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STATIONARY STATES OF QUADRATIC DIFFUSION
EQUATIONS WITH LONG-RANGE ATTRACTION∗

MARTIN BURGER† , MARCO DI FRANCESCO‡ , AND MARZENA FRANEK§

Abstract. We study the existence and uniqueness of nontrivial stationary solutions to a
nonlocal aggregation equation with quadratic diffusion arising in many contexts in population
dynamics. The equation is the Wasserstein gradient flow generated by the energy E, which is the
sum of a quadratic free energy and the interaction energy. The interaction kernel is taken radial
and attractive, nonnegative, and integrable, with further technical smoothness assumptions.
The existence vs. nonexistence of such solutions is ruled by a threshold phenomenon, namely
nontrivial steady states exist if and only if the diffusivity constant is strictly smaller than the
total mass of the interaction kernel. In the one dimensional case we prove that steady states are
unique up to translations and mass constraint. The strategy is based on a strong version of the
Krein-Rutman Theorem. The steady states are symmetric with respect to their center of mass
x0, compactly supported on sets of the form [x0−L,x0 +L], C2 on their support, and strictly
decreasing on (x0,x0 +L). Moreover, they are global minimizers of the energy functional E.
The results are complemented by numerical simulations.
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1. Introduction
Phenomena with long-range aggregation and short-range repulsion arise in

many instances in population biology such as chemotaxis of cells, swarming or
flocking of animals. A variety of mathematical models has been proposed for
such situations, at the particle as well as at the continuum (mean field) level. In
particular, if nonlocal repulsion acts at a smaller scale with respect to nonlocal
attractive forces in the large particle limit, then a nonlocal repulsion term can be
replaced by a local term with nonlinear diffusion; we refer to [52, 12, 61, 62, 24,
27, 39, 59, 51, 11, 45] for several examples. A prototype model, which we shall
also investigate further in this paper, is given by

∂tρ= div(ρ∇(ερ−G∗ρ)), (1.1)

where the convolution is carried out with an aggregation kernel G such that
G(x) =g(|x|), with g′(r)>0 for r>0. This model arises in a natural way as the
limit of a stochastic interacting particle model with pair interactions (cf. [53, 54]
and [34, 63, 33] for general background). Models with the same structure have
been recently used to model opinion formation; cf. [58, 60]. See also [22] and the
recent [32, 26] for applications in imaging. Here we shall restrict to the case in
which (1.1) is posed on the whole space Rd.
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710 QUADRATIC DIFFUSION EQUATIONS WITH LONG-RANGE ATTRACTION

In case G is λ-convex, then the equation (1.1) can be formulated as a gradient
flow in the Wasserstein metric (cf. [1, 65, 66]) of the energy (or entropy) functional

E[ρ] :=
ε

2

∫
Rd

ρ2(x)dx− 1

2

∫
Rd

∫
Rd

G(x−y)ρ(y)ρ(x)dydx; (1.2)

see [50, 4, 19, 20]. Several properties of models of the above form have been con-
sidered in the literature, e.g. existence and uniqueness in the context of entropy
solutions [13], H−1 solutions [9], well-posedness in the Wasserstein gradient flow
sense within the theory developed in [1], and—in particular in connection with
the classical Patlak-Keller-Segel model for chemotaxis [57, 40]—with respect to
blow-up vs. large-time existence; cf. e.g. [38, 35, 10, 25] for models with linear
diffusion and [42, 16, 41] for models with nonlinear diffusion.

An interesting and important question is the characterization of large-time
behavior of solutions to equations of the form (1.1), which is related with the
possible existence of nontrivial steady states, even when the quadratic diffusion
is replaced by a more general nonlinear diffusion. This issue is solved in detail for
purely diffusive equations (no aggregation term), in which solutions decay to zero
with a prescribed rate for large times and behave like the (compactly supported)
Barenblatt profiles; cf. the classical works of Vazquez on the self-similar behavior
of the porous medium equation, which are nicely collected in the book [64], as
well as the papers [55, 21]. In the purely nonlocal case, namely when ε= 0, this
issue has been studied extensively in many papers [46, 14, 44, 6, 5, 17, 18, 7, 8,
37, 30, 29, 2], combined with the study of the regularity of solutions compared
to the attractive singularity of the interaction kernel. In particular, solutions
are known to concentrate to a Dirac delta centered at the initial center of mass
(invariant) either in a finite or in an infinite time, depending on the properties of
the kernel G at x= 0. When the kernel G is supported on the whole space, the
Dirac delta is the unique steady state of (1.1) with unit mass and zero center of
mass.

The asymptotic behavior in the general case with both nonlinear diffusion
and nonlocal interaction has been only partially addressed. A first attempt in this
direction was performed in [14], in which the existence of steady states of (1.1) for
sufficiently small ε and the non-existence for large ε in the one-dimensional case
was proven by means of the pseudo-inverse representation of the Wasserstein
distance. More refined results in a similar model derived in [36, 56] with cut-
off density have been found in [15, 43]. Parallel to their work, the authors of
the present paper recovered the results in [3], in which a quasi sharp result of
existence of minimizers for the energy E[ρ] in a multi dimensional framework has
been proven.

A key open (to our knowledge) problem in this context is the uniqueness of
steady states under mass and center of mass constraint, its main difficulty being
the fact that the functional E is neither convex in the classical sense nor in the
displacement convex sense [50] (except when G is globally concave on Rd; see
[19]) when ε<

∫
G with G≥0.

In this paper we further investigate the detailed structure of steady states in
one space dimension. We remark that our work does not go into the direction of
providing sharp regularity conditions on the kernel G. Roughly speaking, G is
smooth, radial (with decreasing profile), nonnegative, integrable, and supported
on the whole space. The precise assumptions on G are stated at the beginning
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of Section 2. We found out that for a kernel G decreasing on x>0, the L1-norm
of G compared to ε marks a threshold:

• If ε≥
∫
G, then there exists no steady state.

• If ε<
∫
G, there exists a stationary state.

The same results are recovered in [3], except for the critical case ε=
∫
G.

The main result of our paper deals with the case d= 1. Here we can give a
detailed characterization of the stationary states in the case ε<

∫
G. If G′ only

vanishes at zero, then there exists a unique stationary state (up to translation
and mass normalization), which is a minimizer of the energy E at fixed mass.
The stationary states have compact support, which increases with ε. In partic-
ular, the size of the support can be made arbitrarily large as ε grows to

∫
G,

and arbitrarily small as ε decreases to zero. Moreover, such a steady state is
symmetric with a single maximum at its center of mass xc, and monotonically
decreasing on x>xc. The precise statement can be found in Theorem 4.13. If
ε is small enough, the stationary states are concave on their support. The most
important tool in the proof of the main result is the statement of the stationary
equation as an eigenvalue problem (see formula (4.10)), together with the use
of a strong version of the Krein-Rutman Theorem (cf. Theorem 4.10), which
allows one to characterize the steady states as eigenfunctions corresponding to
the principal eigenvalue of a strongly positive compact operator defined on C2

functions on a given interval [−L,L]; see Proposition 4.11. A key property in this
sense (namely the monotonicity of the principal eigenvalue ε=ε(L)) is proven in
Proposition 4.12. After a first version of the present paper, [31] studied a very
special repulsive-attractive equation without diffusion and proved a uniqueness
result using a similar method. In this respect, we stress the fact that our result
holds for a wide class of kernels G (in particular, we do not assume any homo-
geneity of G). More recently, the authors have realized that Chayes et al. [23]
have investigated the large time behaviour of (1.1) on the torus in the diffusion
dominated case, i.e. in cases in which the constant steady state is stable.

The uniqueness of the stationary state in this context is somewhat surprising,
since in our case the energy functional E is not convex for ε<

∫
G, and thus one

might expect other stationary points of E. On the other hand also in the case
ε= 0 one can see that there is a unique (measure) stationary state concentrated
at the center of mass if G has global support. Adding the squared norm for
positive ε makes the functional closer to convex, and thus probably does not lead
to additional stationary points. Similar to the case ε= 0, we expect that multiple
steady states arise if G is compactly supported; see Remark 4.15.

The paper is organized as follows. In Section 2 we recall the statement of
the problem and provide some preliminary regularity results. In Section 3 we
complement our results with those proven in [3] and provide sharp conditions on
ε and

∫
G for the existence of non trivial steady states. In Section 4 we prove

our main results about the uniqueness of steady states in one space dimension.
Finally, in Section 5 we complement our results with some numerical simulations.

