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TWO SPINORIAL DRIFT-DIFFUSION MODELS FOR QUANTUM

ELECTRON TRANSPORT IN GRAPHENE∗

NICOLA ZAMPONI† AND ANSGAR JÜNGEL‡

Abstract. Two drift-diffusion models for the quantum transport of electrons in graphene,
which account for the spin degree of freedom, are derived from a spinorial Wigner equation with
relaxation-time or mass- and spin-conserving matrix collision operators using a Chapman-Enskog
expansion around the thermal equilibrium. Explicit models are computed by assuming that both the
semiclassical parameter and the scaled Fermi energy are sufficiently small. For one of the models,
the global existence of weak solutions, entropy-dissipation properties, and the exponential long-time
decay of the spin vector are proved. Finally, numerical simulations of a one-dimensional ballistic
diode using both models are presented, showing the temporal behavior of the particle density and
the components of the spin vector.
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1. Introduction

Graphene is a new semiconductor material, which is a subject of great interest
for nanoscale electronic applications. The reason for this interest is due to the very
remarkable properties of graphene, such as the high electron mobility and long co-
herence length. Therefore, graphene is a promising candidate for the construction of
a new generation of electronic devices which perform far better than current silicon
devices [8]. Potential applications include, for instance, spin field-effect transistors
[12, 24], extremely sensitive gas sensors [23], one-electron graphene transistors [19],
and graphene spin transistors [3].

Physically, graphene is a two-dimensional semiconductor with a zero-width band
gap, consisting of a single layer of carbon atoms arranged in a honeycomb lattice. In
the energy spectrum, the valence band intersects the conduction band at some iso-
lated points, called the Dirac points. Around these points, quasiparticles in graphene
exhibit the linear dispersion relation E=vF |p|, where p denotes the crystal momen-
tum and vF ≈106 m/s is the Fermi velocity [16]. This energy spectrum resembles the
Dirac spectrum for massless relativistic particles, E= c|p|, where c is the speed of
light. Hence, the Fermi velocity vF ≈ c/300 takes the role of the speed of light. The
system Hamiltonian can be approximated near a Dirac point, for low energies and in
the absence of a potential, by the Dirac-like operator

H0=−i~vF
(
σ1

∂

∂x1
+σ

∂

∂x2

)
, (1.1)
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where ~ is the reduced Planck constant, and σ1 and σ2 are the Pauli matrices (see
(2.1)).

In order to understand and predict the charge carrier transport in graphene, trans-
port models, which incorporate the spin degree of freedom, must be devised. Theo-
retical models for spin-polarized transport involve fluid-type drift-diffusion equations,
kinetic transport equations, and Monte-Carlo simulation schemes; see the references
in [18]. A hierarchy of fluiddynamic spin models was derived from a spinor Boltzmann
transport equation in [2]. Suitable matrix collision operators were suggested and an-
alyzed in [20]. Drift-diffusion models for spin transport were considered in several
works; see, e.g., [1, 6, 22]. A mathematical analysis of spin drift-diffusion systems for
the band densities is given in [10].

Fluiddynamic equations provide a compromise between physical accuracy and
numerical efficiency. Another advantage is that they contain already the physically
interesting quantities, such as the particle density, momentum, and spin densities,
whereas other models usually involve variables which do not have an immediate phys-
ical interpretation, like wavefunctions, density operators, and Wigner distributions.
In the latter case, further computations must be made to obtain the quantities of
physical interest.

In this work, we address the quantum kinetic and diffusion level of spin-polarized
transport in graphene. More precisely, starting from a spinorial Wigner equation, we
aim to derive via a moment method and a Chapman-Enskog expansion macroscopic
drift-diffusion models for the particle density and spin vector. Furthermore, we prove
the global existence of weak solutions to one of these models and we illustrate the
behavior of the solutions in a ballistic diode by numerical experiments.

We note that there are only very few articles concerned with kinetic or macro-
scopic transport models for graphene. In the physics literature, the focus is on trans-
port properties such as the carrier mobility [11], charged impurity and phonon scat-
tering [4], and Klein tunneling [17]. Wigner models were investigated in [15]. Starting
from a Wigner equation, hydrodynamic spin models were derived in [27], and the work
[26] is concerned with the derivation of drift-diffusion models for the band densities.
In contrast, we will work in the present paper with all components of the spin vector.
Furthermore, we provide a mathematical analysis of one of the models and numerical
simulations of both models.

In the following, we describe our approach and the main results. From the unique
features of graphene follow that Fermi-Dirac statistics would be more suitable to de-
scribe quantum transport in the material than Maxwell-Boltzmann statistics, since
the energy spectrum of the Hamiltonian (1.1) is not bounded from below. We over-
come this problem by modifying the Hamiltonian H0. In fact, we assume that the
system Hamiltonian is approximated by the following operator which is bounded from
below:

H=H0−
(

~
2

2m
∆

)
σ0, (1.2)

where m>0 is a parameter with the dimension of a mass and σ0 is the unit matrix in
R

2×2 (see (2.1)). This is not a very restrictive assumption since the operator (1.1) is
itself only an approximation of the correct system Hamiltonian, valid for small values
of the momentum |p|.

Starting from the Hamiltonian H+V σ0, where V is the electric potential, Wigner
equations were derived from the Von Neumann equation in [27]. In order to derive
diffusion models, we consider two types of collision operators in the Wigner model.
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First, we employ relaxation-time terms of BGK-type, Q(w)=(g−w)/τc, where
w is the Wigner distribution, τc>0 is the mean free path, and g is the thermal
equilibrium distribution derived from the quantum minimum entropy principle [5];
see sections 2.1 and 2.2. We assume that the wave energy is much smaller than
the typical kinetic energy (semiclassical hypothesis) and that the the scaled Planck
constant is of the same order as the scaled Fermi energy (low scaled Fermi speed
hypothesis). Performing a diffusive limit and a Chapman-Enskog expansion around
the equilibrium distribution formally yields the first quantum spin diffusion model
(QSDE1) for the particle density n0 and the spin vector ~n=(n1,n2,n3), which are the
zeroth-order moments of the Wigner distribution w:

∂tn0−divJ0=0, J0=∇n0+n0∇V,
∂tnj−divJj =Fj , Jj =A0(~n/n0)∇~n+~n⊗∇V +B0(n0,~n), j=1,2,3,

where A0 and B0 are some functions, and Fj depends on n0, ~n, ∇~n, and ∇V . We refer
to Section 2.3 for details. Note that the equations for the particle density and spin
vector decouple; only the spin vector equation depends nonlinearly on n0 and ~n. The
functions A0 and B0 are well defined only if 0≤|~n|/n0<1. Hence, the main difficulty
in the analysis of this model is the proof of lower and upper bounds for |~n|/n0.

Second, we employ a mass- and spin-conserving matrix collision operator sug-
gested in [20] for a semiconductor subject to a magnetic field. Performing a diffusive
limit and a Chapman-Enskog expansion similarly as for the first model, we derive the
second quantum spin diffusion model (QSDE2) in which the equations for the particle
density n0 and the spin vector ~n are fully coupled:

∂tn0−divJ0=0, J0=A1(∇n0+n0∇V )+B1 ·(∇~n+~n⊗∇V )+C1(n0,~n),

∂tnj−divJj =Gj , Jj =A2(∇n0+n0∇V )+B2 ·(∇~n+~n⊗∇V )+C2(n0,~n),

where Aj , Bj , and Cj are some functions depending also on the (given) pseudo-spin
polarization and the direction of the local pseudo-magnetization, and Gj depends on
~n and Jj . We refer to Section 2.4 for details. Because of the cross-diffusion structure,
the analysis of this model is not immediate, and we solve this model only numerically
(see Section 4).

