3+s

4

)
+Ψ

(
E
1−s
4

)]
b̃(s)ds.

Noticing that E=E 3+s
4 +E 1−s

4 for any s∈ (0,1), it is possible to apply directly (B.6)
to obtain

N [Ψ](v,v⋆)>
πa0
8
E2Ψ′′(E)

∫ 1

0

(3+s)(1−s)b̃(s)ds.

Setting k= πa0

8

∫ 1

0
(3+s)(1−s)b̃(s)ds, the desired conclusion follows.

Remark B. 1. Note that the above estimate does not depend on the restitution
coefficient e(·). Indeed, the two constants A and k depend only on Ψ and the angular
cross-section b(·), but not on e(·).

With Proposition B.1 the following properties are derived exactly as shown in
[14].

Lemma B. 1. Let p>1 and Ψ(x)=xp. Then, for b(·)=1/4π one has

|v−v⋆|Ke[Ψ](v,v⋆)6−kp
(
|v|2p+1+ |v⋆|2p+1

)
+Ap

(
|v| |v⋆|2p+ |v|2p |v⋆|

)
∀(v,v⋆)∈R

6,

where the constants kp and Ap are independent on the restitution coefficient e(·). As
a consequence, for any nonnegative distribution f =f(v)>0,

∫

R3

Qe(f,f)(v) |v|2pdv6−kp
(∫

R3

f(v)dv

)(∫

R3

f(v)|v|2p+1dv

)

+Ap

(∫

R3

f(v)|v|dv
)(∫

R3

f(v)|v|2pdv
)
.



R.J. ALONSO AND B. LODS 903

B.2. Proof of Theorem B.1. The proof is a modification of [14, Theorem
5.2], and we only give a sketch of it—explaining where the original argument must
be modified to handle the non-constant restitution coefficient. Using our Povzner’s
estimates, the propagation and appearance of moments given in [14, Lemma 3.5]
follow. Additionally, using the control of ‖QB,e(f,f)‖Lp derived in Corollary A.1, we
can easily adapt the proof of [14, Lemma 4.7] to our case, yielding a local in time
propagation of H1(R3) norms. Therefore, the a priori estimates for the solution to
(B.1) derived for the constant restitution case extend.

Let us first deal with a smooth initial datum f0 with compact support. For any
truncation parameters M>1>m>0, define then

Φm,M (|u|)=m+min(|u|,M) ,

and set Bm,M (u,σ)= 1
4πΦm,M (|u|), u∈R

3, σ∈S
2. Define the collision operator

Qm,M =QBm,M ,e (using the notations of equation (A.2)). For any T >0, let g=
g(t,v)∈L∞([0,T ] ;L1

2(R
3)∩L2(R3)) be a nonnegative function with

∫

R3

g(t,v)dv=1 and

∫

R3

g(t,v)dv=0, ∀t∈ [0,T ].

Consider the auxiliary problem

{
∂tf(t,v)−µ∆vf(t,v)+Mf(t,v)=Qm,M (g,g)(t,v)+Mg(t,v) t∈ [0,T ] , v∈R

3,

f(0,v)=f0(v).

(B.7)
Setting h=Qm,M (g,g)(t,v)+Mg(t,v), one checks (see [14, Theorem 5.2]) that h∈
L∞([0,T ] ;L1

2(R
3)∩L2(R3)) and h>−g(g∗Φm,M )+Mg>0. The unique solution

f ∈L∞([0,T ] ;L1
2(R

3)∩L2(R3)) to (B.7) can be given explicitly and, by a classical
parabolic regularity result,

‖f‖H2([0,T ]×R3)≤CM (‖h‖L2([0,T ]×R3)+‖f0‖H1(R3)). (B.8)

Denoting by T the operator that maps g into f , the core of the proof consists in
showing that for a certain choice of constants A1 and A2, the operator T maps B into
itself. Here we refer to the set

B=

{
f ∈L1([0,T ]×R

3) : f >0,

∫

R3

f(t,v)dv=1,

∫

R3

f(t,v)vdv=0,

Ef (t) :=

∫

R3

f(t,v)|v|2dv6A1,

∫

R3

f2(t,v)dv6A2 for a.e. t∈ [0,T ]

}
.