2. Preliminaries

We consider the evolution equation

∂tρ= div(ρ∇(ερ−G∗ρ)) (2.1)
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and its stationary version

0 = div(ρ∇(ερ−G∗ρ)), (2.2)

posed on the whole space Rd. Due to the applied setting of the model, we shall
consider here only nonnegative solutions ρ≥0.

Assumptions on the kernel G. We shall assume throughout the paper
that the interaction kernel G satisfies

1. G≥0, and supp(G) =Rd;
2. G∈W 1,1(Rd)∩L∞(Rd)∩C2(Rd);
3. G(x) =g(|x|) for all x∈Rd;
4. g′(r)<0 for all r>0;

5. g′′(0)<0,

6. limr→+∞g(r) = 0.

We emphasize here that providing sharp conditions on the regularity of G is
not a purpose of the present paper. Let us recall that the equation (2.1) preserves
the total mass

M =

∫
ρ(x)dx

and center of mass

CM [ρ(t)] :=

∫
xρ(x,t)dx.

Moreover, it is easily seen that, for a given stationary state ρ solving (2.2), Mρ
and ρ(·+x0) are still stationary states for all M>0 and x0∈R.

We shall therefore assume M = 1 for simplicity. For future use we introduce
the space

P=

{
ρ∈L1

+(Rd) :

∫
Rd

ρ(x)dx= 1

}
.

Moreover, from now on we shall assume for simplicity

‖G‖L1 =

∫
G(x)dx= 1.

This is not restrictive since the kernel G can always be normalized by modifying
the diffusion constant and the time scale as follows

∂τρ= div
(
ρ∇(ε′ρ−G̃∗ρ)

)
,

τ =‖G‖L1(Rd), G̃=G/‖G‖L1(Rd), ε′=ε/‖G‖L1(Rd).

Let us recall the following results on the existence and uniqueness of gradient
flow solutions to (2.1), which follows from the theory developed in [1]. In this
sense, let us introduce one of the most important tools related to the study of
the evolution equation (2.1), and in particular with the stationary version (2.2),
namely the energy functional

E[ρ] :=
ε

2

∫
Rd

ρ2(x)dx− 1

2

∫
Rd

∫
Rd

G(x−y)ρ(y)ρ(x)dydx.
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Theorem 2.1 ([1]). Let ρ0∈L2∩P such that ρ≥0 and E[ρ0]<+∞. Let G
satisfy the above assumptions. Then there exists a unique weak solution ρ to
(2.1) with

• E[ρ(t)]<+∞ for all t≥0;

• √ρ∇(ερ−G∗ρ)∈L2([0,T ]×R2) for all T >0,

such that the following energy identity is satisfied:

E[ρ(t)]+

∫ T

0

∫
Rd

ρ |∇(ερ−G∗ρ)|2dxdt=E[ρ0]. (2.3)

In particular, the equation (2.1) produces the following regularizing effect.

Lemma 2.2 (Regularity of L2∩P steady states). Let ρ0∈L2∩P. Then the
corresponding solution ρ(t) to (2.1) satisfies∫

ρ |∇ρ|2dx<+∞ (2.4)

for almost every t>0. In particular, if ρ be an L2∩P steady state to (2.1), then
ρ satisfies (2.4) and ρ∈C2 on supp[ρ].

Proof. Due to (2.3), the quantity

ε

∫
ρ |∇ρ|2dx−2ε

∫
ρ∇ρ ·∇G∗ρdx+

∫
ρ |∇G∗ρ|2dx

is finite for almost every t>0, and therefore, in view of Cauchy-Schwarz inequal-
ity, we have

ε

2

∫
ρ |∇ρ|2dx−C(ε)

∫
ρ |∇G∗ρ|2dx+

∫
ρ |∇G∗ρ|2dx<+∞,

and thanks to the smoothness assumptions on G we have the assertion (2.4). If
ρ be a steady state, then ρ satisfies (2.4) too. This implies in particular that ∇ρ
is almost everywhere finite on R2. The energy identity (2.3) implies then

ρ |∇(ερ−G∗ρ)|2 = 0

for almost every x∈R2. This means that

ερ−G∗ρ= constant

almost everywhere on every connected component of the support of ρ. By convo-
lution with standard mollifiers, one can easily see that ερ−G∗ρ=C for a given
C depending on the connected component of supp[ρ]. Since G is C2, this easily
implies ρ∈C2 on supp[ρ].

Corollary 2.3 (1d regularity). Let ρ be an L2∩P solution to (2.2) in one
space dimension. Then ρ is continuous on R.

Proof. Apply the result in Lemma 2.2 to the case d= 1. Since d
dxρ

3/2∈L2,

the one dimensional Sobolev embedding implies that ρ3/2 is continuous.
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3. Stationary solutions in multiple dimensions
In this section we state the necessary and sufficient conditions on ε and ‖G‖L1

such that there exist non trivial steady states

ρ∇(ερ−G∗ρ) = 0 (3.1)

in the set L2∩P. During our work, we realized that J. Bedrossian has obtained
similar results in [3], based on ideas and strategies developed in [47] and [49].
In order to simplify the coverage of the paper, we shall state the result in [3,
Theorem 1] and prove all other results. Notice that the critical case ε=‖G‖L1

was not covered in [3].
Let us start by focusing on the interplay between the solutions to (3.1) and

the variational calculus on the energy functional

E[ρ] :=ε

∫
Rd

ρ2(x)dx− 1

2

∫
Rd

∫
Rd

G(x−y)ρ(y)ρ(x)dydx.

In the next proposition we prove that being a minimum for the energy func-
tional is a sufficient condition for being a solution to (3.1).

Proposition 3.1 (Stationary solutions via energy minimization). Let ρ∈
L2(Rd) be a minimizer for the energy functional

E[ρ] :=
1

2

∫
Rd

ρ(ερ−G∗ρ)dx

on P. Then

ρ∇(ερ−G∗ρ) = 0 a. e. in Rd.

Proof. Let V ∈C1
c (Rd) be an arbitrary vector field and let u(x,s) be a local

solution to the continuity equation

∂su(x,s)+div(u(x,s)V (x)) = 0

with initial datum

u(x,0) =ρ(x),

with ρ being the minimizer for E given in the hypothesis. Such a u can be
constructed by solving the characteristic ODE

d

ds
X(x,s) =V (X(x,s))

coupled with the initial datum

X(x,0) =x

locally in s= 0, with the local solution X(x,s) being C1, and by taking u(x,s) :=
[(X(·,s))]ρ](x,s), i.e. u(x,s) defined via∫

φ(x)u(x,s)dx=

∫
φ(X(x,s))ρ(x)dx, for all φ∈C1

c (Rd)
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(cf. for instance [1, Chapter 8, Lemma 5.5.3]). For all s in the interval of existence
of u we have ∫

u(x,s)dx= 1, u(x,s)≥0 a.e.,

and therefore the map s 7→E[u(·,s)] has a local minimum at s= 0. Hence

0≤ d

ds
E[u(·,s)]|s=0 =

∫
(εu−G∗u)∂sudx|s=0

=−
∫

(εu−G∗u)div(uV )dx|s=0 =

∫
ρ∇(ερ−G∗ρ) ·V dx,

and by replacing V with −V we obtain

0≥
∫
ρ∇(ερ−G∗ρ) ·V dx,

and therefore∫
ρ∇(ερ−G∗ρ) ·V dx= 0, for an arbitrary V ∈C1

c (Rd),

which is the desired assertion.

Let us now compute the first and the second order Gâteaux derivatives of E.

Lemma 3.2. Let ρ∈L2∩P be a solution to (3.1). Then, ρ is a stationary point
for the energy functional E. Moreover, the second order Gâteaux derivative of E
on ρ satisfies

d2

dδ2
E[ρ+δv]|δ=0 =ε

∫
Rd

v2(x)dx−
∫
v(x)G∗v(x)dx, (3.2)

for all v= div(ρV ) and V ∈C1
c (Rd).