Thanks to the decoupled structure of the model QSDE1, we are able to perform
an analytical study. More precisely, we show in Section 3 the global existence and
uniqueness of weak solutions, some entropy-dissipation properties, and the exponential
long-time decay of the spin vector. As mentioned above, the main challenge is the
proof of |~n|/n0<1. By the maximum principle, it is not difficult to prove that n0 is
strictly positive. However, an application of the maximum principle to the equation
for the spin vector is less obvious. Our idea is to show that u=1−|~n|2/n20 satisfies
the equation

∂tu−∆u−∇(logn0+V ) ·∇u=2G[~n/n0],

where G[~n/n0] is some nonnegative function. This simple structure comes from the
fact that certain antisymmetric terms in A0 and B0 cancel in this situation. By Stam-
pacchia’s truncation method, we conclude that there exists a positive lower bound for
u which proves that |~n|/n0<1.

Finally, we present in Section 4 some numerical results for the models QSDE1 and
QSDE2, applied to a simple ballistic diode in one space dimension. The equations are
discretized by a Crank-Nicolson finite-difference method. We illustrate the behavior
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of the particle density n0 and the spin components nj for various instants of time and
the exponential convergence of the particle density to the steady state.

The paper is organized as follows. Section 2 is concerned with the derivation of
the models QSDE1 and QSDE2. The model QSDE1 is analyzed in Section 3. Finally,
numerical experiments are presented in Section 4.

2. Modeling

2.1. A kinetic model for graphene. We describe the kinetic model for the
quantum transport in graphene associated to the Hamiltonian H+V σ0, where H is
given by (1.2), and V is the electric potential. Let w(x,p,t) denote the system Wigner
distribution, depending on the position x∈R

2, momentum p∈R
2, and time t≥0. The

Wigner function takes values in the space of complex Hermitian 2×2 matrices, which
is a Hilbert space with respect to the scalar product (A,B)= 1

2 tr(AB), where tr(A)
denotes the trace of the matrix A. The set of Pauli matrices

σ0=

(
1 0
0 1

)
, σ1=

(
0 1
1 0

)
, σ2=

(
0 −i
i 0

)
, σ3=

(
1 0
0 −1

)
(2.1)

is a complete orthonormal system on that space. Therefore, we can develop the
Wigner function w in terms of the Pauli matrices, w=

∑3
j=0wjσj , where wj(x,p,t)

are real-valued scalar functions. We set ~w=(w1,w2,w3), ~p=(p1,p2,0), p=(p1,p2),

~σ=(σ1,σ2,σ3), and we abbreviate ∂t=∂/∂t and ~∇=(∂/∂x1,∂/∂x2,0). With this
notation, we can write w=w0σ0+ ~w ·~σ. By applying the Wigner transform to the
Von Neumann equation associated to the Hamiltonian H+V , the following Wigner
equations for the quantum transport in graphene have been derived in [27]:

∂tw0+

(
~p

m
· ~∇
)
w0+vF ~∇· ~w+θ~[V ]w0=

g0−w0

τc
,

∂t ~w+

(
~p

m
· ~∇
)
~w+vF

(
~∇w0+

2

~
~w∧~p

)
+θ~[V ]~w=

~g− ~w

τc
,

(2.2)

where ~ is the reduced Planck constant. The parameter m, which has the dimension
of a mass, appears in the Hamiltonian H; see (1.2). The expressions ((~p/m) · ~∇)wj

originate from the quadratic term in the Hamiltonian H. Compared to formula (12) in
[27], we have allowed for BGK-type collision operators on the right-hand sides of (2.2)
with the relaxation time τc and the thermal equilibrium distribution g=g0σ0+~g ·~σ
which is defined in Section 2.2. The pseudo-differential operator θ~[V ]w is given by

(θ~[V ]w)(x,p)=
i

~

1

(2π)2

∫

R2

∫

R2

δV (x,ξ)w(x,p′)e−i(p−p′)·ξdξdp′,

with its symbol

δV (x,ξ)=V

(
x+

~

2
ξ

)
−V

(
x− ~

2
ξ

)
.

In order to derive macroscopic diffusive models, we perform a diffusion scaling.
We introduce a typical spatial scale x̂, time scale t̂, momentum scale p̂, and potential
scale V̂ :

x→ x̂, t→ t̂t, p→ p̂p, V → V̂ V,
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where the scales are related to

2vF p̂

~
=
V̂

x̂p̂
,

2p̂vF τc
~

=
~

2p̂vF t̂
, p̂=

√
mkBT .

Here, T is the (constant) system temperature and kB the Boltzmann constant. The
third relation means that the typical value of the momentum is equal to the thermal
momentum. Let L denote the average distance which a particle travels with the Fermi
velocity vF between two consecutive collisions, i.e. L= τcvF . Then the first relation
can be written as

x̂

L
=

1

2

V̂ (~/τc)

(p̂2/m)(mv2F )
.

Thus, the ratio of the typical length scale and the “Fermi mean free path” is as-
sumed to be of the same order as the quotient of the electric/wave energies and the
kinetic/Fermi energies. The second relation

t̂

τc
=

1

4

(~/τc)
2

(p̂2/m)(mv2F )

means that the ratio of the typical time scale and the relaxation time is of the same
order as the quotient of the square of the wave energy and the kinetic/Fermi energies.

We introduce the semiclassical parameter ε, the diffusion parameter τ , and the
scaled Fermi speed c, given by

ε=
~

x̂p̂
, τ =

2p̂vF τc
~

, c=

√
mv2F
kBT

.

We suppose the semiclassical hypothesis ε≪1 and the so-called low scaled Fermi
speed hypothesis,

γ :=
c

ε
=O(1) as ε→0. (2.3)

With the above scaling, equations (2.2) become

τ∂tw0+
1

2γ
(~p · ~∇)w0+

ε

2
~∇· ~w+θε[V ]w0=

g0−w0

τ
,

τ∂t ~w+
1

2γ
(~p · ~∇)~w+

ε

2
~∇w0+ ~w∧~p+θε[V ]~w=

~g− ~w

τ
.

(2.4)

The “drift” terms (ε/2)~∇· ~w and (ε/2)~∇w0 are of order O(ε), whereas the “precession”
term ~w∧~p is of order one. This means that we have chosen a time scale which is of the
same order as the magnitude of the precession period of the spin around the current,
which is smaller than the typical time scale of the drift process.

2.2. Thermal equilibrium distribution. We define now the thermal equi-
librium distribution g=g0σ+~g ·~σ using the minimum entropy principle. We introduce
the (unscaled) quantum entropy by

A[w]=

∫

R2

∫

R2

tr

(
w

(
Log(w)−1+

h(p)

kBT

))
dxdp,
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where Log(w)=Op−1
ε logOpε(w) is the so-called quantum logarithm introduced by

Degond and Ringhofer [5], Opε is the Weyl quantization, defined for any symbol
γ(x,p) and any test function ψ by [7, Chapter 2]

(Opε(γ)ψ)(x)=
1

(2π~)2

∫

R2

∫

R2

γ

(
x+y

2
,p

)
ψ(y)ei(x−y)·p/~dydp,

and

h(p)=
|p|2
2m

σ0+vF (p1σ1+p2σ2)

is the symbol of the Hamiltonian H, i.e. H=Op~(h).
According to the theory of Degond and Ringhofer [5], we define the Wigner dis-

tribution at local thermal equilibrium related to the given functions n0 and ~n as the
formal solution g=g[n0,~n] (if it exists) to the problem

A
[
g[n0,~n]

]
=min

w

{
A[w] :

∫

R2

w0dx=n0,

∫

R2

~wdx=~n

}
,

where the minimum is taken over all Wigner functions with complex Hermitian values
and w is decomposed according to w=w0σ0+ ~w ·~σ. This problem can be solved for-
mally by means of Lagrange multipliers; see [26, Section 3.2]. For scalar-valuedWigner
functions, such problems are studied analytically in [14]. Formally, the (scaled) solu-
tion is given by

g[n0,~n]=Exp(−hA,B), hA,B =

( |p|2
2

+A

)
σ0+(c~p+ ~B) ·~σ, (2.5)

where A=A(x,t) and ~B= ~B(x,t)=(B1,B2,B3)(x,t) are the Lagrange multipliers de-
termined by

∫

R2

g[n0,~n](x,p,t)dp=n0(x,t),

∫

R2

~g[n0,~n](x,p,t)dp=~n(x,t), (2.6)

and Exp(w)=Op−1
ε expOpε(w) is the quantum exponential [5].

