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A FAST ALGORITHM FOR REITERATED HOMOGENIZATION*

BJORN ENGQUIST' AND LEXING YINGH

Abstract. This paper considers the numerical evaluation of effective coefficients for multiscale
homogenization problems and proposes a highly efficient algorithm for a certain class of reiterated
homogenization problems of practical importance. The main idea of the proposed approach is to
introduce a novel object called the homogenization map, approximate it through adaptive interpo-
lation, and replace solutions of the cell problems with fast evaluations of the interpolant. Numerical
results are provided for both 2D and 3D problems to demonstrate the efficiency and accuracy of the
proposed algorithm.
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1. Introduction

Homogenization is the theory of deriving effective models for problems with com-
plex structures and oscillatory coefficients. It is a well-studied field with a vast amount
of literature; some classical references include [4, 22, 28, 30]. The simplest example
of homogenization is probably the following linear elliptic partial differential equation
(PDE):

—div(A(x/e)Vu(x)®) = f(x), z€Q, (11)
u(z)=0, x €09,

where Q is a bounded domain in R? and the d x d matrix A is symmetric, positive
definite, and periodic in the unit cube Y =[0,1]¢. The standard result of the ho-
mogenization theory states that u® —u weakly in H}(Q) as € —0 and the limit u(x)
satisfies the equation

—div(AVu(z)) = f(x), z€Q,

u(r) =0, r €09, (1.2)

where the homogenized coefficients A= (A;;)1<; j<a are given by

A= [ (Vuslo)+e) AW (Twy(0)-+e;)dy.
Y

Here e; is the unit vector with one at the i-th entry and zero elsewhere, and the
corrector function w; satisfies the cell problem

—div(A(y)(Vwi(y) +¢:)) =0, yeV
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636 A FAST ALGORITHM FOR REITERATED HOMOGENIZATION

with periodic boundary conditions in the weak sense.

A natural extension of the above problem is so-called reiterated homogenization.
This problem, as well as the more general nonlinear cases, have been studied in
[6, 7, 24, 25, 26]. A nice review of this topic can be found in [27]. In the simplest
linear elliptic PDE setting, the reiterated homogenization studies the problem

—div(A® (z)Vu(z)®)=f(z), z€Q, (13)
u(x)=0, €09, '
where A®(z) now takes the form
Af(z) = A(z,x/e,x/e%,... x/e™).
In this case, as € — 0, u® —u weakly in H}(2), with u satisfying
—div(A(x)Vu(z)) = f(z), z€Q, (1.4)
u(z)=0, x €09, '

where A(z) is defined through the following reiterated procedure: First, at level m (or
equivalently scale 1/¢™), one defines A, (zo,...,xm—1) for each choice of (xq,...,Zm—1)
with

(A (20, Tm—1))ij ::/Y(Vwi(y)+ei)TA(o:0,...,xm_l,y)(ij(y)Jrej)dy, (1.5)

where w; (y) satisfies
7diV(A(x03'“al'mflvy)(vwi(y)+€i)):07 yEY

with periodic boundary conditions. Then, at level k (or scale 1/e*) with 1 <k <M —1,
one recursively defines Ay (zo,...,25—1) for each choice of (xq,...,zr_1) with

(Ak(x07...7xk,1))ij::/Y(Vwi(y)+ei)TAk+1(x0,...,xk,l,y)(ij(y)—l—ej)dy, (1.6)

where w;(y) satisfies
—div(Ap41(wo, - xk—1,9) (Vwi(y) +€)) =0, yeY

with periodic boundary conditions. Finally, we define A(x)=A;(z).

This paper is concerned with the efficient evaluation of the homogenized coef-
ficients of the reiterated homogenization problems. In fact, the definition of A(x)
provides a way for computing it. Let us assume that numerically the unit cube
Y is discretized with a grid G,, with n points in each dimension for a total size
of n®. Let the cost of solving the discrete system of the elliptic PDE on this n¢
grid be Sg(n). At level m, one needs to solve d cell problems for every choice of
(20, s Tm—1) With zg,z1,...,2m_1 € Gy, and so the naive cost for this level would
be n™.d-S4(n). A similar argument shows that the cost at level k is n*?.d-Sy(n).
Clearly the m-th level dominates the rest and so the total naive computational cost is
O(n™.d-S4(n))=0(n™?.S4(n)). This complexity grows rapidly when the number
of levels m gets larger, especially for three-dimensional problems (d=3).
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In this paper, we propose a significantly more efficient method for a wide subclass
of reiterated homogenization problems where the coefficients A°(z) take the following
form:

{As(x)A(x,x/s,x/sz,...,x/sm), (17)

Az, x1,. .., Tm) =ao() %1 a1 (1) *2 .. Kkep A (T,

where each a;(+) is a periodic function on the unit cell Y, each «; is a standard binary
operator, and the evaluation of the last formula is understood to be taken from left to
right. The methodology behind the approach to be discussed applies to the general
case where the functions a;(-) are matrix-valued. However, in order to illustrate the
main idea clearly and to simplify the discussion, we restrict to the case where the
functions a;(-) are scalar-valued. The binary operators *; can be fairly general, for
example ax*; b can be min(a,b), max(a,b), a+b, or a-b.

As we shall see in the numerical examples, though (1.7) has a special form, it is
able to represent many practical and important reiterated homogenization structures
due to the flexibility of the binary operator x;. For this special form of reiterated
homogenization, our method is able to compute the homogenized coefficients in O(m -
S4(n)) steps, which is a dramatic improvement from the O(n™?-S;(n)) complexity of
the naive procedure.

Reiterated homogenization has become a useful way to design and construct mul-
tiscale structures with optimal effective conductive and elastic behaviors; many ex-
amples of this type were reported in [11, 27, 28]. The method of this paper can be
viewed as an initial step in designing efficient computational tools to explore the vast
design space of such materials.

Though there has been very little work specifically on the numerical aspect of reit-
erated homogenization, many numerical methods have been proposed for other types
of homogenization problems. When the coefficients are simply periodic functions as
in (1.1), one simply solves the cell problems numerically to obtain the homogenized
coefficients. Most of the numerical efforts have focused on the case where the coef-
ficients fail to be periodic. Several representative algorithms include wavelet-based
numerical homogenization [2, 8, 12, 17], multiscale finite element methods [3, 20, 21],
heterogeneous multiscale methods [15], and equation-free techniques [23], and we refer
to the review article [18] for more details. Recently, there has been significant progress
in two directions: upscaling for problems with no scale-separation [29] and algorithms
for certain classes of stochastic homogenization [1, 5]. In practice, the homogenized
coefficients only apply when e goes to zero, while in many engineering problems one
is in fact more interested in the small but finite € regime. Numerical efforts in this
direction can be found in [9], for example.

The rest of this paper is organized as follows. Section 2 describes the main idea of
the proposed algorithm along with some implementation details. Section 3 provides
some numerical examples to illustrate the efficiency and accuracy of the proposed
approach, and several future directions are discussed in Section 4.

2. Algorithm description

2.1. Homogenization map. Let us recall that at level m the coefficients
A (xoy...,xm—1) are defined via

(A (@0 s 1))y = /Y (Vwi(y) + )T A(@ore.,tm1,y) (Ve (y) +ej)dy,  (2.1)
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where w; (y) solves the cell problem
—div(A(xo,...,Zm-1,y)(Vw;(y)+€;)) =0, yeY
with periodic boundary conditions. For the special form
A(z0,@1,- -y Tom) = ao(T0) *1 a1 (1) %2+« K W (T4
considered here, the cell problem takes the form
—div((ag(xo)*1 - *m—1m—1(Tm—1)*mam(y))(Vw; +€;)) =0, yeY, (2.2)

where the evaluation of the x; operators are understood to be taken from left to right.
We observe that, although the coefficients of (2.2) involve the variables g, ..., 2, —1, it
is a single number ag(xo)*1 ... *m—1Gm—1(Tm—1) that enters the cell problem. There-
fore, the key idea is to introduce the homogenization map T, : RT —R¥*¢ at level m
that maps this number to the resulting homogenized coefficients. More precisely, for
a fixed c€ BT, the matrix T(c) is defined by

(T (€))ig :/Y(Vwi(y)Jrei)T(C*m am (y))(Vw; (y) +e¢;)dy,
where w;(y) satisfies

—div((e*m am(y))(Vw;(y) +e;)) =0, yeY

with periodic boundary conditions. In order to simplify the notation, we denote
by #H[-] the operator that maps the coefficient function of the cell problem to the
homogenized coefficients. The definition of T}, can then be succinctly written as

