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LONG-TIME DYNAMICS OF THE NONHOMOGENEOUS

INCOMPRESSIBLE FLOW OF NEMATIC LIQUID CRYSTALS∗

XIANPENG HU† AND HAO WU‡

Abstract. We study the long-time behavior of global strong solutions to a hydrodynamic system
for nonhomogeneous incompressible nematic liquid crystal flows driven by two types of external forces
in a smooth bounded domain of dimension two. For arbitrary large regular initial data with the initial
density being away from vacuum, we prove the decay of the velocity field for both cases. Furthermore,
for the case with asymptotically autonomous external force, we can prove the convergence of the
density function and the director vector as time goes to infinity. Estimates on the convergence rate
are also provided.
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1. Introduction

Liquid crystals are substances that exhibit a phase of matter that has properties
between those of a conventional liquid and those of a solid crystal [9]. The hydrody-
namic theory of liquid crystals due to Ericken and Leslie was developed around the
1960’s [10, 19, 20]. Since then, the mathematical theory is still progressing and the
study of the full Ericksen–Leslie model presents relevant mathematical difficulties. We
consider the following hydrodynamical model for the flow of nematic liquid crystals
(cf. [22]):

ρt+v ·∇ρ= 0, (1.1)

ρ(vt+v ·∇v)−ν∆v+∇P =−λ∇·(∇d⊙∇d)+ρg, (1.2)

∇·v= 0, (1.3)

dt+v ·∇d=γ(∆d−f(d)), (1.4)

in Ω×R
+, where Ω⊂R

n (n= 2,3) is assumed to be a bounded domain with smooth
boundary Γ. System (1.1)–(1.4) is subject to the Dirichlet boundary conditions

v(x,t) = 0, d(x,t) =d0(x), for (x,t)∈Γ×R
+, (1.5)

and the initial conditions

ρ|t=0 =ρ0(x), v|t=0 =v0(x) with ∇·v0 = 0, d|t=0 =d0(x), for x∈Ω. (1.6)

In the above system, ρ is the density of the material, v is the velocity field of the flow,
and d represents the averaged macroscopic/continuum molecular orientation in R

n.
P (x,t) is a scalar function representing the pressure (including both the hydrostatic
and the induced elastic part from the orientation field). g stands for the external
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body force. The positive constants ν, λ, and γ stand for viscosity, the competition
between kinetic energy and potential energy, and macroscopic elastic relaxation time
(Debroah number) for the molecular orientation field. We assume that f(d) =∇F (d)
for some smooth bounded function F :Rn→R. ∇d⊙∇d denotes the n×n matrix
whose (i,j)-th entry is given by ∇id ·∇jd, for 1≤ i,j≤n.

System (1.1)–(1.4) is a nonhomogeneous version of the following simplified system
introduced in [22, 25] that models the incompressible flow of nematic liquid crystals
with varying director lengths:

vt+v ·∇v−ν∆v+∇P =−λ∇·(∇d⊙∇d), (1.7)

∇·v= 0, (1.8)

dt+v ·∇d=γ(∆d−f(d)). (1.9)

System (1.7)–(1.9) keeps the important mathematical structure as well as some of
the essential features of the original Ericksen–Leslie system. The Ginzburg–Landau
approximation

f(d) =
1

η2
(|d|2−1)d, with its antiderivative F (d) =

1

4η2
(|d|2−1)2, (1.10)

was introduced in order to relax the nonlinear constraint |d|= 1. The system (1.7)–
(1.9) has been studied in a series of works not only theoretically [25,26,29,42] but also
numerically [28, 30] (see also [15] for the case f(d) = 0). In [25], the authors proved
the existence of global weak solutions to system (1.7)–(1.9) with Dirichlet boundary
conditions by a semi-Galerkin method. Global existence and uniqueness of classical
solutions to the same system was proved for n= 2 or n= 3 under an assumption
of large viscosity. Long-time behavior of global solutions to system (1.7)–(1.9) was
studied in [25,35,42]. In particular, convergence of global classical solutions to single
steady states as time goes to infinity was obtained in [35,42]. We refer to [3,6,12,29]
for results on the homogeneous system (1.7)–(1.9) subject to other types of boundary
conditions.

As far as the density-dependent system (1.1)–(1.4) is concerned, the authors in
[14,33,43] proved existence of global weak solutions of the problem (1.1)–(1.6) without
assuming the positive lower bound for the initial density. The basic idea of their proof
is to introduce a viscous term ǫ∆ρ in the transport equation (1.1), and then pass to the
limit as ǫ→0. In the recent work [7], instead of introducing the viscosity term in (1.1),
the authors provided an alternative proof for the existence of global weak solutions
to system (1.1)–(1.6) under the stronger Assumption (1.11) (i.e., the initial density
is positive and bounded). Regularity properties of weak solutions to system (1.1)–
(1.6) were proved by using Ladyzhenskaya type energy estimates for the approximate
solutions constructed within a proper Galerkin scheme, provided that the initial data
are regular and satisfy assumptions (1.11)–(1.12). For a compressible version of the
liquid crystal system (1.1)–(1.6), existence and large-time behavior of a global weak
solution were established in [5, 32, 40] while existence of local strong solutions was
obtained in [34] (see also [31] for a blow-up criterion). Finally, we refer to the recent
works [4, 17, 21, 24, 27, 39, 41, 44] and the references cited therein for mathematical
results on the liquid crystal system under the constraint |d|= 1.

We note that the external force ρg is supposed to be vanishing in the above
mentioned work. In this paper, we focus on the two-dimensional case n= 2 and
extend the results on long-time behavior of global classical solutions in [25,42] to the
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nonhomogeneous system (1.1)–(1.4) with non-vanishing external forces. Two types of
external forces will be treated in the following text:

(F1) g is a time-independent potential field, namely,

g=∇φ, for some scalar function φ(x)∈H2(Ω).

(F2) g depends on time and satisfies the following integrability conditions:

g∈L2(0,+∞;H1(Ω)), gt∈L
2(0,+∞;L2(Ω)).

The main results of this paper are as follows.

Theorem 1.1. Suppose that r∈ (2,+∞), and that the external force g satisfies either
(F1) or (F2). For any initial data ρ0∈W

1,r(Ω), v0∈H2(Ω)∩V , and d0∈H3(Ω) that
satisfy

0<ρ≤ρ0(x)≤ ρ̄, ∀x∈Ω, (1.11)

|d0(x)|≤1, ∀x∈Ω, (1.12)

where ρ and ρ̄ are positive constants, problem (1.1)–(1.6) admits a unique global strong
solution (ρ,v,d) such that for any T >0,

ρ∈C([0,T ],W 1,r(Ω)),

v∈C([0,T ];H2(Ω)∩V )∩L2(0,T ;H3), vt∈L
2(0,T ;V ),

d∈C([0,T ];H3(Ω))∩L2(0,T ;H4), dt∈C([0,T ];H1
0(Ω))∩L2(0,T ;H2),

0<ρ≤ρ(x,t)≤ ρ̄, |d(x,t)|≤1, ∀(x,t)∈Ω× [0,T ].

Theorem 1.2. Suppose that the assumptions of Theorem 1.1 are satisfied with g

fulfilling (F1). The global strong solution to problem (1.1)–(1.6) has the following
property:

lim
t→+∞

(‖v(t)‖H1 +‖vt‖+‖dt‖H1) = 0. (1.13)

For any unbounded sequence {ti}, there is a subsequence {t′i}ր+∞ such that

‖ρ(t′i)−ρ∞‖Lq →0, as t′i→+∞, q∈ (1,+∞), (1.14)

‖d(t′i)−d∞‖H3 →0, as t′i→+∞, (1.15)

where ρ∞ is a certain function that belongs to Lq and d∞ is a solution to the following
nonlinear elliptic boundary value problem:

{

−∆d∞ +f(d∞) = 0, x∈Ω,
d∞ =d0(x), x∈Γ.

(1.16)

Theorem 1.3. Suppose that the assumptions of Theorem 1.1 are satisfied with g

fulfilling (F2). If in addition, g satisfies

sup
t≥0

(1+ t)1+ξ
∫ +∞

t

‖g(τ)‖2dτ <+∞, for some ξ >0, (1.17)

then the global strong solution to problem (1.1)–(1.6) has the following property:

lim
t→+∞

(‖ρ(t)−ρ∞‖Lq +‖v(t)‖H1 +‖vt‖+‖dt‖H1 +‖d(t)−d∞‖H3) = 0, (1.18)
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where ρ∞ is certain function in Lq (q∈ (1,+∞)) and d∞ is a solution of (1.16).
Moreover, there exists a positive constant C depending on v0,d0,ν,η,Ω, ρ̄,ρ,d∞, such
that

‖ρ(t)−ρ∞‖H−1 +‖v(t)‖H1 +‖d(t)−d∞‖H2 ≤C(1+ t)−κ, ∀t≥0, (1.19)

where κ= min
{

θ
1−2θ ,

ξ
2

}

with θ∈
(

0, 12
)

being a constant depending on f,d∞.

The question on the uniqueness of the asymptotic limit for liquid crystal system
(1.7)–(1.9) was raised in [25]. A positive answer was given in [42] such that for any
global classical solution (v,d) of the homogeneous system, the velocity field will decay
to zero and the director vector will converge to a steady state that is a solution to the
stationary problem (1.16) (cf. [12,35] for some generalizations). Decay of the velocity
field can be obtained by exploring the dissipative nature of the problem and by proper
energy estimates, while convergence of the director vector is a nontrivial problem,
because the structure of the equilibria set (namely, the set of solutions to (1.16)) can
be quite complicated. The proof in [42] relies on the so-called  Lojasiewicz–Simon
approach [37], which turns out to be a useful method to study convergence of global
solutions to equilibria for nonlinear evolution equations (see e.g., [2,11,13,16,23] and
the references cited therein). One advantage of the approach is that one can obtain
the convergence result without studying the structure of the set of equilibria, which
is usually difficult when the spacial dimension is larger than one.