We wish to find an approximate but explicit expression for g. To this end, we
expand the quantum exponential in terms of powers of ε, using the semiclassical and
the low scaled Fermi speed hypotheses. The expansion follows the lines of Section 3.4
in [26]. We obtain from (2.5):

g[n0,~n]=Exp(a+εb), a=−
( |p|2

2
+A

)
σ0− ~B ·~σ, b=−γ~p ·~σ.

Note that a and b are of order one, in view of (2.3). Employing formulas (29), (37),
and (38) of [26], we deduce that g=g(0)+εg(1)+O(ε2), where

g(0)=e−(A+|p|2/2)

(
cosh | ~B|σ0−

sinh | ~B|
| ~B|

~B ·~σ
)
,

g(1)=γe−(A+|p|2/2)

{
sinh | ~B|
| ~B|

( ~B ·~p)σ0
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−
[((

cosh | ~B|− sinh | ~B|
| ~B|

)
~B⊗ ~B

| ~B|2
+

sinh | ~B|
| ~B|

I

)
~p

+

(
cosh | ~B|− sinh | ~B|

| ~B|

)
((~p · ~∇x) ~B)∧ ~B

2γ| ~B|2

]
·~σ
}
, (2.7)

where I denotes the unit matrix in R
3×3. Finally, it remains to express the Lagrange

multipliers A and ~B in terms of n0 and ~n by means of the constraints (2.6). We find
after tedious but straightforward computations that

e−A=
1

2π

√
n20−|~n|2+O(ε2), ~B=− ~n

|~n| log
√
n0+ |~n|
n0−|~n|+O(ε2), (2.8)

where I denotes the unit matrix. Equations (2.7) and (2.8) provide an explicit approx-
imation of the thermal equilibrium distribution. The functions g0 and ~g are defined
by g(0)+εg(1)=g0σ0+~g ·~σ.

2.3. Derivation of the first model. We derive our first spinorial drift-
diffusion model. We assume that both the semiclassical parameter ε and the diffusion
parameter τ in (2.4) are small and of the same order. We will perform the limit τ→0
and ε→0, setting

λ :=
c

τ
=
εγ

τ
=O(1) as τ→0.

From (2.4) follows that the lowest-order approximations of w0 and ~w are g0 and
~g, respectively. In order to compute the first-order approximation, we employ a
Chapman-Enskog expansion of the Wigner function w=w0+ ~w ·~σ around the equi-
librium distribution g. Inserting the expansions w0=g0σ0+τf0, ~w=~g+τ ~f into (2.4)
and performing the formal limit τ→0, we infer that

f0=− 1

2γ
(~p · ~∇)g0+ ~∇V · ~∇pg0, ~f =− 1

2γ
(~p · ~∇)~g+ ~∇V · ~∇p~g−~g∧~p.

Here, we have used the expansion θε[V ]=−~∇V · ~∇p+O(ε).
The moment equations of (2.4) read as

τ∂tn0+
1

2γ
~∇·
∫

R2

~pw0dp+
ε

2
~∇·~n=0,

τ∂t~n+
1

2γ
~∇·
∫

R2

~w⊗~pdp+ ε

2
~∇n0+

∫

R2

~w∧~pdp=0,

(2.9)

since
∫
R2 θε[V ]wjdp=0 for j=0,1,2,3. We need to compute the first-order moments

∫

R2

pjwkdp, j=1,2, k=0,1,2,3,

in order to close the moment equation (2.9). For this, we insert in these integrals
the expansions for w0 and ~w as well as the expansions (2.7)-(2.8). After long but
straightforward computations and rescaling x→x/(2γ) and V →V/(2γ) in order to
get rid of the factor 1/(2γ), we arrive at the expressions, up to terms of order O(τ2),

∫

R2

pkw0dp=−τ(λnk+∂kn0+n0∂kV ),
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∫

R2

pkwsdp=−τ(λQks+∂kns+ns∂kV +ηsℓknℓ),

where we have set ∂1=∂/∂x1, ∂2=∂/∂x2, ∂3=0,

Qks=n0δks−
1

n0
Φ

( |~n|
n0

)(
|~n|2δks−nkns+ηsjℓnj∂knℓ

)
,

Φ(y)=y−2

(
1− 2y

log(1+y)− log(1−y)

)
, 0<y<1,

using Einstein’s summation convention, and (ηjkℓ) is the only antisymmetric 3-tensor
which is invariant under cyclic index permutations such that η123=1. In other words,
ηjkℓajbk=(~a∧~b)ℓ for ~a, ~b∈R

3. Inserting these expressions into (2.9), we find the
model QSDE1:

∂tn0−divJ0=0, J0=∇n0+n0∇V, (2.10)

∂tnj−divJj =Fj , Fj =ηjkℓnk∂ℓV −2nj+bk[~n/n0]∂knj−bj [~n/n0]~∇·~n, (2.11)

Jjs=
(
δjℓ+bk[~n/n0]ηjkℓ

)
∂snℓ+nj∂sV −2ηjsℓnℓ+bk[~n/n0](δjkns−δjsnk), (2.12)

where j, s=1,2,3. The functions

bk[~v]=λ
vk
|~v|2

(
1− 2|~v|

log(1+ |~v|)− log(1−|~v|)

)
, k=1,2,3, ~v∈R

3, 0< |~v|<1,

satisfy 0<bk[~v]<λ for all 0< |~v|<1, lim|~v|→0 bk[~v]=0, and the function |~v| 7→Φ(|~v|)=
bk[~v]/(λvk) is increasing. This allows us to set bk[0]=0 such that bk is defined for all
0≤|~v|<1.

The above equations are complemented by the Poisson equation

−λ2D∆V =n0−C(x) (2.13)

for the electric potential, where λD>0 is the scaled Debye length.

2.4. Derivation of the second model. In the model (2.10)-(2.12), the
particle density n0 evolves independently from the spin vector ~n. We will modify this
model in order to derive a fully coupled system by adding a “pseudo-magnetic” field
which is supposed to be able to interact with the charge carrier pseudo-spin.

Possanner and Negulescu [20] consider a semiconductor subject to a magnetic
field which interacts with the electron spin and they build a purely semiclassical
diffusive model for the particle density n0 and the spin vector ~n by a Chapman-
Enskog expansion around the equilibrium distribution. Instead of the relaxation-time
model used in Section 2.3, we employ here the mass and spin conserving collision
operator (49) of [20],

Q(w)=P 1/2(g−w)P 1/2,

where g is the equilibrium distribution, defined in Section 2.2, and P =σ0+ζ~ω ·~σ is
the polarization matrix with the pseudo-spin polarization ζ(x,t) of the scattering rate
and ~ω(x,t) is the direction of the pseudo-magnetization (see [20, Section 4.1]). The
quantity ζ(x,t)∈ (0,1) satisfies

s↑=
1+ |ζ(x,t)|
1−|ζ(x,t)|s↓,
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where s↑↓ are the scattering rates of electrons in the upper and lower band, respec-

tively, and it holds that |~ω(x,t)|=1. We introduce the collision operators Q0 and ~Q
by

Q(w)=Q0(w)σ0+ ~Q(w) ·~σ.
We start from the scaled Wigner equations

τ∂tw0+
1

2γ
(~p · ~∇)w0+

ε

2
~∇· ~w+θε[V ]w0=

1

τ
Q0(w),

τ∂t ~w+
1

2γ
(~p · ~∇)~w+

ε

2
~∇w0+ ~w∧~p+θε[V ]~w+τ~ω∧ ~w=

1

τ
~Q(w).

(2.14)

Compared with the Wigner system (2.4) in Section 2, the second equation in (2.14)
contains the (heuristic) term τ~ω∧ ~w, which describes the “precession” of ~w around
the local pseudo-magnetization. We assume again that λ := εγ/τ is of order one
(as τ→0) and we perform a Chapman-Enskog expansion of the Wigner distribution
w=w0σ0+ ~w ·~σ. The result reads as follows:

w=g−τP−1/2T [g]P−1/2, (2.15)

where

T [g]=

(
1

2γ
~p · ~∇− ~∇V · ~∇p

)
g0σ0+

((
1

2γ
~p · ~∇− ~∇V · ~∇p

)
~g+~g∧~p

)
·~σ.

