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KINETIC DERIVATION OF A HAMILTON-JACOBI TRAFFIC

FLOW MODEL∗

RAUL BORSCHE† , MARC KIMATHI‡ , AND AXEL KLAR§

Abstract. Kinetic models for vehicular traffic are reviewed and considered from the point
of view of deriving macroscopic equations. A derivation of the associated macroscopic traffic flow
equations leads to different types of equations; in certain situations modified Aw-Rascle equations
are obtained. On the other hand, for several choices of kinetic parameters new Hamilton-Jacobi type
traffic equations are found. Associated microscopic models are discussed and numerical experiments
are presented discussing several situations for highway traffic and comparing the different models.
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1. Introduction

Macroscopic models for vehicular traffic were introduced by Lighthill and
Whitham [26]. These models are based on the continuity equation for the density
ρ closing the equation by an equilibrium assumption on the mean velocity u, where
u is approximated by a uniquely determined equilibrium value [26]. An additional
momentum equation for u was introduced by Payne and Whitham in [22, 26] in anal-
ogy with fluid dynamics. To avoid certain inconsistencies, like wrong way traffic, of
models such as the Payne-Whitham model, a new macroscopic model has been intro-
duced by Aw and Rascle [3]; see also [1] or [13]. These models have been subsequently
improved by many authors; see, for example, [11, 5, 9, 6, 10].

Kinetic equations for vehicular traffic can be found, for example, in [23, 21, 20,
17, 16]. Procedures to derive macroscopic traffic equations including the Aw-Rascle
model from underlying kinetic models have been performed in different ways by several
authors; see, for example, [14] and [19]. These procedures are developed in analogy
with the transition from the kinetic theory of gases to continuum gas dynamics.

We refer to [4] for a recent review of the above issues.

In the present paper these derivations are reviewed. A closer analysis shows that,
as usual, Aw-Rascle type traffic equations can be derived from kinetic problems for
certain choices of the kinetic interaction parameters. On the other hand, for other
choices of the interaction parameters, new equations with Hamilton-Jacobi terms are
derived. On the microscopic level these are related to a class of models discussed
in [27]. The behavior of these equations is discussed in detail numerically using a
suitable numerical method from [7].

The paper is arranged in the following way: In Section 2 different reduced kinetic
models are presented. Section 3 contains the derivation of the macroscopic models
mentioned above. Section 4 contains the associated microscopic traffic flow models.

∗Received: December 7, 2011; accepted (in revised form): July 31, 2012. Communicated by Pierre
Degond.

†Fachbereich Mathematik, Technische Universität Kaiserslautern, Germany (borsche@
mathematik.uni-kl.de).

‡Fachbereich Mathematik, Technische Universität Kaiserslautern, Germany (kimathi@
mathematik.uni-kl.de).

§Fachbereich Mathematik, Technische Universität Kaiserslautern, Germany (klar@mathematik.
uni-kl.de).

739



740 HAMILON-JACOBI TRAFFIC MODEL

Finally, in Section 5 numerical results are given comparing the derived macroscopic
equations for several non-homogeneous traffic flow situations.

2. Kinetic models

The kinetic models presented in this section are based on work in [18, 16] and
describe highway traffic in a cumulative way, averaging over all lanes. These mod-
els are given by integro-differential and Fokker-Planck type equations respectively.
In particular, the Fokker-Planck type models are changed slightly, such that more
physically reasonable models are obtained; see Remark 2.3.

2.1. Correlations and the reduced density. The basic quantity in a
kinetic approach is the single car distribution f(x,v) describing the (number) density
of cars at x with velocity v. The total density ρ on the highway is defined by

ρ(x) =

∫ w

0

f(x,v)dv,

where w denotes the maximal velocity. Let F (x,v) denote the probability distribution
in v of cars at x, i.e. f(x,v)=ρ(x)F (x,v). Then , the mean velocity is

u(x) =

∫ w

0

vF (x,v)dv.

An important role is played by the distribution f (2)(x,v,h,v+) of pairs of cars
being at the spatial point x with velocity v and leading cars at x+h with velocity
v+. This distribution function must be approximated by the one-vehicle distribution
function f(x,v). Usually, a chaos assumption is used:

f (2)(x,v,h,v+)= q(h,v;f)f(x,v)F (x+h,v+);

compare Nelson [20]. For a vehicle with velocity v the function q(h,v;f) denotes
the distribution of leading vehicles with distance h under the assumption that the
velocities of the vehicles are distributed according to the distribution function f .