The nonhomogeneous problem (1.1)–(1.6) under consideration is much more in-
volved than the homogeneous case. The main difficulties come from those nonlinear
couplings between the three equations for density, velocity, and director in terms of
convection, the extra stress term, as well as the external force. Under both assump-
tions (F1) and (F2), we are able to derive certain (dissipative) basic energy inequal-
ities for problem (1.1)–(1.6) and, furthermore, some specific higher-order differential
inequalities in the sprit of [25], which not only provide uniform-in-time estimates for
the global strong solutions but also yield the decay properties of the velocity. Our
results on the decay of velocity fields under both types of external forces imply that
the dissipations from the viscosity and the relaxation effect in (1.4) are strong enough
to compensate for the effects of external forces and the density fluctuation, as well
as the interactions between the fluid and the liquid crystal molecules, such that the
flow will slow down as time goes to infinity. This extends the result on the density-
dependent incompressible Navier–Stokes equations driven by a time-independent ex-
ternal force (cf. (F1)) on bounded domains in 2D (cf. [45]). For the asymptotically
autonomous external force (cf. (F2)), we are able to apply the  Lojasiewicz–Simon
approach to prove convergence of the director vector and thus generalize the previous
results in [25, 42] for the homogeneous liquid crystal system. In this case, we can
also obtain L1-integrability of the velocity field, which together with the transport
equation (1.1) yields convergence of the density function. Besides, by the  Lojasiewicz–
Simon approach we can derive some explicit decay rates of the density, velocity field
and director vector. We remark that in the case of time-independent external force,
the  Lojasiewicz–Simon method seems impossible to apply, and thus we are only able
to show certain sequential convergence of the density function and the director vec-
tor. Our results still hold in the three-dimensional case provided that bounded global
strong solutions of problem (1.1)–(1.6) can be obtained (this could be verified, for
instance, if the initial data and the external forces are sufficiently small).

The remaining part of this paper is organized as follows. In Section 2, we introduce
the functional settings, some preliminary results, as well as some technical lemmas. In
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Section 3, we derive some dissipative energy inequalities and some specific higher-order
differential inequalities for both types of external forces, which enable us to obtain
uniform a priori estimates and conclude the existence and uniqueness of global strong
solutions to problem (1.1)–(1.6) (cf. Theorem 1.1). Section 4 is devoted to the proof
of our main results on the long-time behavior of global strong solutions (cf. Theorem
1.2, 1.3).

2. Preliminaries

As usual, Lp(Ω) and W k,p(Ω) stand for the Lebesgue and the Sobolev spaces
of real valued functions, with the convention that Hk(Ω) =W k,2(Ω). The spaces of
vector-valued functions are denoted by bold letters, correspondingly. Without any
further specification, ‖·‖ stands for the norm in L2(Ω) or L2(Ω). We shall denote
by C the generic constants depending on λ, γ, ν, η, Ω, and the initial data. Special
dependence will be pointed out explicitly in the text if necessary.

For 1<q<+∞, Xq denotes the space that is a completion in Lq of the set of
solenoidal vector fields with coefficients that belong to V =C∞

0 (Ω)∩{v :∇·v= 0}:

Xq ={v∈Lq(Ω) : ∇·v= 0 in Ω, v ·n= 0 on Γ},

where n is the unit outer normal to the boundary (cf. [8]). In particular, we denote

H=X2 = the closure of V in L2(Ω), V = the closure of V in H1
0(Ω).

It is well-known that any vector-field with coefficients in Lq has a Helmholtz decom-
position (cf. [36]). Denote by Pq :Lq(Ω)→Xq the projector from Lq to Xq, which is
a bounded operator. We can define the Stokes operator Aq = Pq(−∆) with domain

D(Aq) =W2,q∩W
1,q
0 ∩Xq. The following result holds (cf. e.g., [8]).

Lemma 2.1. Let Ω be a bounded domain of R2 with smooth boundary and d(Ω) be
the diameter of Ω. Then following results holds true.

(i) For any v∈W2,q∩W
1,q
0 , there is a constant C=C(q,d(Ω)) such that

‖v‖W2,q :=‖∇2v‖Lq +d(Ω)−1‖∇v‖Lq +d(Ω)−2‖v‖Lq ≤C‖∇
2v‖Lq .

(ii) For 1<q<+∞, f ∈Lq, the Stokes problem

−∆v+∇P =f, in Ω, v|Γ = 0

has a unique solution (v,P ) in D(Aq)×W1,q. There exists a constant C=C(q,d(Ω))
such that

‖∇2v‖Lq +‖∇P‖Lq ≤C‖f‖Lq .

Concerning the transport equation for the density function, we have the following
result (that can be found e.g., in [8]).

Lemma 2.2. Let v∈L1(0,T ;Lip) be a solenoidal vector field such that v ·n= 0 on Γ.
For any ρ0∈W

1,q with q∈ [1,+∞], the equation

ρt+v ·∇ρ= 0, ρ|t=0 =ρ0(x)

admits a unique solution ρ∈L∞(0,T ;W 1,∞) ∩C([0,T ];∩r<∞W
1,r) if q= +∞ and ρ∈

C([0,T ];W 1,q) if 1≤ q<+∞. Besides, the following estimate holds:

‖ρ(t)‖W 1,q ≤ e
∫
t

0
‖∇v(τ)‖L∞dτ‖ρ0‖W 1,q , ∀t∈ [0,T ]. (2.1)
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If ρ0∈L
p for some p∈ [1,+∞], then ‖ρ(t)‖Lp =‖ρ0‖Lp for t∈ [0,T ].

An essential characteristic of the director equation (for any given given velocity)
is the following weak maximum principle (cf. [25]).

Lemma 2.3. Suppose v∈L∞(0,T ;H)∩L2(0,T ;V ), d0∈H1(Ω) with d0∈H
3
2 (Γ) and

|d0|≤1. If d∈L∞(0,T ;H1)∩L2(0,T ;H2) is the weak solution of the initial boundary
value problem

dt+v ·∇d=γ(∆d−f(d)), a.e. in Ω,

d|Γ =d0(x), (x,t)∈Γ×(0,T ),

d|t=0 =d0(x),

then |d(x,t)|≤1, a.e. in Ω×(0,T ).

Finally, we report some inequalities that will be frequently used in the subsequent
proof.

Lemma 2.4. Let Ω be a bounded domain of R2 with smooth boundary.

(i) Ladyzhenskaya inequality. ‖v‖2
L4 ≤C‖∇v‖‖v‖, ∀v∈H1

0(Ω).

(ii) Agmon inequality. ‖f‖2L∞ ≤C‖f‖H2‖f‖, ∀f ∈H2(Ω).

(iii) Poincaré inequality. For 1<q<+∞, ‖v‖Lq ≤C‖∇v‖Lq , ∀v∈W
1,q
0 (Ω).

(iv) Sobolev embeddings. For 1<q<+∞, the embedding H1 →֒Lq is compact.
Besides, ‖f‖L∞ ≤C‖f‖W 1,q , q >2, ∀f ∈W 1,q(Ω).
The constant C in the above inequalities may depend on Ω and q.

3. Global strong solutions

In order to prove the existence of strong solutions, we can first construct a se-
quence of approximate solutions (ρm,vm,dm) within a semi-Galerkin scheme as in [7,
Section 5] (we also refer to [25] for the case of homogeneous liquid crystal flow and [1]
for the density-dependent Navier–Stokes equation with external forces). To prove the
convergence of the approximate solutions, we only need to derive some a priori esti-
mates for them. Due to the positivity condition (1.11), the Galerkin approximation
in [7] does not rely on the introduction of a viscosity term in the transport equation
(1.1), as in [14,33], and thus it can be used to establish (higher-order) Ladyzhenskaya
type energy estimates. Since the calculations for the approximate solutions are (for-
mally) identical to that as we work with smooth solutions, in what follows, we simply
perform calculations for smooth solutions to problem (1.1)–(1.6).

3.1. Dissipative basic energy inequalities and lower-order energy esti-

mates. The total energy of problem (1.1)–(1.6) is defined as follows:

E(t) =
1

2

∫

Ω

ρ(t)|v(t)|2dx+
λ

2
‖∇d(t)‖2 +λ

∫

Ω

F (d(t))dx. (3.1)

In analogy to the constant density case (cf. [25]) or the nonhomogeneous system
without external force (cf. [14,33]), our system (1.1)–(1.6) still has the following basic
energy inequalities, which reflect the energy dissipation of the liquid crystal flow.

Lemma 3.1 (Basic energy inequalities). Let (ρ,v,d) be a smooth solution of
problem (1.1)–(1.6) on Ω× [0,T ] =QT (0≤T ≤+∞).

(i) If g satisfies (F1), then

d

dt
Ẽ(t)+ν‖∇v(t)‖2 +λγ‖∆d(t)−f(d(t))‖2 = 0, 0≤ t≤T, (3.2)
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where

Ẽ(t) =E(t)−

∫

Ω

ρφdx.

