
COMMUN. MATH. SCI. c© 2013 International Press

Vol. 11, No. 3, pp. 831–850

ON THE DOI MODEL FOR THE SUSPENSIONS OF ROD-LIKE

MOLECULES: GLOBAL-IN-TIME EXISTENCE∗
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Abstract. The Doi model for the suspensions of rod-like molecules in a dilute regime describes
the interaction between the orientation of rod-like polymer molecules on the microscopic scale and
the macroscopic properties of the fluid in which these molecules are contained (cf. [M. Doi and S.F.
Edwards, Oxford University Press, 1986]). The orientation distribution of the rods on the microscopic
level is described by a Fokker-Planck-type equation on the sphere, while the fluid flow is given by the
Navier-Stokes equations, which are now enhanced by an additional macroscopic stress σ reflecting
the orientation of the rods on the molecular level. Prescribing arbitrarily the initial velocity and the
initial orientation distribution in suitable spaces we establish the global-in-time existence of a weak
solution to our model defined on a bounded domain in three dimensional space. The proof relies on
a quasi-compressible approximation of the pressure, the construction of a sequence of approximate
solutions, and the establishment of compactness.
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1. Introduction

Polymeric fluids arise in many practical applications in biotechnology, medicine,
chemistry, industrial processes, and atmospheric sciences. This article deals with the
Doi model for suspensions of rod-like molecules in a dilute regime. The Doi model
describes the interaction between the orientation of rod-like polymer molecules at the
microscopic scale and the macroscopic properties of the fluid in which these molecules
are contained (cf. Doi and Edwards [10]). The macroscopic flow leads to a change
of the orientation and, in the case of flexible particles, to a change in shape of the
suspended microstructure. This process in turn yields the production of a fluid stress.
As a first approximation, we view the identical liquid crystal molecules as inflexible
rods of a thickness b, which is much smaller than their length L. In the dilute regime
the rods are well separated, as expressed by b≪L−3. The orientation distribution of
the rods f is described by a Fokker-Planck-type equation,

ft+u ·∇xf+∇τ ·(Pτ⊥(∇xuτ)f)−Dr∆τf−D∆xf =0,

with f describing the time-dependent orientation distribution that a rod with a center
of mass at x has an axis τ in the area element dτ . Here u=u(t,x) represents the
velocity field, the term u ·∇xf characterizes the change of f due to the displacement
of the center of the mass of the rods by advection, whereas the drift term on the
sphere ∇τ ·(Pτ⊥(∇xuτ)f) represents the shear-forces acting on the rods. The terms
D∆xf, Dr∆τf describe the Brownian effects: translational diffusion and rotational
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diffusion respectively. D, Dr denote the diffusivity parameters ([10, 19]). Diffusion
can be seen as a gradient flow of the entropy functional

E[f ] :=νkBT

∫

Ω

∫

S2

f lnfdτdx.

The fluid flow is given by the Navier-Stokes equations, which are now enhanced by an
additional macroscopic stress reflecting the orientation of the rods on the molecular
level,

(NS)

{

ut+u ·∇u−µ∆u+∇p=∇·σ,
∇·u=0,

where p denotes the pressure and σ the macroscopic stress tensor derived from the
orientation of the rods at the molecular level and is given by

σ(t,x)=

∫

S2

(3τ⊗τ−Id)f(t,x,τ)dτ.

After normalizing µ, Dr, and D by 1, the system of equations now reads

ft+u ·∇xf+∇τ ·(Pτ⊥(∇xuτ)f)−∆τf−∆f =0 in (0,T )×Ω×S2, (1.1a)

σ=

∫

S2

(3τ⊗τ−Id)fdτ in (0,T )×Ω, (1.1b)

ut+u ·∇u−∆u+∇p=∇·σ in (0,T )×Ω, (1.1c)

∇·u=0 in (0,T )×Ω, (1.1d)

f(0,x,τ)=f0(x,τ) in Ω×S2, u(0,x)=u0(x) in Ω, (1.1e)

where

Pτ⊥(∇xuτ)=∇xuτ−(τ ·∇xuτ)τ

is the projection of ∇uτ on the tangent space of the (d−1)-dimensional space Sd−1

at τ ∈Sd−1. With ∇τ and ∆τ we denote the gradient and the Laplace operator on
the unit sphere, while ∇ represents the gradient in R

3 and

(divσ)i=(∇·σ)i=
3

∑

j=1

∂σij

∂xj

represents the forces due to the presence of microscopic insertions.
In this paper, we consider the problem in a bounded, open, and connected domain

Ω⊂R3 in x variables. We assume that the boundary is impermeable, and that the
fluid does not completely adhere to the boundary, but rather exhibits a partial slip
boundary condition. That is,

u · n̂=0, utan+(D(u)n̂)tan=0, on ∂Ω, (1.2)

where tan means the tangential component a vector field at the boundary, n̂ is the
outer normal vector at the boundary, and D(u) is the symmetric part of the matrix
∇u. The second condition in (1.2) is called Navier’s slip boundary condition, which
allows that all the integrals in Definition 2.5 are finite.
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The boundary condition of f in the x variables is the Dirichlet boundary condition,

f(t,x,τ)=0 on ∂Ω for almost all (t,τ)∈ (0,T )×S2, (1.3)

which implies the stress tensor σ also satisfies the Dirichlet boundary condition,

σ=0 on ∂Ω. (1.4)

Prescribing arbitrarily the initial velocity and the initial orientation distribution
in suitable spaces, we establish long-time and large data existence of a weak solution.
Since the definition of a weak solution and the main result are rather complicated, we
will state them in Section 2 (Definition 2.5 and Theorem 2.9).

Related results on the Doi Model for the suspensions of rod-like molecules are
presented by Otto and Tzavaras in [19], where the existence of strong solutions was
established in the case of perturbations of stationary homogeneous flows. The gov-
erning equations in that context involve a Fokker-Plank equation coupled with the
stationary Stokes equation. The result is obtained by establishing a novel estimate
for the Smoluchowski equation. Global existence of solutions in three dimensions of a
model involving a Fokker-Planck equation coupled with the stationary Stokes equa-
tion is also presented by Constantin in [6]. Both articles treat a stationary Stokes
equations, which allows the control of the term ∇xu in terms of σ. In (cf. Constantin
et al. [7, 8]) the global well-posedness for a Fokker-Planck equation coupled with the
Navier-Stokes equations in two dimensions is established. In the heart of analysis lies
the use of the Littlewood-Paley decomposition method for the estimation of the ∇xu

in L∞. The global existence of a weak solution in the whole space was established by
Lions and Masmoudi in [14] using the propagation of compactness argument. Lin-
ear stability analysis for a kinetic model for the sedimentation of rod-like particles is
presented in [11].