Moreover, we introduce thresholds for braking (HB) and acceleration (HA):

HX =HX(v) = H0+vTX , X=B,A.

TB <TA are reaction times. H0 denotes the minimal distance between the vehicles.
For simplicity we choose HA and HB in the following as constants.

The distribution of leading vehicles q(h,v;f) is prescribed a priori. The main
properties which q(h,v;f) must fulfill are positivity,

∫ ∞

0

q(h,v;f)dh = 1,

and
∫ w

0

∫ ∞

0

hq(h,v;f)dhF (v)dv =
1

ρ
. (2.1)

Equation (2.1) means that the average headway of the cars is 1/ρ. Here, the leading
vehicles are assumed to be distributed in an uncorrelated way with a minimal distance
HB from the car under consideration (see Nelson [20]):

q(h,v;f) = q(h;ρ)= ρ̃e−ρ̃(h−HB)χ[HB ,∞)(h).



R. BORSCHE, M. KIMATHI, AND A. KLAR 741

The reduced density ρ̃ must be defined in such a way that (2.1) is fulfilled. One
obtains

ρ̃ =
ρ

1−ρ
∫ w

0
HBF (v)dv

=
ρ

1−ρHB
. (2.2)

Remark 2.1. The reduced density ρ̃ must be positive, i.e.

ρ <
1

HB
.

We note that

q(HA;ρ) = ρ̃e−ρ̃(HA−HB)

and

q(HB ;ρ) = ρ̃ .

Moreover, from phenomenological considerations the probability of braking can
be derived as

PB =1−(1−ρHB)e
−ρ̃HB ;

see [12]. These basic considerations can be used to develop different kinetic models.

2.2. Models based on integro-differential equations. A first kinetic
model is derived using classical Boltzmann arguments. It is given by the following
evolution equation for the distribution function f (see [19, 12]):

∂tf+v∂xf =C+(f) (2.3)

=
[

qBPB(G
+
B−L+

B)(f)+qA(G
+
A−L+

A)(f)
]

,

with

G+
B(f)=

∫ ∫

v̂>v̂+

|v̂− v̂+|σB(v; v̂, v̂+)f(x,v̂)F (x+HB , v̂+)dv̂dv̂+,

L+
B(f)=

∫

v̂+<v

|v− v̂+|f(x,v)F (x+HB , v̂+)dv̂+,

G+
A(f)=

∫ ∫

v̂<v̂+

|v̂− v̂+|σA(v; v̂, v̂+)f(x,v̂)F (x+HA, v̂+)dv̂dv̂+,

L+
A(f)=

∫

v̂+>v

|v− v̂+|f(x,v)F (x+HA, v̂+)dv̂+.

GB ,LB stand for gain and loss terms resulting from braking interactions, and
GA,LA result from accelerating interactions. Upon reaching the braking line, the ve-
hicle brakes such that the new velocity v is distributed with a distribution function σB

depending on the old velocities v̂, v̂+. For acceleration, the new velocity is distributed
according to σA.

Remark 2.2. In [12] additionally a relaxation term is introduced, describing a
random behavior of the drivers. It is given by

GS(f)−LS(f) = ν
(

∫ w

0

σS(v,v̂)f(x,v̂)dv̂−f(v)
)

.
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This term is necessary as long as one is interested in a more detailed investigation
of the stationary solutions of the kinetic model and the resulting fundamental dia-
grams. However, in the present investigation we aim at deriving different macroscopic
equations without relaxation terms on the right hand side. For such a derivation it
is sufficient to consider the simplified version above. For further remarks on this
Boltzmann-Enskog approach to traffic flow modelling, see [19].

Example 1. For the probability distributions σA,σB we choose the following
simple expressions (see [12]):

σB(v,v̂, v̂+) =
1

v̂− v̂+
χ[v̂+,v̂](v) (2.4)

and

σA(v,v̂, v̂+) =
1

v̂+− v̂
χ[v̂,v̂+](v). (2.5)

This means we have an equidistribution of the new velocities between the velocity of
the car and the velocity of its leading car.