To compute P−1/2T [g]P−1/2, we employ the following lemma whose proof is an ele-
mentary computation.

Lemma 2.1. For all Hermitian matrices a=a0σ0+~a ·~σ, it holds that

P−1/2aP−1/2=
1

1−ζ2 (a0−ζ~ω ·~a)σ0

+
1

1−ζ2
[
ζ~ωa0+(~ω⊗~ω+

√
1−ζ2(I−~ω⊗~ω))~a

]
·~σ.

Since the collision operator Q(w) conserves mass and spin, the moment equations of
(2.14) become

τ∂tn0+
1

2γ
~∇·
∫

R2

~pw0dp+
ε

2
~∇·~n=0,

τ∂t~n+
1

2γ
~∇·
∫

R2

~w⊗~pdp+ ε

2
~∇n0+

∫

R2

~w∧~pdp+τ~ω∧~n=0.

The first-order moments
∫
R2 pkw0dp and

∫
R2 pkwsdp can be calculated up to order

O(ε2)=O(τ2) by using (2.15) and Lemma 2.1, leading to the spin diffusion model
QSDE2:

∂tn0=divJ0, ∂tnj =divJj+Gj , j=1,2,3, (2.16)

where

J0s=(1−ζ2)−1
(
(∂sn0+n0∂sV )−ζωk(∂snk+nk∂sV +ηkℓsnℓ)

)
,

Jjs=(1−ζ2)−1
[
−ζωj(∂sn0+n0∂sV )

+(ωjωk+
√
1−ζ2(δjk−ωjωk))(∂snk+nk∂sV +ηkℓsnℓ)

]
,

Gj =ηjks(Jks+nkωs)+∂s
(
bk[~n/n0](ηjkℓ∂snℓ+δjkns−δjsnk)

)

+bs[~n/n0]∂snj−bj [~n/n0]~∇·~n.

(2.17)
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In contrast to the model QSDE1 (2.10)-(2.12), this system is fully coupled. It is
possible to show that the system is uniformly parabolic if ‖ζ‖L∞(0,T ;L∞(Ω))<1, but
the presence of the cross-diffusion terms makes it hard to prove any L∞ bounds, in
particular the bound |~n|/n0<1.

3. Analysis for the first model

In this section, we consider the model QSDE1 (2.10)-(2.13) in a bounded domain
Ω⊂R

2 with ∂Ω∈C1,1. For convenience, we recall the equations

∂tn0−divJ0=0, J0=∇n0+n0∇V, (3.1)

∂tnj−divJj =Fj , Fj =ηjkℓnk∂ℓV −2nj+bk[~n/n0]∂knj−bj [~n/n0]~∇·~n, (3.2)

Jjs=
(
δjℓ+bk[~n/n0]ηjkℓ

)
∂snℓ+nj∂sV −2ηjsℓnℓ+bk[~n/n0](δjkns−δjsnk), (3.3)

−λ2D∆V =n0−C(x) in Ω, t>0, j=1,2,3, s=1,2, (3.4)

and the functions

bk[~v]=λ
vk
|~v|2

(
1− 2|~v|

log(1+ |~v|)− log(1−|~v|)

)
, k=1,2,3, ~v∈R

3, 0< |~v|<1.

We impose the following boundary and initial conditions:

n0=nD, ~n=0, V =VD on ∂Ω, t>0, (3.5)

n0(0)=n
0
I , ~n(0)=~nI in Ω. (3.6)

Finally, we abbreviate ΩT =Ω×(0,T ).

3.1. Existence of solutions. We impose the following conditions on the
data:

nD ∈H1(0,T ;H2(Ω))∩H2(0,T ;L2(Ω))∩L∞(0,T ;L∞(Ω)), (3.7)

n0I ∈H1(Ω), inf
Ω
n0I >0, n0I =nD(0) on ∂Ω, inf

∂Ω×(0,T )
nD>0, (3.8)

VD ∈L∞(0,T ;W 2,p(Ω))∩H1(0,T ;H1(Ω)), C ∈L∞(Ω), C≥0 in Ω, (3.9)

for some p>2. Under these assumptions, we are able to prove the existence of strong
solutions (n0,V ) to the drift-diffusion model (3.1) and (3.4).

Theorem 3.1. Let T >0 and assume (3.7)-(3.9). Then there exists a unique solution

(n0,V ) to (3.1) and (3.4) subject to the initial and boundary conditions in (3.5)-(3.6)
satisfying

n0∈L∞(0,T ;H2(Ω))∩H1(0,T ;H1(Ω))∩H2(0,T ;(H1(Ω))′),

0<me−µt≤n0≤M in Ω, t>0, V ∈L∞(0,T ;W 1,∞(Ω)),

where µ=λ−2
D and

M =max

{
sup

∂Ω×(0,T )

nD, sup
Ω
n0I , sup

Ω
C(x)

}
, m=min

{
inf

∂Ω×(0,T )
nD, inf

Ω
n0I

}
>0.

Proof. The existence and uniqueness of a weak solution (n0,V ) to (3.1), (3.4),
and (3.5)-(3.6) satisfying

n0≥0, n0∈L2(0,T ;H1(Ω))∩H1(0,T ;(H1(Ω))′), V ∈L2(0,T ;H1(Ω))
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is shown in [9]; also see Section 3.9 in [13]. It remains to prove the regularity assertions.
First, we show that n0 is bounded from above and below. Employing (n0−M)+=

max{0,n0−M}∈L2(0,T ;H1
0 (Ω)) as a test function in the weak formulation of (3.1)

and using (3.4), we find that

1

2

d

dt

∫

Ω

(
(n0−M)+

)2
dx+

∫

Ω

|∇(n0−M)+|2dx=−
∫

Ω

n0∇V ·∇(n0−M)+dx

=− 1

2

∫

Ω

∇V ·∇
(
(n0−M)+

)2
dx−M

∫

Ω

∇V ·∇(n0−M)+dx

=− 1

2λ2D

∫

Ω

(n0−C(x))
(
(n0−M)+

)2
dx− M

λ2D

∫

Ω

(n0−C(x))(n0−M)+dx

≤0,

since n0−C(x)≥0 on {n0>M}, by the definition of M . This implies that (n0−
M)+=0 and hence, n0≤M in Ω, t>0.

Next, we employ the test function (n0−me−µt)−=min{0,n0−me−µt} in the
weak formulation of (3.1):

1

2

d

dt

∫

Ω

(
(n0−me−µt)−

)2
dx+

∫

Ω

|∇(n0−me−µt)−|2dx

=−
∫

Ω

(n0−me−µt)∇V ·∇(n0−me−µt)−dx

−me−µt

∫

Ω

∇V ·∇(n0−me−µt)−dx+µme−µt

∫

Ω

(n0−me−µt)−dx

=− 1

2λ2D

∫

Ω

(n0−C(x))
(
(n0−me−µt)−

)2
dx

− 1

λ2D

∫

Ω

(n0−C(x))(n0−me−µt)−dx+µme−µt

∫

Ω

(n0−me−µt)−dx

≤ 1

2λ2D
‖C‖L∞(Ω)

∫

Ω

(
(n0−me−µt)−

)2
dx

=−
∫

Ω

(n0−me−µt)∇V ·∇(n0−me−µt)−dx

−
∫

Ω

(
1

λ2D
−µ
)
me−µt(n0−me−µt)−dx,

since we integrate over {n0<me−µt}. By the definition of µ, the last integral vanishes.
Then, the Gronwall lemma implies that (n0−me−µt)−=0 and hence, n0≥me−µt.

The above bounds show that the right-hand side of the Poisson equation is an el-
ement of L∞(0,T ;L∞(Ω)). Then, by elliptic regularity, V ∈L∞(0,T ;W 2,p(Ω)), where
p>2 is given in (3.9). Since W 2,p(Ω) →֒W 1,∞(Ω) (we recall that Ω⊂R

2), it follows
that ∇V ∈L∞(0,T ;L∞(Ω)). Consider

−λ2D∆∂tV =∂tn0 in Ω, ∂tV =∂tVD on ∂Ω.