Proof. Suppose ρ∈L2∩P satisfies (3.1). Let us compute

lim
δ→0

1

δ
(E[ρ+δv]−E[ρ]),

with v= div(ρV ) for an arbitrary vector field V ∈C1
c (so that

∫
v(x)dx= 0). We

obtain

1

δ
(E[ρ+δv]−E[ρ])

=
ε

2δ

∫
supp(ρ+δv)

(ρ+δv)2dx− ε

2δ

∫
supp(ρ)

ρ2dx

− 1

2δ

∫
supp(ρ+δv)

(ρ+δv)G∗(ρ+δv)dx+
1

2δ

∫
supp(ρ)

ρG∗ρdx.

Therefore we easily get

lim
δ→0

1

δ
(E[ρ+δv]−E[ρ]) =

∫
v(ερ−G∗ρ)dx

=

∫
div(ρV )(ερ−G∗ρ)dx=−

∫
ρV ·∇(ερ−G∗ρ)dx.
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Therefore, ρ is a stationary point for E under the constraint
∫
ρdx= 1. The

computation of the second derivative of E on ρ yields

d2

dδ2
E[ρ+δv] =

d2

dδ2

ε

2

∫
supp(ρ+δv)

(ρ+δv)2dx

− d2

dδ2

1

2

∫
supp(ρ+δv)

(ρ+δv)G∗(ρ+δv)dx

=ε

∫
v2dx−

∫
vG∗vdx,

which is independent of δ and therefore it is valid also for δ= 0.

Before we start analyzing the existence or nonexistence of steady states, we
introduce a very simple technical lemma which will be very useful in the sequel.

Lemma 3.3. Suppose ρ∈L2∩P is a solution to (3.1) having connected support.
Then

ερ(x) =

∫
supp[ρ]

G(x−y)ρ(y)dy+C

for all x∈ supp[ρ] with C= 2E[ρ]. Moreover, if supp[ρ] has infinite measure, then
C=E[ρ] = 0.

Proof. It is immediate from (3.1) that

ερ(x) =

∫
supp[ρ]

G(x−y)ρ(y)dy+C (3.3)

for all x∈ supp[ρ] and a certain constant C. Then, we multiply (3.3) by ρ(x) and
integrate over supp[ρ] to obtain

ε

∫
supp[ρ]

ρ2(x)dx=

∫
supp[ρ]

∫
supp[ρ]

G(x−y)ρ(y)ρ(x)dydx+C,

where we have used that ρ has unit mass. It is therefore clear that C= 2E[ρ].
Suppose now that supp[ρ] has infinite measure. Suppose by contradiction that
C 6= 0. Let {xk}⊂ supp[ρ] be a sequence of points such that |xk|→+∞. We have,
for all k,

ερ(xk)−
∫

supp[ρ]

G(xk−y)ρ(y)dy=C,

and therefore the same expression should hold in the limit k→+∞. Now, the
assumptions on G imply that the integral∫

supp[ρ]

G(xk−y)ρ(y)dy

converges to zero as k→+∞. This is due to Lebesgue’s dominated convergence
Theorem. Therefore, the term ρ(xk) has a limit C as k→+∞. Such limit is the
same for all diverging sequences of points {xk}⊂ supp[ρ], which means

lim
x∈supp[ρ],|x|→+∞

ρ(x) =C.

Now, since supp[ρ] has infinite measure, then C 6= 0 implies that ρ is not inte-
grable, which is a contradiction. Therefore C= 0.
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3.1. Non-existence of nontrivial steady states for ε>1. We start
by covering the case ε>1. Here, there exist no nontrivial steady states, as it
follows from the following simple lemma.

Lemma 3.4. Let ε>1. Then, there exist no stationary solutions to (3.1) in the
space L2∩P.

Proof. We first prove that there exists no minimizer for E[ρ] under the
mass constraint

∫
ρ= 1 and ρ≥0. To see this, we use Young’s inequality for

convolutions as follows:

E[ρ] =
ε

2

∫
ρ2dx− 1

2

∫
ρG∗ρdx≥ ε

2

∫
ρ2dx− ‖G‖L

1

2

∫
ρ2dx=

ε−1

2

∫
ρ2dx

(3.4)
with ε−1>0. Moreover, we have the simple estimate E[ρ]≤C‖ρ‖2L2 . Take a
family of functions ρλ(x)≥0 such that

∫
ρλ(x)dx= 1 and

∫
ρ2
λ(x)dx→0 as λ→

+∞. To construct such a family, we just take a fixed L2
+(Rd) function ρ 6≡0 and

rescale it by ρλ(x) =λ−dρ(λ−1x). For such a family we therefore have

E[ρλ]→0, as λ→∞.

Therefore, it is impossible to have a minimizer ρ∞ for E[ρ] in the set{
ρ∈L1

+ :
∫
ρ= 1

}
because (3.4) would imply that E[ρ∞]>0, and we would nec-

essarily have 0<E[ρλ]<E[ρ∞] for λ large enough.
Now we prove that there exist no steady states. Suppose by contradiction

that ρ is a steady state. Then, due to Lemma 3.2, ρ is a stationary point for
E. Moreover, the formula (3.2) implies that the functional E is strongly convex,
and therefore admits only one stationary point, which coincides with its global
minimizer. But this contradicts the non-existence of a global minimizer proven
above.

3.2. The critical case ε= 1. We aim to solve

0 = div(ρ∇(ρ−G∗ρ)). (3.5)

We shall prove that no L2∩P steady states exist in this case.

Theorem 3.5 (Non-existence of nontrivial steady states for ε= 1). There exist
no solutions to (3.5) in L2∩P.

Proof. From the Cauchy–Schwartz inequality we know that∫
Rd

ρG∗ρdx≤‖ρ‖L2(Rd)‖G∗ρ‖L2(Rd),

and the equality in the above formula holds if and only if ρ and G∗ρ are propor-
tional. In terms of the functional E this means that

E[ρ]≥0 for all ρ∈L2(Rd)∩P(Rd).

As in Lemma 3.4, we have the estimate E[ρ]≤C‖ρ‖2L2 , and using once again the
family ρλ of Lemma 3.4 we see that infρ∈L2∩PE[ρ] = 0. Assume by contradiction
that there exists a stationary solution ρ∞. Then, due to the result in Lemma
3.2 and in view of the Cauchy–Schwartz inequality, the second order derivative
of E is nonnegative everywhere. Hence, the functional E is convex and therefore
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ρ∞ is a global minimizer for E under the constraint ρ∈L2∩P. Then, we must
have E[ρ∞] = 0, which means that ρ and G∗ρ are proportional, i.e. there exists
a constant λ∈R+ such that

ρ∞(x) =λG∗ρ∞(x) (3.6)

almost everywhere on Rd. Integrating (3.6) over Rd yields

1 =λ‖G‖L1(Rd) =λ,

and hence

ρ∞(x) =G∗ρ∞(x) (3.7)

almost everywhere on Rd. We can then apply the Fourier transform

f̂(ξ) =

∫
Rd

e−2πix·ξf(x)dx

to both members of the equation (3.7) to obtain

ρ̂∞(ξ) = Ĝ(ξ)ρ̂∞(ξ), ξ∈Rd.

We have

|Ĝ(ξ)|≤
∫
Rd

|G(x)|dx= 1.

Moreover, since G is even, then Ĝ(ξ)<1 for all ξ 6= 0. In order to see that, write

Ĝ(ξ) =

∫
Rd

d∏
k=1

e−2πixkξkG(x)dx=

∫
Rd

d∏
k=1

(cos(2πxkξk)− isin(2πxkξk))G(x)dx,

so that G being even easily implies that only real valued contributions survive in
the above integral; such real valued contributions are of the form∫

Rd

fh,k(x,ξ)G(x)dx

where the functions fh,k are such that |fh,k(x,ξ)|≤1 and |fh,k(x,ξ)|<1 for x
ranging on a set of positive measure. Therefore, we have proven that

ρ̂∞(ξ) = 0 for all ξ 6= 0

and ρ̂∞(0) = 1. This implies that ρ(x) = 0 almost everywhere, which contradicts
the fact that ρ has unit mass.

3.3. Stationary solutions for ε<1. Let us now provide a minimizer for
the entropy functional in the case ε<1, which implies the existence of a nontrivial
L2∩P steady state for (3.1) in view of Proposition 3.1. Such a result is proven
rigorously in [3, Theorem 1], which we recall here.

Theorem 3.6 (Existence of minimizers, [3]). Let ε<1. Then, there exists
a radially symmetric non-increasing minimizer ρ∈P∩L2(Rd) for the entropy
functional E restricted to P with ρ 6= 0.
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We refer the reader to [3] for the details of the proof, which is based on
a sort of subadditivity property needed to provide suitable compactness of the
minimizing sequence; cf. [3, Lemma 2]. For the sake of clarity, we shall still
provide the simple proof of the fact that global minima of E under mass constraint
are strictly negative, which forces the minimizer to be nonzero.

