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SUBGRID-SCALE CLOSURE FOR THE INVISCID BURGERS-HOPF

EQUATION∗

STAMEN I. DOLAPTCHIEV† , ILYA TIMOFEYEV‡ , AND ULRICH ACHATZ§

Abstract. A method is presented for constructing effective stochastic models for the time-
evolution of spatial averages in finite-difference discretizations of partial differential equations. This
method relies on the existence of a time-scale separation in the dynamics of the spatial averages
and fine-grid variables. The spatial averages, thus, are treated as the slow variables in the system
and a stochastic mode reduction strategy can be applied to derive a closed form effective stochastic
model. A conservative discretization of the Burgers-Hopf equation is used as a particular example
to illustrate the approach. An advantage over previous applications of stochastic mode reduction to
spectrally discretized models is that the resulting closure is local and thus remains applicable even
if the number of slow variables is large.
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1. Introduction

Reduced stochastic modeling in spatially extended systems has been an important
research topic for many decades, with atmospheric sciences being one of the major
application areas. In particular, reduced models describing the behavior of leading
patterns of atmospheric variability [24, 3, 4, 1, 2, 14] present a viable alternative in
reducing the computational complexity of coupled atmosphere-ocean models. In the
last few decades reduced modeling in spatially extended systems received an increased
attention in the mathematical community as well. In particular, various techniques
have been proposed to model the behavior of essential degrees of freedom in different
applied settings. For instance, such techniques include derivation of reduced dynamics
in multiscale stochastic differential equations (SDEs) [16, 8], optimal prediction [5, 6],
reduced Markov chain modeling [19, 7, 12, 22], and empirical estimation of linear
reduced models [4, 13].

In this paper we apply a stochastic mode reduction strategy, proposed by Ma-
jda, Timofeyev, and Vanden-Eijnden [16, 17, 21] and known as MTV, to derive an
effective stochastic model for spatial averages in a finite-difference or finite-volume
discretization of partial differential equations. Such discretizations are widely used
in ocean modeling, regional atmosphere modeling and more recently in global atmo-
sphere models. The coupled atmosphere-ocean system presents considerable compu-
tational challenges since the two components evolve on vastly different time-scales.
The atmospheric component is much faster and requires a much smaller time-step,
and thus typically consumes more of the computational time. The approach pre-
sented in this paper is designed to eliminate this limitation by considering effective
stochastic models for atmospheric discretizations averaged over some pre-defined spa-
tial box. The subgrid-scale closure is local, i.e. its effect on some local average only
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needs information from the immediate neighborhood. Note that in former applica-
tions of stochastic mode reduction to spectrally discretized models [11, 15, 10, 18],
the information from all resolved modes is always required. In contrast to these, a
SGS closure as proposed here does not become impracticable if the number of resolved
modes is large. The new method bears thus the potential for application in turbulence
parameterization in the context of large eddy simulations.

To construct the effective model we introduce a coarse grid and define new dy-
namic variables as averages of the sub-grid scales over the coarse box. The sub-grid
scales are equivalent to the fine-grid variables in this context. Next, we apply the
stochastic mode reduction to eliminate the subgrid-scale variables from the equation.
To mimic the properties of some conservative finite-difference/finite-volume discretiza-
tions, we apply our methodology to a prototype chaotic system [20], obtained as a
finite-difference discretization of the inviscid Burgers-Hopf equation. We demonstrate
that the stochastic mode reduction technique can be successfully utilized to obtain
an effective stochastic model for spatial averages over the coarse grid. In particular,
we compare and contrast the statistical behavior of the new coarse-grained model
with the one from the full model (direct numerical simulation) and from two purely
empirical coarse-grained models.

The outline of this paper is as follows: in Section 2 we introduce the discrete
version of the inviscid Burgers model. In Section 3 we discuss the stochastic mode
reduction technique and present a new reduced model with stochastic subgrid-scale
closure. The performance of this model is assessed in Section 4 by comparing it
with the full model and with two other coarse-grained models with purely empirical
Ornstein-Uhlenbeck type closures. A summary and a conclusion are presented in the
last section.

2. The inviscid Burgers-Hopf equation

2.1. The discrete model. We consider here the one dimensional inviscid
Burgers-Hopf equation

∂u

∂t
+

∂

∂x

u2

2
=0 (2.1)

over a periodic domain of size L. Discretizing equation (2.1) in space, one can write

d

dt
ui+

Fi+ 1
2
−Fi− 1

2

∆x
=0, (2.2)

where ui denotes the values of the function u at the center of the discrete cell i (i∈s=
{0, . . . ,N−1}) of width ∆x= L

N
and Fi+ 1

2
,Fi− 1

2
denote the fluxes at the boundaries

of cell i. These fluxes must be approximated using values from neighboring cells; we
use the discretization proposed in [27]:

Fi+ 1
2
=

1

6

(

u2
i+1+uiui+1+u2

i

)

, (2.3)

Fi− 1
2
=

1

6

(

u2
i +uiui−1+u2

i−1

)

. (2.4)

The above discretization conserves total momentum, total energy, and the Li-
ouville property. We refer to [20] for an analysis of the mathematical properties
of the finite-difference scheme. The numerical approximations presented in [20] are
characterized by strong chaos with ergodic behavior. This motivated us to use the
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discretized equation (2.2) with (2.3), (2.4) as a test model for the stochastic mode
reduction procedure.