(ii) If g satisfies (F2), then

d

dt
E(t)+

ν

2
‖∇v(t)‖2 +λγ‖∆d(t)−f(d(t))‖2≤

C2
P ρ̄

2

2ν
‖g‖2, 0≤ t≤T. (3.3)

Proof. Multiplying (1.1), (1.2), and (1.4) by 1
2 |v|

2, v, and λ(−∆d+f(d)),
respectively, and integrating over Ω, we infer from the boundary conditions (1.6) and
integration by parts that

1

2

∫

Ω

ρt|v|
2dx=−

1

2

∫

Ω

∇·(ρv)|v|2dx=
1

2

∫

Ω

ρv ·∇|v|2dx, (3.4)

1

2

∫

Ω

ρ
d

dt
|v|2dx+ν‖∇v‖2

=−
1

2

∫

Ω

ρv ·∇|v|2dx+

∫

Ω

ρg ·vdx−λ

∫

(∆d ·∇d) ·vdx, (3.5)

d

dt

(

λ

2
‖∇d‖2 +λ

∫

Ω

F (d)dx

)

+λγ‖−∆f+f(d)‖2 +λ

∫

Ω

(v ·∇d) ·∆ddx= 0, (3.6)

where we have used the facts (cf. [25])

∇·(∇d⊙∇d) =
1

2
∇|∇d|2 +∆d ·∇d, (3.7)

∫

Ω

∇P ·vdx=

∫

Ω

∇|∇d|2 ·vdx=

∫

Ω

v ·∇F (d)dx= 0. (3.8)

Adding (3.4)–(3.6) together, we can see that

d

dt
E(t)+ν‖∇v(t)‖2 +λγ‖∆d(t)−f(d(t))‖2 =

∫

Ω

ρg ·vdx. (3.9)

If g satisfies (F1) then, using the idea in [45], we multiply the transport equation (1.1)
by −φ and integrate over Ω to get

−

∫

Ω

ρtφdx=

∫

Ω

∇·(ρv)φdx=−

∫

Ω

ρ∇φ ·vdx. (3.10)

Adding (3.9) with (3.10) and noticing that φ is independent of time, we arrive at
our conclusion (3.2). On the other hand, if g satisfies (F2) then, using the Hölder
inequality and Poincaré inequality, we infer that

∣

∣

∣

∣

∫

Ω

ρg ·vdx

∣

∣

∣

∣

≤‖ρ‖L∞‖g‖‖v‖≤CP ρ̄‖g‖‖∇v‖≤
ν

2
‖∇v‖2 +

C2
P ρ̄

2

2ν
‖g‖2, (3.11)

which together with (3.9) yields (3.3).
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Proposition 3.2. Under the assumptions of Theorem 1.1, the following estimates
hold:

0<ρ≤ρ(x,t)≤ ρ̄, ∀t≥0, (3.12)

|d(x,t)|≤1, ∀t≥0, (3.13)

‖v(t)‖+‖d(t)‖H1 ≤C, ∀t≥0, (3.14)
∫ +∞

0

(ν‖∇v(t)‖2 +λγ‖∆d(t)−f(d(t))‖2)dt≤C, (3.15)

where C is a constant depending on ‖v0‖, ‖d0‖H1 , η, ρ, ρ̄, Ω, and also ‖φ‖H1 (under
(F1)) or ‖g‖L2(0,+∞;L2) (under (F2)).

Proof. (3.12) easily follows from the method of characteristics [18], while (3.13)
is a consequence of the weak maximum principle for the director equation (see Lemma
2.3). If g satisfies (F1) then, since

∣

∣

∣

∣

∫

Ω

ρφdx

∣

∣

∣

∣

≤|Ω|ρ̄‖φ‖L1 <+∞, (3.16)

we can see that

Ẽ(t)≥−|Ω|ρ̄‖φ‖L1 , ∀t≥0.

The required uniform estimates follow from (3.2) and (3.16). If g satisfies (F2), by
integrating (3.3) with respect to time, we arrive at the conclusion.

3.2. Higher-order energy estimates. Denote

A(t) =ν‖∇v(t)‖2 +‖∆d(t)−f(d(t))‖2. (3.17)

Lemma 3.3. The following inequality holds for smooth solutions (ρ,v,d) to problem
(1.1)–(1.6):

d

dt
A(t)+‖ρ

1
2 vt(t)‖

2 +γ‖∇(∆d(t)−f(d(t)))‖2

≤C(A2(t)+A(t))+C‖g‖2, ∀t>0, (3.18)

where C is a constant depending on ‖v0‖, ‖d0‖H1 , η, ρ, ρ̄, ν, Ω, and also ‖φ‖H1

(under (F1)) or ‖g‖L2(0,+∞;L2) (under (F2)).

Proof. Using equations (1.1)–(1.4) and the facts (3.7), (3.8), we compute that

ν

2

d

dt
‖∇v‖2 =−

∫

Ω

ν∆v ·vtdx

=−

∫

Ω

ρ|vt|
2dx−

∫

Ω

ρ(v ·∇v) ·vtdx

−λ

∫

Ω

[(∆d−f(d)) ·∇d] ·vtdx+

∫

Ω

ρg ·vtdx (3.19)

and

1

2

d

dt
‖∆d−f(d)‖2
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=

∫

Ω

(∆dt−f
′(d)dt) ·(∆d−f(d))dx

=−

∫

∆(v ·∇d) ·(∆d−f(d))dx−γ‖∇(∆d−f(d))‖2

−

∫

Ω

f ′(d)[−v ·∇d+γ(∆d−f(d))](∆d−f(d))dx

=−

∫

(∆v ·∇d)(∆d−f(d))dx−

∫

Ω

[(v ·∇)∆d+2∇v∇2d] ·(∆d−f(d))dx

−γ‖∇(∆d−f(d))‖2−γ

∫

Ω

f ′(d)(∆d−f(d)) ·(∆d−f(d))dx. (3.20)

Adding (3.19) and (3.20) together, we have

1

2

d

dt

(

ν‖∇v‖2 +‖∆d−f(d)‖2
)

+

∫

Ω

ρ|vt|
2dx+γ‖∇(∆d−f(d))‖2

= −

∫

Ω

ρ(v ·∇v) ·vtdx−

∫

Ω

[(∆d−f(d)) ·∇d] ·(∆v+λvt)dx

+

∫

Ω

ρg ·vtdx−

∫

Ω

(v ·∇)∆d ·(∆d−f(d))dx

−2

∫

Ω

(∇v∇2d) ·(∆d−f(d))dx

−γ

∫

Ω

f ′(d)(∆d−f(d)) ·(∆d−f(d))dx

:=
6
∑

m=1

Im. (3.21)

Next, we estimate I1, ...,I6 term by term. Using the fact (3.7), we rewrite (1.2) as

−ν∆v+∇

(

P +
λ

2
|∇d|2 +λF (d)

)

=−ρ(vt+v ·∇v)−λ(∆d−f(d)) ·∇d+ρg. (3.22)

By Lemma 2.1, we get

‖v‖H2 ≤C(‖ρvt‖+‖ρ(v ·∇)v‖+‖(∆d−f(d)) ·∇d‖+‖ρg‖)

≤C(ρ̄
1
2 ‖ρ

1
2 vt‖+ ρ̄‖v‖L4‖∇v‖L4 + ρ̄‖g‖)+C‖(∆d−f(d)) ·∇d‖

≤C(‖ρ
1
2 vt‖+C‖v‖

1
2 ‖∇v‖‖v‖

1
2

H2 +‖g‖)+C‖(∆d−f(d)) ·∇d‖

≤
1

2
‖v‖H2 +C(‖ρ

1
2 vt‖+‖g‖+‖(∆d−f(d)) ·∇d‖)+C‖∇v‖2, (3.23)

namely,

‖v‖H2 ≤C(‖ρ
1
2 vt‖+‖g‖+‖(∆d−f(d)) ·∇d‖)+C‖∇v‖2. (3.24)

On the other hand, we have

‖(∆d−f(d)) ·∇d‖

≤‖∇d‖L4‖∆d−f(d)‖L4

≤C(‖∆d‖
1
2 ‖∇d‖

1
2 +‖∇d‖)‖∆d−f(d)‖

1
2 ‖∇(∆d−f(d))‖

1
2
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≤C(‖∆d−f(d)‖
1
2 +1)‖∆d−f(d)‖

1
2 ‖∇(∆d−f(d))‖

1
2 . (3.25)

Then we infer from (3.24), (3.25), and the Young inequality that

I1≤
1

16

∫

Ω

ρ|vt|
2dx+4

∫

Ω

ρ|v ·∇v|2dx

≤
1

16

∫

Ω

ρ|vt|
2dx+4ρ̄‖v‖2

L4‖∇v‖2L4

≤
1

16

∫

Ω

ρ|vt|
2dx+C‖v‖‖∇v‖(‖∇v‖‖∆v‖+‖∇v‖2)

≤
1

16

∫

Ω

ρ|vt|
2dx+C‖v‖H2‖∇v‖2 +C‖∇v‖3

≤
1

16

∫

Ω

ρ|vt|
2dx+C‖ρ

1
2 vt‖‖∇v‖

2 +C(‖g‖+‖∇v‖2)‖∇v‖2 +C‖∇v‖3

+C(‖∆d−f(d)‖
1
2 +1)‖∆d−f(d)‖

1
2 ‖∇(∆d−f(d))‖

1
2 ‖∇v‖2

≤
1

8

∫

Ω

ρ|vt|
2dx+

γ

8
‖∇(∆d−f(d))‖2 +C‖∇v‖2 +C‖∇v‖4

+C‖∆d−f(d)‖2 +C‖∆d−f(d)‖4 +C‖g‖2,

I2≤C(‖∆v‖+ρ
1
2 ‖ρ

1
2 vt‖)‖(∆d−f(d)) ·∇d‖

≤C(‖ρ
1
2 vt‖+‖g‖+‖(∆d−f(d)) ·∇d‖+‖∇v‖2)‖(∆d−f(d)) ·∇d‖

≤C(‖ρ
1
2 vt‖+‖g‖+‖∇v‖2)

×(‖∆d−f(d)‖
1
2 +1)‖∆d−f(d)‖

1
2 ‖∇(∆d−f(d))‖

1
2

+C(‖∆d−f(d)‖2 +‖∆d−f(d)‖)‖∇(∆d−f(d))‖

≤
1

8

∫

Ω

ρ|vt|
2dx+

γ

8
‖∇(∆d−f(d))‖2

+C‖∆d−f(d)‖4 +C‖∆d−f(d)‖2 +C‖∇v‖4 +C‖g‖2.