Example 2. Another possible choice is (see [19])

σB(v,v̂)=
1

v̂(1−β)
χ[βv̂,v̂](v)

and

σA(v,v̂)=
1

min(w,αv̂)− v̂
χ[v̂,min(w,αv̂)](v).

2.3. Models based on Vlasov-Fokker-Planck equations. In [16] a kinetic
model based on a Vlasov-Fokker-Planck approach was developed:

∂tf+v∂xf =C+(f)=−∂v
(

B[f ]f
)

. (2.6)

Here, f stands again for a traffic distribution function. As before, we denote by
ρ,u the macroscopic density and speed associated with f.

To define the braking and acceleration behavior of drivers in response to traffic
situations, we use the following braking/acceleration forces as functions of the traffic
conditions. Slightly changing the approach in [16], i.e. adding the parameters qB and
qA, we consider

B[f ](t,x,v) =



















−qBPBcη|v−uB |η , v > uB ,

qAcη|u
A−v|η, v ≤ uB and v ≤ uA,

0, else.

(2.7)

Again we look at two examples, i.e. η=1 and η=2. Here cη =vref with vref a
reference velocity if η=1 and cη dimensionless if η=2, and

ρX = ρ(x+HX ,t), uX = u(x+HX ,t) (2.8)

for X=A,B.
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Remark 2.3. Including qA and qB leads—at least formally—to a maximal density
constraint in the Fokker-Planck equation. This is due to the fact that for ρ going to
1
H , which is the bumper to bumper density, the factor in front of the braking term
goes to infinity and the one in front of the acceleration term goes to 0. This was not
guaranteed by the Fokker-Planck model in [16], and is closely related to the same
property for the macroscopic equations derived in the next section. In the original
Aw-Rascle equations, which are related to the original version of the Fokker-Planck
equation, there was no upper limit for the density. This has been changed in [11].
Altering the approach in [16] using the parameters qA and qB leads exactly to the
modified Rascle model from [11]; compare with the next section.

Remark 2.4. Similar to the case of the integro-differential equation, we use for the
present investigation a simplified version of the kinetic model; see also [15]. In the
original version of the model in [16] a diffusion term

∂v(D[f ]∂vf)

with

D[f ](ρ,u,v)=

[

σ(ρB ,uB)|v−uB |γ v>uB

σ(ρA,uA)|v−uA|γ else

]

(here γ≥1) has been added to the right hand side of the above equation. Details
of the function σ(ρ,u) can be found in reference [16]. For the presentation here we
neglect this diffusion term. It is however necessary to obtain smooth homogeneous
solutions.

3. Derivation of macroscopic models

In this section macroscopic equations for density and mean velocity are derived
following the procedure in [19]. Among these equations are new Hamilton-Jacobi type
traffic equations which have not yet been discussed in the literature. This section
shows that the resulting equations do not depend on the the different kinetic models
used, but rather on the type of interaction terms. The simplified closure relations,
unlike the numerical closures in [19], allow us to obtain explicit results. However, the
resulting equations are still more detailed than the usual macroscopic models.

3.1. Balance equations. By multiplying the inhomogeneous kinetic equation
(2.3) or (2.6) with 1 and v and integrating it with respect to v, one obtains the
following set of balance equations:

∂tρ+∂x(ρu)=0, (3.1)

∂t(ρu)+∂x(P +ρu2)+E=0,

with the ‘traffic pressure’

P =

∫ w

0

(v−u)2fdv, (3.2)

and the flux term

E = −

∫ w

0

vC+(f)(x,v,t)dv. (3.3)

To obtain closed equations for ρ and u one must specify the dependence of P and
E on ρ and u.
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3.2. Closure and resulting macroscopic equations. To approximate
the distribution function we use the simplest possible one node quadrature ansatz
disregarding fluctuations in the distribution function. That means that we use
f(v)∼ρδu(v) for the distribution function in (3.2) and (3.3) to approximate the true
distribution f and to close the equations; see [15] for such an ansatz in the traffic
case or [8] for a similar procedure for interacting particle systems. Using this ansatz,
one obviously neglects the variance of the distribution function. However, the main
features of the resulting macroscopic equation are preserved. We obtain for the traffic
pressure

P ∼0.

We are left with the Enskog term E, which is approximated by considering expres-
sion (3.3) for E and substituting the closure for f . One obtains different expressions
depending on the kinetic model under consideration.