A typical problem, encountered in modeling processes involving interactions on a
wide range of spatial scales, is that one cannot afford to solve the discrete model on a
sufficiently small grid, but can afford to solve it on some much coarser grid. The model
equations must be reformulated in terms of resolved and unresolved (subgrid-scale)
variables. In large eddy simulation this is done by averaging the equations. Following
the volume-balance procedure of [23] we average over n neighboring, fixed in space,
“fine” grid cells of the original width ∆x. We define a “coarse” grid with a spacing
of n∆x and cell index set sx={0, ...,Nx−1}, where Nx=

N
n

is the total number of
coarse cells (N a multiple of n). The configuration of the coarse and fine grid cells is
depicted in figure 2.1. Let xi ,i∈sx denote the averaged value of ui ,i∈s on the coarse
grid; xi is computed by applying a top-hat filter to ui. This filtering can be written
simply as the arithmetic mean over n neighboring grid cells

xi=
1

n

n(i+1)−1
∑

k=ni

uk. (2.5)

Next, we split ui into a mean xî and a deviation yi

ui=xî+yi, (2.6)

where the index î denotes the coarse cell in which the fine cell i is located. We will
refer to xî and yi as the resolved and unresolved modes, respectively. Applying the
averaging operator (2.5) to the discretized Burgers-Hopf equation, equation (2.2) can
be written in terms of xî and yi:

d

dt
xî+

Fn(̂i+1)− 1
2
−Fnî− 1

2

n∆x
=0, (2.7)

d

dt
yi+

Fi+ 1
2
−Fi− 1

2

∆x
−

Fn(̂i+1)− 1
2
−Fnî− 1

2

n∆x
=0. (2.8)

The flux terms in (2.7) and (2.8) contain both resolved and unresolved modes. We
split these terms depending on the modes involved and obtain the following system
of ODEs for the discretized model equations:

ẋi=
∑

j∈sx

∑

k∈sx

Bxxx
ijk xjxk+

∑

j∈sx

∑

k∈s

Bxxy
ijk xjyk+

∑

j∈s

∑

k∈s

Bxyy
ijk yjyk, i∈sx, (2.9)

ẏi =
∑

j∈sx

∑

k∈sx

Byxx
ijk xjxk+

∑

j∈sx

∑

k∈s

Byxy
ijk xjyk+

∑

j∈s

∑

k∈s

Byyy
ijk yjyk, i∈s. (2.10)

The terms of the form Bαβγ arise from the quadratic nonlinearities; the first
superscript α indicates the modes on which they project, and the second two, β and
γ, indicate the two modes involved. In (2.9), (2.10) the indices of the summation
signs go formally over s or sx; however, one must keep in mind that due to the local
form of the discretization the tensors with the interaction coefficients are sparse and
involve only “neighboring” indices. The explicit form of the tensors can be found in
Appendix A.
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Fig. 2.1. Schematic representation of the fine grid cells (small intervals) and coarse grid cells
(large intervals) introduced in Section 2.1. The indexing of the fine/coarse cells is denoted by the
integers corresponding to s/sx, respectively.
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Fig. 2.2. Time autocorrelation functions for the resolved (x) and unresolved (y) modes from
the DNS. The averaging interval n is set to 16; the time unit on the abscissa is 20 nondimensional
model time units.
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Fig. 2.3. Spatial correlation from the DNS of ui, resolved mode xi, and unresolved mode yi,
all for an arbitrary chosen grid point i=36. The averaging interval n is set to 16; grid points with
i=32,... ,48 are located inside the same coarse cell.

2.2. Statistics in the full model. Equations (2.9), (2.10) represent another
form of the discretized model (2.2), (2.3), (2.4); we will refer to this model as the full
model and to its integration as the direct numerical simulation (DNS). We integrate
the full model in time using a 3rd order Runge-Kutta method with the following
choice of parameters: ∆t=0.02, L=100, N =256. The initial condition represents a
random distribution of u, characterized by zero total momentum and a total energy
of 1.716.

The time autocorrelation functions of the x- and y-modes are presented in fig-
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ure 2.2; the averaging interval n from (2.5) is set to 16. Because of the spatial
homogeneity of the model, all statistical moments in the paper represent a spatial
average. From the figure it is visible that the x-modes evolve on a slower time scale
than the y-modes. By computing the area under the curves, we estimated decay time
scales of 66 and 12 for the x- and y-modes, respectively. This implies a moderate scale
separation in time of about 5.5. The scale separation is proportional to the averaging
interval n: for larger values of n the x/y-modes become slower/faster.

In figure 3.1(b) the autocorrelation function of the x-modes from the DNS for
larger lags is displayed. We observe oscillations in the tail with periods much larger
than the estimated decay time scale. It was found that the magnitude of these os-
cillations depends on n as well. Long-period oscillations are visible in the tails of
all of the DNS autocorrelation functions reported in the paper. Although character-
ized by small amplitudes, these oscillations appear to be an inherent property of the
low-frequency dynamics of the resolved modes.

Figure 2.3 depicts the spatial correlation pattern in the DNS. We see that the
full variable ui is uncorrelated in space. The subgrid-scale variable yi is also, to a
good approximation, uncorrelated, except of small negative correlation values for grid
points corresponding to the same coarse cells. This is due to the constraint that the
yi’s sum to zero inside the coarse cell. From the pattern of xi we can conclude that
the correlations between different coarse cells are negligible.