The paper is organized as follows. In Section 2, we introduce the notion of a weak
solution of the system (1.1) and function spaces on which weak solutions are defined.
We also provide some auxiliary lemmas. In Section 3, the main result is presented.
The proof relies on a quasi-compressible approximation of the pressure which is here

determined as a solution of the Neumann problem, namely p=−1

ǫ
∆−1(∇·u), and

the mollification of the velocity field in the advection term by a suitable divergence-
free mollifier. Using this approach, we can construct an approximate sequence of
{

u(ǫ,η),p(ǫ,η)
}

, which are bounded uniformly in energy spaces, yielding the existence
of a weak solution (u,p). For the establishment of uniform bounds for the pressure we
employ the multipliers technique of Lions [12], which involves identifying appropriate
test functions in the weak formulation of the Navier-Stokes equation as solutions of
a suitable Neumann problem. For the approximation of f we introduce a smooth-
ing operator R in the spirit of [6] and we obtain uniform bounds of the sequence
{

Rf (ǫ,η)
}

in L∞
(

0,T ;W 1,2(Ω)L2(S2)
)

∩L2
(

0,T ;L2(Ω)W 1,2(S2)
)

, from which we can
gain enough integrability to pass to the limit to the approximation sequence. Starting
from a linear model of a Fokker-Planck equation, the analysis presented in Section 3
can accommodate more general models in the spirit of Constantin [6]. An existence
result for a more general model following a line of argument similar to that in the
proof of Theorem 2.9 is presented in Section 4. In Section 5 some future directions
and concluding remarks are discussed.

Notation:

• A.B means there is a constant C such that A≤CB.
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• C(T ) is a function in-time which only depends on the norms of initial data and T .

• Lp(0,T ;X) denotes the Banach set of Bochner measurable functions f from (0,T )

to X endowed with either the norm
(

∫ T

0
‖g(·,t)‖pXdt

)
1
p

for 1≤p<∞ or sup
t>∞

‖g(·,t)‖X
for p=∞. In particular, for the density function f , f ∈Lp(0,T ;XY ) denotes
(

∫ T

0

∥

∥

(

‖f(t)‖Yτ

)∥

∥

p

X
dt
)

1
p

or sup
t>∞

∥

∥

(

‖f(t)‖Yτ

)∥

∥

X
for p=∞.

•We write
(

u,v
)

Ω
and <u,v>Ω, instead of

∫

Ω

uvdx and the dual bracket, respectively.

We use the same notation for the set Ω×S2.

• QT =(0,T )×Ω, K=Ω×S2.

• ⇀,
⋆
⇀, → denote weak limit, weak star limit, and strong limit, respectively.

2. Preliminaries

2.1. Function spaces, Helmholtz decomposition. Let Ω be a bounded
domain with a Lipschitz boundary ∂Ω. The Navier boundary condition requires us
to define a function space with zero normal components on the boundary. Therefore,
we choose a subspace of W 1,r(Ω) as follows:

W 1,r
n (Ω)=

{

v;v∈W 1,r(Ω), (trv) · n̂=0 on ∂Ω
}

,

where tr denotes the trace operator onto the boundary. Since the velocity field is
incompressible, we define a subspace of W 1,r

n (Ω) such that

W
1,r
n,div(Ω)=

{

v∈W 1,r
n (Ω);∇·v=0

}

,

and we define a subspace of L2(Ω) with the divergence free condition:

L2
n(Ω)={v∈W 1,2

n,div(Ω)}
‖·‖

L2(Ω)

.

We also need the notion of the dual space to define function spaces for ut:

W−1,r′

n (Ω)=
(

W 1,r
n (Ω)

)

′, W
−1,r′

n,div (Ω)=
(

W
1,r
n,div(Ω)

)

′,

where r′ is the conjugate of r.
Next, we recall the Helmholtz decomposition of a vector field. We will use it

later when we construct approximate sequences by a quasi-compressible method. Let
v∈W 1,q

n (Ω). Let g be a solution of the following elliptic problem:

∆g=∇·v in Ω, ∇g · n̂=0 on ∂Ω,

∫

Ω

gdx=0.

Then, we can define the divergence-free part of v as

vdiv =v−∇g.

By the elliptic regularity theory,

‖g‖W 2,q(Ω).‖∇·v‖Lq(Ω), ‖vdiv‖W 1,q(Ω).‖v‖W 1,q(Ω),

‖g‖W 1,q(Ω).‖v‖Lq(Ω), ‖vdiv‖Lq(Ω).‖v‖Lq(Ω).
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2.2. Auxiliary lemmas. When we perform the integration by parts to
obtain uniform energy bounds for the velocity field u, we only have the L2 norm of
the symmetric part D(u) of ∇u, not that of ∇u. To control the full derivative ∇u in
terms of its symmetric part D(u), we need the following lemma.

Lemma 2.1 (Korn’s inequality). Let Ω be a bounded domain in C1,1 and 1<q<∞.
Then, for all v∈W 1,q(Ω) with trv∈L2(∂Ω),

‖v‖W 1,q(Ω).‖D(v)‖Lq(Ω)+‖trv‖L2(∂Ω).

Proof. For the proof of this lemma we refer the reader to Lemma 1.3 in [5].

The next lemma provides compactness of traces for relevant Bochner spaces.

Lemma 2.2. Let q1≥1 and r,q2∈ (1,∞). Let S be defined as

S=
{

v∈L∞
(

0,T ;L2(Ω)
)

∩Lr
(

0,T ;W 1,r
n (Ω)

)

, vt∈Lq1
(

0,T :W−1,q2
n,div (Ω)

)

}

.

If
{

vi
}

is bounded in S and r∈ ( 2d
d+2 ,2), then

{

trvi
}

is precompact in Lp
(

0,T :

Ls(∂Ω)
)

, where

s∈
(2d−2

d
,
r(d−1)

d−r
)

, p<s
dr+2r−2d

sd−2d+2
.

Proof. See Lemma 1.4 in [5] where even more general cases are treated.

From this lemma, we can verify the following.

Lemma 2.3. Let
{

vi
}

be bounded in S with d=3 and r=2. Then
{

trvi
}

is

precompact in L2
(

0,T ;L2(∂Ω)
)

and Lq
(

0,T ;L
4
3 (∂Ω)

)

for all q∈ [1,∞).