Lemma 3.1. Let ε<1. Then infρ∈P∩L2(Rd)E[ρ]<0.

Proof. We consider the family σλ∈L2∩P, where

σλ(x) =
1

2λ
χ[−λ,λ](x).

For ε<1 we have

E[σλ] =
ε

4λ
− 1

8λ2

∫ λ

−λ

∫ λ

−λ
G(x−y)dydx=

ε

4λ
− 1

4λ

∫ λ

−λ
G(z)dz

=
ε

4λ
− 1

8λ2

∫ λ

−λ
(F (λ−u)−F (−λ−u))du,

with F (u) =
∫ u
−∞G(ξ)dξ. Since

lim
λ→+∞

1

2λ

∫ λ

−λ
(F (λ−u)−F (−λ−u))du

= lim
λ→+∞

1

2λ

(∫ 2λ

0

dzF (z)−
∫ 0

−2λ

F (z)dz

)
= lim
λ→+∞

(F (2λ)−F (−2λ)) = 1,

we easily obtain that there exists a λ such that E[σλ]<0.

4. Stationary solutions in the 1d case
In this section we prove the main result of our paper, namely that nontrivial

stationary solutions (which always exist in the case ε<1) in one space dimension
with fixed mass and center of mass are unique. We shall first provide certain
necessary conditions on the steady states and then prove that they are unique
under such conditions. The main tool in this procedure is the use of the strong
version of the Krein-Rutman Theorem 4.10.

We start with a necessary condition on the steady states which deals with a
property of their support.

Lemma 4.1 (Steady states have connected support). Let ρ be a stationary solu-
tion to (3.1) in one space dimension, namely

ρ∂x (ερ−G∗ρ) = 0 a.e. on R. (4.1)

Then, supp(ρ) is a connected set.

Proof. Let ρ solve (4.1). Let us first assume that ρ is compactly supported.
Suppose that supp(ρ) is not connected. Accordingly, let [a,b] be a non trivial
interval such that

ρ(x) 6≡0, if x<a,

ρ(x) = 0, if a≤x≤ b, (4.2)

ρ(x) 6≡0, if x>b.
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Let us introduce the velocity field

V (x) :=

{
−1 if x∈ (−∞,a),

1 if x∈ (b,+∞),

and let V ∈C1(R). Let u(x,s) be a local solution to the Cauchy problem for the
continuity equation {

∂su+∂x(uV ) = 0,

u(x,0) =ρ(x).

Let us compute the evolution of the energy E along u at the time s= 0:

d

ds
E[u(s)]|s=0 =

∫
us(εu(x,s)−G∗u(x,s))dx|s=0 =

∫
ρV ∂x(ερ−G∗ρ)dx= 0.

Then, by the definition of V we have

ε

∫
R
ρV ∂xρ=

ε

2

∫ a

−∞
∂xρ

2dx+
ε

2

∫ b

a

V ∂xρ
2dx− ε

2

∫ +∞

b

∂xρ
2dx= 0 (4.3)

because ρx= 0 on [a,b] and ρ= 0 on x=a,b and at ±∞. Hence, we have

0 =

∫ +∞

−∞
ρV ∂xG∗ρdx=−

∫ a

−∞
ρG′ ∗ρdx+

∫ +∞

b

ρG′ ∗ρdx. (4.4)

We compute∫ a

−∞
ρG′ ∗ρdx

=

∫ a

−∞

∫ a

−∞
ρ(x)G′(x−y)ρ(y)dydx+

∫ a

−∞

∫ +∞

b

ρ(x)G′(x−y)ρ(y)dydx,

and note that the first term on the above right-hand side is zero since G′ is odd
and the integration domain is symmetric in x and y. Since G′(z)≥0 as z≤0, we
have for the second term

ρ(x)G′(x−y)ρ(y)≥0 on (x,y)∈ (−∞,a)×(b,+∞).

In a similar way one can prove that∫ +∞

b

ρG′ ∗ρdx=

∫ +∞

b

dx

∫ a

−∞
dyρ(x)G′(x−y)ρ(y),

with the integrand ρ(x)G′(x−y)ρ(y)≤0 on the integration domain. Therefore,
(4.4) implies that

ρ(x)ρ(y)≡0 on {x<a}∩{y>b}. (4.5)

We have thus proven that, whenever (4.2) holds, then (4.5) must necessarily be
satisfied. Let A,B be two nonempty connected components of supp(ρ) and let
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[α,β] be the maximal interval such that

a<b, for all a∈A, b∈B,
ρ≡0, on [α,β],

α≥a, for all a∈A,
β≤ b, for all b∈B.

Then, ρ(x)ρ(y) = 0 for all (x,y) such that

x<α, y>β,

which implies that either A or B cannot be in the support of ρ, and that is a
contradiction. In order to generalize the proof to a stationary solution ρ which
is not compactly supported, one can cutoff ρ to have compact support in such a
way that the L2 norm of the compactly supported approximation is arbitrarily
close to the L2 norm of ρ. Then, the estimate

ε

∫
|ρ∂xρ|dx≤‖G‖L1‖ρ‖2L2

implies that the integrals in (4.3) converge at infinity, therefore all the above
computations are valid up to an arbitrary difference which vanishes in the limit.

Remark 4.2. In the case supp(G) = [−R,R] one can use the same strategy as in
Lemma 4.1 to prove that, given two connected components A,B of supp(ρ), one
has dist(A,B)>2R. The proof is a straightforward generalization of the above
arguments, and it is therefore left to the reader.

We now exploit a standard symmetric rearrangement technique to prove that
the minimizers of the energy are symmetric and monotonically decreasing on x>0
under the constraint of zero center of mass; cf. [47, 48].

Proposition 4.3. Let ρ∞ be a minimizer for the energy

E[ρ] =
ε

2

∫
ρ2(x)dx− 1

2

∫ ∫
G(x−y)ρ(x)ρ(y)dydx

under the constraint that the center of mass is zero. Then, ρ∞ is symmetric and
monotonically decreasing on x>0.

Proof. We have to prove that the energy strictly decreases when a function
u which is not symmetric and decreasing on x>0 is replaced by its symmetric
rearrangement

u∗(x) = sup{t≥0 : meas({u>t})>2|x|}. (4.6)

For every exponent p≥1 the following holds:∫
R
(u∗)pdx=

∫
R
(u)pdx, (4.7)

therefore the L2 part of the energy is invariant when passing from u to u∗. As for
the interaction energy, we recall the well known Riesz’s rearrangement inequality
(see e.g. [48]),∫

Rd

∫
Rd

f(x)g(x−y)h(y)dydx≤
∫
Rd

∫
Rd

f∗(x)g∗(x−y)h∗(y)dydx, (4.8)
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which holds for all nonnegative functions f,g,h vanishing at infinity. Moreover,
if g is strictly decreasing on x>0 and symmetric, then equality in (4.8) holds if
and only if f(x) =f∗(x−x0) and h(x) =h∗(x−x0) for some common x0. Apply
such a theorem to our case, using G∗=G and the fact that u is not symmetric
up to translations.

Let us rephrase Lemma 3.3 in the one-dimensional case.

Lemma 4.4. Let ρ be a 1d steady state, i.e.

ερ=G∗ρ+C on supp[ρ]

for some C ∈R. Then, C= 2E[ρ].

Proof. The support of ρ is connected in view of Lemma 4.1, and therefore
Lemma 3.3 applies.

Lemma 4.5. Let ρ∈P∩L2 and let x0∈R. Let ρx0
be defined by

ρx0(x) :=ρ(x+x0).

Then, E[ρx0
] =E[ρ].

Proof. It follows by direct computation of the energy and by a change of
variable under the integral sign.

Lemma 4.6. Let ρ be a steady state with ε<1. Then, the support of ρ is
compact.