3. Stochastic mode reduction

The stochastic mode reduction [16, 17, 21, 18] can be thought of as a three step
procedure. In the first step, one has to impose certain assumptions on the statistical
behavior of the full model (2.9), (2.10). In particular, there should exist a time-scale
separation (at least moderate) between the resolved and unresolved variables. Es-
sentially this means that we can treat the resolved and unresolved variables as the
slow and fast degrees of freedom, respectively. For the discrete model we consider,
this assumption is verified in Section 2.2 and figure 2.2. In addition, the stochastic
mode reduction also requires that the term Byyy

ijk yjyk is the most dominant term in
the equation for fast variables. The second step in the stochastic mode reduction
procedure is a stochastic modeling step for the term Byyy

ijk yjyk (see (3.1)). This step
allows explicit analytical calculations of the coefficients in the reduced model. Finally,
the third step consists of further accelerating the fast variables, which allows one to
compute the reduced equations in the limit of infinite time-scale separation. Typi-
cally, the full model under consideration has only a moderate separation of time scales
between the fast and slow variables. Nevertheless, the mode reduction procedure has
been successfully tested on many models with moderate time-scale separation, which
suggests that often the slow variables are not particularly sensitive to the time-scale
of the fast modes. The third step can be formalized by introducing an explicit scale
separation parameter ε into the equations. This yields a modified (also called selec-
tively accelerated [18]) model of the same dimensionality as the original full model.
One then can test the existence of the limit of the modified model as ε→0.

If the self-interactions of the slow variables in the equation for slow variables (the
term Bxxx

ijk xjxk) are absent in the full model, then the modified model can also be
obtained by introducing a coarse-grained time t→εt. On the other hand, if these
terms are non-zero then the time rescaling alone will not yield the modified equations
in the proper form, and an additional assumption on the behavior of these terms must
be imposed. In particular, one must assume that the self-interactions are rescaled as
Bxxx

ijk xjxk→εBxxx
ijk xjxk under the time rescaling t→εt (assumption A3 on p.896 in
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[16]). This assumption ensures that the self-interactions of the slow variables are
not affected by the stochastic mode reduction. One can motivate this by the fact
that the resulting reduced model is compared directly with the original full model.
Moreover, the behavior of the modified model for different values of ε is also compared
with the behavior of the full model. Thus, a problem can potentially arise because
the full model and the modified model are compared on different time-scales, but
the self-interactions of the slow variables should not be affected by this time-scale
difference.

Another way of looking at the introduction of different powers of ε in front of
different terms in the modified model is as a modeling step in order to carry out
the stochastic mode reduction strategy. Different powers of ε in front of various
terms are necessary to take into account the different time scales and magnitudes
of these terms. For instance, since we assume that the fast variables are primarily
driven by the self-interactions of fast modes, these should be the leading terms in
the equation for the y-variables. Next, since the stationary averages 〈Bxxy

ijk xjyk〉 and
〈Bxyy

ijk yjyk〉 are zero, ε−1 is required in front of these terms in order to obtain non-
trivial stochastic corrections from the stochastic mode-reduction procedure. Thus,
ε−1 is also required in front of the Byxx

ijk xjxk and Byyx
ijk yjxk terms to preserve the

conservation of energy. Finally, since the full model is directly compared with the
stochastically parametrized model and the reduced model (derived in the limit ε→0),
the nonlinear self-interactions of the slow variables Bxxx

ijk xjxk should not be affected
by the stochastic mode-reduction.

Therefore, introducing ε can be considered as a technical step to emphasize the
influence of various terms in the equations when the fast variables are accelerated even
further. On the other hand, this step should also be consistent with the structure of
the equations (e.g. the conservation of energy). Finally, the original full-model is
compared directly with the modified model (the stochastically parametrized model in
(3.2), (3.3)) and the reduced model, and this is often referred to as “setting ε to one”.

3.1. Closure assumptions. The stochastic mode reduction procedure as-
sumes that the term Byyy

ijk yjyk in (2.10) can be modeled as an Ornstein-Uhlenbeck
(OU) process in y:

∑

j∈s

∑

k∈s

Byyy
ijk yjyk=−γyi+σẆi. (3.1)

Here γ and σ denote the drift and diffusion coefficient of the OU process and Wi

is a Wiener process. Because of the spatial homogeneity of the model, γ and σ do not
show any spatial variations (are not dependent on the index i).

By introducing (3.1) we approximate the fast self-interactions between subgrid-
scale modes only in the equation for the y-modes. This is in contrast with traditional
subgrid-scale parameterizations, where the terms involving subgrid-scale modes in the
evolution equation for x are expressed in terms of resolved modes by assuming some
particular closure. In our approach, the explicit form of this closure is derived by
the MTV stochastic mode reduction procedure and is rigorously valid in the limit of
infinitely large time scale separation between the resolved and subgrid-scale modes.
We want to stress that the OU process from (3.1) does not couple neighboring subgrid-
scale modes, since on longer time scales these modes are uncorrelated; see figure 2.3.
It is thus in line with the MTV stochastic mode reduction strategy which presupposes
a diagonal OU process. As shown in [9], interactions between different subgrid-scale
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modes can be incorporated in the ansatz (3.1) by choosing, instead of a scalar drift
coefficient, a drift matrix.

Assuming (3.1) and properly introducing ε in (2.9), (2.10), we obtain the following
modified model:

dxi=

(

Bxxx
ijk xjxk+

1

ε
Bxxy

ijk xjyk+
1

ε
Bxyy

ijk yjyk

)

dt, (3.2)

dyi=

(

1

ε
Byxx

ijk xjxk+
1

ε
Byxy

ijk xjyk−
1

ε2
γyi

)

dt+
1

ε
σdWi. (3.3)

In the equations above and in the following paragraphs we make use of Einstein’s
summation convention, and ε≪1 is a small parameter which is a measure of the scale
separation in time between the x and y modes. We will refer to the simulation with
the modified model from (3.2), (3.3) as the OU-DNS.