The following interpolation inequality will be of use for the estimation of solutions
in terms of uniform quantities which are derived from the energy estimates:

‖v‖Lq(Ω).‖v‖
6−q
2q

L2(Ω)‖v‖
3q−6
2q

L6(Ω).‖v‖
6−q
2q

L2(Ω)‖v‖
3q−6
2q

W 1,2(Ω), 2≤ q≤6. (2.1)

Finally, we need three simple but necessary properties of the operator R=(1−
∆τ )

− s
2 . Roughly speaking, the operator R does not affect the advection term in the

Fokker-Plank equation and it regularizes f in the τ variable so that we can deal with
the Lp norm of the shear forces ∇τ ·(Pτ⊥(∇xuτ)f) in terms of the total mass of f .

Lemma 2.4. The operator R=(1−∆τ )
− s

2 , s> 5
2 , satisfies the following properties:

[R,∇x]=0, (2.2)

R∇τ :L
1(S2)→Lp(S2) bounded for any p>1. (2.3)

R :L2(S2)→Hs(S2) is bounded. (2.4)

Proof. For details of the proof of this lemma, we refer the reader to [6].
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2.3. Main result.

2.3.1. Definition of weak solutions. First, we introduce the assumptions
on the initial data:

u0∈L2(Ω), ∇·u0=0, Rf0∈L2(K), R=(1−∆τ )
− s

2 ,s>
5

2
,

ρ0(x)=

∫

S2

f0(x,τ)dτ ∈L∞(Ω).
(2.5)

Now, we define the notion of weak solution to (1.1).

Definition 2.5. Let Ω be a bounded domain in C1,1. Assume that u0 and f0 satisfy
(2.5). We say that (u,p,f) is a weak solution to (1.1), with the boundary conditions
(1.2), (1.3), and (1.4) if

u∈C
(

[0,T ];L2
weak(Ω)

)

∩L2
(

0,T ;W 1,2
n,div(Ω)

)

, vt∈L
5
3

(

0,T ;W
−1, 53
n (Ω)

)

, (2.6a)

p∈L 5
3

(

0,T ;L
5
3 (Ω)

)

, (2.6b)

Rf ∈L∞
(

0,T ;L2(K)
)

∩L2
(

0,T ;W 1,2(Ω×S2)
)

, (2.6c)

and the following integral relations hold:

∫ T

0

[〈

ut,ψ
〉

Ω
−
(

u⊗u,∇ψ
)

Ω
+
(

D(u),D(ψ)
)

Ω
+
(

u,ψ
)

∂Ω

]

dt

=

∫ T

0

[(

p,∇·ψ
)

Ω
+
〈

∇·σ,ψ
〉

Ω

]

dt for all ψ∈L2
(

0,T ;W 1,2
n (Ω)

)

,

(2.7)

∫ T

0

[〈

Rft,Ψ
〉

K
−
(

R(f)u,∇Ψ
)

K
−
(

R(Pτ⊥∇uτf),∇τΨ
)

K

+
(

R∇τf,∇τΨ
)

K
+
(

R∇f,∇Ψ
)

K

]

dt=0,

(2.8)

for all Ψ∈L∞
(

0,T ;W 1,2(Ω×S2)
)

.

Before formulating the main results, we provide several remarks related to the above
definition.

Remark 2.6. As one can see from the definition of weak solution of the density
term f in (2.8), we apply the operator R on the equation of f and deal with Rf

instead of f . Especially, the nonlinear term
(

R(Pτ⊥∇uτf),∇τΨ
)

K
can be expressed

by

∫

Ω

∫

S2

[

R
(

∂iujτjf
)

∂τiΨ
]

dτdx−
∫

Ω

∫

S2

[

R
(

τi∂iujτjf
)

τ ·∇τΨ
]

dτdx

=

∫

Ω

∂iuj

∫

S2

(

τjfR
(

∂τiΨ
)

)

dτdx−
∫

Ω

∂iuj

∫

S2

(

τiτjfR
(

τ ·∇τΨ
)

)

dτdx

=

∫

Ω

∂iuj

∫

S2

(

RfR−1
(

τjR(∂τiΨ)
)

)

dτdx

−
∫

Ω

∂iuj

∫

S2

(

RfR−1
(

τiτjR(τ ·∇τΨ)
)

)

dτdx.
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In the sequel, we must take the limit of
{

Rf (m)
}

and not
{

f (m)
}

. In Section 3, we

will obtain uniform bounds of
{

Rf (m)
}

in L∞
(

0,T ;L2(K)
)

∩L2
(

0,T ;W 1,2(Ω×S2)
)

,

which is enough to pass to the limit in the nonlinear term
(

R(Pτ⊥∇uτf),∇τΨ
)

K
.

Remark 2.7. We can split (2.7) into two separate equations of u and p. First, we
take a test function ψ such that ∇·ψ=0. Then

∫ T

0

[〈

ut,ψ
〉

Ω
−
(

u⊗u,∇ψ
)

Ω
+
(

D(u),D(ψ)
)

Ω
+
(

u,ψ
)

∂Ω

]

dt

=

∫ T

0

[〈

∇·σ,ψ
〉

Ω

]

dt for all ψ∈L2
(

0,T ;W 1,2
n,div(Ω)

)

.

Next, we insert ψ=∇ζ into (2.7), where

∆ζ=h, ∇ζ ·n=0,

∫

Ω

ζ=0.

Then we obtain the equation of the pressure, namely

(

p,h
)

Ω
=
(

D(u)−u⊗u,∇2(∆−1h)
)

Ω
+α

(

u,∇(∆−1h)
)

∂Ω
−
〈

∇·σ,∇(∆−1h)
〉

Ω

for a.e. t∈ (0,T ), all h∈L∞(Ω),

∫

Ω

h=0.

Remark 2.8. By the Navier boundary condition, all integrals in the definition of
weak solution are finite. Moreover, Lemma 2.3 together with (2.6a) yields

tru∈L2
(

0,T ;L2(∂Ω)
)

,

so that all boundary integrals make sense.

Now, we state the main theorem of the paper.

Theorem 2.9. Let Ω be a three dimensional bounded domain in C1,1. Assume
that u0 and f0 satisfy (2.5). Then, there is a weak solution (u,p,f) to (1.1), with
the boundary conditions (1.2), (1.3), and (1.4), satisfying all conditions in Definition
2.5.

Remark 2.10. A smooth solution of (1.1) satisfies the free energy dissipation:

d

dt

[

‖u‖2L2(Ω)+

∫

K

(f logf−f+1)dτdx
]

+4

∫

K

|∇τ

√

f |2dτdx+4

∫

K

|∇
√

f |2dτdx+‖D(u)‖2L2(Ω)+α‖u‖2L2(∂Ω)=0.