(B.9)

The first three properties are clearly satisfied. To determine A1, one multiplies equa-
tion (B.7) by |v|2 and integrates by parts. This yields

d

dt
Ef (t)+MEf (t)

66µ+MEg(t)+

∫

R3

Qm,M (g,g)(t,v)|v|2dv

66µ+M2Eg(t)−
∫

R3×R3

g(t,v)g(t,v∗)Φm,M (|u|)Ψe(|u|2)
|u| dvdv∗, (B.10)
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where we used (1.8) in the last identity. Since Ψe(r) may be arbitrarily small for small
r>0, the argument changes slightly with respect to [14]. Using that limsupr→∞e(r)=
e0<1, there exists some R0≫1 and some constant C>0 such that

Ψe(|u|2)>C|u|3 ∀|u|>R0.

Therefore,

∫

R3×R3

g(t,v)g(t,v∗)Φm,M (|u|)Ψe(|u|2)
|u| dvdv∗

>C

∫

|u|>R0

g(t,v)g(t,v∗)Φm,M (|u|)|u|2dvdv∗

>Cm

∫

|u|>R0

g(t,v)g(t,v∗)|u|2dvdv∗.

Since g has unit mass,

∫

|u|>R0

g(t,v)g(t,v∗)|u|2dvdv∗=
∫

R3×R3

g(t,v)g(t,v∗)|u|2dvdv∗

−
∫

|u|<R0

g(t,v)g(t,v∗)|u|2dvdv∗>2Eg(t)−R2
0.

Going back to (B.10) finally leads to the estimate

d

dt
Ef (t)+MEf (t)66µ+MEg(t)−2CmEg(t)+CmR

2
0. (B.11)

Setting A′
1=

6µ+CmR2
0

2Cm
and assuming Eg(t)6A

′
1 yields the differential inequality

d

dt
Ef (t)+MEf (t)6MA′

1

which, in turn, implies Ef (t)6max(A′
1,Ef (0)) for any t∈ [0,T ]. Thus, one may choose

A1=max

(
A′

1,

∫

R3

f0(v)|v|2dv
)

in the definition (B.9) of B. For the determination of the parameter A2>0, one
can follow the path of [14, Theorem 5.2]. This leads to the existence of a solution
f =fm,M ∈L∞([0,T ],L1

2(R
3)∩L2(R3)) to the modified Boltzmann equation

{
∂tf(t,v)=Qm,M (f,f)(t,v)+µ∆vf(t,v) t∈ [0,T ] , v∈R

3,

f(0,v)=f0(v).

It remains to pass to the limit as M→∞ and m→0. To this end, we will show that
the bounds found in the a priori estimates hold for the fixed point solutions and are
uniform in M and m. From (B.11) with f =fm,M ,

d

dt
Ef (t)66µ−2CmEf (t)+CmR

2
0,
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yielding

Ef (t)6A1=max

(
3µ

Cm
+
R2

0

2
,

∫

R3

f0(v)|v|2dv
)
,

which provides a bound independent of M . Using Proposition B.1, it is possible to
adapt the proof of [14, Theorem 5.2] to get that, for any p>1 and T >0, the bounds
of f =fm,M in L∞([0,T ],L1

2p(R
3)) are independent of M . Since f ∈H2([0,T ]×R

3),
using the extension of [14, Lemma 4.7] and then [14, Lemmas 4.8 & 4.9],

f ∈L∞([0,T ],Hn
2p(R

3)),

for every n>1, and every p≥0, with bounds independent on M . This allows one to
pass to the limit as M→∞ in the weak form and to show that the limit solutions
satisfy the equation with the kernel

(m+ |u|)b(u,σ).

Following the argument of [14], it is possible to prove that the bounds in
L∞([0,T ],L1

2p(R
3)) are actually independent on m and T . This allows one to pass to

the limit as m→0, and the limit solution obtained is a solution to (B.1). A standard
approximation argument generalizes the initial conditions from smooth ones.
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