Finally, we want to comment on the estimation of the OU parameters γ and
σ. These parameters are determined using a time series of yi from the DNS and
assuming that the OU closure dominates in (3.3). In this case γ can be estimated
(see e.g. [17, 21]) as the reciprocal of the area under the graph of the modulus of the
autocorrelation function for yi. Then, the diffusion coefficient σ is found from the
variance of yi (denoted with 〈yiyi〉) by using that in equilibrium,

〈yiyi〉=
σ2

2γ
. (3.4)

The quality of this estimate is discussed in the next section.

3.2. Numerical tests of the closure assumption. We have assessed the
approximation made in (3.1) by running the OU-DNS with ε=1 and comparing the
results with the DNS. The autocorrelation functions for the x- and y-modes from
the two simulations are depicted in figure 3.1. The structure of the autocorrelation
function of the subgrid-scale modes from the DNS is approximated in the OU-DNS
by an exponential with similar decay rate; see figure 3.1 (a). The OU-DNS is not able
to reproduce the long-period oscillations in the autocorrelation function of x from
the DNS; see figure 3.1 (b). However, it can roughly capture the large-scale envelope
of it. Table 3.1 shows that the OU closure is able to reproduce the variance of the
subgrid-scale modes and captures reasonably well the variance of the resolved modes.

The reduced stochastic model introduced in Section 3.3 represents the asymptotic
limit ǫ→0 of the OU-DNS (3.2), (3.3). This limit corresponds to infinitely large time
scale separation between the x- and y-modes. In order to study the asymptotic limit,
we performed numerical simulations with (3.2), (3.3) by systematically decreasing
the value of ε and thus accelerating the y-modes. The corresponding autocorrelation
functions of x are displayed in figure 3.2. It is evident that as ε decreases, the au-
tocorrelation function remains close to the ε=1 run (note the narrow time window
chosen in figure 3.2, in order to make differences visible). Further, the deviations
between ε=0.1 and ε=0.5 are smaller than those between ε=0.5 and ε=1. Similar
convergence is also observed in the variance of x. The numerical results suggest that,
after the mode elimination procedure, the resulting reduced model for x will behave
similarly to the OU-DNS with ε=0.1, which is close to the modified model with ε=1.

3.3. The reduced stochastic model with subgrid scale closure. The
stochastic mode reduction procedure allows us to eliminate the subgrid-scale modes
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Fig. 3.1. Time autocorrelation function of unresolved modes (a) and resolved modes (b) from
the DNS and the OU-DNS with ε=1. Averaging interval and time unit on the abscissa as for
figure 2.2.

Variance y x

DNS 1.2616×10−2 7.8692×10−4

OU-DNS ε=1. 1.2619×10−2 7.2649×10−4

rel. error <0.01 0.08

Table 3.1. Variance from the DNS and the OU-DNS.

in the OU-DNS (3.2), (3.3) and derive effective equations for the resolved modes
only. The procedure is carried out by performing an asymptotic expansion in the
Kolmogorov backward equation corresponding to the SDEs (3.2), (3.3); see [16]. The
resulting coarse-grained model reads

dxi(t)=

i+1
∑

j,k=i−1

Bxxx
ijk xjxkdt+

i+1
∑

j=i−1

Mijxjdt+

i+2
∑

j,k,l=i−2

Cijklxjxkxldt

+

i+ 1
2

∑

j=i− 1
2

PijdW
(1)
j +

i+ 1
2

∑

j=i− 1
2

Dij(x)dW
(2)
j , (3.5)

where W
(1)
j ,W

(2)
j denote independent Wiener processes. We will refer to (3.5) as the

reduced stochastic model. The first term on the right hand side of (3.5) describes
the bare truncation model, which is derived from the full model when all subgrid-
scale modes are neglected. The other terms in (3.5) arise from the subgrid-scale
model; they represent linear and cubic deterministic corrections as well as additive
and multiplicative noise (last two terms). Note the local form of the subgrid-scale
model as visible from the summation intervals. This is in contrast to the heretofore
applications of MTV to spectrally discretized models. There the closure for any
resolved mode involves all other resolved modes. It thus becomes impracticable as
the number of resolved modes gets too large. The explicit form of the subgrid-scale
parameterization is given in Appendix B. The reduced stochastic model conserves
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Fig. 3.2. Time autocorrelation function of the resolved modes from the OU-DNS for different
values of ε. Averaging interval and time unit on the abscissa as for figure 2.2.

Lag k 0 1 2 3 4

Int. CCF 1.3149 0.2000 0.0260 -0.0750 -0.1325

Lag k 5 6 7 8

Int. CCF -0.1721 -0.1883 -0.2231 -0.2221

Table 4.1. Integrated normalized cross-correlation function Ci,i+k(τ)/Ci,i(0) (Int. CCF) from
the DNS for different lags k; here Ci,i+k(τ)= 〈xi(t)xi+k(t+τ)〉. For Nx=16 only cross-correlations
up to lag 8 are required due to the spatial homogeneity.

total momentum, as does the full model. The energy (
∑

i∈sx
x2
i ) is not conserved

exactly, but fluctuates around a constant mean value. This, however, is also the case
in the full model, where energy is transfered between the resolved and unresolved
scales.

4. Results for the reduced stochastic model

In the following section we study the performance of the reduced stochastic model
by comparing it with the full model, the linear-closure stochastic model, and the
stochastic model of multivariate OU type.