3.2.1. Integro-differential equations. In the case of integro-differential
equations one obtains

E = EB(f)+EA(f),

with

EB(f)=−qBPB

∫ ∫

v̂>v̂+

{

|v̂− v̂+|

f(x,v̂)F (x+HB , v̂+)

[

∫ w

0

vσB(v,v̂, v̂+)dv− v̂

]

dv̂+

}

dv̂

and

EA(f)=−qA

∫ ∫

v̂<v̂+

{

|v̂− v̂+|

f(x,v̂)F (x+HA, v̂+)

[

∫ w

0

vσA(v,v̂, v̂+)dv− v̂

]

dv̂+

}

dv̂.

Using

F (x,v)= δu(x)(v)

gives, for u>uB , approximately

EB ∼−qBPBρ|u−uB |

[

∫ w

0

vσB(v,u,u
B)dv−u

]

and 0 otherwise. Approximating uB−u by HB∂xu, this is approximated for ∂xu<0
by

qBPBρHB∂xu

[

∫ w

0

vσB(v,u,u
B)dv−u

]

.
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The acceleration term gives

EA ∼ −qAρ|u−uA|

[

∫ w

0

vσA(v,u,u
A)dv−u

]

for u<uA and 0 otherwise. Therefore one obtains for ∂xu>0 the approximation

−qAρHA∂xu

[

∫ w

0

vσA(v,u,u
A)dv−u

]

.

The final result depends on the interaction model. Example 1 gives

E=

{

EB ∼−qBPBρH
2
B∂xu|∂xu|, ∂xu<0,

EA ∼ −qAρH
2
A∂xu|∂xu|, ∂xu>0.

Example 2 gives

E=

{

EB ∼−qBPBρHB
1−β
2 u∂xu, ∂xu<0,

EA ∼ −qAρHA
min(αu,w)−u

2 ∂xu, ∂xu>0.

3.2.2. Vlasov-Fokker-Planck equations. Similar results are obtained for
the Vlasov-Fokker-Planck equations. Computing

E=

∫

v∂v
(

B[f ]f
)

dv=−

∫

(

B[f ]f
)

dv,

one obtains, for u>uB,

E∼ cηqBPBρ|u−uB |η,

and for u<uB and u<uA,

E ∼ −cηqAρ|u−uA|η,

and 0 otherwise. This gives, for η=1,

E∼

{

−vrefqBPBρHB∂xu, ∂xu<0,

−vrefqAρHA∂xu, ∂xu>0.

For η=2 we have

E∼

{

−cηqBPBρH
2
B |∂xu|∂xu, ∂xu<0,

−cηqAρH
2
A|∂xu|∂xu, ∂xu>0.

In both cases, depending on the interaction law, either a linear dependence on ∂xu or
a nonlinear functional dependence is observed.
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3.3. Macroscopic equations. Altogether, one obtains macroscopic equa-
tions either of the form

∂tρ+∂x(ρu)=0, (3.4)

∂t(ρu)+∂x(ρu
2)−ρa(ρ,u)∂xu=0,

or of the form

∂tρ+∂x(ρu)=0, (3.5)

∂t(ρu)+∂x(ρu
2)−ρb(ρ,u)|∂xu|∂xu=0,

where the coefficients are given by

a(ρ,u)=







HBPB
1
ρ
−HB

fB(u), ∂xu<0,

HA
1
ρ
−HB

exp(−ρ̃(HA−HB))fA(u), ∂xu>0,
(3.6)

b(ρ,u)=







H2
BPB

1
ρ
−HB

, ∂xu<0,

H2
A

1
ρ
−HB

exp(−ρ̃(HA−HB)), ∂xu>0,
(3.7)

with suitable functions fA,fB . We note that a(ρ,u),b(ρ,u)>0. Looking at these equa-
tions, one observes that equation (3.4) is a Rascle-type equation with microscopically
justified coefficients which include braking and acceleration threshold. On the other
hand, equation (3.5) is an equation with Hamilton-Jacobi terms, which has, to the
knowledge of the authors, not been discussed in the literature. Vehicles described by
(3.5) will brake stronger or accelerate faster, the steeper the gradient in velocity is
ahead of them.