Concerning I3, it follows that

I3≤ ρ̄
1
2 ‖g‖‖ρ

1
2 vt‖≤

1

8
‖ρvt‖

2 +2ρ̄‖g‖2.

Next, using (3.14), we get

‖f ′(d)∇d‖≤C(‖d‖2
L8 +1)‖∇d‖L4 ≤C(1+‖∆d−f(d)‖

1
2 ),

which implies that

I4≤C‖v‖L4‖∇∆d‖‖∆d−f(d)‖L4

≤C‖v‖
1
2 ‖∇v‖

1
2 (‖∇(∆d−f(d))‖+‖f ′(d)∇d‖)‖∆d−f(d)‖

1
2 ‖∇(∆d−f(d))‖

1
2

≤C‖v‖
1
2 ‖∇v‖

1
2 ‖∆d−f(d)‖

1
2 ‖∇(∆d−f(d))‖

3
2

+C‖v‖
1
2 ‖∇v‖

1
2 (‖∆d−f(d)‖

1
2 +‖∆d−f(d)‖)‖∇(∆d−f(d))‖

1
2

≤
γ

8
‖∇(∆d−f(d))‖2 +C‖∆d−f(d)‖4 +C‖∆d−f(d)‖2

+C‖∇v‖4 +C‖∇v‖2.
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From the elliptic estimate and (3.14), we have

‖d‖H2 ≤C
(

‖∆d‖+‖d‖
H

3
2 (Γ)

)

≤C(‖∆d−f(d)‖+‖f(d)‖+‖d0‖H2)

≤C(‖∆d−f(d)‖+1). (3.26)

It then follows from (3.24), (3.25), (3.26), and Young’s inequality that

I5≤C‖∇v‖L4‖d‖H2‖∆d−f(d)‖L4

≤C‖∇v‖
1
2 ‖v‖

1
2

H2(‖∆d−f(d)‖+1)‖∆d−f(d)‖
1
2 ‖∇(∆d−f(d))‖

1
2

≤C‖∇v‖
1
2 (‖ρ

1
2 vt‖

1
2 +‖g‖

1
2 +‖∇v‖)(‖∆d−f(d)‖+1)

×‖∆d−f(d)‖
1
2 ‖∇(∆d−f(d))‖

1
2

+C‖∇v‖
1
2 (‖∆d−f(d)‖

5
4 +1)‖∆d−f(d)‖

3
4 ‖∇(∆d−f(d))‖

3
4

≤
1

8

∫

Ω

ρ|vt|
2dx+

γ

8
‖∇(∆d−f(d))‖2 +C‖g‖2

+C‖∇v‖4 +C‖∇v‖2 +C‖∆d−f(d)‖4 +C‖∆d−f(d)‖2.

Finally, for I6, we have

I6≤C‖f
′(d)‖L4‖∆d−f(d)‖L4‖∆d−f(d)‖

≤C(‖d‖2
L8 +1)‖∇(∆d−f(d))‖

1
2 ‖∆d−f(d)‖

3
2

≤
γ

8
‖∇(∆d−f(d))‖2 +C‖∆d−f(d)‖2.

Collecting the estimates for I1, ...,I6, we infer from (3.21) that

1

2

d

dt
A(t)≤−

1

2

∫

Ω

ρ|vt|
2dx−

γ

2
‖∇(∆d−f(d))‖2 +C‖∇v‖4 +C‖∇v‖2

+C‖∆d−f(d)‖4 +C‖∆d−f(d)‖2 +C‖g‖2,

which yields our conclusion (3.18).

Proposition 3.4. Under the assumptions of Theorem 1.1, the following uniform
estimates hold for any t≥0:

‖v(t)‖H1 +‖d(t)‖H2 ≤C, (3.27)

sup
t≥0

∫ t+1

t

‖ρ
1
2 vt(τ)‖2 +‖∇(∆d(τ)−f(d(τ)))‖2dτ ≤C, (3.28)

where C is a constant depending on ν, ‖v0‖H1 , ‖d0‖H2 , η, ρ, ρ̄, and also ‖φ‖H1

(under (F1)) or ‖g‖L2(0,+∞;L2) (under (F2)).

Proof. For both cases (F1) and (F2), (3.15) implies that

∫ +∞

0

A(t)dt<+∞.

The uniform bound (3.27) follows from Lemma 3.2, the higher-order energy inequality
(3.18), and the uniform Gronwall lemma [38, Lemma III.1.1]. Integrating (3.18) from
t to t+1, we can conclude (3.28) from (3.27).
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Denote the quantity

B(t) =

∫

Ω

ρ|vt(t)|
2dx+‖∇dt(t)‖

2. (3.29)

We can derive the following higher-order differential inequality.

Lemma 3.5. If g satisfies (F1), then the following inequality holds for smooth solu-
tions (ρ,v,d) to problem (1.1)–(1.6):

d

dt
B(t)+ν‖∇vt‖

2 +γ‖∆dt‖
2≤C(B2(t)+B(t))+C‖∇v‖2, ∀t≥0, (3.30)

where C is a constant depending on ν, ‖v0‖H1 , ‖d0‖H2 , η, ρ, ρ̄, and ‖φ‖H2 . On the
other hand, if g satisfies (F2), then we have

d

dt
B(t)+ν‖∇vt‖

2 +γ‖∆dt‖
2

≤C(B2(t)+B(t))+C(‖g‖2
H1 +‖gt‖

2 +‖∇v‖2), ∀t≥0, (3.31)

where C is a constant depending on ν, ‖v0‖H1 , ‖d0‖H2 , η, ρ, ρ̄, and ‖g‖L2(0,+∞;L2).

Proof. Taking the temporal derivative of (1.2), computing the L2 inner product
of the resultant with vt, and then using the fact ∇·v=∇·vt= 0 and the transport
equation (1.1), after integration by parts (keeping in mind that v|Γ =vt|Γ = 0), we get

1

2

d

dt

∫

Ω

ρ|vt|
2dx+ν‖∇vt‖

2

=
1

2

∫

Ω

ρt|vt|
2dx−

1

2

∫

Ω

ρv ·∇(|vt|
2)dx−

∫

Ω

ρ(vt ·∇)v ·vtdx

−

∫

Ω

ρt(vt+v ·∇v) ·vtdx−

∫

Ω

∇Pt ·vtdx+

∫

Ω

(ρtg+ρgt) ·vtdx

+2λ

∫

Ω

(∇dt⊙∇d) :∇vtdx

= −

∫

Ω

ρt|vt|
2dx−

∫

Ω

ρt(v ·∇v) ·vtdx−

∫

Ω

ρ(vt ·∇v) ·vtdx

+

∫

Ω

(ρtg+ρgt) ·vtdx+2λ

∫

Ω

(∇dt⊙∇d) :∇vtdx

= −

∫

Ω

ρv ·∇(|vt|
2)dx−

∫

Ω

ρv ·∇[(v ·∇v) ·vt]dx−

∫

Ω

ρ(vt ·∇v) ·vtdx

+

∫

Ω

ρv ·∇(g ·vt)dx+

∫

Ω

ρgt ·vtdx+2λ

∫

Ω

(∇dt⊙∇d) :∇vtdx

:=
6
∑

m=1

Jm. (3.32)

First, we consider the case that g satisfies the Assumption (F1). In this case, J5 = 0.
Using the uniform estimates in Proposition 3.4, we have

J1≤Cρ̄‖∇vt‖‖vt‖L4‖v‖L4

≤C‖∇vt‖(‖∇vt‖
1
2 ‖vt‖

1
2 +‖vt‖)
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≤
ν

12
‖∇vt‖

2 +C‖vt‖
2.

Then for J2, we infer from (3.24), (3.25), and (3.27) that

J2≤ ρ̄(‖∇v‖2
L4‖v‖L4‖vt‖L4 +‖v‖2

L8‖v‖H2‖vt‖L4 +‖v‖2
L8‖∇v‖L4‖∇vt‖)

≤C[(‖∆v‖‖∇v‖+‖∇v‖2)‖∇v‖+‖v‖H2‖∇v‖2

+‖∇v‖2(‖∆v‖
1
2 ‖∇v‖

1
2 +‖∇v‖)]‖∇vt‖

≤C‖∇v‖‖∇vt‖+C‖v‖H2‖∇v‖‖∇vt‖

≤C‖∇v‖‖∇vt‖+C(‖ρ
1
2 vt‖+‖g‖+‖∇v‖2)‖∇v‖‖∇vt‖

+C(‖∆d−f(d)‖
1
2 +1)‖∆d−f(d)‖

1
2 ‖∇(∆d−f(d))‖

1
2 ‖∇v‖‖∇vt‖

≤
ν

12
‖∇vt‖

2 +C‖∇(∆d−f(d))‖2‖∇v‖2 +C‖ρ
1
2 vt‖

2‖∇v‖2

+C(1+‖g‖2)‖∇v‖2. (3.33)

When g=∇φ, then the last term on the right-hand side of (3.33) is controlled by
C‖∇v‖2. Next,

J3≤ ρ̄‖∇v‖‖vt‖
2
L4 ≤C‖∇vt‖‖vt‖≤

ν

12
‖∇vt‖

2 +C‖vt‖
2,

J4 =

∫

Ω

ρv ·∇(∇φ ·vt)dx

≤ ρ̄(‖v‖L4‖vt‖L4‖φ‖H2 +‖∇vt‖‖v‖L4‖∇φ‖L4)

≤C‖∇v‖‖∇vt‖

≤
ν

12
‖∇vt‖

2 +C‖∇v‖2.