4.1. The multivariate OU model and the linear-closure stochastic

model. Since the derived reduced stochastic model represents a local parame-
terization, it is natural to ask the question if a global closure, coupling all resolved
modes, can outperform it. As a zero order global closure we consider a multivariate
OU process (MVOU)

dxi=Γijxjdt+ΣijdWj , (4.1)

where Γ,Σ ∈RNx×Nx denote the drift and diffusion matrices. Empirical models of
global form, similar to (4.1), are often used in atmospheric modeling; see, e.g., [26, 4].
It can be shown that the lagged cross-correlation of the process in (4.1) satisfies

C(τ)= eΓτC(0), (4.2)
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where C(τ)=
〈

~x(t)~x(t+τ)T
〉

denotes the cross-correlation matrix at lag τ . By inte-
grating (4.2) in time, the following useful relation for Γ can be obtained:

Γ−1=−
∞
∫

0

C(τ)C−1(0)dτ. (4.3)

In order to find the model parameters in (4.1), first the matrices C(0) and C(τ)
(with different lags τ) are estimated from a time series of the resolved variables. Then,
the drift matrix Γ is determined from (4.3), so that it matches the integrated lagged
cross-correlation of the full model. Finally, the diffusion matrix Σ is found from the
fluctuation-dissipation relation to match the covariance of the full model

ΓC(0)+C(0)ΓT =−ΣΣT . (4.4)

For known Γ and Σ all statistical moments of the model from (4.1) can be com-
puted analytically. The models of the type in (4.1) typically perform very well if
the correlation functions of the slow variables are close to exponential. In this case,
the estimation procedure described above provides damping and forcing parameters
consistent with the large-scale statistical features of the slow variables, and the mul-
tivariate OU model is likely to reproduce the statistics of the slow variables. On the
other hand, if the correlation functions of the slow variables are non-exponential, then
the model (4.1) is more likely to fail.

While in (4.1) the non-linear self-interactions of the slow variables are not included
in the effective model (as in [26, 4]), there are also studies which emphasize the
importance of these terms in reduced models [1, 2, 25, 7]. This motivated us to
consider the linear-closure stochastic model (LCSM), which is based on an ad-hoc
approximation of all subgrid-scale interactions in (2.9) by an OU process with drift α
and diffusion β:

dxi=Bxxx
ijk xjxkdt+αxidt+βdWi. (4.5)

The inclusion of the non-linear self-interactions in (4.5) might improve the repre-
sentation of non-Gaussian features of the full model, where the multivariate OU model
from (4.1) will definitely fail. We have experimented with OU closures coupling neigh-
boring grid cells, but it turned out that the particular choice in (4.5) (no coupling)
gives nearly optimal results. The diagonal choice for the damping and diffusion in
(4.5) is supported by the weak statistical coupling between different slow variables. In
particular, cross-correlation times (integral of the lagged cross-correlation functions
〈xi(t)xj(t+τ)〉) are presented in table 4.1. The behavior of the cross-correlations
indicates that the coupling is weak for spatial lags greater than zero. Further, the
estimate for Γ in (4.1) reveals a diagonally dominant damping matrix. Therefore,
omitting the non-diagonal terms does not have a significant affect on the model in
(4.5).

By comparing the statistical behavior of the slow variables from a simulation
with and without the Bxxx

ijk xjxk in the full model (2.9), (2.10), we found that these
interaction terms are rather weak and do not significantly affect the behavior of the
slow variables. In particular, the marginal equilibrium distribution and the autocor-
relation function are not affected by these terms (these results are not shown). This
can be viewed as a numerical justification for the missing ε−1 factor in front of the
non-linear slow self-interaction terms in equation (3.2) of the modified model (see also
the discussion in the beginning of Section 3).
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Fig. 4.1. Time autocorrelation function of the resolved modes from the DNS, linear-closure
stochastic model (LCSM), multivariate OU model (MVOU), and reduced stochastic model (RSM)
for n=32 (a), n=16 (b), and n=8 (c).

The closure parameters α and β from (4.5) are estimated with the same proce-
dure as the coefficients in (3.1) (see Section 3.1), but now from the variance and the
integrated modulus of the autocorrelation function for xi. Since the subgrid-scale
terms dominate in (2.9), the estimation procedure guarantees that the linear-closure
stochastic model will capture the variance and the large-scale decay behavior in the
autocorrelation function from the DNS.

Overall, based on the statistical tests for the slow variables in the full model re-
ported above, we expect the behavior of the empirical coarse-grained models (4.1) and
(4.5) to be qualitatively similar, especially if the variance is considered. Differences
in the simulated autocorrelation function may emerge due to the different estimation
procedures for the drift coefficients.

4.2. Statistics of the reduced models. The reduced models are integrated
with the parameter setup from Section 2.2. In order to study how the number of
subgrid-scale modes affects the statistics of the resolved modes, we perform simula-
tions for different averaging intervals: n= 8, 16, 32. Note, that the parameters γ and
σ from (3.1), entering in the reduced stochastic model, have been determined only
once (for n=16) and then been used in all three cases. In contrast to this, the linear-
closure stochastic model and the multivariate OU model require new estimation of
the closure parameters for each different case.
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Fig. 4.2. Same as figure 4.1, but for small lags.