The right-hand side of this equation satisfies ∂tn0∈L2(0,T ;(H1(Ω))′). Hence, ∂tV ∈
L2(0,T ;H1(Ω)).

Finally, we prove the higher regularity for n0. For this, we consider the equation
satisfied by ρ=n0−nD:

∂tρ−div(∇ρ+ρ∇V )=f in Ω, t>0, ρ=0 on ∂Ω, ρ(·,0)=n0I −nD(·,0),
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where f =−∂tnD+div(∇nD+nD∇V ). We use the following result: If the regularity
f , ∂tf ∈L2(ΩT ) and ρ(·,0)∈H2(Ω)∩H1

0 (Ω) holds then n0∈C0([0,T ];H2(Ω)), ∂tn0∈
L2(0,T ;H1(Ω)), ∂2t n0∈L2(0,T ;(H1(Ω))′) (see, e.g., [28, Theorem 1.3.1]).

The boundedness of ∇V implies that f ∈L2(ΩT ). This gives the regularity ∂tn0∈
L2(ΩT ). As a consequence, V ∈H1(0,T ;H2(Ω)). Our assumptions on the data show
that −∂2t nD+∆∂tnD ∈L2(ΩT ), and it remains to prove that ∂tdiv(nD∇V )∈L2(ΩT ).
Now,

∂tdiv(nD∇V )=∂t∇nD ·∇V +∇nD ·∇∂tV +∂tnD∆V +nD∆∂tV.

The first term on the right-hand side lies in L2(ΩT ) since ∇V ∈L∞(0,T ;L∞(Ω)).
Furthermore, ∇nD ∈L∞(0,T ;H1(Ω)) and∇∂tV ∈L2(0,T ;H1(Ω)) from which we con-
clude that the second term is in L2(ΩT ). In a similar way, this property can be verified
for the third and fourth terms. This shows the claim and the regularity statements
for n0.

Next, given (n0,V ) as the solution to (3.1) and (3.4), we prove the existence
of a solution ~n to (3.2) with the corresponding boundary and initial conditions in
(3.5)-(3.6), satisfying the bound |~n|/n0<1.

Theorem 3.2. Let (n0,V ) be the solution to (3.1), (3.4), and (3.5)-(3.6), according
to Theorem 3.1, and let ~nI ∈H1

0 (Ω)
3 satisfy

sup
x∈Ω

|~nI(x)|
n0I(x)

<1.

Then there exists a weak solution ~n∈L2(0,T ;H1(Ω))3∩H1(0,T ;H−1(Ω))3 to (3.2)-
(3.3) and (3.5)-(3.6) satisfying

sup
(x,t)∈ΩT

|~n(x,t)|
n0(x,t)

<1. (3.10)

Furthermore, there exists at most one weak solution satisfying (3.10) and ~n∈L∞(0,T ;
W 1,4(Ω))3.

Proof. We prove first the existence of solutions to a truncated problem by
applying the Leray-Schauder fixed-point theorem. Let 0<χ<1 be a fixed parameter
and let φχ∈C0(R) be a nonincreasing function satisfying φχ(y)=1 for y≤1−χ and
φχ(y)=0 for y≥1. Then define

bχk [~v]=φχ(|~v|)bk[~v] for all ~v∈R
3.

Step 1: Application of the fixed-point theorem. In order to define the fixed-point
operator, let ~ρ∈L2(ΩT )

3 and σ∈ [0,1]. We wish to solve the linear problem

d

dt

∫

Ω

~n ·~zdx+a(~n,~z;t)=0 for all ~z∈H1
0 (Ω)

3, ~n(0)=σ~nI , (3.11)

where

a(~n,~z;t)=

∫

Ω

(
(δjℓ+σb

χ
k [~ρ/n0]ηjkℓ)∂snℓ+nj∂sV −2ηjsℓnℓ

)
∂szjdx

+σ

∫

Ω

bχk [~ρ/n0](δjkns−δjsnk)∂szjdx



N. ZAMPONI AND A. JÜNGEL 819

−
∫

Ω

(
ηjkℓnk∂ℓV −2nj+σb

χ
s [~ρ/n0]∂snj−σbχj [~ρ/n0]∂sns

)
zjdx,

for ~z∈H1
0 (Ω)

3. The bilinear form a :H1
0 (Ω)

3×H1
0 (Ω)

3→R is continuous since
|bχk [~ρ/n0]|≤λ and |∇V |∈L∞(0,T ;L∞(Ω)). Furthermore, using the antisymmetry of
ηjkℓ,

a(~n,~n;t)=

∫

Ω

(
‖∇~n‖2+nj∂sV ∂snj−2ηjsℓnℓ∂snj

)

+σ

∫

Ω

bχk [~ρ/n0](δjkns−δjsnk)∂snjdx

+

∫

Ω

(
2nj−σbχs [~ρ/n0]∂snj+σbχj [~ρ/n0]∂sns

)
njdx,

where ‖∇~n‖2=∑3
j,k=1(∂jnk)

2. All the terms on the right-hand side can be written as
a product of nj , ∂knℓ, and possibly an L∞ function. Note that the only term which
does not have this structure, bχkηjkℓ∂snℓ∂snj , vanishes because of the antisymmetry
of ηjkℓ. Therefore, the Hölder and Cauchy-Schwarz inequalities yield

a(~n,~n;t)≥ 1

2
‖~n‖2H1(Ω)−c‖~n‖2L2(Ω)

for some constant c>0 which depends on the L∞ norm of ∇V . Hence, there exists a
unique weak solution ~n∈L2(0,T ;H1

0 (Ω))
3∩H1(0,T ;H−1(Ω))3 to the linear problem

(3.11) [25, Corollary 23.26]. Moreover, there exists a constant c>0 independent of ρ
and σ such that

‖~n‖L2(0,T ;H1(Ω))3 +‖∂t~n‖L2(0,T ;H−1(Ω))3 ≤ c. (3.12)

This defines the fixed-point operator F :L2(ΩT )
3× [0,1]→L2(ΩT )

3, F (~ρ,σ)=~n.
We note that F (~ρ,0)=0.

Next, we show that F is continuous. Let (~ρ(k))⊂L2(ΩT )
3 and (σ(k))⊂R such

that ~ρ(k)→ ~ρ in L2(ΩT )
3 and σ(k)→σ as k→∞. Since bχk is bounded, it follows that

bχj [ρ
(k)/n0]→ bχj [ρ/n0] in L

r(ΩT ) for all r<∞. Let n(k)=F (ρ(k),σ(k)). The uniform
estimate (3.12) shows that, up to a subsequence,

~n(k)⇀~n weakly in L2(0,T ;H1(Ω))3 and in H1(0,T ;H−1(Ω))3,

~n(k)→~n strongly in L2(ΩT )
3,

since the embedding L2(0,T ;H1(Ω))∩H1(0,T ;H−1(Ω)) →֒L2(ΩT ) is compact, by the
Aubin lemma. These convergence results are sufficient to perform the limit k→∞
in the weak formulation of (3.11) with ~n(k) instead of ~n and σ(k) instead of σ. The
limit equation shows that ~n=F (~ρ,σ). As the solution to the linear problem is unique,
the convergence ~n(k)→~n in L2(ΩT )

3 holds for the whole sequence, and hence, S is
continuous. Furthermore, by the Aubin lemma, F is compact. Finally, let ~n be a
fixed point of F (·,σ). By the boundedness of bχj and estimate (3.12), we find uniform

estimates for ~n in L2(ΩT )
3. Therefore, we can apply the fixed-point theorem of Leray-

Schauder which yields a weak solution to the truncated problem (3.11) with ~ρ replaced
by ~n.