Finally, for J6, we have

J6≤C‖∇d‖L∞‖∇dt‖‖∇vt‖

≤C‖∇d‖H2‖∇d‖‖∇dt‖‖∇vt‖

≤C(‖∇(∆d−f(d))‖+1)‖∇dt‖‖∇vt‖

≤
ν

12
‖∇vt‖

2 +C(‖∇(∆d−f(d))‖2 +1)‖∇dt‖
2.

Taking the temporal derivative of (1.4) and computing L2 inner product of the resul-
tant with −∆dt, we obtain that

1

2

d

dt
‖∇dt‖

2 +γ‖∆dt‖
2

=

∫

Ω

(vt ·∇d) ·∆dtdx+

∫

Ω

(v ·∇dt) ·∆dtdx+γ

∫

Ω

f ′(d)dt ·∆dtdx

:=J7 +J8 +J9, (3.34)

where the right-hand side of (3.34) can be estimated as follows:

J7≤‖vt‖L4‖∇d‖L4‖∆dt‖≤C‖∇vt‖
1
2 ‖vt‖

1
2 ‖∆dt‖

≤
ν

12
‖∇vt‖

2 +
γ

6
‖∆dt‖+C‖vt‖

2,

J8≤‖v‖L4‖∇dt‖L4‖∆dt‖≤C(‖∇dt‖
1
2 ‖∆dt‖

1
2 +‖∇dt‖)‖∆dt‖
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≤
γ

6
‖∆dt‖

2 +C‖∇dt‖
2,

J9≤γ‖f
′(d)‖L∞‖dt‖‖∆dt‖≤

γ

6
‖∆dt‖

2 +C‖∇dt‖
2.

It follows from (1.4) that

∇dt=−∇(v ·∇d)+γ∇(∆d−f(d)). (3.35)

Using the uniform estimate (3.27) and the Sobolev embedding theorem, we have

‖∇(v ·∇d)‖≤C‖∇v‖‖∇d‖L∞ +C‖v‖L4‖∇2d‖L4

≤C‖∇v‖‖∇d‖
1
2

H2‖∇d‖
1
2 +C‖∇v‖(‖∇∆d‖

1
2 ‖∆d‖

1
2 +‖∆d‖)

≤C‖∇v‖‖∇∆d‖
1
2 +C‖∇v‖

≤C‖∇v‖‖∇(∆d−f(d))‖
1
2 +C‖∇v‖, (3.36)

which together with the equality (3.35) implies that

‖∇(∆d−f(d))‖≤
1

γ
‖∇dt‖+

1

γ
‖∇(v ·∇d)‖

≤
1

γ
‖∇dt‖+C‖∇v‖‖∇(∆d−f(d))‖

1
2 +C‖∇v‖

≤
1

γ
‖∇dt‖+

1

2
‖∇(∆d−f(d))‖+C‖∇v‖. (3.37)

As a result, we get

‖∇dt‖≤‖∇(v ·∇d)‖+γ‖∇(∆d−f(d))‖

≤C‖∇v‖‖∇(∆d−f(d))‖
1
2 +C‖∇v‖+γ‖∇(∆d−f(d))‖

≤ (1+γ)‖∇(∆d−f(d))‖+C‖∇v‖. (3.38)

Collecting the above estimates for J1, ...,J9 and using the relations (3.37), (3.38), we
conclude from (3.32) and (3.34) that

d

dt
B(t)+ν‖∇vt‖

2 +γ‖∆dt‖
2

≤C‖∇v‖2(‖ρ
1
2 vt‖

2 +‖∇dt‖
2)+C‖∇dt‖

4 +C(‖vt‖
2 +‖∇dt‖

2)+C‖∇v‖2,

which yields our conclusion (3.30).
Now if g satisfies (F2), we only have to re-estimate the terms J2, J4, and J5 using

the uniform estimate (3.27). It follows from (3.33) that

J2≤
ν

12
‖∇vt‖

2 +C‖∇(∆d−f(d))‖2‖∇v‖2 +C‖ρ
1
2 vt‖

2‖∇v‖2 +C(1+‖g‖2)‖∇v‖2

≤
ν

12
‖∇vt‖

2 +C‖∇(∆d−f(d))‖2‖∇v‖2 +C‖ρ
1
2 vt‖

2‖∇v‖2 +C‖g‖2 +C‖∇v‖2.

Moreover,

J4≤ ρ̄(‖v‖L4‖vt‖L4‖g‖H1 +‖∇vt‖‖v‖L4‖g‖L4)

≤C‖g‖H1‖‖∇v‖‖∇vt‖
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≤
ν

24
‖∇vt‖

2 +C‖g‖2
H1 ,

J5≤ ρ̄‖gt‖‖vt‖≤
ν

24
‖∇vt‖

2 +C‖gt‖
2.

By the above estimates, we easily arrive at (3.31).

Proposition 3.6. Under the assumptions of Theorem 1.1, the following uniform
estimates hold for any t≥0:

‖vt(t)‖+‖dt(t)‖H1 ≤C, (3.39)

‖v(t)‖H2 +‖d(t)‖H3 ≤C, (3.40)

sup
t≥0

∫ t+1

t

(‖∇vt(τ)‖2 +‖∆dt(τ)‖2)dτ ≤C, (3.41)

sup
t≥0

∫ t+1

t

‖v(τ)‖2
W2,qdτ ≤C, ∀q∈ (1,+∞). (3.42)

Moreover, for any T >0,

‖ρ(t)‖W 1,q ≤ eCT ‖ρ0‖W 1,q , ∀t∈ [0,T ]. (3.43)

The constant C in the above estimates depends on ν, ‖v0‖H2 , ‖d0‖H3 , η, ρ, ρ̄, and
also ‖φ‖H2 (under (F1)) or ‖g‖L2(0,+∞;H1), ‖gt‖L2(0,+∞;L2) (under (F2)), but it is
independent of t.

Proof. It follows from (3.28), the definition of B(t), and (3.38) that

sup
t≥0

∫ t+1

t

B(τ)dτ ≤C, (3.44)

where C is a constant depending on ν, ‖v0‖H1 , ‖d0‖H2 , η, ρ, ρ̄, and also ‖φ‖H1 (under
(F1)) or ‖g‖L2(0,+∞;L2) (under (F2)). Applying the uniform Gronwall lemma again,
we infer from (3.30) (or (3.31)) and (3.44) that

B(t)≤C, ∀t≥0, (3.45)

where C is a constant depending on ν, ‖v0‖H2 , ‖d0‖H3 , η, ρ, ρ̄, and also ‖φ‖H2 (un-
der (F1)) or ‖g‖L2(0,+∞;H1), ‖gt‖L2(0,+∞;L2) (under (F2)). This yields the estimate
(3.39). Integrating (3.30) or (3.31) from t to t+1, we conclude (3.41). Recalling
(3.22), we deduce from Lemma 2.1 and the estimates (3.27), (3.37) that

‖v‖H2 ≤C (‖ρvt‖+‖ρ(v ·∇v)‖+‖(∆d−f(d)) ·∇d‖+‖ρg‖)

≤Cρ̄(‖vt‖+‖v‖L4‖∇v‖L4 +‖g‖)+C‖∇d‖L4‖∆d−f(d)‖L4

≤C(‖vt‖+‖∇v‖‖v‖
1
2

H2‖∇v‖
1
2 +‖g‖)

+C‖d‖H2(‖∇(∆d−f(d))‖
1
2 ‖∆d−f(d)‖

1
2 )

≤
1

2
‖v‖H2 +C(‖vt‖+‖∇dt‖+‖∇v‖+‖g‖). (3.46)

Using (3.39) and the facts that either under (F1) ‖g‖≤‖φ‖H1 , or under (F2) ‖g‖ is
bounded by a constant depending on ‖g‖L2(0,+∞;L2) and ‖gt‖L2(0,+∞;L2), we get the
uniform estimate for ‖v‖H2 .
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Next, by the elliptic estimate, we infer from (3.35) that

‖∇d‖H2 ≤C
(

‖∇dt‖+‖∇(v ·∇d)‖+‖f ′(d)∇d‖+‖∇d0‖
H

3
2 (Γ)

+‖∇d‖
)

≤C+C‖∇v‖L4‖∇d‖L4 +C‖v‖L∞‖d‖H2

≤C+C‖v‖H2‖d‖H2 . (3.47)

Combining (3.46) and (3.47), we obtain the uniform estimate (3.40). In a similar
manner to (3.46), for q∈ (1,+∞), using (3.40), we get

‖v‖W2,q ≤C (‖ρvt‖Lq +‖ρ(v ·∇v)‖Lq +‖(∆d−f(d)) ·∇d‖
Lq

+‖ρg‖Lq )

≤Cρ̄(‖vt‖Lq +‖v‖
L
q
2
‖∇v‖

L
q
2

+‖g‖Lq )+C‖∇d‖
L
q
2
‖∆d−f(d)‖

L
q
2

≤C(‖∇vt‖+‖v‖H2 +‖∇(∆d−f(d))‖+‖g‖Lq )

≤C(‖∇vt‖+‖∇(∆d−f(d))‖+‖g‖H1 +‖∇v‖). (3.48)

Thus, (3.42) is a consequence of (3.48), (3.28), and (3.41), where the bound either
depends on ‖φ‖H2 (under (F1)) or ‖g‖L2(0,+∞;H1) (under (F2)). Finally, for any
T >0,

∫ t

0

‖∇v(τ)‖L∞dτ ≤C

∫ T

0

‖v(τ)‖W2,rdτ

≤CT
1
2

(

∫ T

0

‖v(τ)‖2
W2,rdτ

)
1
2

≤CT, ∀t∈ [0,T ], for some r>2.