The autocorrelation functions of all three reduced models are shown in figure 4.1.
The linear-closure stochastic model and the reduced stochastic model are able to
capture only the overall decay behavior in the autocorrelation function of the DNS,
the multivariate OU model completely underestimates the decay time scale. None of
the models are able to reproduce the oscillations in the autocorrelation function. We
take a closer look at the differences between the reduced stochastic model and the
other coarse-grained models. Figure 4.2 displays the autocorrelation functions of the
models for small lags. It is evident that the reduced stochastic model can capture the
slope of the DNS curve at lags close to zero for all values of n, whereas the linear-
closure stochastic model and multivariate OU model fail. In figure 4.3 a semilog
plot of the absolute value of the autocorrelation functions is presented, in order to
make discrepancies in the tails visible. The linear-closure stochastic model and the
reduced stochastic model perform poorly for the case n=32. However, the reduced
stochastic model captures roughly the low-frequency envelope of the DNS for n=16
and perfectly for n=8. In the latter two cases the linear-closure stochastic model is
damping too strongly at large lags. Again it is evident that for all different values of
n, the decorrelation time scale is completely underestimated by the multivariate OU
model.

Figure 4.4 shows the simulated kurtosis with the models. For a given time series
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Fig. 4.3. Semilog plot of the absolute value of the time autocorrelation function of x from
the DNS, linear-closure stochastic model (LCSM), multivariate OU model (MVOU), and reduced
stochastic model (RSM) for n=32 (a), n=16 (b), and n=8 (c).

x(t) the kurtosis at lag s is defined as

K(s)=

〈

x(t+s)2x2(t)
〉

〈x2(t)〉2+2〈x(t+s)x(t)〉2
, (4.6)

where 〈·〉 denotes a time average. The kurtosis measures deviations from Gaussianity,
since for a Gauss process it is equal to one (see the MVOU lines in figure 4.4). Looking
at the DNS profiles in figure 4.4, we observe the same structure for all n: a minimum
of kurtosis at smaller lags, whereas at larger lags the kurtosis takes a constant value
close to one. It is evident from the figures that for decreasing n the magnitude of
the minimum in the DNS increases, indicating weak non-Gaussianity. The reduced
stochastic model is able to capture the position of this minimum and, to some extent,
its magnitude. The linear-closure stochastic model completely underestimates the
minimum and shifts it to much larger lags.

Deviations from Gaussian statistics in the linear-closure stochastic model simu-
lations are entirely due to the bare truncation part in (4.5). Thus, one can conclude
that the additional subgrid-scale correction terms in the reduced stochastic model,
such as cubic terms and multiplicative noise, significantly improve the representation
of the kurtosis.
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Fig. 4.4. Kurtosis of the resolved modes from the DNS, linear-closure stochastic model (LCSM),
multivariate OU model (MVOU), and reduced stochastic model (RSM) for n=32 (a), n=16 (b),
and n=8 (c). Note the different scaling for the ordinate in the figures.

The probability density functions of the models are depicted in figure 4.5. Overall,
it can be stated that the multivariate OU model performs best, indicating that the
probability density distribution of the full model is close to Gaussian. The linear-
closure stochastic model and the reduced stochastic model show similar precision.
For an averaging interval n=32 the reduced stochastic model does better than the
linear-closure stochastic model, but its performance worsens for smaller values of n
due to the decreased scale separation between the x- and y-modes.

4.3. Budget analysis. One advantage of the subgrid-scale parameterization
derived by stochastic mode reduction is that the different subgrid-scale corrections
can be attributed to different physical processes [16, 17, 21, 11]. By performing a
budget analysis for the different subgrid-scale correction terms, we can systematically
assess the importance of different physical interactions [11, 10]. In order to evaluate
the contributions of various subgrid-scale corrections, we regroup the different terms
in (3.5) as

dxi(t)=λb

i+1
∑

j,k=i−1

Bxxx
ijk xjxkdt+λa





i+1
∑

j=i−1

Ma
ijxjdt+

i+ 1
2

∑

j=i− 1
2

PijdW
(1)
j
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Fig. 4.5. Probability density function of the resolved modes from the DNS, linear-closure
stochastic model (LCSM), multivariate OU model (MVOU), and reduced stochastic model (RSM)
for n=32 (a), n=16 (b), and n=8 (c). Note the different scaling for the axes in the figures.

+λm





i+1
∑

j=i−1

Mm
ij xjdt+

i+2
∑

j,k,l=i−2

Cijklxjxkxldt+

i+ 1
2

∑

j=i− 1
2

Dij(x)dW
(2)
j



, (4.7)

with λb=λa=λm=1 for the complete reduced stochastic model. Interactions involv-
ing the terms Bxyy and Byxy in the full model are called additive triad interactions;
they give rise to linear corrections and additive noise in the subgrid-scale parame-
terization. We will refer to these subgrid-scale terms as additive corrections, and we
place λa in front of them to denote their origin. Multiplicative subgrid-scale correc-
tion terms include linear and cubic terms, as well as multiplicative noise. These terms
are multiplied by λm and they are due to multiplicative triad interactions involving
Bxxy and Byxx. Finally, we mark the bare truncation term with an λb-factor in front
of it. The explicit form of the subgrid-scale corrections discussed above can be found
in Appendix B.

We perform simulations with a single type of interaction switched on, i.e., just one
among λb,λa or λm is =1, and all others 0. The results are summarized in figure 4.6.
First, we see that the bare truncation model (BRT), a model without any subgrid-scale
corrections, fails completely to reproduce the autocorrelation function and kurtosis of
the DNS. Further, a reduced model with only additive triad corrections captures the
autocorrelation function and probability density function of the reduced stochastic
model, indicating that the additive triads are the dominant interactions. However, by
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Fig. 4.6. Autocorrelation function (a), kurtosis (b), and probability density function (c) com-
puted with different correction terms in the reduced stochastic model: bare truncation (BRT), addi-
tive triads (ADD), multiplicative triads (MUL), and full reduced stochastic model (RSM). All models
with n=16. See text for an explanation of the different correction terms.

definition such a model does not show any deviations from Gaussianity (since this is a
purely Gaussian process); see figure 4.6 (b). The statistics from simulations with two
types of interactions are displayed in figure 4.7. We observe that a model including
additive corrections and multiplicative ones, i.e. λa=λm=1 and λb=0, reproduces
not only the autocorrelation function and the probability density function of the full
reduced stochastic model with λa=λm=λb=1, but also the kurtosis. Clearly the
closure effectively controls the statistics of the reduced stochastic model.