By the lower semi-continuities of functionals in the integrands, we can prove the
entropy inequality under suitable conditions on the initial data.
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3. Proof of Theorem 2.9

3.1. Definition of (ǫ,η) approximations and their solutions. In the
heart of the analysis lies the quasi-compressible approximation of the incompressibility
condition ∇·u=0. Namely,

ǫ∆p=∇·u in Ω, ∇p ·n=0 on ∂Ω,

∫

Ω

pdx=0. (3.1)

This approximation yields the increase of the regularity of the pressure. The second
key ingredient of our approach is the regularization of the convective velocity field as
follows:

uη =
(

(ληu)⋆wη

)

div
,

where ⋆wη denotes the standard mollification with kernel w, and div means the di-
vergent part of a vector field. Here, λη is a cut-off function such that

λη(x)=

{

0, if dist(x,∂Ω)≤2η,
1, elsewhere.

Note that if un→u in Lq
(

Ω×(0,T )
)

and ∇·u=0, then unη →u in Lq
(

Ω×(0,T )
)

.
Now, we consider the following regularized system of equations. For simplicity of
notation, we will not specify the (ǫ,η) dependence of functions.

ft+uη ·∇xf+∇τ ·(Pτ⊥(∇xuτ)f)−∆τf−∆f =0 in (0,T )×Ω×S2, (3.2a)

σ=

∫

S2

(3τ⊗τ−Id)fdτ in (0,T )×Ω, (3.2b)

ut+uη ·∇u−∆u+∇p=∇·σ in (0,T )×Ω, (3.2c)

ǫ∆p=∇·u in (0,T )×Ω, (3.2d)

f(0,x,τ)=f0(x,τ) in Ω×S2, u(0,x)=u0(x) in Ω. (3.2e)

Definition 3.1. Let Ω be a bounded domain in C1,1. Assume that u0 and f0 satisfy
(2.5). We say that a triple

(

u(ǫ,η),p(ǫ,η),f (ǫ,η)
)

=(u,p,f) is a weak solution to (3.2),
with the boundary conditions (1.2), (1.3), and (1.4) if

u∈C
(

[0,T ];L2
weak(Ω)

)

∩L2
(

0,T ;W 1,2
n,div(Ω)

)

, vt∈L2
(

0,T ;W−1,2
n (Ω)

)

, (3.3a)

p∈L2
(

0,T ;W 1,2(Ω)
)

, (3.3b)

Rf ∈L∞
(

0,T ;L2(K)
)

∩L2
(

0,T ;W 1,2(Ω×S2)
)

, (3.3c)

and the following integral relations hold:

−ǫ
(

∇p,∇π
)

Ω
=
(

π,∇·u
)

Ω
for all π∈W 1,2(Ω) for a.e. t∈ [0,T ], (3.4)

∫ T

0

[〈

ut,ψ
〉

Ω
−
(

uη⊗u,∇ψ
)

Ω
+
(

D(u),D(ψ)
)

Ω
+
(

u,ψ
)

∂Ω

]

dt

=

∫ T

0

[(

p,∇·ψ
)

Ω
+
〈

∇·σ,ψ
〉

Ω

]

dt for all ψ∈L2
(

0,T ;W 1,2
n (Ω)

)

,

(3.5)
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∫ T

0

[〈

Rft,Ψ
〉

K
−
(

R(f)uη,∇Ψ
)

K
−
(

R(Pτ⊥∇uτf),∇τΨ
)

K

+
(

R∇τf,∇τΨ
)

K
+
(

R∇f,∇Ψ
)

K

]

dt=0,

(3.6)

for all Ψ∈L∞
(

0,T ;W 1,2(Ω×S2)
)

.

Lemma 3.2. There exists a weak solution to the system (3.2).

Proof. The existence of a solution to the (ǫ,η) approximation will be established
using a Galerkin approximation method. We present here the main steps of the
approach and we refer the reader to [4] where similar line of argument was used in
the context of elasticity.

Step 1. First, we define a linear mapping F that assigns to any u∈W 1,2
n (Ω) the

solution p∈W 2,2(Ω) of the problem (3.1). Taking into consideration that Ω∈C1,1,

the regularity theory for the Neumann problem (3.1) yields that the mapping F :
W 1,2

n (Ω)→W 2,2(Ω) is continuous.

Step 2. Let
{

wj

}∞

j=1
be a orthonormal basis of W 1,2

n (Ω) that is orthonormal in

L2(Ω). For the construction of this basis we refer the reader to [15]. We construct the
Galerkin approximations

{

u(N),p(N)
}∞

N=1
of the form

u(N) :=
N
∑

i=1

dNi (t)wi, p(N) :=F(u(N)),

where d(N)=(dN1 , . . . ,d
N
N ) solves the system of ordinary differential equations:

d

dt

(

u(N),wj

)

−
(

uη
(N)⊗u(N),∇wj

)

+
(

D(u(N)),∇wj

)

+
(

u(N),wj

)

∂Ω

−
(

F(u(N)),∇·wj

)

=
(

∇·σ(N),wj

)

, j=1,2, . . . ,N.

(3.7)

Here, σ(N)=

∫

S2

(3τ⊗τ−Id)f (N)(t,x,τ)dτ , and f (N) will be defined in Step 3. We

require that u(N) satisfy the initial condition u(N)(·,0)=u(N)
0 =

N
∑

j=1

dN0 wj .

Step 3. We proceed by constructing the Galerkin approximations
{

f (N)
}∞

N=1
. Let

{

yj
}∞

j=1
be an orthonormal basis of W 1,2

0 (Ω) that is orthonormal in L2(Ω). We need

the zero boundary condition on the basis because σ vanishes at the boundary. Let
{

vj
}∞

j=1
be an orthonormal basis of W 1,2

n (S2) that is orthonormal in L2(S2). We

construct the Galerkin approximations
{

Rf (N)
}∞

N=1
of the form

Rf (N)(t,τ,x) :=

N
∑

i,j=1

cNij (t)vi(τ)yj(x),

where c(N)=(c11N , . . . ,c
N
N1,c

N
N2, . . .c

N
NN ) solves the following system of ordinary differ-
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ential equations:

d

dt

(

Rf (N),viyj

)

−
(

uη
(N) ·∇Rf (N),viyj

)

+
(

R(Pτ⊥∇u(N)τf (N)),∇τ (viyj)
)

+
(

R∇τf
(N),∇τ (viyj)

)

+
(

R∇f (N),∇(viyj)
)

=0, j=1,2, . . . ,N.

(3.8)

We require that Rf (N) satisfy the initial condition Rf (N)(·,0)=Rf (N)
0 =

N
∑

i,j=1

cN0 viyj .