If we simplify further, choosing HA=HB =H, qA= qB = ρ̃, PB =1, and approxi-
mating fA,fB by vref , one obtains the coefficients

a(ρ)=
Hvref
1
ρ −H

=
vref
1

ρH −1
, (3.8)

b(ρ)=
H2

1
ρ −H

=
H

1
ρH −1

. (3.9)

Remark 3.1. Equation (3.4) with the coefficient (3.8) is similar to the modified
Rascle equation discussed together with its limits in [11]. From the kinetic point of
view these equations are strongly simplified. In particular, they treat the braking and
acceleration interaction in the same way, which is clearly not physical. However, they
still contain the essential features of traffic flow; see [11]. We compare the solution of
the equations with coefficients (3.6), (3.7) and (3.8), (3.9) in Section 5 numerically.

Remark 3.2. The kind of equation one obtains does not depend on the fact whether
an integro-differential equation model or a Fokker-Planck type model is used, but
rather on which interaction rule is chosen.

Remark 3.3. We note that traffic equations with Hamilton-Jacobi terms have
also been discussed in [15]. The analysis there was essentially restricted to Fokker-
Planck equations with interaction terms with η=1, and consequently the resulting
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macroscopic equations did not have a term (ux)
2, but were of the classical form of

the Aw-Rascle equations. On the other hand terms of the form (ux)
2 would have

appeared as well in [15] as higher order corrections, but have been neglected by the
authors. In the present examples the interaction rules are such that these terms are
the leading order terms and not just corrections, which can be neglected.

Remark 3.4. The two results obtained here could be also merged into a third
equation by using

∂tρ+∂x(ρu)=0, (3.10)

∂t(ρu)+∂x(ρu
2)−ρb(ρ)c(|∂xu|)∂xu=0,

with

c(|∂xu|)=min{|∂xu|,C},

where C is a constant. This would limit the braking force.

4. Associated microscopic car-following models

Equation (3.4) with coefficient (3.8) can be derived from microscopic models of
the form

ẋi=vi,

v̇i=
Hvref

xi+1−xi

vi+1−vi
xi+1−xi−H

.

This can be easily seen by the following procedure (compare [2]). Setting

li=xi+1−xi,

the microscopic equations are

ẋi=vi,

v̇i=
Hvref

li

vi+1−vi
li−H

.

The local (normalized) density around vehicle i and its inverse the local (normalized)
specific volume are respectively defined by

ρi=
H

li
and τi=

1

ρi
=

li
H

.

One obtains the microscopic model

ẋi=vi , (4.1)

v̇i=
vref
τi

1

H

(vi+1−vi)

τi−1
.

We have

l̇i=vi+1−vi or τ̇i=
1

H
(vi+1−vi).

One considers the coordinate X=
∫ x

ρ(y,t)dy describing the total space occupied by
cars up to point x. Approximating (vi+1−vi)/H by ∂Xu yields the Lagrangian form
of the macroscopic equations, i.e. the equivalent of the p-system in gas dynamics:

∂T τ−∂Xu=0, (4.2)
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∂Tu−
a(τ)

τ
∂Xu=0,

where

a(τ)=
vref
τ−1

. (4.3)

We change the Lagrangian “mass” coordinates (X,T ) into Eulerian coordinates
(x,t) with

∂xX=ρ, ∂tX=−ρv, T = t,

or

∂Xx=ρ−1= τ, ∂Tx=v,

The macroscopic system in Eulerian coordinates is then

∂tρ+∂x(ρu)=0, (4.4)

∂t(ρu)+∂x(ρu
2)−ρa(ρ)∂xu=0,

with

a(ρ)=vref

(

1

ρ
−1

)−1

. (4.5)

Hence we obtain again the equations (3.4) and (3.8), taking into account that in the
kinetic derivation ρ is the number density. That means the quantity ρH in the kinetic
part is equivalent to the normalized density considered in this section.

Remark 4.1. We note that the above statement is equivalent to considering
the kinetic equations for the rescaled distribution functions f ′=fH. This leads, for
example, to a Vlasov equation where the braking and acceleration term in (2.6) is
multiplied by 1

H .

Remark 4.2. For numerical simulations of the microscopic system and comparison
with the macroscopic equation, the quantity H is chosen such that the total space
∫ L

0
ρ(x)dx occupied by the cars is equal to HN , where L is the total length of the

region under consideration and N is the total number of vehicles.
Using the same procedure one obtains the microscopic model associated to equa-

tion (3.5) and (3.9). It is given by

ẋi=vi,

v̇i=
H

(xi+1−xi)2
.
|vi+1−vi|(vi+1−vi)

xi+1−xi−H
.