Proof. We know from Lemma 4.1 that the support of ρ is a connected set.
Suppose that supp(ρ) is not bounded. That means that supp(ρ) is of the form
(−∞,b) (b possibly +∞) or (a,+∞) (a possibly −∞). Assume first supp(ρ) =
(a,+∞). Then, Lemma 4.4 implies

2E[ρ] =ερ(x)−
∫ +∞

a

G(x−y)ρ(y)dy= 0

for all x∈ (a,+∞). Now, there are two possibilities: either a=−∞ or a>−∞.
In the latter case, evaluation on x=a implies

0 =ερ(a) =

∫ +∞

a

G(a−y)ρ(y)dy

which is a contradiction because the integral on the right hand side is strictly pos-
itive in view of supp(G) =R. In the former case a=−∞ and we have supp(ρ) =R,
which implies

ερ(x) =

∫ +∞

−∞
G(x−y)ρ(y)dy

for all x∈R. We can therefore integrate over R to obtain

ε=‖G‖L1 = 1,

which is a contradiction. The same proof can be produced in the case supp(ρ) =
(−∞,b). Therefore, the support of ρ can only be a bounded interval.
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Lemma 4.7. Let ρ be a steady state. Then there exists a symmetric steady state
ρ̃ such that

E[ρ̃] =E[ρ].

Proof. From Lemma 4.1 and Lemma 4.6 we know that supp[ρ] = (a,b) for
some a,b∈R. For a given x∈ (a,b) we have

ερ(x) =G∗ρ(x)+C (4.9)

for some C ∈R. Evaluation on x=a and x= b gives

C=−
∫ b

a

G(a−y)ρ(y)dy=−
∫ b

a

G(b−y)ρ(y)dy.

Let ρ(x) =ρ(x+x0) with x0 = (a+b)/2. Then ρ is still a steady state and it sat-
isfies E[ρ] =E[ρ] thanks to Lemma 4.5. Moreover, the support of ρ is symmetric.
Let us introduce

ρ̃(x) :=
1

2
(ρ(x)+ρ(−x)).

Clearly, supp[ρ̃] = supp[ρ] and we have, for all x∈ supp[ρ̃],

ερ̃(x) =
ε

2
(ρ(x)+ρ(−x)) =

ε

2
(ρ(x+x0)+ρ(−x+x0))

=
1

2

∫ b

a

G(x+x0−y)ρ(y)dy+
1

2

∫ b

a

G(−x+x0−y)ρ(y)dy+C

=
1

2

∫ (b−a)/2

(a−b)/2
G(x−z)ρ(z)dy+

1

2

∫ (b−a)/2

(a−b)/2
G(−x−z)ρ(z)dy+C

=
1

2

∫ (b−a)/2

(a−b)/2
G(x−z)ρ(z)dy+

1

2

∫ (b−a)/2

(a−b)/2
G(x−z)ρ(−z)dy+C

=

∫ (b−a)/2

(a−b)/2
G(x−z)1

2
(ρ(z)+ρ(−z))dz+C=

∫ (b−a)/2

(a−b)/2
G(x−z)ρ̃(z)dz+C,

where we have used the symmetry of G. The above computation shows that ρ̃
has the same energy as ρ in view of the results in Lemma 4.5 and Lemma 4.4.

Lemma 4.8 (Support of a minimizer). Let ρ∞ be a global minimizer of E. Let
ρ be a steady state such that

meas(supp[ρ∞])≤meas(supp[ρ]).

Then ρ is also a minimizer.

Proof. Assume first that we are in the special case supp[ρ∞]⊆ supp[ρ].
Let us compute the second variation of E around the minimizer ρ∞ along the
direction ρ∞−ρ:

d2

dδ2
E[ρ∞+δ(ρ−ρ∞)]|δ=0

=ε

∫
(ρ−ρ∞)2dx−

∫ ∫
G(x−y)(ρ(x)−ρ∞(x))(ρ(y)−ρ∞(y))dydx

=2E[ρ]+2E[ρ∞]−2

∫
supp[ρ∞]

ρ∞(ερ−G∗ρ)dx

=2E[ρ]+2E[ρ∞]−4E[ρ],
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where the last step is justified by the fact that supp[ρ]⊆ supp[ρ∞]. Therefore,
since ρ∞ is a minimizer, the second derivative above is nonnegative, i.e.

0≤ d2

dδ2
E[ρ∞+δ(ρ−ρ∞)]|δ=0 = 2(E[ρ∞]−E[ρ]),

which yields E[ρ]≤E[ρ∞]. Since ρ∞ is a minimizer, then so is ρ. In the general
case in which supp[ρ∞]* supp[ρ], consider a translation ρx0

(x) =ρ(x−x0) in such
a way that the support of ρ contains the support of ρ∞. Since the energy is
invariant after translation in view of Lemma 4.5, the assertion is proven.

We are now getting closer to the proof of our uniqueness result. Let us recall
the following important theorems; see e.g. [28] and the references therein.

Theorem 4.9 (Krein–Rutman Theorem). Let X be a Banach space, let K⊂
X be a total cone, i.e. such that λK⊂K for all λ≥0 and such that the set
{u−v, u,v∈K} is dense in X. Let T be a compact linear operator such that
T (K)⊂K with positive spectral radius r(T ). Then r(T ) is an eigenvalue for T
with an eigenvector u∈K \{0}.

An important consequence [28] of the Krein–Rutman Theorem, which will
be extremely useful in the sequel, is the following.

Theorem 4.10 (Krein–Rutman Theorem, strong version). Let X be a Banach
space, K⊂X a solid cone, i.e. such that λK⊂K for all λ≥0 and such that K
has a nonempty interior K0. Let T be a compact linear operator which is strongly
positive with respect to K, i.e. such that T [u]∈K0 if u∈K. Then

(i) The spectral radius r(T ) is strictly positive and r(T ) is a simple eigen-
value with an eigenvector v∈K0. There is no other eigenvalue with a
corresponding eigenvector v∈K.

(ii) |λ|<r(T ) for all other eigenvalues λ 6= r(T ).

We shall now prove the uniqueness of symmetric steady states with unit
mass which are monotonically decreasing on the positive semi-axis in the case
ε<1. We already know that under the above assumptions we can write, for
x∈ [−L,L] = supp[ρ],

ερ(x) =

∫ L

−L
G(x−y)ρ(y)dy+C, C= 2E[ρ]. (4.10)

Taking the derivative with respect to x∈ [−L,L] we obtain

ερ′(x) =
d

dx

∫ L

−L
G(x−y)ρ(y)dy=

d

dx
G∗ρ(x) =

∫ L

−L
G(x−y)ρ′(y)dy.

The symmetry of ρ and G implies, for x∈ [0,L],

ερ′(x) =−
∫ L

0

G(x+y)ρ′(y)dy+

∫ L

0

G(x−y)ρ′(y)dy

=

∫ L

0

[G(x−y)−G(x+y)]ρ′(y)dy.
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Assuming that ρ∈C1([−L,L]), finding a steady state with the above assumptions
is equivalent to finding ρ on [0,L] such that

ρ(L) = 0,

−ρ′(x) =u(x), x∈ [0,L],

u≥0, and u solves εu(x) =

∫ L

0

H(x,y)u(y)dy,

H(x,y) =G(x−y)−G(x+y).

To convince ourselves that this is true, integrate

−ερ′(x) =−
∫ L

0

(G(x−y)−G(x+y))ρ′(y)dy

over the interval [ξ,L] for some ξ∈ [0,L). Then integration by parts and the fact
that ρ(L) = 0 imply

−ερ(ξ) =−
∫ L

ξ

dx

∫ L

0

(G(x−y)−G(x+y))ρ′(y)dy

=−
∫ L

ξ

dx[(G(x−L)−G(x+L))ρ(L)−(G(x)−G(x))ρ(0)]

+

∫ L

ξ

dx

∫ L

0

(−G′(x−y)−G′(x+y))ρ(y)dy

=

∫ L

0

ρ(y)dy

∫ L

ξ

(−G′(x−y)−G′(x+y))dx

=

∫ L

0

ρ(y)[−G(L−y)−G(L+y)+G(ξ−y)+G(ξ+y)],

which implies, by the symmetry of G,

ερ(x) =

∫ L

−L
G(x−y)ρ(y)dy+C, C=−

∫ L

0

(G(L−y)+G(L+y))ρ(y)dy.

For further reference, we introduce the operator

GL[ρ](x) :=

∫ L

0

[G(x−y)+G(x+y)−G(L−y)−G(L+y)]ρ(y)dy (4.11)

on the Banach space

YL :={ρ∈C([0,L]) : ρ(L) = 0}.