Step 4. Next, we obtain uniform estimates on
{

u(N)
}

. Multiplying equation (3.7)
by dNj , summing over j=1, . . . ,N , integrating over (0,T ), and using the the identity

(

u(N)
η ⊗u(N),∇u(N)

)

Ω
=
(

u(N)
η ,∇|u(N)|2

2

)

Ω
=−

(

∇·u(N)
η ,

|u(N)|2
2

)

Ω
=0,

we get

1

2
‖u(N)(t)‖2L2(Ω)+

∫ T

0

[

‖D(u(N))‖2L2(Ω)+‖u(N)‖2L2(∂Ω)+ǫ‖∇p(N)‖2L2(Ω)

]

dt

≤
∫ T

0

〈

∇·σ(N),u(N)
〉

Ω
dt+‖u(N)

0 ‖2L2(Ω)

≤
∫ T

0

‖σ(N)‖L2(Ω)‖u(N)‖W 1,2
n (Ω)dt+‖u0‖2L(Ω). (3.9)

Applying Korn’s inequality and Young’s inequality to the last equation of (3.9) we
conclude that

sup
t∈(0,T )

‖u(N)(t)‖2L2(Ω)+

∫ T

0

[

‖u(N)‖W 1,2
n (Ω)+ǫ‖∇p(N)‖2L2(Ω)

]

dt

≤C(T )+
∫ T

0

‖σ(N)‖L2(Ω).

(3.10)

Step 5. Next, we obtain uniform estimates on
{

f (N)
}∞

N=1
. Multiplying equation

(3.8) by cNij , summing over i,j=1, . . . ,N , and integrating over (0,T ), we get

sup
t∈(0,T )

‖Rf (N)(t)‖2L2(K)+

∫ T

0

∫

K

|∇τRf
(N)(t)|2dτdxdt

+

∫ T

0

∫

K

|∇Rf (N)(t)|2dτdxdt≤C(T ),
(3.11)

which is enough to pass to the limit in the third term of (3.6). For details of this
estimation, see Section 3.3. Since

|σ(N)(t,x)|=
∣

∣

∣

∫

S2

(3τ⊗τ−Id)f (N)(t,x,τ)dτ
∣

∣

∣

≤
∫

S2

∣

∣

∣
R−1(3τ⊗τ−Id)Rf (N)(t,x,τ)

∣

∣

∣
dτ .‖Rf (N)‖L2(S2),

(3.12)
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we can control

∫ T

0

‖σ(N)‖L2(Ω)dt in (3.10) by (3.11).

Step 6. To obtain compactness of the velocity we estimate the norm of its time

derivative. Multiplying (3.7) by
d

dt
cNj , summing over j=1, . . . ,N, and integrating

over time, we obtain using (3.10)

∫ T

0

(

d

dt
cN

)2

dt≤C(T ).

By taking the limit N→∞, we show that u(N)→u strongly in C
(

[0,T ];L2(Ω)
)

. This

implies in turn that p(N)→p strongly in L2
(

0,T ;W 1,2(Ω)
)

.

3.2. Uniform estimates of (u,p).

3.2.1. Uniform estimates of u. Here, and in what follows, we set
(

u,p,f
)

=
(

u(ǫ,η),p(ǫ,η),f (ǫ,η)
)

and we derive estimates that are uniform with respect to both
η and ǫ and also estimates uniform only with respect to ǫ. The existence of a weak
solution to the regularized system (3.2) implies that we can take the solution as a test
function to obtain uniform bounds of solutions. First, we take ψ=u and π=p. Then

1

2

d

dt
‖u‖2L2(Ω)+‖D(u)‖2L2(Ω)+ǫ‖∇p‖2L2(Ω)+‖u‖2L2(∂Ω)=

〈

∇·σ,u
〉

Ω
. (3.13)

Using integration by parts in the right-hand side of (3.13), and with the aid of the
boundary condition of σ, we get

1

2

d

dt
‖u‖2L2(Ω)+‖D(u)‖2L2(Ω)+ǫ‖∇p‖2L2(Ω)+‖u‖2L2(∂Ω)≤‖σ‖L2(Ω)‖∇u‖L2(Ω). (3.14)

By Young’s inequality and Korn’s inequality,

d

dt
‖u‖2L2(Ω)+‖∇u‖2L2(Ω)+ǫ‖∇p‖2L2(Ω)+‖u‖2

W
1,2
n (Ω)

.‖σ‖2L2(Ω). (3.15)

Next, we need to estimate the stress tensor σ. By (3.12) and (3.11) without N , we
have

‖σ‖L2(QT )≤C(T ). (3.16)

Therefore, for all t∈ [0,T ],

‖u(t)‖2L2(Ω)+

∫ t

0

[

‖∇u(s)‖2L2(Ω)+ǫ‖∇p(s)‖2L2(Ω)+‖u(s)‖2
W

1,2
n (Ω)

]

ds≤C(T ). (3.17)

In particular, by the interpolation inequality (2.1), we have

∫ T

0

‖u(t)‖
10
3

L
10
3 (Ω)

dt≤C(T ). (3.18)

3.2.2. Uniform estimates of p and ut. Higher integrability for the pressure
p is established by employing the multipliers technique of Lions [12]. This technique
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involves identifying appropriate test functions in the weak formulation of the Navier-
Stokes equations as solutions of the following Neumann problem. In the sequel β∈
(1,2].











h= |p|β−2p− 1

|Ω|

∫

Ω

|p|β−2pdx, in Ω,

∇h ·n=0, on ∂Ω,

∫

Ω

hdx=0.
(3.19)

By the elliptic regularity theory of the Neumann problem, we have that

‖∇h‖β
′

W 1,β
′

(Ω)
.‖p‖β

Lβ(Ω)
.

Taking ψ=∇h in (3.5) we obtain

∫ T

0

‖p‖β
Lβ(Ω)

dt= I1+I2+I3+I4+I5.

Using the notation QT =(0,T )×Ω, and the fact β≤2, we get

I1=

∫

QT

(

D(u) ·D(∇h)
)

dxdt.

∫

QT

|D(u)|βdxdt+ 1

8

∫ T

0

‖p‖β
Lβ(Ω)

dt,

where we use (3.19) at the first inequality. Also,

I2=

∫ T

0

〈

∇·σ,∇h
〉

Ω
dt.

∫ T

0

‖σ‖2L2(Ω)+C+
1

8

∫ T

0

‖p‖β
Lβ(Ω)

dt,

I3=α

∫ T

0

(

u,∇h
)

∂Ω
dt.

∫ T

0

[

1+‖tru‖2L2(Ω)

]

dt+
1

8

∫ T

0

‖p‖β
Lβ(Ω)

dt,

I4=−
∫

QT

(

(

uη⊗u
)

·∇2h
)

dxdt.