5. Summary and conclusions

We present a framework for the construction of stochastic subgrid-scale parame-
terizations consistent with the finite-difference discretization of the model equations.
The subgrid-scale model is based on the assumption of a time scale separation between
resolved and subgrid-scale modes. It assumes further that the fast self-interactions
between subgrid-scale modes in the equations for the subgrid-scale modes can be
modeled as an one dimensional Ornstein-Uhlenbeck (OU) process. The particular
form of the subgrid-scale correction terms is derived in a systematic way from the
discretized model by applying the Majda, Timofeyev, and Vanden-Eijnden stochastic
mode reduction strategy [16, 17, 21]. The subgrid-scale parameterization is rigor-
ously valid in the limit of infinite scale separation between resolved and unresolved



S.I. DOLAPTCHIEV, I. TIMOFEYEV, AND U. ACHATZ 773

a b

0 40 80 120 160 200
−0.2

0

0.2

0.4

0.6

0.8

1

lag time

A
C

F

 

 

RSM
ADD+BRT
ADD+MUL
MUL+BRT

0 8 16 24 32 40
0.85

0.9

0.95

1

1.05

1.1

lag time

K
U

R

 

 

RSM
ADD+BRT
ADD+MUL
MUL+BRT

c

−0.1 −0.05 0 0.05 0.1
0

0.01

0.02

0.03

0.04

0.05

0.06

P
D

F

 

 

RSM
ADD+BRT
ADD+MUL
MUL+BRT

Fig. 4.7. Notation as in figure 4.6.

modes. It includes linear and cubic deterministic corrections, as well as additive and
multiplicative noise terms. The subgrid-scale corrections are determined without any
regression fitting of the resolved modes, and require only the variance and integrated
autocorrelation function of the subgrid-scale modes as input.

As a test model for the new framework we use the inviscid Burgers-Hopf equation.
We consider an energy and momentum conserving finite-difference discretization of
the model equation [20] and construct for it a stochastic subgrid-scale parameteriza-
tion. The resulting reduced stochastic model has been compared with the full model
(DNS) and with two purely empirical coarse-grained models. The first such model is
the multivariate OU model, constructed in such a way as to match the covariance and
integrated lagged cross-correlations of the full model. The second empirical model is
the linear-closure stochastic model, which incorporates one dimensional OU closure
in addition to the non-linear self-interactions of the resolved variables. In order to
assess the quality of the different subgrid-scale parameterizations, we performed sim-
ulations by varying the number of subgrid-scale modes, which have to be modeled,
and comparing the resulting statistics with those from the full model.

All coarse-grained models capture the probability density function from the
DNS, with the multivariate OU model performing best. However, the latter model
completely underestimates the autocorrelation decay time scale. The linear-closure
stochastic model and the reduced stochastic model, on the other hand, can capture
the overall decay behavior in the autocorrelation function. Beyond this, the reduced
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stochastic model exhibits several advantages. (1) It captures the autocorrelation func-
tion at very small lags. (2) If the oscillations in the autocorrelation function of the
DNS are small, the reduced stochastic model captures also the low-frequency envelope.
The linear-closure stochastic model, on the other hand, decays always too fast at large
lags. (3) The inspection of the lagged kurtosis of the models showed that the reduced
stochastic model is able to capture better than the linear-closure stochastic model
some weakly non-Gaussian features in the DNS. (4) The statistics of the resolved
modes show large changes, in contrast to those of the subgrid-scale modes, when the
total number of resolved modes Nx is varied in the full model. Thus, the subgrid-scale
parameterization of the purely empirical coarse-grained models must be recomputed
for each case considered here. However, such recomputation is not required for the
reduced stochastic model, since for this parameterization the dependency on Nx (and
on the averaging interval n) is known. Of course, for the Burgers-Hopf equation,
considered here, one can find a simple scaling relation between the parameters in the
purely empirical closures and Nx, in order to avoid recomputing these parameters.
However, this might not be the case if more complex models are considered. (5)
Another practical advantage of the reduced stochastic model is that the empirical
coefficients entering the closure can be inferred from a shorter time-series since they
only depend on the fast subgrid-scale modes. This is in contrast with empirical re-
duced models (such as the MVOU and LCSM models in (4.1) and (4.5), respectively),
where the coefficients are computed from statistics of the slow modes characterized
by long decorrelation time scales.

An interesting result was that the statistics of the reduced stochastic model are
effectively controlled by the closure. By performing a budget analysis it was found
that the linear deterministic term and additive noise are the dominant subgrid-scale
corrections in the model. These terms result from nonlinear interactions between
subgrid-scale modes. Next in importance come the multiplicative correction terms,
followed only by the deterministic terms from the barely truncated model.