The latter equations are similar to microscopic traffic equations originally stated by
Wiedemann and Leutzbach [27].

5. Numerical investigations

In this section we investigate the macroscopic equations numerically. In particu-
lar, the Hamilton-Jacobi type equations equation (3.5) are compared to the Aw-Rascle
type equation (3.4) .
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5.1. Numerical methods. We choose a numerical method suited for the
hyperbolic equation in non-conservative form (3.4) as well as for the Hamilton-Jacobi
term in (3.5). A suitable choice is given e.g. by the second order central scheme
developed in [7]. For completeness we state an extended version of the scheme as
used in our numerical computations. To start with, the above equations are written
in the form

∂tφ+H(φ,φx)=0, (5.1)

with

φ=

(

ρ
ρu

)

.

For equation (3.4) we have

H(φ,φx)=

(

ρux+uρx
(ρu2)x−ρa(ρ)ux

)

,

and for equation (3.5)

H(φ,φx)=

(

ρux+uρx
(ρu2)x−ρb(ρ)|ux|ux)

)

.

For the numerical scheme a grid of equally spaced points xi i=1, . . . ,N , with ∆x=
xi−xi−1 is given. In the following we consider the explicit time step from tm to
tm+1= tm+∆t. The aim is to construct a second order scheme for the above 1-D
equations. A detailed derivation can be found in [7].

Based on piecewise quadratic interpolations one obtains the following expression
for the iterate φm

i approximating φ(xi,tm):

φm+1
i =φm+1

i− 1
2

+
1

2
(∆φ)m+1

i −
1

8
D(∆φ)m+1

i . (5.2)

The above quantities are determined in the following way: First, φm+1
i− 1

2

is approxi-

mated using a second order approximation of the original equation:

φm+1
i− 1

2

=φm
i− 1

2

−∆tH(φ
m+ 1

2

i− 1
2

,(φx)
m+ 1

2

i− 1
2

).

To determine the quantities in this approximation the following second order approx-
imations are used:

φ
m+ 1

2

i− 1
2

=φm
i− 1

2

−
∆t

2
H(φm

i− 1
2

,(φx)
m
i− 1

2

),

(φx)
m+ 1

2

i− 1
2

=(φx)
m
i− 1

2

−
∆t

2

[

∂H

∂φ
(φm

i− 1
2

,(φx)
m
i− 1

2

)(φx)
m
i− 1

2

+
∂H

∂φx
(φm

i− 1
2

,(φx)
m
i− 1

2

)
D(∆φ)m

i− 1
2

(∆x)2

]

are used. In these expressions the following definitions are obtained from Taylor
expansions:

φm
i± 1

2

=φm
i ±

1

2
(∆φ)mi± 1

2

−
1

8
D(∆φ)mi± 1

2

,
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(φx)
m
i− 1

2

=
(∆φ)m

i− 1
2

∆x
.

Here and in (5.2) an approximation of the first and second derivatives is needed.
These are obtained by

(∆φ)mi+ 1
2

=φm
i+1−φm

i ,

(∆φ)m+1
i =φm+1

i+ 1
2

−φm+1
i− 1

2

,

and for the second derivatives by

D(∆φ)mi+ 1
2

=MM [(∆φ)mi+ 3
2

−(∆φ)mi+ 1
2

,
1

2

(

(∆φ)mi+ 3
2

−(∆φ)mi− 1
2

)

,

(∆φ)mi+ 1
2

−(∆φ)mi− 1
2

]

D(∆φ)m+1
i =MM [(∆φ)m+1

i+1 −(∆φ)m+1
i ,

1

2

(

(∆φ)m+1
i+1 −(∆φ)m+1

i−1

)

,

(∆φ)m+1
i −(∆φ)m+1

i−1 ],

with the Min-Mod function

MM(x1,x2,x3)=







minj{xj}, if allxj >0,
maxj{xj}, if allxj <0,
0, otherwise.

As usual, the limiter is used to deal with the possible appearance of discontinuities.