∫

QT

|uη⊗u|βdxdt+
1

8

∫ T

0

‖p‖β
Lβ(Ω)

dt,

I5=

∫ T

0

〈

ut,∇h
〉

Ω
dt=−

∫ T

0

〈

(∇·u)t,h
〉

Ω
dt

=−ǫ
∫ T

0

〈

pt, |p|β−2p− 1

|Ω|

∫

Ω

|p|β−2p
〉

Ω
dt

=− ǫ

β
‖p(T )‖β

Lβ(Ω)
+
ǫ

β
‖p(0)‖β

Lβ(Ω)
=− ǫ

β
‖p(T )‖β

Lβ(Ω)
,

where we use the fact that p(0)=−1

ǫ
∇·u0=0. Collecting all terms,

∫ T

0

‖p‖β
Lβ(Ω)

dt.C(T )+

∫

QT

|uη⊗u|βdxdt. (3.20)

Since

‖uη⊗u‖L2(Ω)≤‖uη‖L∞(Ω)‖u‖L2(Ω).
1

η
‖u‖L2(Ω),
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the last inequality in (3.20) implies

∫ T

0

‖p‖β
Lβ(Ω)

dt.
1

η
. (3.21)

If we use (3.18) instead, then

∫ T

0

‖p‖
5
3

L
5
3 (Ω)

dt≤C(T ). (3.22)

Finally, from the momentum equation of u,

‖ut‖L2(0,T ;W−1,2
n (Ω)).

1

η
, ‖ut‖

L
5
3 (0,T ;W

−1, 5
3

n (Ω))
.C. (3.23)

3.3. Uniform estimates of f . It is clear that the function

ρ(t,x)=

∫

S2

f(t,x,τ)dτ

satisfies the linear advection-diffusion equation

ρt+uη ·∇ρ−∆ρ=0,

which implies that

ρ∈L∞(0,T ;Lp(Ω)), p∈ [1,∞].

In particular,

‖f‖L∞(0,T ;L∞(Ω)L1(S2))≤C. (3.24)

Next, we estimate Rf . The existence of a weak solution to (3.2) implies that we can
take Rf as a test function in (3.6). Let

N2(x,t)=

∫

S2

|Rf |2dτ, R=(1−∆τ )
− s

2 , s>
5

2
.

Then,

1

2

d

dt
N2(x,t)=

∫

S2

Rf ·Rftdτ. (3.25)

We calculate the right-hand side of (3.25) with the aid of the evolution equation of f .
First, we calculate the advection term. By (2.2),

−
∫

S2

Rf ·R(uη ·∇f)dτ =−1

2
uη ·∇x

∫

S2

|Rf |2dτ. (3.26)

Secondly, we calculate the diffusion terms:
∫

S2

Rf ·R(∆τf+∆f)dτ =−
∫

S2

|∇τRf |2dτ−
∫

S2

|∇Rf |2dτ

+
1

2
∆

∫

S2

|Rf |2dτ.
(3.27)
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Finally, we calculate the drift term in τ :

∫

S2

Rf ·R∇τ ·(Pτ⊥(∇xuτ)f)dτ .‖Rf‖L2(S2)‖R∇τ ·(Pτ⊥(∇xuτ)f)‖L2(S2)

. |∇xu| ·‖Rf‖L2(S2)‖f‖L1(S2)

. |∇xu| ·‖Rf‖L2(S2),

(3.28)

where we use (2.3) in the second inequality and (3.24) in the last inequality. Com-
bining all terms, we have

d

dt
N2+uη ·∇xN

2−∆N2+

∫

S2

|∇τRf |2dτ+
∫

S2

|∇Rf |2dτ .|∇xu|N. (3.29)

Integrating (3.29) over Ω we arrive at

d

dt

∫

Ω

N2dx+

∫

K

|∇τRf |2dτdx
∫

K

|∇Rf |2dτdx

.

∫

Ω

|∇u|Ndx≤‖∇u‖L2(Ω)

(

∫

Ω

N2dx
)

1
2

.

(3.30)

Since

∫ T

0

‖∇u(t)‖2L2
x(Ω)dt≤C(T ),

for all t∈ [0,T ],

‖N2(t)‖L1(Ω)+

∫ t

0

∫

K

|∇τRf |2dτdxds+
∫ t

0

∫

K

|∇Rf |2dτdxds≤C(T ), (3.31)

which means that Rf is bounded in L∞
(

0,T ;L2(K)
)

∩L2
(

0,T ;W 1,2(Ω×S2)
)

. We
note that we can obtain (3.28) because R∇τ ·(Pτ⊥(∇xuτ)f) is not a generic quadratic
term under the operator R. Therefore, we can avoid taking the L∞(Ω) norm of |∇u|.

3.4. Passing to the limits. Now, we would like to take the limit of the
approximate sequence which is uniformly bounded in (ǫ,η). First, we take the limit
in ǫ, and then will take the limit in η. The limiting process in u follows a similar line
of argument to the one presented in [4]. For the completeness, we present the details
here.

3.4.1. Passing to the limit in u. First, we take the limit in ǫ. It follows
from (3.17), (3.18), (3.21), the first term in (3.23), and by the Aubin-Lions lemma
there exist subsequences (not labeled, without indicating η dependence) and (u,p,σ)
such that

uǫt⇀ut in L2
(

0,T ;W−1,2
n (Ω)

)

,

uǫ⇀u in L2
(

0,T ;W 1,2
n (Ω)

)

,

uǫ
⋆
⇀u in L∞

(

0,T ;L2(Ω)
)

,

uǫ→u in Lq
(

0,T ;Lq(Ω)
)

for 1≤ q< 10

3
,

∇uǫ⇀∇u in L2
(

0,T ;L2(Ω)
)

,
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pǫ⇀p in L2
(

0,T ;L2(Ω)
)

,

σǫ⇀σ in L2
(

0,T ;L2(Ω)
)

.

Moreover, from Lemma 2.3,

truǫ→ tru in L2
(

0,T ;L2(∂Ω)
)

.

We also observe that for ψ∈L2(0,T ;W 1,2(Ω)),

∣

∣

∣

∫ T

0

(∇·u,ψ)Ωdt
∣

∣

∣
= lim

ǫ→0

∣

∣

∣

∫ T

0

(∇·uǫ,ψ)Ωdt
∣

∣

∣
= lim

ǫ→0

∣

∣

∣

∫ T

0

∫

Ω

(∇ψ ·∇pǫ)dxdt
∣

∣

∣

≤ lim
ǫ→0

√
ǫ
(

∫

QT

|∇ψ|2
)

1
2
(

∫

QT

ǫ|∇pǫ|2
)

1
2

=0,

which implies ∇·u=0 a.e. in (0,T )×Ω. The above convergence is enough to take
the limit in (3.5), and

(

u,p,σ
)

=
(

uη,pη,ση
)

satisfies

∫ T

0

[〈

ut,ψ
〉

Ω
−
(

uη⊗u,∇ψ
)

Ω
+
(

D(u),D(ψ)
)

Ω
+
(

u,ψ
)

∂Ω

]

dt

=

∫ T

0

[(

p,∇·ψ
)

Ω
+
〈

∇·σ,ψ
〉

Ω

]

dt for all ψ∈L2
(

0,T ;W 1,2
n (Ω)

)

.