One possibility to improve the present approach is by incorporating interactions
between different subgrid-scale modes in the OU process from the closure assumption.
Work on the Burgers equation with forcing and dissipation suggests that the subgrid-
scale self-interactions can be modeled by an OU process coupling small number of
neighboring grid cells [9].
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Appendix A. Interaction coefficients in the discretized Burgers-Hopf

equation. The quadratic interaction terms from (2.9), (2.10) are given by

∑

j∈sx

∑

k∈sx

Bxxx
ijk xjxk=− 1

6n∆x

(

x2
i+1+xixi+1−xixi−1−x2

i−1

)

, (A.1)

∑

j∈s

∑

k∈s

Bxyy
ijk yjyk=− 1

6n∆x

(

y2ir+yiryir+1+y2ir+1−y2il−yilyil−1−y2il−1

)

, (A.2)

∑

j∈sx

∑

k∈s

Bxxy
ijk xjyk=− 1

6n∆x
(2xiyir+xiyir+1+xi+1yir+2xi+1yir+1
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−2xiyil−xiyil−1−xi−1yil−2xi−1yil−1) , (A.3)
∑

j∈sx

∑

k∈s

Byxy
ijk xjyk=− 1

6∆x

(

2x[ i+1
n

]yi+1+x[ i+1
n

]yi+x[ i

n
]yi+1

−2x[ i−1
n

]yi−1−x[ i−1
n

]yi−x[ i

n
]yi−1

)

+
1

6n∆x
(2x[ i

n
]yir+x[ i

n
]yir+1+x[ i

n
]+1yir+2x[ i

n
]+1yir+1

−2x[ i

n
]−1yil−1−x[ i

n
]yil−1−x[ i

n
]−1yil−2x[ i

n
]yil), (A.4)

∑

j∈sx

∑

k∈sx

Byxx
ijk xjxk=− 1

6∆x

(

x2
[ i+1

n
]
+x[ i

n
]x[ i+1

n
]−x2

[ i−1
n

]
−x[ i

n
]x[ i−1

n
]

)

+
1

6n∆x

(

x2
[ i

n
]+1+x[ i

n
]x[ i

n
]+1−x2

[ i

n
]−1−x[ i

n
]x[ i

n
]−1

)

. (A.5)

In the equations above the index [i/n] denotes the coarse cell corresponding to
the fine cell i and the index ir(il) marks the fine cell at the right (left) boundary of
a coarse cell

ir=

{

([ i
n
]+1)n−1, if i∈s,

(i+1)n−1, if i∈sx,
(A.6)

il=

{

([ i
n
])n−1, if i∈s,

in−1, if i∈sx.
(A.7)

Appendix B. Subgrid-scale coefficients in the reduced stochastic model.

As discussed in Section 4.3, the different subgrid-scale correction terms can be re-
grouped depending on their origin. The resulting deterministic terms are given by

i+2
∑

j=i−2

Ma
ijxj =

σ2

2γ2

∑

j

∑

m,n

Bxyy
imnB

yxy
mjnxj , (B.1)

i+2
∑

j=i−2

Mm
ij xj =

σ2

2γ2

∑

j

∑

k,l

Bxxy
ilk Bxxy

ljk xj , (B.2)

i+2
∑

j,k,l=i−2

Cijklxjxkxl=
1

γ

∑

j,k,l

∑

p

Bxxy
ilp Byxx

pjk xjxkxl. (B.3)

For the explicit computation of the subgrid-scale correction terms we utilized the
MATLAB symbolic toolbox, and obtained the following expressions:

i+1
∑

j=i−1

M
a
ijxj =

σ2a2

4γ2n
(xi−1−2xi+xi+1)

(

5+
1

n

)

, (B.4)

i+1
∑

j=i−1

M
m
ij xj =−

σ2a2

2γ2n2
(xi−1−2xi+xi+1), (B.5)

i+2
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j,k,l=i−2

Cijklxjxkxl=
1

γ

a2

n

(

5x3
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i −10x3
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−
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+xi+2xi+1xi+2x2
i+1xi+2+x

2
i+2xi+2x2

i+2xi+1−x
2
i−1xi+1−x

2
i−1xi

−3xi−1x
2
i −2xi−1xixi+1−2x3

i −3x2
ixi+1−xix

2
i+1−x

2
i+1xi−1),

(B.6)

with a=−1/(6∆x). The subgrid-scale stochastic correction terms are defined by

i+ 1
2

∑

j=i− 1
2

PijdW
(1)
j =

σ2

√
2γγ

∑

j,k

Bxyy
ijk dW̃

(1)
jk , (B.7)

i+ 1
2

∑

j=i− 1
2

Dij(x)dW
(2)
j =

σ

γ

∑

j,k

Bxxy
ijk xjdW̃

(2)
k . (B.8)

The right hand sides of the last two equations represent the general form of
the noise terms after the mode reduction procedure; see [16]. These terms involve
independent Wiener processes W̃ (1) and W̃ (2) with the dimension of N×N and N ,
respectively (N is the number of subgrid-scale modes). This high dimensionality
makes (B.7), (B.8) inappropriate for an implementation. However, all terms on the
right hand side of (B.7), (B.8) are associated with a flux either at the left or at
the right boundary of the coarse cell i. Terms corresponding to the same flux are
combined and represented using an effective Wiener process (W (1),W (2)) with the
low-dimension Nx. Thus, the explicit form of the noise terms in the subgrid-scale
model reads

i+ 1
2

∑

j=i− 1
2

PijdW
(1)
j =

√
5σ2a

2
√
γγn

(

dW
(1)
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2

−dW
(1)

i− 1
2

)

, (B.9)

i+ 1
2

∑

j=i− 1
2

Dij(x)dW
(2)
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aσ

nγ

(

√

5x2
i +8xixi+1+5x2
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(2)

i+ 1
2

−
√

5x2
i +8xixi−1+5x2
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(2)
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2

)

. (B.10)
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