In order to simplify the notation, we also define the following operator:

HL[u](x) :=

∫ L

0

H(x,y)u(y)dy=

∫ L

0

(G(x−y)−G(x+y))u(y)dy.

Proposition 4.11. For a fixed L>0 there exists a unique symmetric function
ρ∈C2([−L,L]) with unit mass and with ρ′(x)≤0 on x≥0 such that ρ solves
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(4.10) for some ε=ε(L)>0. Such a function ρ also satisfies ρ′′(0)<0. Moreover,
ε(L) is the largest eigenvalue of the compact operator GL on the space Banach YL
and any other eigenfunction of GL on YL with unit mass has the corresponding
eigenvalue ε′ satisfying |ε′|<ε(L).

Proof. Since G is decreasing on the half-line [0,+∞) we get

H(x,y) =G(x−y)−G(x+y)≥0, on x,y≥0.

Consider now the Banach space

XL=
{
f ∈C1([0,L]) : f(0) = 0

}
endowed with the C1 norm

‖f‖XL
=‖f‖L∞([0,L]) +‖f ′‖L∞([0,L]).

It can be easily seen that the set

KL :={f ∈XL : f ≥0} (4.12)

is a solid cone in XL. Indeed, let us define the subset of KL

H :={f ∈K : f ′(0)>0, f(x)>0 for all x>0} .

Then it is easily seen that H⊂K◦L, where the latter denotes the interior of K.
Now, for a given u∈K, we have

HL[u](x) =

∫ L

0

H(x,y)u(y)dy≥0

for all x∈ [0,L], and

HL[u](0) =

∫ L

0

H(0,y)u(y)dy=

∫ L

0

(G(−y)−G(y))u(y)dy= 0.

Therefore HL is a positive operator in the sense provided by the definition of
the cone K. Now, we aim to prove that HL is strongly positive, i.e. for a given
u∈K, H[u]∈K◦. In order to see that, for a u∈K \{0} compute

(HL[u])′(0) =

∫ L

0

(G′(−y)−G′(y))u(y)dy=−2

∫ L

0

G′(y)u(y)dy>0.

Moreover, for x>0 we have

HL[u](x) =

∫ L

0

H(x,y)u(y)dy=

∫ L

0

(G(x−y)−G(x+y))u(y)dy>0

because the function G(x−y)−G(x+y) is strictly positive on y∈ (0,L] and u
is nonnegative on the same interval. Therefore HL[u]∈H⊂K◦. Hence, we can
apply the stronger version of the Krein–Rutman Theorem 4.10, which implies the
existence of a simple eigenvalue ε>0 equal to the spectral radius of HL. More
precisely, there exists a family of solutions u to

εu=HL[u]
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generated by one given nontrivial element ū in the interior of K. This implies
that the corresponding set of symmetric and monotone ρ solving (4.10) satisfies

ρ(x) =ρ(x)−ρ(L) =−
∫ L

x

ρ′(y)dy=

∫ L

x

u(y)dy=α

∫ L

x

ū(y)dy,

for α>0. We choose α as

α=

(
2

∫ L

0

∫ L

x

ū(y)dydx

)−1

,

and we obtain that ρ has unit mass on [−L,L]. It is clear that ρ′(x)≤0 for x≥0,
ρ′(0) = 0, and ρ′′(0)<0. In view of the statement (i) of Theorem 4.10, there
exist no other eigenvalues to HL with eigenvectors in KL besides the one with
eigenfunction ū, and all other eigenvalues ε′ with eigenfunctions in XL satisfy
|ε′|<ε.

The eigenvalue ε (which coincides with the spectral radius of HL) can be
considered as a function of L, namely ε=ε(L). The behavior of such a function is
established in the next proposition. From now on we shall denote by uL=− d

dxρL
the unique eigenfunction of HL on KL satisfying

2

∫ L

0

ρL(x)dx=−2

∫ L

0

∫ L

x

u(y)dydx= 1. (4.13)

The next proposition shows a key property needed in order to prove our
uniqueness result. Roughly speaking, the result in Proposition 4.11 provides
uniqueness for a given fixed L, whereas our aim is to achieve uniqueness for a
fixed ε. To perform this task, we have to prove that the function (0,+∞)3L 7→
ε=ε(L)∈ (0,1) is a continuous bijection.

Proposition 4.12 (Behavior of the function ε(L)). The simple eigenvalue
ε(L) found in Proposition 4.11 is uniquely determined as a function of L with
the following properties:

(i) ε(L) is continuous and strictly increasing with respect to L;

(ii) limL→+∞ε(L) = 1;

(iii) ε(0) = 0.

Proof. Step 1: Monotonicity of ε(L). Let us consider the equation

ε(L)uL(x) =HL[uL](x) =

∫ L

0

H(x,y)uL(y)dy, x∈ [0,L],

where uL is the unique eigenfunction obtained in Proposition 4.11 satisfying
(4.13). We multiply the above equation by uL(x) and integrate over [0,L] to
obtain

ε(L)

∫ L

0

uL(x)2dx=

∫ L

0

HL[uL](x)u(x)dx.

Recall that the eigenvalue uL satisfies uL(0) = 0 and, for x∈ (0,L],

uL(x) =
1

ε(L)

∫ L

0

H(x,y)u(y)dy>0
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since H(x,y) =G(x−y)−G(x+y)>0 for all y∈ [0,L] under the assumption x>
0 in view of the strict decreasing monotonicity of G on x>0, For a general
L∈ (0,+∞) and a δ>0 (small enough) we have

I1 :=ε(L+δ)

∫ L+δ

0

u2
L+δ(x)dx−ε(L)

∫ L

0

u2
L(x)dx

=

∫ L+δ

0

HL+δ[uL+δ](x)uL+δ(x)dx−
∫ L

0

HL[uL](x)uL(x)dx=: I2. (4.14)

We shall now analyze the two terms I1 and I2 separately. Let us first extend uL
on (L,L+δ] as follows:

ūL(x) =

{
uL(x) if x∈ [0,L],

0 if x∈ (L,L+δ].

In view of the above definition, we have HL+δ[ūL](x) =HL[ūL](x) on x∈ [0,L],
and

HL+δ[ūL](x) =

{
ε(L)ūL(x) if x∈ [0,L],∫ L

0
H(x,y)uL(y)dy if x∈ (L,L+δ].

The term I1 can be expanded as follows:

I1 =(ε(L+δ)−ε(L))

∫ L+δ

0

u2
L+δ(x)dx

+ε(L)

∫ L+δ

0

(uL+δ(x)− ūL(x))(uL+δ(x)+ ūL(x))dx.

I2 is given by

I2 =

∫ L+δ

0

(HL+δ[uL+δ]uL+δ−HL+δ[ūL]ūL)dx

=

∫ L+δ

0

(HL+δ[uL+δ](x)−HL+δ[ūL](x))uL+δ(x)dx

+

∫ L+δ

0

HL+δ[ūL](x)(uL+δ(x)− ūL(x))dx

=

∫ L+δ

0

(HL+δ[uL+δ](x)−HL+δ[ūL](x))uL+δ(x)dx

+ε(L)

∫ L+δ

0

ūL(x)(uL+δ(x)− ūL(x))dx

+

∫ L+δ

L

dx

∫ L

0

dyH(x,y)ūL(y)uL+δ(x),

where we have used (twice) ūL(x) = 0 on x∈ (L,L+δ]. Therefore, on substituting
I1 and I2 in (4.14) we can cancel some terms and use the eigenvalue property
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HL+δ[uL+δ] =ε(L+δ)uL+δ to obtain

−ε(L)

∫ L+δ

0

ūL(x)uL+δ(x)dx

=

∫ L+δ

L

dx

∫ L

0

dyH(x,y)ūL(y)uL+δ(x)−
∫ L+δ

0

dx

∫ L+δ

0

dyH(x,y)ūL(y)uL+δ(x)

=

∫ L+δ

L

dx

∫ L

0

dyH(x,y)ūL(y)uL+δ(x)−ε(L+δ)

∫ L+δ

0

uL+δ(y)ūL(y)dy,

where we have used the definition of HL+δ, and the property H(x,y) =H(y,x).
Therefore, we have

(ε(L+δ)−ε(L))

∫ L

0

uL(x)uL+δ(x)dx=

∫ L+δ

L

dx

∫ L

0

dyH(x,y)uL(y)uL+δ(x),

(4.15)

and the positivity property of uL implies that

ε(L+δ)>ε(L),

which proves the monotonicity of ε(L). Notice that formula (4.15) is totally
independent from the way we extended uL on [L,L+δ]. We shall now use the
formula (4.15) to prove continuity of ε with respect to L. In order to perform
this task, we shall work in the following two steps.