Step 2: L∞ bounds for ~n. We prove that the solution to (3.11) is bounded in ΩT .
To this end, we define the function ψ=

√
1+ |~n|2. Then, in the sense of distributions,

∂tψ=
∂t~n ·~n
ψ

=
1

2ψ

(
∆(|~n|2)+2div(|~n|2∇V )−∇V ·∇|~n|2−2G[~n]

)
,
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where

G[~n]=‖∇~n‖2+2~n ·curl~n+2|~n|2. (3.13)

Inserting the identities

1

2ψ
∆(|~n|2)=∆ψ+

1

ψ
|∇ψ|2,

1

ψ
div(|~n|2∇V )=div(ψ∇V )+∇V ·∇ψ−∆V

ψ
,

1

2ψ
∇V ·∇|~n|2=∇V ·∇ψ

in the above equation for ψ, we deduce that

∂tψ−div(∇ψ+ψ∇V )=−ψ−1∆V −ψ−1
(
G[~n]−|∇ψ|2

)
. (3.14)

Since |curl~v|2≤2‖∇~v‖2 for all ~v∈H1
0 (Ω)

3, Young’s inequality gives

G[~v]≥‖∇~v‖2−
(
2|~v|2+ 1

2
|curl~v|2

)
+2|~v|2≥0. (3.15)

Elementary computations show that

G[~n]−|∇ψ|2=ψ2G

[
~n

ψ

]
+

|∇(ψ2)|2
2ψ4

≥0.

Hence, we can estimate (3.14) by

∂tψ−div(∇ψ+ψ∇V )≤ 1

λ2Dψ
(n0−C(x))≤

n0
λ2Dψ

≤ M

λ2D
.

By the maximum principle, ψ≤ c(T ) in ΩT , where c(T )>0 depends on the end
time T >0. Taking into account that ψ≥1 by definition, we conclude that ψ∈
L∞(0,T ;L∞(Ω)), and hence |~n|∈L∞(0,T ;L∞(Ω)).

Step 3: Proof of |~n|/n0<1. We show that there exists 0<κ<1 such that |~n|/n0≤
κ<1. Then, choosing χ>0 sufficiently small, we can remove the truncation obtaining
a solution to the original problem.

Let u=1−|~n|2/n20. Note that this function is well defined since n0 is strictly
positive; see Theorem 3.1. A tedious computation shows that u solves

∂tu−∆u=∇(logn0+V ) ·∇u+2G[~n/n0]

in the sense of distributions, where G is defined in (3.13). We prove a lower bound for
u by testing the weak formulation of this equation by U := (u−k)−=min{0,u−k}∈
L2(0,T ;H1

0 (Ω)), where k=min{inf∂Ω×(0,T )u, infΩ×{0}u}>0.

1

2

d

dt

∫

Ω

U2dx+

∫

Ω

|∇U |2dx=
∫

Ω

U∇(logn0+V ) ·∇Udx+2

∫

Ω

UG[~n/n0]dx. (3.16)

Since G[~n/n0]≥0, the last integral is nonpositive. The first integral is estimated by
employing the lower bound for n0, obtained in Theorem 3.1, and applying Young’s
and Hölder’s inequalities:

∫
ΩU∇(logn0+V ) ·∇Udx≤

(
inf
ΩT

n0

)−1∫

Ω

|U ||∇n0||∇U |dx
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≤ ε

2

∫

Ω

|∇U |2dx+c(ε)
∫

Ω

|U |2|∇n0|2dx

≤ ε

2

∫

Ω

|∇U |2dx+c(ε)‖∇n0‖2L4(Ω)‖U‖2L2(Ω).

The Gagliardo-Nirenberg, Hölder, and Poincaré inequalities imply that

‖U‖2L4(Ω)≤ c‖U‖L2(Ω)‖U‖H1(Ω)≤
ε

2
‖∇U‖2L2(Ω)+c(ε)‖U‖2L2(Ω),

where ε>0. By Theorem 3.1, ∇n0 is an element of L∞(0,T ;W 1,4(Ω)), in view of the
embedding H2(Ω) →֒W 1,4(Ω). Collecting the above estimates, we infer that

∫

Ω

U∇(logn0+V ) ·∇Udx≤ ε
∫

Ω

|∇U |2dx+c(ε)
∫

Ω

U2dx.

Inserting this inequality into (3.16) and choosing ε<2, it follows that

1

2

d

dt

∫

Ω

U2dx≤ c(ε)
∫

Ω

U2dx.

Then Gronwall’s lemma and U(·,0)=0 gives U =0 in ΩT and hence, u≥k>0 in ΩT .

Step 4: Uniqueness of solutions. Let ~u and ~v be two solutions to (3.2) and
(3.5)-(3.6) satisfying (3.10) and ~u∈L∞(0,T ;W 1,4(Ω))3. Set ~w=~u−~v. Taking the
difference of the equations satisfied by ~u and ~v, respectively, and employing ~w as a
test function, we find that

1

2

d

dt

∫

Ω

|~w|2dx+
∫

Ω

‖∇~w‖2dx

≤
∫

Ω

{
−wj∂kwj∂kV +2ηjkℓwℓ∂kwj

−(bk[~u]−bk[~v])(ηjkℓ∂suℓ+δjkus−δjsuk)∂swj−bk[~v](δjkws−δjswk)∂swj

}
dx,

+

∫

Ω

{
(ηjkℓwk∂ℓV −2wj)wj+[(bs[~u]−bs[~v])∂suj+bs[~v]∂swj ]wj

− [(bj [~u]−bj [~v])∂sus+bj [~v]∂sws]wj

}
dx.

Thanks to the L∞ bounds on ∇V , ~u, and ~v, we can estimate as follows:

1

2

d

dt

∫

Ω

|~w|2dx+
∫

Ω

‖∇~w‖2dx

≤c
∫

Ω

(
|~w|‖∇~w‖+‖∇~u‖|~w|2+‖∇~u‖|~w| |∇~w‖

)
dx

≤1

2

∫

Ω

‖∇~w‖2dx+c‖∇~u‖L4(ΩT )(1+‖∇~u‖L4(ΩT ))

∫

Ω

|~w|2dx,

where c>0 is some generic constant. Since ~w(0)=0, the W 1,4 regularity for ~u and
Gronwall’s lemma imply the assertion. This finishes the proof.
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3.2. Entropy dissipation. Let (n0,~n,V ) be a solution to (3.1)-(3.4), (3.5)-
(3.6) according to theorems 3.1 and 3.2. We assume that the boundary data is in
thermal equilibrium, i.e.

nD= e−VD , V =VD, ~n=0 on ∂Ω, (3.17)

where VD=VD(x) is time-independent. In this subsection, we will show that the
macroscopic entropy

S(t)=

∫

Ω

(
1

2
(n0+ |~n|)

(
log(n0+ |~n|)−1

)
+

1

2
(n0−|~n|)

(
log(n0−|~n|)−1

)

+(n0−C(x))V − λ2D
2

|∇V |2
)
dx

is nonincreasing in time. Note that n0< |~n| by Theorem 3.2, so that log(n0−|~n|) is
well defined.

The functional S(t) can be derived as follows. Inserting the thermal equilibrium
distribution g[n0,~n] in the quantum entropy A[w], defined in Section 2.2, and taking
into account the electric energy contribution, it follows that the total macroscopic free
energy reads as

S̃(t)=A[g[n0,~n]]−
∫

Ω

(
C(x)V +

λ2D
2

|∇V |2
)
dx.

Then the expansion of g[n0,~n] (see (2.5), (2.7), and (2.8)) yields the above formula

for S̃(t)=S(t)+O(ε2).

Proposition 3.3. The entropy dissipation −dS/dt can be written as

dS

dt
=−1

2

∫

Ω

(n0+ |~n|)|∇(log(n0+ |~n|)+V )|2dx

− 1

2

∫

Ω

(n0−|~n|)|∇(log(n0−|~n|)+V )|2dx

− 1

2

∫

Ω

|~n| log
(
n0+ |~n|
n0−|~n|

)
G[~n/|~n|]dx

≤0,

where G is defined in (3.13).

Note that in the drift-diffusion model without spin contribution, i.e. |~n|=0, we
recover the standard entropy dissipation term

∫
Ω
n0|∇(logn0+V )|2dx.