Then we infer from (2.1) that (3.43) holds. The proof is complete.

3.3. Proof of Theorem 1.1.

Proof. Under the assumptions in Theorem 1.1, we can derive estimates for the
approximate solutions to problem (1.1)–(1.6) (ρm,vm,dm) as in Propositions 3.2, 3.4,
and 3.6, which are independent of the parameter m. By extracting a subsequence
and passing to limit as m→+∞, we can obtain a global strong solution (ρ,v,d) to
problem (1.1)–(1.6) in a standard way, such that

ρ∈L∞([0,T ],W 1,r(Ω)),

v∈L∞([0,T ];H2(Ω)∩V )∩L2(0,T ;W2,q), vt∈L
2(0,T ;V), q∈ (1,+∞),

d∈L∞([0,T ];H3(Ω)), dt∈L
∞([0,T ];H1

0(Ω))∩L2(0,T ;H2),

0<ρ≤ρ(x,t)≤ ρ̄, |d(x,t)|≤1, ∀(x,t)∈Ω× [0,T ].

Due to Lemma 2.2, we infer that ρ∈C([0,T ],W 1,r(Ω)). It is not difficult to see from
(3.40) and (3.41) that d∈L2(0,T ;H4), which together with dt∈L

2(0,T ;H2) yields
that d∈C([0,T ];H3). By the regularity of the Stokes operator,

‖v‖H3 ≤C (‖ρvt‖H1 +‖ρ(v ·∇v)‖H1 +‖(∆d−f(d)) ·∇d‖
H1 +‖ρg‖H1)

≤Cρ̄(‖vt‖H1 +‖v ·∇v‖H1 +‖g‖H1)

+C‖∇ρ‖
Lq

′ (‖vt‖Lq +‖v ·∇v‖Lq +‖g‖Lq )+C‖∇d‖L∞‖∆d−f(d)‖H1

+C‖∇2d‖
Lq

′ ‖∆d−f(d)‖Lq , for some 2<q,q′<+∞,
1

q
+

1

q′
=

1

2
,
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and estimates (3.40), (3.41), (3.43), we infer that v∈L2(0,T ;H3). This fact and
vt∈L

2(0,T ;V) yields the continuity v∈C([0,T ],H2).
Finally, we briefly show that the strong solution is indeed unique. Suppose (ρ,v,d)

and (ρ̃, ṽ, d̃) are two strong solutions corresponding to the same initial data (ρ0,v0,d0).
One can easily check that all the computations in [7, Section 4] can be verified due to
the regularity of the two strong solutions. Denote δρ=ρ− ρ̃, δv=v− ṽ, and δd=d− d̃.
We have, for any t∈ [0,T ] (cf. e.g., [7, (4.46)]),

1

2
‖δρ(t)‖2 +

1

2

∫

Ω

ρ̃(t)|δv(t)|2dx+
1

2
‖∇(δd(t))‖2

≤−

∫ t

0

‖∇(δv)‖2dt−

∫ t

0

‖∆(δd)‖2dt+

∫ t

0

∫

Ω

(δρ)(δv)∇ρdxdt

−

∫ t

0

∫

Ω

ρ̃∇v|δv|2dxdt+

∫ t

0

∫

Ω

(δρ)(δv)(vt+v ·∇v)dxdt

+

∫ t

0

∫

Ω

v(δd)∆(δd)dxdt−

∫ t

0

∫

Ω

(δv)∇(δd)∆ddxdt

+

∫ t

0

∫

Ω

∆(δd)(f(d)−f(d̃))dxdt.

Using the Hölder inequality, Young inequality, and the estimates (3.39), (3.40), (3.43),
we easily get

‖δρ(t)‖2 +

∫

Ω

ρ̃(t)|δv(t)|2dx+‖∇(δd(t))‖2≤CT

∫ t

0

(‖δρ‖2 +‖δv‖2 +‖∇(δd)‖2)dt.

Due to the positivity of the density ρ̃≥ρ>0, the uniqueness follows from the above
estimate and the Gronwall inequality. The proof is complete.

4. Long-time behavior

In this section, we study the long-time behavior of global strong solutions to
problem (1.1)–(1.6).

Proposition 4.1. Under the assumptions in Theorem 1.1 (either g satisfies (F1)
or (F2)), the global strong solution to (1.1)–(1.6) has the following decay property:

lim
t→+∞

(‖v(t)‖H1 +‖∆d(t)−f(d(t))‖) = 0. (4.1)

Proof. For both cases (F1) and (F2), (3.15) implies that
∫ +∞

0
A(t)dt<+∞. It

then follows from (3.18) and [46, Lemma 6.2.1] that limt→+∞A(t) = 0, which together
with the Poincaré inequality yields (4.1).

Proposition 4.2. Under the assumptions in Theorem 1.1 (either g satisfies (F1) or
(F2)), the global strong solution to (1.1)–(1.6) has the following decay property:

lim
t→+∞

(‖vt(t)‖H1 +‖∇(∆d(t)−f(d(t)))‖+‖dt‖H1) = 0. (4.2)

Proof. First, we look at the case that g satisfies (F2). We have already proved
that A(t) is bounded for all time and A(t)∈L1(0,+∞). Therefore, integrating (3.18)
from 0 to +∞ with respect to time, we infer from (F2) that

∫ +∞

0

(‖ρ
1
2 vt(t)‖

2 +γ‖∇(∆d(t)−f(d(t)))‖2)dt
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≤A(0)+C

(

sup
t≥0

A(t)+1

)
∫ +∞

0

A(t)dt+C

∫ +∞

0

‖g(t)‖2dt

<+∞. (4.3)

Recalling (3.38), we obtain

∫ +∞

0

B(t)dt<+∞. (4.4)

Then using (3.31), Assumption (F2), and [46, Lemma 6.2.1], we conclude that

lim
t→+∞

B(t) = 0, (4.5)

which combined with Poincaré inequality and (3.37), (3.38) yields (4.2).
Next, we deal with the case when g satisfies (F1). We only need to show that

(4.4) still holds in this case. For this purpose, we re-estimate the terms I2, I3, I4,
and I5 in (3.21) using the higher-order estimate (3.40) instead of the lower-order one
(3.27). As in [45], we infer from the transport equation (1.1) and integration by parts
that

I3 =
d

dt

∫

Ω

ρ∇φ ·vdx−

∫

Ω

ρt∇φ ·vdx

=
d

dt

∫

Ω

ρ∇φ ·vdx−

∫

Ω

ρv ·∇(∇φ ·v)dx

≤
d

dt

∫

Ω

ρ∇φ ·vdx+ ρ̄(‖v‖2
L4‖φ‖H2 +‖v‖L4‖∇φ‖L4‖∇v‖)

≤
d

dt

∫

Ω

ρ∇φ ·vdx+C(‖v‖‖∇v‖+‖v‖
1
2 ‖∇v‖

3
2 )

≤
d

dt

∫

Ω

ρ∇φ ·vdx+C‖∇v‖2.

Next, since ∆d−f(d)|Γ = 0, we obtain that

I2 +I4 +I5 = −λ

∫

Ω

[(∆d−f(d)) ·∇d] ·vtdx−

∫

Ω

∆(v ·∇d) ·(∆d−f(d))dx

= −λ

∫

Ω

[(∆d−f(d)) ·∇d] ·vtdx+

∫

Ω

∇(v ·∇d) ·∇(∆d−f(d))dx

= −λ

∫

Ω

[(∆d−f(d)) ·∇d] ·vtdx+

∫

Ω

∇kvi∇idj∇k(∆dj−fj(d))dx

+

∫

Ω

vi∇k∇idj∇k(∆dj−fj(d))dx

:= I ′2 +I ′4 +I ′5, (4.6)

where

I ′2≤Cρ
1
2 ‖ρ

1
2 vt‖‖(∆d−f(d)) ·∇d‖

≤C‖ρ
1
2 vt‖(‖∆d−f(d)‖

1
2 +1)‖∆d−f(d)‖

1
2 ‖∇(∆d−f(d))‖

1
2

≤
3

8

∫

Ω

ρ|vt|
2dx+

γ

8
‖∇(∆d−f(d))‖2 +C‖∆d−f(d)‖4 +C‖∆d−f(d)‖2,
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I ′4 +I ′5≤‖∇v‖‖∇d‖L∞‖∇(∆d−f(d))‖+‖v‖L4‖∇2d‖L4‖∇(∆d−f(d))‖

≤C‖∇v‖‖d‖H3‖∇(∆d−f(d))‖

≤
γ

4
‖∇(∆d−f(d))‖2 +C‖∇v‖2.

Replacing the original estimates for I2,..., I5 by I ′2,..., I ′5, we arrive at the following
inequality:

d

dt

(

A(t)−2

∫

Ω

ρ∇φ ·vdx

)

+‖ρ
1
2 vt(t)‖

2 +γ‖∇(∆d(t)−f(d(t)))‖2

≤C(A2(t)+A(t)), (4.7)

where C is a constant depending on ‖v0‖, ‖d0‖H1 , η, ρ, ρ̄, ν, Ω, and also ‖φ‖H2 .
Integrating (4.7) with respect to time from 0 to +∞, we deduce that

∫ +∞

0

‖ρ
1
2 vt(t)‖

2 +γ‖∇(∆d(t)−f(d(t)))‖2dt

≤A(0)−2

∫

Ω

ρ0∇φ ·v0dx+2

∣

∣

∣

∣

∫

Ω

ρ∇φvdx

∣

∣

∣

∣

+C

(

sup
t≥0

A(t)+1

)
∫ +∞

0

A(t)dt

<+∞,

which again implies (4.4). Using the same argument as for the previous case, we
conclude the decay property (4.2). The proof is complete.