Step 2: Local uniform bound for L 7→‖uL‖L∞([0,L]). Let L0∈ (0,+∞)
be fixed, we aim to prove that there exists a neighborhood I0 = [L0−δ,L0 +δ] of
L0 such that supL∈I0 ‖uL‖L∞([0,L]) is finite. In order to see that, choose δ<L0/2
so that the eigenvalue property of uL and the monotonicity of ε(L) imply

uL(x)<
1

ε(L0/2)

∫ L

0

H(x,y)uL(y)dy≤ 1

ε(L0/2)
‖G‖L∞

∫ L

0

uL(y)dy.

Recall that ε(L)ρL=GL[ρL] implies∫ L

0

uL(y)dy=−ρL(L)+ρL(0) =ρL(0)

=
1

ε(L)

∫ L

0

(2G(y)−G(L−y)−G(L+y))ρL(y)dy

≤ ‖G‖L
∞

ε(L0/2)

∫ L

−L
ρL(y)dy

=
‖G‖L∞

ε(L0/2)
,

which yields

uL(x)<

(
‖G‖L∞

ε(L0/2)

)2

,

which proves the assertion.
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Step 3: Uniform coercivity of uL near zero. Let L0∈ (0,+∞) be
fixed. The eigenvalue property of uL and ε(L)<1 for all L∈ (0,+∞) implies

u′L(0) =
1

ε(L)

∫ L

0

(G′(−y)−G′(y))uL(y)dy≥−2

∫ L

0

G′(y)uL(y)dy.

Now, let 0<δ<L. Since G′ is strictly negative on [δ,L], we have infy∈[δ,L]G
′(y)≥

CL,δ for some constant CL,δ>0 depending on L and δ. Hence

u′L(0)≥CL,δ
∫ L

δ

uL(y)dy. (4.16)

Moreover,

|u′L(x)|= 1

ε(L)

∣∣∣∣∣
∫ L

0

(G′(x−y)−G′(x+y))uL(y)dy

∣∣∣∣∣≤ 2L

ε(L)
‖G′‖L∞‖uL‖L∞ ,

which means that ‖u′L‖L∞([0,L]) is uniformly bounded for L belonging to a small
neighborhood of L0 because of Step 1. From now on in this step we shall extend
uL outside [0,L] with uL(x) =uL(L) for L≤x≤2L0. Therefore, we have defined
the family of extended eigenfunctions AL0

:={uL : [0,2L0]→ [0,+∞), L∈ IL0
},

where IL0
is a (small enough) neighborhood of L0.

Now, assume by contradiction that there exists an interval [a,b] with a<b<

L0/2 such that liminfL→L0

∫ b
a
uL(y)dy= 0. Then, there exists a sequence uLk

⊂
AL0

with Lk→L0 such that limk→+∞
∫ b
a
uLk

(y)dy= 0. Since u′Lk
is uniformly

bounded with respect to k on [0,2L0] (with a possible jump discontinuity on
x=Lk), then the family AL0

is equicontinuous. Therefore, by Arzelá’s theorem
there exists a subsequence of uLk

converging uniformly to some u∞ continuous
and bounded on [0,2L0]. We know that

ε(Lk)uLk
(x) =

{∫ Lk

0
(G(x−y)−G(x+y))uLk

(y)dy if x∈ [0,Lk],

ε(Lk)uLk
(Lk) if x∈ [Lk,2L0].

(4.17)

By possibly extracting a new subsequence, ε(Lk) has a limit as k→+∞ which
we call ε̄L0 . Therefore, the left hand side of (4.17) converges to ε̄L0u∞(x) for all
x∈ [0,L0] as k→+∞. From the uniform convergence of uLk

it is easy to see that
the right hand side of (4.17) converges to{∫ L0

0
(G(x−y)−G(x+y))u∞(y)dy if x∈ [0,L0],

ε̄L0
u∞(L0) if x∈ (L0,2L0].

Therefore, for x∈ [0,L0] we have

ε̄L0u∞(x) =

∫ L0

0

(G(x−y)−G(x+y))u∞(y)dy.

Since u∞≥0, i.e. u∞∈KL0 as defined in (4.12), by Krein-Rutman Theorem 4.10
ε̄L0

must coincide with ε(L0) and u∞ is the corresponding eigenfunction of HL0

in the interior of KL0
. On the other hand, the uniform convergence of uLk

on

[a,b] implies that
∫ b
a
u∞(y)dy= 0, which implies u∞≡0 on [a,b], which in turn

contradicts the fact that u∞ lies in the interior of KL0 .



M. BURGER, M. DI FRANCESCO, AND M. FRANEK 731

Therefore, (4.16) implies

liminf
L→L0

u′L(0)≥CL0,δ liminf
L↘L0

∫ L0/2

δ

uL(y)dy=:α>0,

which implies that

uL(x) =u′L(0)x+u′′L(ξ)
x2

2
≥ α

2
x+u′′L(ξ)

x2

2

for some ξ∈ [0,x] and for x in a small right-neighborhood of 0. Since G′′∈
L∞[0,L0], we have ‖u′′‖L∞([0,L]) :=β<+∞, which implies

uL(x)≥x
(
α

2
− βx

2

)
,

and the above right hand side is strictly positive for x in a small enough neigh-
borhood (0,η], uniformly in L.

Step 4: Continuity of ε(L) on L∈ (0,+∞). Steps 2 and 3 imply that

we can send δ↘0 in (4.15). The term
∫ L

0
uL(x)uL+δ(x)dx stays away from

zero uniformly for small δ, whereas the term on the right hand side of (4.15) is
uniformly bounded. This proves that limL↘L0 ε(L) =ε(L0). By suitably changing
the notation in (4.15) we also obtain

(ε(L)−ε(L−δ))
∫ L−δ

0

uL−δ(x)uL(x)dx=

∫ L

L−δ
dx

∫ L−δ

0

dyH(x,y)uL−δ(y)uL(x),

which can be used to prove that limL↗L0
ε(L) =ε(L0).

Let us finally prove (ii). Assume by contradiction that

lim
L→+∞

ε(L) =ε0<1.

Let ε∈ (ε0,1). We know from Theorem 3.6 that there exists a minimizer ρε for
the energy E with zero center of mass. We also know that the support of ρε is
compact from Lemma 4.6. From Proposition 4.3 we know that ρε is symmetric
and monotonically decreasing on x>0. Therefore, ρε is the unique eigenfunction
with unit mass provided by Proposition 4.11, and the support of ρε is [−L,L] for
some L>0. Therefore, the corresponding eigenvalue should be ε(L)<ε0, which
is a contradiction since ε and ε0 are two different eigenvalues with the same
eigenfunction.

Let us prove (iii). By letting L↘0 one has that the operator norm of
HL :L∞([0,L])→L∞([0,L]) is arbitrarily small. Since ε(L) is the spectral ra-
dius of HL, ε(L) can be made arbitrarily small, thus contradicting the fact that
limL↘0ε(L)>0.

We are now ready to prove the main result of this paper.

Theorem 4.13. Let ε<1. Then, there exists a unique ρ∈L2 solution to

ρ∂x(ερ−G∗ρ) = 0,

with unit mass and zero center of mass. Moreover,
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• ρ is symmetric and monotonically decreasing on x>0;

• ρ∈C2(supp[ρ]);

• supp[ρ] is a bounded interval in R;

• ρ has a global maximum at x= 0 and ρ′′(0)<0;

• ρ is the global minimizer of the energy E[ρ] = ε
2

∫
ρ2dx− 1

2

∫
ρG∗ρdx.