Proof. Taking the time derivative of S, we find after some computations that

dS

dt
=

∫

Ω

((
1

2
log(n20−|~n|2)+V

)
∂tn0+

1

2
log

(
n0+ |~n|
n0−|~n|

)
~n

|~n| ·∂t~n

+(n0−C(x))∂tV −λ2D∇V ·∇∂tV
)
dx. (3.18)

To be precise, the second term in the integral must be understood in the sense of
L2(0,T ;H−1(Ω)). Since VD does not depend on time, we have ∂tV =0 on ∂Ω, t>0.
Hence,

∫

Ω

(n0−C(x))∂tV dx=−λ2D
∫

Ω

∆V ∂tV dx=λ
2
D

∫

Ω

∇V ·∇∂tV dx,
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and thus, the last two terms in dS/dt cancel.
In order to compute the second term in dS/dt, we observe that

~n ·∂t~n=
1

2
∆(|~n|2)+div(|~n|2∇V )− 1

2
∇(|~n|2) ·∇V −G[~n],

where G is defined in (3.13). Then, inserting this expression and (2.10) into (3.18)
and integrating by parts, we infer that

dS

dt
=−

∫

Ω

{
∇
(
1

2
log(n20−|~n|2)+V

)
·(∇n0+n0∇V )

+
1

2
∇
(

1

|~n| log
n0+ |~n|
n0−|~n|

)
·
(
1

2
∇(|~n|2)+ |~n|2∇V

)

+
1

2|~n| log
n0+ |~n|
n0−|~n|

(
1

2
∇(|~n|2) ·∇V +G[~n]

)}
dx.

Since

∇
(

1

|~n| log
n0+ |~n|
n0−|~n|

)
=

1

|~n|∇
(
log

n0+ |~n|
n0−|~n|

)
+∇

(
1

|~n|

)
log

n0+ |~n|
n0−|~n| ,

we can write

dS

dt
=−

∫

Ω

{
∇
(
1

2
log(n20−|~n|2)+V

)
·(∇n0+n0∇V )

+
1

2|~n|∇
(
log

n0+ |~n|
n0−|~n|

)
·
(
1

2
∇(|~n|2)+ |~n|2∇V

)}
dx

− 1

2

∫

Ω

log
n0+ |~n|
n0−|~n|

{
∇
(

1

|~n|

)
·
(
1

2
∇(|~n|2)+ |~n|2∇V

)

+
1

|~n|

(
1

2
∇(|~n|2) ·∇V +G[~n]

)}
dx.

Straightforward computations show that

|~n|G
[
~n

|~n|

]
=∇

(
1

|~n|

)
·
(
1

2
∇(|~n|2)+ |~n|2∇V

)
+

1

|~n|

(
1

2
∇(|~n|2) ·∇V +G[~n]

)
,

which allows us to reformulate the second integral. Together with some manipulations
in the first integral, we obtain

dS

dt
=−1

2

∫

Ω

{
∇(log(n0+ |~n|)+V ) ·

(
∇(n0+ |~n|)+(n0+ |~n|)∇V

)

+∇(log(n0−|~n|)+V ) ·
(
∇(n0−|~n|)+(n0−|~n|)∇V

)}
dx

− 1

2

∫

Ω

|~n| log
(
n0+ |~n|
n0−|~n|

)
G

[
~n

|~n|

]
dx.

We observe that the expression

|~n| log
(
n0+ |~n|
n0−|~n|

)
G

[
~n

|~n|

]
=

1

n0

1

|~n|/n0
log

(
1+ |~n|/n0
1−|~n|/n0

)
|~n|2G

[
~n

|~n|

]
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is integrable because infΩT
n0>0, supΩT

|~n|/n0<1, the map

(0,1−ε)→R, x 7→ 1

x
log

(
1+x

1−x

)

is bounded for all ε>0, and |~n|2G[~n/|~n|]∈L1(ΩT ). Since

∇(n0±|~n|)+(n0±|~n|)∇V =(n0±|~n|)∇
(
log(n0±|~n|)+V

)
,

this finishes the proof.

3.3. Long-time decay of the solutions. Let (n0,~n,V ) be a solution to
(3.1)-(3.4), (3.5)-(3.6) according to theorems 3.1 and 3.2. We will show that, under
suitable assumptions on the electric potential, the spin vector converges to zero as
t→∞.

Theorem 3.4. Let 2<p<∞. Then there exists a constant εp>0 such that if the

condition ‖∇V ‖L∞(0,T ;L∞(Ω))≤ εp holds, then

‖~n(·,t)‖Lp(Ω)≤‖~nI‖Lp(Ω)e
−κpt, t∈ (0,T ),

for some constant κp>0 which depends on p, Ω, and the L∞ norm of ∇V . Further-

more, there exists ε2>0 such that if ‖∆V ‖L∞(0,T ;L∞(Ω))≤ ε2 then

‖~n(·,t)‖L2(Ω)≤‖~nI‖L2(Ω)e
−κ2t, t∈ (0,T ),

for some constant κ2>0 which depends on Ω and the L∞ norm of ∆V .

Note that we may set T =∞ yielding the desired convergence result. For the
proof of the second part of the theorem, we need the following lemma.

Lemma 3.5. There exists a constant cG>0, depending only on Ω, such that for all

~u∈H1
0 (Ω)

3,

∫

Ω

G[~u]dx≥ cG
∫

Ω

|~u|2dx,

where G is defined in (3.13).

Proof. Let µ>0 and consider the following bilinear form on H1
0 (Ω)

3:

Bµ(~u,~v)=

∫

Ω

(
∇~u :∇~v+~u ·curl~v+~v ·curl~u+(2+µ)~u ·~v

)
dx,

where ∇~u :∇~v=∑3
j,k=1∂juk∂jvk. The bilinear form B is symmetric, continuous, and

coercive on H1
0 (Ω)

3, since, using (3.15) and the Poincaré inequality,

Bµ(~u,~u)=G[~u]+µ

∫

Ω

|~v|2dx≥µ
∫

Ω

|~v|2dx≥ cµ‖~v‖H1
0
(Ω)3 .

Hence, by the Lax-Milgram lemma, for all ~f ∈L2(Ω)3, there exists a unique solution
~u∈H1

0 (Ω)
3 to

B(~u,~v)=

∫

Ω

~f ·~vdx, ~v∈H1
0 (Ω)

3.
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This defines the linear operator L :L2(Ω)3→L2(Ω)3, L(~f)=~u. Since the range of L,
R(L), is a subset of H1

0 (Ω)
3, which embeds compactly into L2(Ω)3, L is compact.

Furthermore, L is symmetric (since B is symmetric) and positive in the sense of∫
Ω
L(~f) · ~fdx>0 for all ~f 6=0 (since B is coercive). By the Hilbert-Schmidt theorem for

symmetric compact operators (see, e.g., [21, Theorem VI.16]), there exists a complete
orthonormal system (~u(k)) of L2(Ω) of eigenfunctions of L,

L(~u(k))=λk~u
(k), 0<λkց0 as k→∞.

Note that (λk) depends on µ since L and B do so. In particular, ~u(k)∈R(L)⊂H1
0 (Ω)

3

and

B(~u(k),~v)=λ−1
k

∫

Ω

~u(k) ·~vdx for ~v∈H1
0 (Ω)

3, k∈N. (3.19)

We claim that λ−1
1 >µ. Otherwise, if λ−1

1 ≤µ, the definition of B and (3.19) yield

∫

Ω

(
‖∇~u(1)‖2+2~u(1) ·curl~u(1)+(2+µ)|~u(1)|2

)
dx

=B(~u(1),~u(1))=λ−1
1

∫

Ω

|~u(1)|2dx≤µ
∫

Ω

|~u(1)|2dx.

The terms containing µ cancel, which gives

∫

Ω

(
‖∇~u(1)‖2+2~u(1) ·curl~u(1)+2|~u(1)|2

)
dx≤0.