T (€) =H[cHkm am(-)]- (2.3)

As we shall see, one can approximate T}, effectively by evaluating it at a small number
of values for ¢ adaptively and then constructing an interpolant. Once the interpolant
is available,

A (20, Zm—1) =T (ao(x0) *1 - - *m—1 Gm—1(Tm—1))

can be approximated efficiently with a simple evaluation of the this interpolant.
At level m—1, we have

(Amfl($0;~~~;xm72))ij:/Y(vwi(y)+€i)TAm(x07--->xm72ay)(ij(y)+ej)dya
where w; (y) satisfies

_diV(A'm(an e 733m—27y) (vwz (y) + ez)) =0, yeY

with periodic boundary conditions. Using the definition of T},,, we see that the last
cell problem is

—div(Tim (ao(zo)*1 ... *m—1am-1(y))(Vwi+e;)) =0.
If we construct a homogenization map 7T,,_1 at level m —1 that maps an offset ¢ to

Tmfl(c):H[Tm(C*mfl am,1(-))], (24)
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then we have

A1 ($07 cee 733m—2) =Tn—_1 (ao(xo) K1 oo Km—2 @m—Q(xm—Z))-

Similarly if we define the homogenization map T} at level k through

Tyo(c) =H [Tt (cxk ar(-))], (2.5)
then we have
Ap(xoy.. oy 2k—1) =Tr(ao(xo) *1 .. k-1 ap—1(Tk—1))-
Finally, at level 1, we have
Ai(zo)=T1(ap(z0)). (2.6)

and the homogenized coefficients are A(x)= A (x) =T} (aop(x)).

Since one only needs to calculate the homogenized coefficients A, we can then
forget about the functions Aj; and focus on the homogenization maps Tj(-) and their
recurrence relationship ((2.3), (2.4), (2.5), and (2.6)). Computationally, for each map
T+1, we need to evaluate its values at a grid of its parameter space and then form
its interpolant that will be used in the definition of the map 7). This gives rise to the
following algorithm for computing the homogenized coefficients.

ALGORITHM 2.1. Fast computation of reiterated homogenized coefficients.
1: Construct an interpolant for T, defined by T, (¢) = H[cHm am(-)].
2: for k=m—1,...,1 do
3:  Construct an interpolant for 7T} defined by Ty (c) =H[Tk+1(c*kar(-))]. The
evaluation of Ty41(+) is approximated by evaluating the existing interpolant of
Tioga (+)-
4: end for

A(z) =T (ao(z)).

2.2. Implementation details and complexity analysis.  Algorithm 2.1 is
conceptually simple, however the implementation details are essential to its accuracy
and efficiency. The main reason is that the map Ty () is a function with limited
smoothness and therefore adaptive sampling is required in the construction of its
interpolant. In the following discussion, we assume that a(y) >0 for each k, which
is a reasonable assumption since we consider the coefficients of elliptic PDEs.

The first problem is how to represent the map T :RT —R**¢  The deciding
criterion is that the map T} should be sufficiently regular in the chosen representation.
One naive approach is to construct the interpolant using the offset variable ¢ directly as
the parameter. However, the following simple example shows that the homogenization
map can have singularity near ¢=0. Let a(y) be a continuous function defined on the
unit cell [-1/2,1/2) and consider the homogenization map

T(c)=Hc+a()];

o

with + as the binary operator. For simplicity, we assume that a(y) has a global
minimum equal to zero and reaches its minimum at y=0. When the leading order
behavior of a(y) is given by |y|™, an easy calculation shows that

T(e)~ (M)l ~ (1M,
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Therefore, the homogenization map has limited smoothness near ¢=0 even in this
simple case. However, if we look at homogenization map in the log-log scale, i.e.,

T" () :=log(T(e®)),

where log(-) stands for the matriz logarithm for symmetric positive definite matrices,
this map behaves linearly no matter what m is. Therefore, it is favorable to interpolate
each homogenization map T} (-) in its log-log form T}!(-) : R — R**4.