Proof. We know from Theorem 3.6 that there exists a minimizer ρ∞ with
unit mass and zero center of mass, which is symmetric and monotonically de-
creasing on x>0 (in view of Proposition 4.3) and compactly supported on a
certain [−L,L] (in view of Lemma 4.6). From the results in Proposition 4.11
and 4.12, we know that there exists a unique steady state with such properties,
because the correspondence ε=ε(L) is one-to-one. So, the only possibility to
violate uniqueness of steady states with unit mass and zero center of mass is
to have a steady state which violates either the monotonicity property or the
symmetry. Suppose first that there exists a steady state with zero center of mass
ρ which is not symmetric; it is not restrictive to assume that the support of ρ
is [−L′,L′]. Then, we know from Lemma 4.7 that it is possible to construct a
symmetric steady state ρ̃ with the same energy of ρ and with the same support of
ρ. Now, there are two possibilities: either ρ̃ is a minimizer or not. In the former
case ρ is also a minimizer and this is a contradiction (a minimizer is symmetric).
In the latter case, L′<L in view of Lemma 4.8, and ρ̃ is not monotonically de-
creasing on x>0 because otherwise it would be the unique minimizer provided
before. Therefore, with the notation of Proposition 4.11, −ρ̃′ is an eigenfunction
for HL′ in the space XL′ which does not belong to the solid cone KL′ . Therefore,
the stronger version of Krein-Rutman’s Theorem 4.10 and the fact that ε(L) is
increasing imply that −ρ̃′ is an eigenfunction outside the solid cone KL′ , with
eigenvalue strictly less than ε(L′), i.e. ε(L)<ε(L′) and therefore L<L′, which
contradicts L>L′. The case in which ρ is symmetric but not monotonic on x>0
can be covered by repeating the same argument above (assume ρ= ρ̃!).

Corollary 4.14 (Concavity of ρ for small ε). There exists a value ε0∈
(0,1) such that, for all ε∈ (0,ε0) the corresponding stationary solution provided
in Theorem 4.13 is concave on the whole interval [0,L].

Proof. We can differentiate twice with respect to x in

ερ(x) =

∫ L

−L
G(x−y)ρ(y)dy+C

to obtain

ερ′′(x) =

∫ L

−L
G′′(x−y)ρ(y)dy

for all x∈ [−L,L]. Therefore, G′′ is evaluated on the interval [−2L,2L] in the
above integral. We know from Proposition 4.12 that L is a monotonically in-
creasing function of ε with limε↘0L(ε) = 0. Since G′′(0)<0 and G∈C2, there
exists L0>0 such that G′′<0 on [−2L0,2L0]. Let ε0 be the eigenvalue in K
corresponding to L=L0. Then, the eigenfunction ρ is concave on its support.

Remark 4.15 (The case meas(supp(G))<+∞). It is also interesting to con-
sider the case with the support of G being bounded, i.e. supp(G) = [−g,g] with
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G being symmetric and monotone on [−g,0]. Then most techniques of the paper
remain valid, in particular when considering simply connected stationary states,
whose existence can be shown along the lines of the above arguments. With
the same arguments as in the proof of Lemma 4.1, one can show that the dis-
tance between two connected components of a stationary solution is at least 2g.
This means that stationary solutions consist of a countable number of connected
components, which are not influenced by any other connected component (the
distance is larger than the kernel range). Thus, each connected component is a
stationary solution by itself, and in particular we can prove the existence of in-
finitely many stationary states. The remaining step would be to characterize the
behavior of each connected component as a unique energy minimizer. All argu-
ments above apply to the case of simply connected solutions in the case of a finite
range kernel G, except the application of the strong version of the Krein-Rutman
Theorem. If we cannot guarantee that the support of the global minimizer is
contained in [− g2 ,

g
2 ], then there can be elements in the nonnegative cone such

that the convolution with G is not strictly positive. Although we strongly believe
that such a smallness of the support holds at least for ε small, we so far have not
succeeded in proving such a result.

5. Numerical results
In the following we show numerical simulations for the evolution equation

(2.1). We discretize the equation using an explicit Euler scheme and finite dif-
ference methods. In one dimension, we partitionate the domain Ω = [a,b] using
an equidistant grid with n+1 grid points a=x0<x1<...<xn= b and step size
h= (b−a)/(n+1). Furthermore we use the following finite difference scheme:

ρj+1
i −ρji
dt

=Dx
−(ρjiD

x
+(ερji −G∗ρ

j
i )),

with forward and backward difference quotients

Dx
+ρi=

ρi+1−ρi
h

, Dx
−ρi=

ρi−ρi−1

h
.

The time step size dt must be chosen appropriately in order to guarantee
stability. In a first example we consider an interaction potential G(x) =

1
σ
√

2π
exp

(
− 1

2

(
x−µ
σ

)2)
, with mean µ= 0 and variance σ= 1, which fulfill the con-

ditions (1)-(8), ‖G‖L1 = 1, and models a wide range attraction.
For this kernel we present in figure 5.1 the solutions for the stationary equa-

tion (2.2), which means that we calculated the largest eigenvalues and corre-
sponding eigenvectors of the operator GL defined in (4.11) for different L. The
largest eigenvalues ε= ε(L) are presented in figure 5.1 (a). As mentioned in
Proposition 4.12, ε(L) is strictly increasing with respect to L, and furthermore
limL→∞ ε(L) = 1. The corresponding eigenfunctions with unit mass are presented
in figure 5.1 (b) and (c). We proved in Corollary 4.14 the concavity of ρ for small
ε. To better clarify the situation, we illustrate in figure 5.1 (b) the eigenfunctions
for L∈ (0,1], i.e. for ε<0.05. For a certain ε, which depends on the concavity of
the kernel G, the solution is not fully concave on its support, but bell shaped;
compare with figure 5.1 (c).

To make this result more clear we present in figure 5.2 the stationary solutions
of the evolution equation (2.1) for ε∈ (0,1). We consider a compactly supported
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(a)

(b) (c)

Fig. 5.1. Largest eigenvalues and corresponding eigenfunctions of the operator GL 4.11:
(a) Largest eigenvalues ε= ε(L) of GL on L= (0,20]; (b) Corresponding eigenfunctions for ε(L)
with L∈ [0,1]; (c) Corresponding eigenfunctions for ε(L) with L∈ [1,8].

Fig. 5.2. Stationary solutions for equation (2.1) with ε∈ (0,1).
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(a)

(b)

(c) (d)

Fig. 5.3. (a) Kernel G(x) = 1
2

exp(−|x|); (b) Stationary solutions for equation (2.1) for
the kernel G. (c),(d) eigenfunctions for ε(L) with L∈ [0,1] resp. L∈ [1,8].
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initial datum ρ(x,0) =ρ0 with unit mass
∫

Ω
ρ0 = 1. As the results are the same

as in figure 5.1 (b)-(c), we recognize again that up to a certain ε the solutions
are concave and then bell shaped. Furthermore we have mass conservation. As
proven before in this paper, for ε≥

∫
G= 1 we do not have steady states because

the impact of the diffusive term is higher then that of the aggregation term. In
this case we expect the solutions to behave like the self-similar Barenblatt-Pattle
profiles. For ε= 0 we obtain an unique stationary solution (with zero center of
mass), which is a Dirac-δ-distribution with unit mass centered at zero.

Furthermore we computed the stationary solutions (2.1) with the kernel
G(x) = 1

2 exp(−|x|) (see figure 5.3(a)) with Lipschitz singularity at the point zero.
We present the results in figure 5.3(b) for different ε. Additionally we present
eigenfunctions for the corresponding operator GL 4.11 in figure 5.3(c),(d).
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[2] D. Balagué, J.A. Carrillo, T. Laurent, and G. Raoul, Nonlocal interactions by repulsive-
attractive potentials: Radial ins/stability, UAB, to appear in Physica D, 2011.

[3] J. Bedrossian, Global minimizers for free energies of subcritical aggregation equations
with degenerate diffusion, Appl. Math. Letters, 24, 1927–1932, 2011.

[4] D. Benedetto, E. Caglioti, and M. Pulvirenti, A kinetic equation for granular media,
RAIRO Modél. Math. Anal. Numér., 31, 615–641, 1997.

[5] A. Bertozzi, J. Carrillo, and T. Laurent, Blowup in multidimensional aggregation equa-
tions with mildly singular interaction kernels, Nonlin., 22, 683–710, 2009.

[6] A. Bertozzi and T. Laurent, Finite-time blow-up of solutions of an aggregation equation
in Rn, Commun. Math. Phys., 274, 717–735, 2007.

[7] A.L. Bertozzi and J. Brandman, Finite-time blow-up of L∞-weak solutions of an aggre-
gation equation, Commun. Math. Sci., 8(1), 45–65, 2010.

[8] A.L. Bertozzi, T. Laurent, and J. Rosado, Lp theory for the multidimensional aggregation
equation, Commun. Pure Appl. Math., 64(1), 45–83, 2011.
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