4.1. Proof of Theorem 1.2.

Proof. According to Propositions 4.1 and 4.2, it remains to show the convergence
for the density function ρ and the director vector d.

As a direct consequence of the uniform-in-time estimate (3.12) and weak compact-
ness of bounded sets in Lq (1<q<+∞), we know that for any sequence {ti}ր+∞,
there is a subsequence {t′i}ր+∞ such that ρ(t′i) converges weakly to a certain ρ∞
in Lq. On the other hand, due to Lemma 2.2, ‖ρ(t′i)‖Lq =‖ρ∞‖Lq =‖ρ0‖Lq , since Lq

(1<q<+∞) is a uniformly convex Banach space, and we can conclude that ρ(t′i)
actually strongly converge to ρ∞ in Lq (cf. [46, Lemma 3.1.6]), namely, (1.14) holds
true.

The uniform-in-time estimate (3.40) yields that for any sequence {ti}ր+∞, there
is a subsequence {t′i}ր+∞ such that d(t′i) strongly converge to a certain d∞ in H2.
Then by (4.1), we see that

0 ≤ ‖−∆d∞ +f(d∞)‖

≤ ‖−∆d(t′i)+f(d(t′i))‖+‖∆d(t′i)−∆d∞‖+‖f(d(t′i))−f(d∞)‖

≤ ‖−∆d(t′i)+f(d(t′i))‖+C‖d(t′i)−d∞‖H2

→0, as t′iր+∞.

Thus, d∞ satisfies the stationary problem (1.16). The H3 convergence follows from
(4.2) and the fact that

‖∇∆(d(t′i)−d∞)‖ ≤ ‖∇(−∆d(t′i)+f(d(t′i)))‖+‖∇(f(d(t′i))−f(d∞))‖

≤ ‖∇(−∆d(t′i)+f(d(t′i)))‖+C‖d(t′i)−d∞‖H2
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→0, as t′iր+∞.

The proof of Theorem 1.2 is complete.

Remark 4.1.

(1) When the external force g is a gradient field independent of time, our results
show that the velocity field and its time derivative will converge to zero as time goes
to infinity, this coincides with the result for the 2D density-dependent incompressible
Navier–Stokes equations [45].

(2) For the density function ρ, we are only able to obtain the partial result that
it will sequentially converge to a certain function in Lq norm (differential sequences
may have different limit points). One possible sufficient condition for the convergence
in time is that ‖ρt‖H−1 ∈L1(0,+∞). On the other hand, we observe that, for any
function ϕ∈H1

0 (Ω),

∫

Ω

ρtϕdx=−

∫

Ω

∇·(ρv)ϕdx=

∫

Ω

ρv ·∇ϕdx≤ ρ̄‖v‖‖∇ϕ‖,

which yields ‖ρt‖H−1 ≤C‖v‖. Hence, if we can prove ‖v‖∈L1(0,+∞), then we get
the convergence of ρ as time tends to infinity in the space H−1, and thus in Lq due
to the uniqueness of limit. However, we do not know this L1-integrability condition
on v from the above proof.

(3) For the director vector d, we are able to show the decay of its time derivative
and sequential convergence of itself to a steady state that is a solution to the stationary
problem (1.16). If we know that problem (1.16) admits a unique solution, then d will
converge to it as time goes to infinity. However, in general we cannot expect the
uniqueness of solutions to the stationary Ginzburg–Landau equation (1.16) unless,
for instance, the parameter η in f(d) is sufficiently large.

4.2. Proof of Theorem 1.3. In this subsection, we provide the proof for
Theorem 1.3. Now the external force g is asymptotically autonomous and satisfies
(F2) and (1.17). Unlike the previous case with a time-independent force, we shall see
that one can obtain convergence for the density function and director vector. The
proof is based on an appropriate generalization of the  Lojasiewicz-Simon approach
for gradient-like systems (cf. e.g., [16]).

Denote

E(d) =
1

2
‖∇d‖2 +

∫

Ω

F (d)dx. (4.8)

It is straightforward to check that any solution to the stationary problem (1.16) is a
critical point of the energy functional E(d), and conversely, that the critical point of
E(d) is a solution to (1.16) (cf. [42]). Besides, regularity of solutions to (1.16) has
been shown in [25] such that d is smooth on Ω provided that d0 is smooth on Γ. Below
we shall make use the following  Lojasiewicz–Simon type inequality (cf. [42]):

Lemma 4.3. Let ψ be a critical point of E(d). There exist constants θ∈ (0, 12 )
and β>0 depending on ψ such that for any d∈H2(Ω) satisfying d|Γ =d0(x) and
‖d−ψ‖H2 <β, it holds that

‖−∆d+f(d)‖≥ |E(d)−E(ψ)|1−θ. (4.9)
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The uniform estimate (3.40) yields that the set of all limit points of the trajectory
{d(t) : t≥0} denoted by

ω(d) :=
⋂

s≥0

{d(t)∈H2(Ω) : t≥s}

is non-empty and compact in H2(Ω).
Besides, similar to Section 4.1, we can see that each element in ω(d) is a solution

to problem (1.16) and thus is a critical point of E(d). We infer from (3.3) that

E(t1)−E(t2)≤C

∫ t1

t2

‖g‖2dt, ∀t1>t2>0. (4.10)

Since ‖g‖∈L2(0,+∞), it follows that E(t) converges to a certain constant E∞ as
t→+∞.

Recalling the convergence of the velocity field (4.1), we deduce that E(d) is indeed
a constant on ω(d) such that E(ψ) =λ−1E∞, for all ψ∈ω(d). Due to Lemma 4.3, for
every ψ∈ω(d), there exist some βψ and θψ ∈ (0, 12 ) that may depend on ψ such that
the inequality (4.9) holds for

d∈Bβψ (ψ) :={d∈H2(Ω) :d|Γ =d0,‖d−ψ‖H2 <βψ}

and |E(d)−E(ψ)|≤1. The union of balls {Bβψ (ψ) :ψ∈ω(d)} forms an open cover of
ω(d) and, due to the compactness of ω(d), we can find a finite sub-cover {Bβi(ψi) :
i= 1,2, ...,m} where the constants β,θ corresponding to ψi in Lemma 4.3 are indexed
by i. From the definition of ω(d), we know that there exist a sufficient large t0 such
that

d(t)∈U :=∪mi=1Bβi(ψi), for t≥ t0.

Taking θ= minmi=1{θi}∈ (0, 12 ), we get for all t≥ t0,

‖−∆d(t)+f(d(t))‖≥ |E(d(t))−λ−1E∞|1−θ. (4.11)

Denote

Y(t)2 =
ν

2
‖∇v(t)‖2 +λγ‖∆d(t)−f(d(t))‖2,

z(t) =

∫ +∞

t

‖g(τ)‖2dτ.

Assumption (1.17) implies that

z(t)≤C(1+ t)−(1+ξ), for t≥0.

Then by the basic energy inequality (3.3), we get

E(t)−E∞≥

∫ +∞

t

Y(τ)2dτ−
C2
P ρ̄

2

2ν
z(t)

≥

∫ +∞

t

Y(τ)2dτ−C(1+ t)−(1+ξ). (4.12)
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On the other hand, using (4.11), the uniform estimates (3.27), and the fact 1
1−θ <2,

we obtain that

|E(t)−E∞|≤
1

2
‖v‖2 +λ|E(d)−λ−1E∞|

≤C‖∇v‖
1

1−θ +λ‖−∆d(t)+f(d(t))‖
1

1−θ

≤CY(t)
1

1−θ , ∀t≥ t0. (4.13)

Take

ζ= min

{

θ,
ξ

2(1+ξ)

}

∈

(

0,
1

2

)

.

It is easy to check that

∫ +∞

t

(1+τ)−2(1+ξ)(1−ζ)dτ ≤

∫ +∞

t

(1+τ)−(2+ξ)dτ

≤ (1+ t)−(1+ξ), ∀t≥0. (4.14)

We now set

Z(t) =Y(t)+(1+ t)−(1+ξ)(1−ζ).

Since limt→+∞Y(t) = 0 (see (4.1)), it follows from (4.12), (4.13), and (4.14) that

∫ +∞

t

Z(τ)2dτ ≤CY(t)
1

1−θ +C(1+ t)−(1+ξ)

≤CY(t)
1

1−ζ +C(1+ t)−(1+ξ)

≤CZ(t)
1

1−ζ , ∀t≥ t0. (4.15)

Recall the following result (cf. [16, Lemma 4.1] or [11, Lemma 7.1]).

Lemma 4.4. Let ζ ∈ (0, 12 ). Assume that Z≥0 be a measurable function on (0,+∞),
Z ∈L2(R+), and there exist C>0 and t0≥0 such that

∫ +∞

t

Z(τ)2dτ ≤CZ(t)
1

1−ζ , for a.e. t≥ t0.

Then Z ∈L1(t0,+∞).

We conclude from (4.15) and Lemma 4.4 that

∫ +∞

t0

Z(t)<+∞.