The second problem is that, even represented in the log-log scale, the maps T, ,il()
often have jumps in their derivatives when the operators *; lack smoothness, for
example when %, =min(-,-), or max(-,-). Since the locations of the jumps in the
derivatives are unknown a priori or difficult to figure out in advance, any interpolation
scheme with fixed grid will certainly result in large interpolation error. Therefore, we
adopt the following adaptive piecewise linear interpolation scheme to represent the
maps TH(-):R— R4, TInitially, a rather coarse uniform Cartesian grid of step size
ho is placed on the interval [ay,,ag], where a, and ap are chosen so that this interval
covers all possible locations where the evaluations of the homogenization map can
take place. The homogenization map is then evaluated at this uniform grid to form
an initial piecewise linear interpolant. Next, we adaptively insert new grid points
at locations where the interpolant is not sufficiently accurate, as long as the local
step size is above a predetermined threshold hni,. In order to decide whether the
interpolant is sufficiently accurate at a grid point «;, we estimate the local jump in
the first derivative:

fii—fi  fi—fia

Qi1 — QG O — Q-1

JZ' =

where f;—1, fi, and f;11 are the map values at grids a;_1, «;, and a;41. If the map
T,il is smooth near «;, then the jump J; should approach zero as we refine. If J; is
above a predetermined constant Jp.x, we refine the interpolation by inserting two
new points at (o;—1+a;)/2 and (a; +;41)/2, and repeat until no extra grid points
can be inserted. This adaptive scheme refines the interpolant automatically near the
jump locations (in the derivative) and in practice the resulting interpolant only uses
a few dozen grid points as we will see in the numerical examples.

The third problem concerns the numerical solution of the cell problem, i.e., the
evaluation of H[]. Since most interesting homogenization problems involve coefficients
with large contrasts and /or sharp discontinuities, the solution of the cell problem needs
to be able to address these two situations efficiently. In the current implementation, we
discretize the cell problem using spectral element methods [10] with element boundary
aligned with the discontinuities in the coefficients. This allows us to approximate the
solution of the cell problem efficiently. For the numerical solution of the discrete
system, we use the multifrontal method with nested dissection [13, 19] due to its
robustness for problems with large contrasts. For each cell problem, the solution cost
S4(n) is O(n3) in 2D (d=2) and O(n%) in 3D (d=3).

Let us now estimate the complexity of the proposed approach. For each level k,
the algorithm constructs an interpolant for 7). As we mentioned earlier, the number
of samples required for our adaptive scheme is a moderate constant in practice. For
each sample, one needs to solve a cell problem, which takes O(Sy(n)) steps. Putting
these numbers together, we conclude that the overall complexity of the proposed
approach is O(m-S4(n)), which is a drastic improvement over the O(n™¢-S4(n)) cost
of the naive approach mentioned in Section 1.
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3. Numerical results

In this section, we provide some numerical examples to demonstrate the efficiency
and accuracy of the proposed method. All numerical results are obtained on a desktop
with a 2.8GHz CPU. The predetermined constants A, and J,.. in the adaptive
interpolation scheme are set to be 1072 and 1072, respectively.

3.1. 2D problems.
Example 1.  We start with a problem with m=3. At each level k=1,2,3, the
coefficient function is given by

ak(y1‘y2){1, max([yy —1/2],ly2 — 1/2]) > 1/4,
. 0.1, otherwise,

and *j is equal to min(-,-) at all levels. An example of A®(z) with e=1/4 is given
in figure 3.1. At each level, the homogenization map Tj(-) is represented in the
log-log scale with the adaptive interpolant discussed above. The number of samples
and the construction cost (in seconds) of the interpolants at all levels are listed in
table 3.1. Notice that at each level the number of samples remains moderate and the
construction time is around one second.

Figure 3.2 plots the homogenization map T;(-) in the log-log scale. Due to the
limited smoothness of min(-,-), the homogenization map exhibits jumps in its deriva-
tives at several locations and the adaptive interpolation scheme automatically refines
near them. Once the map 77 is available, we compute the homogenized coefficients
for three test cases ag(xz)=0.1, 0.5, and 1. The resulting A is equal to

0.1000 0O 0.2108 0 0.3186 0
0 0.1000/)° 0 0.2108)° 0 0.3186)°

respectively. Notice that when ag(x)=0.1 the problem reduces to A(xg,x1,...,%Tm)=
0.1 and hence the result by the proposed algorithm is exact.