Remark 5.1. For the above second order scheme, a CFL condition must be fulfilled:

∆t

∆x
|λmax|≤

1

2
,

where λmax is the maximal (in absolute value) eigenvector of ∂H
∂φx

(φ,φx). Thus, for
the Hamilton-Jacobi model the choice of the time step depends on the values of the
gradient ∂xu and might be very small for very sharp gradients. This could be avoided
by using, for example, equation (3.10).

Remark 5.2. We note that using the above described second order method for the
Aw-Rascle equations with situations involving contact discontinuities gives, among
other problems, quite diffusive results. This is observed for classical numerical meth-
ods for hyperbolic equations as well; see [9]. For a strategy to compute the contact
discontinuities in a more accurate and efficient way, we refer to [24, 9].

5.2. Numerical examples. For the numerical simulations we consider the
equations (3.4), (3.5) with coefficients (3.8), (3.9) respectively and the constants H=
1, vref =1, i.e. ρmax=1. The behavior of the solutions to the macroscopic equations
is investigated in four different test scenarios. To illustrate the performance of the
scheme described above the results are presented with two different mesh sizes ∆x=
0.01 and ∆x=0.001. All test cases start with Riemann problems of the following
form:

φ(x,0)=

{

φl, forx<x0,
φr, for x>x0,

where
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φl/r=

(

ρl/r
ul/r

)

are given as initial data.

Example 1: In the first example the end of a traffic jam is considered, in which
fast cars approach from the left a group of cars at rest on the right. The corresponding
data is given by

ρl=0.5, ul=1, ρr=0.5, ur=0,

and x0=0.5. For the Rascle model the computations are performed in conservative
form using the variables (ρ,y=ρ(u− ln(1−ρ))) to obtain the correct shock speeds.
The numerical results are shown in figure 5.1. The exact solution of the Rascle model
(solid line) is given by a shock-wave moving to the right followed by a stationary
contact discontinuity; see [3]. The numerical results for the Hamilton-Jacobi model
(dotted line) show a faster braking of the approaching cars. This leads to a faster
back-traveling wave and a less dense congested state. About the numerical aspects,
the diffusion at the contact discontinuity is reduced by the finer grid, whereas the
resolution of the shock in the Rascle model (dashed line) remains satisfactory.
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Fig. 5.1. Density ρ at t=0.2 for the Riemann problem with ρl=0.5, ul=1, ρr =0.5, ur =0, and
x0=0.5.

Example 2: Now the tail of a group of moving cars followed by an empty road
is studied. The initial states are chosen as

ρl=0, ul=1, ρr=0.5, ur=1,

with the discontinuity at x0=0.5. As shown in figure 5.2, the exact solution of the
Rascle model (solid line) is given by a single contact-discontinuity moving at the speed
of the leading cars. This behavior is captured well by the numerical scheme (dashed
line) and also holds true for the Hamilton-Jacobi model. In both cases the cars are
not influenced by the free space behind them and are thus following the constant state
in front.

Example 3: Here we consider a group of faster vehicles escaping from slower
ones in behind. Therefore we chose

ρl=0.5, ul=0, ρr=0.9, ur=0.5
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Fig. 5.2. Density ρ at t=0.2 for the Riemann problem with ρl=0, ul=1, ρr =0.5, ur =1, and
x0=0.5.

on the left and right of x0=0.5. In figure 5.3 the corresponding solutions are plotted.
The exact solution of the Rascle model (solid line) consists of a left-moving rarefaction
wave and a contact discontinuity moving to the right. As the drivers of the Hamilton
Jacobi model (dotted line) tend to accelerate faster than those of the Rascle model
(dashed line), the arising gap is less distinct. Thus a more homogeneous state is
reached on the left. By increasing the number of grid points, only the resolution of
the contact discontinuity is improved.
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Fig. 5.3. Density ρ at t=0.4 for the Riemann problem with ρl=0.5, ul=0, ρr =0.9, ur =0.5,
and x0=0.5.

Example 4: Finally we consider an example similar to the above one, but now
with faster cars on the right. The data is given as

ρl=0.5, ul=0, ρr=0.1, ur=1,

and x0=0.25. The exact solution of the Rascle model (solid line, figure 5.4) is given
by a rarefaction wave connected to a vacuum state, which is followed by a contact
discontinuity moving to the right. Here a difference with the numerical solution
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Fig. 5.4. Density ρ at t=0.5 for the Riemann problem with ρl=0.5, ul=0, ρr =0.1, ur =1, and
x0=0.25.
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Fig. 5.5. Coefficients a(ρ,u) and b(ρ,u) with HA=2HB . Coefficients with HA=HB =1 for

comparison.