However, in view of (3.15), the integral is nonnegative and hence, it must vanish.
Therefore,

‖∇~u(1)‖2+2~u(1) ·curl~u(1)+2|~u(1)|2=0 a.e. in Ω. (3.20)

On the other hand, using |curl~u(1)|2≤2‖∇~u(1)‖2,

0≥ 1

2
|curl~u(1)|2+2~u(1) ·curl~u(1)+2|~u(1)|2=

∣∣∣∣
1√
2
curl~u(1)+

√
2~u(1)

∣∣∣∣
2

,

from which we infer that curl~u(1)=2~u(1) and, by (3.20), ‖∇~u(1)‖2+6|~u(1)|2=0. This
implies that ~u(1)=0 which is absurd. Hence, λ−1

1 >µ.
Now let ~u∈H1

0 (Ω)
3∩H2(Ω)3. We can decompose ~u in the orthonormal set (~u(k)),

~u=
∑

k∈N
ck~u

(k) for some ck ∈R. It follows from (3.19) and the orthogonality of (~u(k))
on L2(Ω)3 that

B(~u,~u)≥
∑

k∈N

c2kB(~u(k),~u(k))=
∑

k∈N

c2kλ
−1
k ≥λ−1

1 ‖~u‖2L2(Ω)3 .

By a density argument, this inequality also holds for all ~u∈H1
0 (Ω)

3. Therefore,

∫

Ω

G[~u]dx=Bµ(~u,~u)−µ
∫

Ω

|~u|2dx≥ (λ−1−µ)‖~u‖2L2Ω)3 ,

and the lemma follows with cG=λ−1
1 −µ>0.
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Proof. [Proof of Theorem 3.4.] Let p≥2. Using the test function p|~n|p−2nj ∈
L2(0,T ;H1

0 (Ω)) in (3.2) and summing over j=1,2,3, we find after elementary com-
putations that

d

dt

∫

Ω

|~n|pdx+ 4(p−2)

p

∫

Ω

∣∣∇|~n|p/2
∣∣2dx

=−2(p−1)

∫

Ω

|~n|p/2∇V ·∇|~n|p/2dx−p
∫

Ω

|~n|p−2G[~n]dx. (3.21)

Now, we distinguish two cases. First, let p>2. Employing Young’s inequality
with α>0 and G[~n]≥0, we find that

d

dt

∫

Ω

|~n|pdx+ 4(p−2)

p

∫

Ω

∣∣∇|~n|p/2
∣∣2dx

≤ (p−1)2

α
‖∇V ‖2L∞(0,T ;L∞(Ω))

∫

Ω

|~n|pdx+ α

2

∫

Ω

∣∣∇|~n|p/2
∣∣2dx.

Then, choosing α=4(p−2)/p and employing the Poincaré inequality
∫

Ω

∣∣∇|~n|p/2
∣∣2dx≥C2

P

∫

Ω

|~n|pdx,

we infer that

d

dt

∫

Ω

|~n|pdx≤
(
p(p−1)2

4(p−2)
‖∇V ‖2L∞(0,T ;L∞(Ω))−

2(p−2)

p
C2

P

)∫

Ω

|~n|pdx.

This proves the first part after setting εp<
√
8(p−2)CP /(p(p−1)) and applying the

Gronwall lemma.
For the second part, let p=2 in (3.21). By Lemma 3.5 and integration by parts

in the term containing the potential, we obtain

d

dt

∫

Ω

|~n|2dx=−
∫

Ω

∆V |~n|2dx−2

∫

Ω

G[~n]dx≤
(
‖∆V ‖L∞(0,T ;L∞(Ω))−2cG

)∫

Ω

|~n|2dx.

With the choice ε2<2cG and the Gronwall lemma, the theorem follows.

If the total space charge n0−C(x)=−λ2D∆V is positive, we are able to prove
that ~n(·,t) converges to zero in the L∞ norm.

Proposition 3.6. Let 0<T ≤∞. The following L∞ estimate holds:

‖~n(·,t)‖L∞(Ω)≤‖~nI‖L∞(Ω)exp
(
(supΩ×(0,T )∆V )t

)
, t∈ (0,T ).

Proof. Let 2<p<∞ be arbitrary. From (3.21) we deduce that, by integrating
by parts,

d

dt

∫

Ω

|~n|pdx≤ (p−1)sup
ΩT

∆V

∫

Ω

|~n|pdx.

Therefore

‖~n(·,t)‖Lp(Ω)≤ exp
(
(1− 1

p )(supΩT
∆V )t

)
‖~nI‖Lp(Ω), t∈ (0,T ).

Passing to the limit p→∞ in this inequality yields the claim.
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4. Numerical simulations

In this section, we present some numerical results for the models (2.10)-(2.13)
and (2.16)-(2.17), (2.13) in one space dimension, Ω=(0,1). We choose the boundary
conditions

n0=C, ~n=0, V =U on ∂Ω={0,1}, t>0,

where U(x)=VAx and VA=80 is the scaled applied potential, and the initial condi-
tions

n0(x,0)=exp(−Veq(x)), ~n(x,0)=0,

where Veq is the equilibrium potential, defined by

−λ2D∂2xxVeq=exp(−Veq)−C(x) in Ω, Veq(0)=Veq(1)=0.

We choose λ2D=10−3. The doping profile corresponds to that of a ballistic diode:

C(x)=Cmin for x̄<x<1− x̄, C(x)=1 else,

where Cmin=0.025 and x̄=0.2. The pseudo-spin polarization and the direction of the
local magnetization are defined by

ζ=0.5, ~ω=(0,0,1)⊤.

Table 4.1 shows the values of the units which allows for the computation of the physical
values from the scaled ones.

space unit 10−7 m

time unit 0.5×10−13 s

voltage unit 1.25×10−2 V

particle density unit 1017 m−2

current density unit 2×1023 m−1 s−1

Table 4.1. Units used for the numerical simulations.

Models QSDE1 (2.10)-(2.13) and QSDE2 (2.16)-(2.17), (2.13) with the corre-
sponding initial and boundary conditions (3.5)-(3.6) are discretized with the Crank-
Nicolson finite-difference scheme and the space step △x=10−2. The resulting non-
linear discrete ODE system is solved by using the Matlab routine ode23s.

Since the initial spin vector is assumed to vanish, the particle density n0, com-
puted from the model QSDE1, corresponds exactly to the particle density of the
standard drift-diffusion model, and the spin vector vanishes for all time. This situa-
tion is different in the model QSDE2 since the equations are fully coupled. For the
model QSDE2, figure 4.1 shows the particle density n0 and the components nj of the
spin vector versus position at various times. The solution at t=1 corresponds to the
steady state. We observe a charge built-up of n0 in the low-doped region of the diode.
The spin vector components vary only slightly in this region but their gradients are
significant in the high-doped regions close to the contacts. Clearly, the components
nj do not need to be positive and, in fact, they even do not have a sign.
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Fig. 4.1. Model QSDE2: Particle density and components of the spin vector versus position at
times t=0, t=7 ·10−4, and t=1.

Fig. 4.2. Model QSDE2: Ratio |~n|/n0 versus position at various times.

The models QSDE1 and QSDE2 are well defined only if |~n|/n0<1. We plot this
ratio in figure 4.2 at various times for the model QSDE2. In all the presented cases,
the quotient stays below one. This indicates that bk[~n/n0] is well defined also in this
model.

We have shown in Theorem 3.4 that the spin vector of the model QSDE1 con-
verges to zero if the electric potential satisfies certain conditions. In figure 4.3, the
relative difference ‖n0(t)−n0(∞)‖2/‖n0(∞)‖2 versus time is depicted (semilogarith-
mic plot), where n0(∞) denotes the steady-state particle density of model QSDE1 or
QSDE2, respectively. The norm ‖·‖2 is the Euclidean norm. The stationary solution
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is approximated by n0(t
∗) with t∗=1. Whereas the decay of the solution to the model

QSDE1 is numerically of exponential type (in agreement with the theoretical results),
the decay for the model QSDE2 seems to be exponential only for small times.

Fig. 4.3. Relative difference ‖n0(t)−n0(∞)‖/‖n0(t)‖ versus time (semilogarithmic plot) for
the models QSDE1 (solid line) and QSDE2 (dashed line).

Fig. 4.4. Static current-voltage characteristics for the models QSDE1 and QSDE2.

In the final figure 4.4, we present the current-voltage characteristics for the models
QSDE1 and QSDE2, i.e. the relation between J0 at x=1 and the applied bias VA.
The characteristics of model QSDE1 correspond to the current-voltage curve of the
standard drift-diffusion model. We observe that the additional terms in the definition
of J0 lead to an increase of the particle current density.
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