Secondly, we take the limit in η. We know that
(

uη,pη,ση
)

satisfies (3.5). From
(3.17), (3.18), (3.22), and the second term in (3.23), there exists a subsequence and a
limit (u,p,σ) such that

u
η
t ⇀ut in L

5
3

(

0,T ;W
−1, 53
n (Ω)

)

,

uη⇀u in L2
(

0,T ;W 1,2
n (Ω)

)

,

uη
⋆
⇀u in L∞

(

0,T ;L2(Ω)
)

,

uη →u in Lq
(

0,T ;Lq(Ω)
)

for 1≤ q< 10

3
,

∇uη⇀∇u in L2
(

0,T ;L2(Ω)
)

,

truη → tru in L2
(

0,T ;L2(∂Ω)
)

,

pη⇀p in L
5
3

(

0,T ;L
5
3 (Ω)

)

,

σǫ⇀σ in L2
(

0,T ;L2(Ω)
)

.

Therefore, we can take the limit in (3.5).

3.4.2. Passing to the limit in f . In order to take the limit in (3.6), we
employ the compactness of

{

Rf (N)
}∞

N=1
. Since there are two indices

(

ǫ,η
)

involved,
we need to use it twice. Here we only present one step. Let m denote either ǫ or η.
From the boundedness of

{

Rf (m)
}

in L∞
(

0,T ;L2(K)
)

∩L2
(

0,T ;W 1,2(Ω×S2)
)

, we

can extract a subsequence,
{

Rf (mj)
}

converging to Rf strongly in L2
(

0,T ;L2(K)
)

.
Therefore, we can pass to the limit in (3.6), and this completes the proof of Theorem
2.9.

Remark 3.3. Related results have been obtained by Lions and Masmoudi in
[14] where the existence of a weak solution of (1.1) with D=0 on the whole space
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was obtained using the propagation of compactness argument. Using an argument
employing defect measures, it was deduced that

d

dt

∫

S2

νdτ+u ·∇x

∫

S2

νdτ .
(

1+ |∇u|2
)

∫

S2

νdτ,

which yields that

∫

S2

νdτ =0 if

∫

S2

ν0dτ =0.

In the same spirit a related result can be obtained in the present context for
D=0. Indeed, introducing the following defect measures:

|R(f (m)−f)|2→ν, |∇u(m)−∇u|2→β, |σ(m)−σ|2→α, (3.32)

and taking into consideration relations (3.12) (without N) and (3.15), we get

|σ|.‖Rf‖L2(S2), ‖∇u‖L2(QT ).‖σ‖L2(QT ), (3.33)

from which we deduce that

β.α.

∫

S2

νdτ. (3.34)

Using the propagation of compactness argument in the spirit of Lions and Masmoudi
[14] one establishes that in fact

{

Rf (mj)
}

converges strongly to Rf in L2
(

0,T ;L2(K)
)

,

yielding that

∫

s2
νdτ =0, which implies that β=α=0. We note that

{

σ(m)
}

and
{

∇u(m)
}

converge strongly in L2
(

0,T ;L2(Ω)
)

, and this strong convergence cannot be
derived simply from the energy bounds. The propagation of compactness argument
guarantees that if one is able to construct a sequence of weak solutions which converges
weakly and such that the initial data converges strongly then the weak limit is also
a solution. We refer the reader to the article by Lions and Masmoudi [13] where the
details of this argument are given in the context of the whole space.

Remark 3.4. Since the problem is posed on a bounded domain, the L2 decay of u
and ρ can be established. First, for ρ0∈L2 with ρ=0 on ∂Ω,

d

dt
‖ρ(t)‖2L2(Ω)≤−‖∇ρ(t)‖2L2(Ω)≤−C1‖ρ(t)‖2L2(Ω),

where Poincare’s inequality is used at the second inequality. Therefore,

‖ρ(t)‖2L2 . e
−C1t.

Since |σ|≤Cρ, we also have

‖σ(t)‖2L2 . e
−C1t.

Notice that u satisfies

d

dt
‖u(t)‖2L2(Ω)≤−‖∇u(t)‖2L2(Ω)+‖σ‖2L2(Ω)≤−C2‖u(t)‖2L2(Ω)+e

−C1t,

where we use Poincare’s inequality at the second inequality. We note that the
Poincare inequality still holds for the Neunmann boundary condition u ·n=0 since u
is divergence-free. For the details, see the appendix of [22]. Therefore,

‖u(t)‖2L2 . e
−Ct, C=min{C1,C2}.
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4. A more general model

In the spirit of Constantin [6] we consider now more general models. More specif-
ically, the system of equations is given by

ft+u ·∇f+∇τ ·
(

Pτ⊥(∇xuτ)f+∇τUf
)

−∆τf−∆f =0 in (0,T )×Ω×S2,

(4.1a)

σ=

∫

S2

(3τ⊗τ−Id)fdτ in (0,T )×Ω, (4.1b)

ut+u ·∇u−∆u+∇p=∇·σ in (0,T )×Ω, (4.1c)

∇·u=0 in (0,T )×Ω, (4.1d)

f(0,x,τ)=f0(x,τ) in Ω×S2, u(0,x)=u0(x) in Ω, (4.1e)

where the potential U is

U(t,x,τ)=

∫

S2

Z(τ,w)f(t,x,w)dw, (4.2)

with a kernel Z which is a smooth, time and space independent symmetric function
Z :S2×S2→R. The macroscopic stress tensor σ consists of two parts:

σ=σ(1)+σ(2),

where σ(1) is the same as σ in (1.1b), and σ(2) is

σ
(2)
ij (t,x)=

∫

S2

∫

S2

γ
(2)
ij (m,n)f(t,x,m)f(t,x,n)dmdn, (4.3)

where γ
(2)
ij are smooth, time independent, space independent, and do not depend on

f . Now, we define a weak solution of this system (4.1). The definition is identical to
Definition 2.5 except for the two extra terms ∇τUf and σ(2).