(dashed line) is observed. The applied scheme fails to properly capture the fake wave
connecting the rarefaction wave to the vacuum state. The artificial jump can not be
reduced by an increase of the computational accuracy. In the Hamilton-Jacobi model
(dotted line) no such vacuum state arises, since the drivers tend to accelerate faster.

Remark 5.3. In the above examples the wave fronts for the Hamilton-Jacobi model
are smeared compared to the Aw-Rascle model, as expected. In particular, Example 1
shows a stronger breaking for the Hamilton-Jacobi model and examples 3 and 4 show
a faster acceleration of the vehicles, keeping contact with the leading cars. In other
words, the two different models simulate different driver behavior. In particular, the
Hamilton-Jacobi models react stronger to disturbances. The braking and acceleration
interactions are more pronounced. This leads to the stronger differences between them
and the Aw-Rascle models in examples 1 and 4. On the other hand, in Example 2 cars
are leaving without braking or acceleration. The same is true for the cars on the right
in Example 3. On the contrary, in Example 3, the cars on the left are accelerating
faster in the Hamilton-Jacobi model than in the Aw-Rascle model, which leads to the
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observed differences.

Remark 5.4. One observes, by comparing the coarse and fine grid numerical
solution, that the Hamilton-Jacobi equations are already well approximated by the
coarse grid solution. Only Example 4 shows a further steepening of the solution by
refining the mesh. In general, the Rascle type conservation law is well approximated
by the scheme, except for some smearing of the contact discontinuities. The only
exception is the vacuum wave in Example 4, where a non-physical jump is generated.
Numerical difficulties at vacuum states are discussed, e.g., in [25].

Remark 5.5. The numerical solution of the hyperbolic Aw-Rascle model is sensitive
to the choice of variables. Example 1 (a solution with a shock) is computed using
conservative variables (ρ,y=ρ(u− ln(1−ρ)) to ensure the correct intermediate state.
Examples 2, 3, and 4 have been computed in (ρ,ρu) variables, since no shocks appear.
Although this choice of variables improves the resolution of the contact discontinuity,
it remains rather diffusive. As mentioned above, using the methods described in [24, 9]
a sharp resolution of the contact discontinuities can be obtained. Nevertheless, in the
above figures we plotted, for comparison, the solutions using the scheme described in
Section 5.1.

Finally, we numerically compare the solutions of the equations with coefficients
(3.6), (3.7) with HA=2, HB =2 and fB =fA=vref , PB =1 with those with the sim-
plified coefficients (3.8), (3.9), where HA=HB =1. The coefficients for HA=2HB =2
are plotted in figure 5.5.

We consider a situation with

ρl=0.8, ul=0.1, ρr=0.8, ur=0.5,

and x0=0.25, ∆x=0.001, t=0.5. The corresponding solutions are plotted in figure
5.6.
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Fig. 5.6. Density ρ at t=0.5 for the Riemann problem with ρl=0.8, ul=0.1, ρr =0.8, ur =0.5,
and x0=0.25 for the different coefficients above.

One observes for the Rascle and Hamilton-Jacobi models a weaker acceleration
for the equations with HA=2HB compared to the equations with the simplified co-
efficients. This fits to figure 5.5 since the density range is in a region where the
coefficients for HA=2HB are smaller than the simplified ones, i.e., acceleration is
weaker.
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Conclusions.

• The paper contains the derivation of two classes of macroscopic models from
kinetic equations. The type of equation one obtains does not depend on
whether an integro-differential equation or a Fokker-Planck type model is
used, but rather on which interaction rule is chosen.

• In certain cases a Hamilton-Jacobi term can be derived in the momentum
equations instead of the classical Rascle term.

• Numerical investigations using a suitable second order method have been used
to investigate the behavior of the solutions, showing a smearing effect of the
wave fronts for the Hamilton-Jacobi equations. Moreover, the influence of
the different simplifications has been studied numerically.

• Further investigations will include the derivation of suitable relaxation terms
from kinetic models and multiphase traffic equations.
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