Since ξ >0, it holds that

∫ +∞

t0

(1+ t)−(1+ξ)(1−ζ)dt≤

∫ +∞

t0

(1+ t)−
1
2 (2+ξ)dt

≤2(1+ t0)−(1+ξ)<+∞, for t0>0,
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which implies that

∫ +∞

t0

‖∇v(t)‖+‖∆d(t)−f(d(t))‖dt<+∞. (4.16)

On the other hand, it follows from equation (1.3) that

‖dt‖≤C(‖v‖L4‖∇d‖L4 +‖−∆d+f(d)‖)

≤C(‖∇v‖+‖−∆d+f(d)‖). (4.17)

As a consequence,

∫ ∞

t0

‖dt(t)‖dt<+∞, (4.18)

which easily implies that as t→+∞, d(t) converges strongly in L2(Ω). By compact-
ness of d(t) in H2(Ω), we deduce that

lim
t→+∞

‖d(t)−d∞‖H2 = 0, (4.19)

where d∞ is a solution to problem (1.16). Recalling the uniform estimate (3.40), it
holds that

‖∇∆d−∇∆d∞‖≤‖∇(∆d−∆d∞−f(d)+f(d∞))‖+‖∇(f(d)−f(d∞))‖

≤‖∇(∆d−f(d))‖+C‖d−d∞‖H2 .

The above estimate together with (4.2) and (4.19) yields

lim
t→+∞

‖d(t)−d∞‖H3 = 0. (4.20)

It follows from Remark 4.1 and (4.16) that ‖ρt‖H−1 ∈L1(t0,+∞). Thus ρ(t) converges
strongly in H−1 as t→+∞. By an argument similar to that in the proof of Theorem
1.2, we conclude that

lim
t→+∞

‖ρ(t)−ρ∞‖Lq = 0, q∈ (1,+∞). (4.21)

Next, we prove the convergence rate. Denote

K(t) =E(t)−E∞ +
C2
P ρ̄

2

2ν

∫ +∞

t

‖g(τ)‖2dτ.

It follows from the basic energy inequality (3.3) that

d

dt
K(t)+Y(t)2≤0. (4.22)

Thus, K(t) is decreasing on [0,+∞) and K(t)→0 as t→+∞. Recalling the definition
of t0, for t≥ t0, we deduce from (1.17) and (4.13) that

K(t)2(1−ζ)≤CY(t)
2(1−ζ)
1−θ +C(1+ t)−2(1−ζ)(1+ξ)

≤CY(t)2 +C(1+ t)−2(1−ζ)(1+ξ)
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≤−C
d

dt
K(t)+C(1+ t)−2(1−ζ)(1+ξ), (4.23)

where we have used the fact that

2(1−ζ)

1−θ
≥2.

It follows from the ordinary differential inequality (4.23) and [2, Lemma 2.6] that

K(t)≤C(1+ t)−ι, ∀t≥ t0, (4.24)

with the exponent given by

ι= min

{

1

1−2ζ
,1+ξ

}

= min

{

1

1−2θ
,1+ξ

}

.

We infer from (4.22) that for any t≥ t0,

∫ 2t

t

Y(τ)dτ ≤ t
1
2

(
∫ 2t

t

Y(τ)2dτ

)

1
2

≤Ct
1
2K(t)

1
2 ≤C(1+ t)

1−ι
2 ,

where

κ=
ι−1

2
= min

{

θ

1−2θ
,
ξ

2

}

>0.

It holds that

∫ +∞

t

Y(τ)dτ ≤
+∞
∑

j=0

∫ 2j+1t

2jt

Y(τ)dτ ≤C
+∞
∑

j=0

(2jt)−κ≤C(1+ t)−κ, ∀t≥ t0. (4.25)

Then by (4.17), we get

∫ +∞

t

‖dt(τ)‖dτ ≤

∫ +∞

t

Y(τ)dτ ≤C(1+ t)−κ, ∀t≥ t0,

which together with (3.27) yields the convergence rate of d in L2:

‖d(t)−d∞‖≤C(1+ t)−κ, ∀t≥0. (4.26)

Besides, using the Poincaré inequality, we infer from Remark 4.1 and (4.25) that

∫ +∞

t

‖ρt(τ)‖H−1 ≤C

∫ +∞

t

‖v(τ)‖dτ ≤C

∫ +∞

t

‖Y(τ)‖dτ

≤C(1+ t)−κ, ∀t≥0,

which implies

‖ρ(t)−ρ∞‖H−1 ≤C(1+ t)−κ, ∀t≥0.

Taking advantage of the lower-order convergence rate of the director d (4.26), we
are able to obtain decay estimate for v as well as a higher-order convergence rate
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on d. For this purpose, we make use the fact −∆d∞ +f(d∞) = 0 and test (1.4) by
λ(−∆(d−d∞)+f(d)−f(d∞)+d−d∞) to get

d

dt

(

λ

2
‖∇(d−d∞)‖2 +

λ

2
‖d−d∞‖2 +λ

∫

Ω

F (d)−F (d∞)−f(d∞) ·(d−d∞)dx

)

+λγ‖−∆d+f(d)‖2 +λγ‖∇(d−d∞)‖2 +λ

∫

Ω

(v ·∇d) ·∆ddx

=−λ

∫

Ω

(v ·∇d) ·(d−d∞)dx−λγ

∫

Ω

(f(d)−f(d∞)) ·(d−d∞)dx. (4.27)

Using the uniform estimate (3.40) and the Sobolev embeddings, we can estimate the
right-hand side of (4.27) as follows:

R.H.S of (4.27)≤
ν

4
‖∇v‖2 +C‖d−d∞‖2. (4.28)

Adding (4.27) with (3.4) and (3.5), we infer from (4.28) that

d

dt
Q(t)+C1(A(t)+‖∇(d−d∞)‖2)≤C2(‖d−d∞‖2 +‖g‖2), (4.29)

where

Q(t) =
1

2

∫

Ω

ρ(t)|v(t)|2dx+
λ

2
‖∇(d(t)−d∞)‖2 +

λ

2
‖d(t)−d∞‖2

+λ

∫

Ω

F (d(t))−F (d∞)−f(d∞) ·(d(t)−d∞)dx.

By the uniform estimate (3.40) and Taylor’s formula, it is easy to see that

∣

∣

∣

∣

∫

Ω

F (d)−F (d∞)−f(d∞)(d−d∞)dx

∣

∣

∣

∣

≤C3‖d−d∞‖2,

which implies

Q(t)+C3‖d(t)−d∞‖2≥
1

2

∫

Ω

ρ(t)|v(t)|2dx+
λ

2
‖∇(d(t)−d∞)‖2. (4.30)

Since A(t) is uniformly bounded in time, (3.18) can be rewritten as

d

dt
A(t)≤C4A(t)+C5‖g‖

2. (4.31)

We deduce from (4.29), (4.30), and (4.31) that

d

dt
Q1(t)+C6Q1(t)≤C7(‖d−d∞‖2 +‖g‖2), (4.32)

where Q1(t) =Q(t)+ C1

2C4
A(t). As a consequence,

Q1(t)≤ e−C6t

(

Q1(0)+C7

∫ t

0

eC6τ (‖d(τ)−d∞‖2 +‖g(τ)‖2)dτ

)

≤Q1(0)e−C6t+Ce−
C6t
2

∫ t
2

0

(‖d(τ)−d∞‖2 +‖g(τ)‖2)dτ
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+C

(

sup
s∈[ t2 ,t]

‖d(s)−d∞‖2

)

e−C6t

∫ t

t
2

eC6τdτ+C

∫ +∞

t
2

‖g(t)‖2dτ

≤Q1(0)e−C6t+e−
C6t
2

(

C

∫ t
2

0

(1+τ)−2κdτ+C

)

+C

(

1+
t

2

)−2κ

+C

(

1+
t

2

)−(1+ξ)

≤C(1+ t)−2κ, ∀t≥0. (4.33)

Recalling the definitions of A(t), Q1(t), Q(t), we conclude from (4.33), (4.30), (4.26),
and (3.12) that

‖v(t)‖H1 +‖d(t)−d∞‖H1 +‖∆d(t)−f(d(t))‖≤C(1+ t)−κ, ∀t≥0. (4.34)

By the elliptic estimate

‖d−d∞‖H2 ≤C‖∆(d−d∞)‖≤C‖∆d−f(d)‖+C‖f(d)−f(d∞)‖

≤C‖∆d−f(d)‖+‖d−d∞‖H1 , (4.35)

we get

‖d(t)−d∞‖H2 ≤C(1+ t)−κ, ∀t≥0. (4.36)

The proof of Theorem 1.3 is complete.

Remark 4.2. If the velocity field v decays fast enough, we can obtain uniform-
in-time W 1,r-estimate for ρ (1<r<+∞). For any q∈ (1,+∞), we infer from (3.48),
(4.4), and (F2) that ‖v(t)‖W2,q ∈L2(0,+∞). If κ> 3

2 , or in other words, ξ >3 and

θ∈ ( 3
8 ,

1
2 ), we just take q∈ ( 4κ−4

2κ−3 ,+∞) such that (2q−4)κ
3q−4 >1. It then follows from

(4.34) that

∫ +∞

0

‖∇v(t)‖L∞dt

≤C

∫ +∞

0

‖v(t)‖
q

2(q−1)

W2,q ‖∇v(t)‖
q−2

2(q−1) dt

≤C

(
∫ +∞

0

‖∇v(t)‖
2q−4
3q−4 dt

)

3q−4
4(q−1)

(
∫ +∞

0

‖v(t)‖2
W2,qdt

)

q

4(q−1)

≤C

(
∫ +∞

0

(1+ t)−
(2q−4)κ
3q−4 dt

)

3q−4
4(q−1)

≤C.

Therefore, by (2.1), we obtain that ‖ρ(t)‖W 1,r ≤C‖ρ0‖W 1,r for t≥0.
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