Definition 4.1. Let Ω be a bounded domain in C1,1. Assume that u0 and f0 satisfy
(2.5). We say that (u,p,f) is a weak solution to (4.1), with the boundary conditions
(1.2), (1.3), and (1.4), if

u∈C
(

[0,T ];L2
weak(Ω)

)

∩L2
(

0,T ;W 1,2
n,div(Ω)

)

, vt∈L
5
3

(

0,T ;W
−1, 53
n (Ω)

)

, (4.4a)

p∈L 5
3

(

0,T ;L
5
3 (Ω)

)

, (4.4b)

Rf ∈L∞
(

0,T ;L2(K)
)

∩L2
(

0,T ;W 1,2(Ω×S2)
)

, (4.4c)

and the following integral relations hold:

∫ T

0

[〈

ut,ψ
〉

Ω
−
(

u⊗u,∇ψ
)

Ω
+
(

D(u),D(ψ)
)

Ω
+
(

u,ψ
)

∂Ω

]

dt

=

∫ T

0

[(

p,∇·ψ
)

Ω
+
〈

∇·σ,ψ
〉

Ω

]

dt for all ψ∈L2
(

0,T ;W 1,2
n (Ω)

)

,

(4.5)

∫ T

0

[〈

Rft,Ψ
〉

K
−
(

R(f)u,∇Ψ
)

K
−
(

R(Pτ⊥∇uτf),∇τΨ
)

K

+
(

R(∇τUf),∇τΨ
)

K
+
(

R∇τf,∇τΨ
)

K
+
(

R∇f,∇Ψ
)

K

]

dt=0,

(4.6)
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for all Ψ∈L∞
(

0,T ;W 1,2(Ω×S2)
)

.

Notice the presence of the extra nonlinear terms in the system (4.1). The following
result can now be proved.

Theorem 4.2. Let Ω be a three dimensional bounded domain in C1,1. Assume that
u0 and f0 satisfy (2.5). Then, there is a weak solution (u,p,f) to (4.1), with the
boundary conditions (1.2), (1.3), and (1.4), satisfying all conditions in Definition
4.1.

Proof. The proof of Theorem 4.2 follows a similar line of argument as the
proof of Theorem 2.9, hence we only provide the main outline of the proof and the
estimation of the extra terms.

Step 1. We construct the (ǫ,η) approximating scheme which now reads

ft+uη ·∇xf+∇τ ·(Pτ⊥(∇xuτ)f+∇τUf)−∆τf−∆f =0 in (0,T )×Ω×S2,

ut+uη ·∇u−∆u+∇p=∇·σ in (0,T )×Ω,

ǫ∆p=∇·u in (0,T )×Ω,

f(0,x,τ)=f0(x,τ) in Ω×S2, u(0,x)=u0(x) in Ω.

Step 2. Next we establish the existence of a weak solution to this system following
the line of argument in Section 3. In the heart of the analysis lie the establishment
of uniform estimates on {u,p}. This requires a uniform estimate of the stress tensor
σ. Here we focus on the quadratic component σ(2) of the stress tensor σ. Observe that

|σ(2)
ij (t,x)|≤

∣

∣

∣

∫

S2

f(t,x,n)

∫

S2

R−1γ
(2)
ij (m,n)Rf(t,x,n)dmdn

∣

∣

∣

.‖f‖L1(S2)‖Rf‖L2(S2).‖Rf‖L2(S2).

(4.8)

Therefore both terms σ(1) and σ(2) and as a consequence the stress tensor σ can be
handled in the same fashion as (3.12).

Step 3. Next, we establish uniform estimates of f following the approach presented
in Section 3.3. For the sake of completeness we present here the estimate for the extra
drift term in τ, namely

∫

S2

Rf ·R∇τ ·(f∇τU)dτ .‖Rf‖L2(S2)‖f∇τU‖L1(S2)

.‖Rf‖L2(S2)‖f‖L1(S2)‖∇τU‖L∞(S2).‖Rf‖L2(S2)‖f‖2L1(S2).‖Rf‖L2(S2).

(4.9)

The uniform estimate on Rf can now be established following the line of argument
presented in Section 3.3.

5. Concluding remarks

The present article is part of a research program whose objective is the investiga-
tion of general models for polymeric fluids in domains with complex geometries. Non-
linear Fokker-Planck-type equations coupled with Navier-Stokes equations in which
the added stresses σ depend in either linearly or nonlinearly on the density of par-
ticles are of great scientific interest. The quantity divσ represents the forces due to
the presence of microscopic insertions. The insertions are objects parameterized by
a microscopic variable τ, which belongs to a general manifold M of dimension d. In
the case of rod-like particles (as the one in the present article) the manifold M is
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the unit sphere in three dimensions, and τ ∈S2 represents the director of the rods.
More complicated particles require more degrees of freedom for the spaceM. As men-
tioned in [6], articulated rods with several articulations require a phase space which
is a product of spheres. Motivated by engineering applications which often involve
manifolds which fail to be connected (domains with holes and other deformations)
one of the goals of this project is the treatment of general manifolds M.

Among the models of great scientific interest are included the Finite Extensible
Nonlinear Elastic (FENE) dumbbell model of polymeric flows for a general class of
potentials and the investigation of relevant models in viscoelasticity of Oldroyd B-type
or Johnson-Segalman-type [17, 18]. In the FENE model, a polymer is idealized as an
elastic dumbbell consisting of two beads joined by a spring which can be represented
by a vector R (cf. Bird, Curtis, Amstrong, and Hassager [2, 3], Doi and Edwards [10]
for some physical introduction to the models, and Ottinger [20] for a mathematical
treatment, and Owens and Phillips [21] for the computational aspects.) We refer the
reader also to the recent work of Masmoudi [16] for results relevant to the existence
of weak solutions to such models.

We remark that the investigation of singular limits of complex fluids for compress-
ible flows over bounded domains is of great scientific interest, physically relevant, and
presents new challenges in the analysis. The issue of existence of solutions to the Doi
model for compressible flows is considered by the authors in a forthcoming article
[1]. Note that unlike the cases involving the whole domain or exterior domains where
acoustic waves are damped locally due to dispersive effects of the wave equation, the
main obstacle in the treatment of bounded domains is the persistence of the fast waves
over these domains. Therefore in general one can only expect weak convergence of
the solutions. It is worth noting that there are situations where strong convergence
can be achieved due to the interaction of acoustic waves with the boundary of the
domain, where a thin boundary layer is created to damp the energy carried by these
fast oscillations. This phenomenon has been observed for both asymptotics of fluid
equations and hydrodynamic limits of kinetic equations. It is therefore natural to
ask whether similar phenomena happen for models of polymeric fluids. Before at-
tempting to answer this question, one needs to know what are the physical boundary
conditions that should be imposed on such systems. These boundary conditions are
typically derived from the underlying kinetic equations so that they are compatible
with the given boundary conditions for the kinetic equations. Deriving admissible
boundary conditions for models describing the evolution of polymeric fluids, estab-
lishing the well-posedness theory of such systems, and investigating their asymptotics
over bounded domains are some of the goals of this program.
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