0 0.5
0.1 0.45
0.2

0.4
0.3
04 0.35
ST 05 0.3
0.6 0.5
07
0.2
0.8
09 0.15
1 0.1

Fi1G. 3.1. Example 1. The coefficients A®(x) for e=1/4.

In many applications, the actual period of the coefficient function is not known
exactly (or even worse, the coefficients fail to be periodic). One way to get around
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TABLE 3.1. Example 1. The number of samples at each level and the interpolant construction
time in seconds.

k  No. of samples Construction time(s)
3 86 1.1e+00
2 89 1.3e+00
1 92 1.3e+00
1
-2 0.5
-3
0
-4
5 -05
-6 -1
s 0 5 5 0 5
1
05 -2
-3
0
-4
-05 5
5 0 5 5 0 5

Fic. 3.2. Ezample 1. The homogenization map T1(-) plotted in the log-log form Tlll(-). Each
subplot shows a single component.

this is to solve the cell problem with an arbitrary size § that is significantly larger
than the actual period. It has been shown (for example in [16]) that the result of this
inaccurate cell problem converges to the correct homogenized coefficients as the ratio
of the actual period over § goes to zero. In practice, this convergence takes place fairly
rapidly as long as the ratio is sufficiently small (see [14] for example). To study how
the proposed algorithm behaves in this situation, we repeat the above calculation, but
with the cell size § set to be 2.5 times the actual period. The resulting A calculated
with this inaccurate period is given by

0.1000 O 0.2109 O 0.3187 0
0 0.1000)° 0 0.2109)° 0 0.3187

for ap(x)=0.1, 0.5, 1, respectively. Notice that there is only a slight difference be-
tween these numbers and the correct values given above. This demonstrates that the
proposed algorithm shares this robustness and provides good approximations for the
reiterated homogenization coefficients even if the period is unknown.

Ezxample 2. This problem again has m =3. The coefficient functions are given
by

0.1, otherwise

al(ylayQ)a?)(ylayZ){

and

0.1, otherwise.

az(yl,y2)={
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The %, operators are all equal to min(+,-). An example of A%(z) with e=1/4 is given
in figure 3.3. The number of samples and the construction cost (in seconds) of the
interpolant at each level are listed in table 3.2.

Figure 3.4 plots the homogenization map Ti(-) in the log-log scale. Once the
map 77 is available, the homogenized coefficients are evaluated for three test cases
ao(z)=0.1,0.5,1. The resulting coefficients A are given by

0.1000 0O 0.1143 0 0.1170 0
0 0.1000/° 0 0.1250)° 0 0.1346)°

respectively.

10.45
10.4

10.35

Fi1c. 3.3. Example 2. The coefficients A¢(x) for e=1/4.

TABLE 3.2. Ezample 2. The number of samples at each level and the interpolant construction
time in seconds.

|k No. of samples Construction time(s) |
3 114 1.6e+00
2 114 1.6e+4-00
1 114 1.6e+00

3.2. 3D problems.
Ezample 3.  Here we choose m=4. The coefficient functions ay(y) at all levels
are given by

1, max(y— /2] lys— 172 lys — 1/2) > 1/4,
0.1, otherwise,

ak(yhyz,yg):{

and % is the min(-,-) function at all levels. The number of samples and the construc-
tion cost (in seconds) of the interpolant at each level are listed in table 3.3.
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|
-3 0.5
_4 0
-5 -0.5
5 0 5 15 0 5
1
0.5 -3
0 -4
-05 -5
13 0 5 s 0 5

FiG. 3.4. Ezample 2. The homogenization map T1i(-) plotted in the log-log form Tlll(-). Each
subplot shows a single component.

Figure 3.5 plots the homogenization map Ti(-) in the log-log scale. Once the
map T3 is available, the homogenized coefficients are calculated for three test cases
ap(x)=0.1,0.5,1. The coefficients A are equal to

0.1000 0 0 0.2951 0 0 0.5180 O 0
0 0.1000 O , 0 0291 0 , 0 05180 0 ,
0 0  0.1000 0 0 0.2951 0 0 0.5180
respectively.

TABLE 3.3. Example 3. The number of samples at each level and the interpolant construction
time in seconds.

k  No. of samples Construction time(s)
4 70 9.1e+01
3 86 6.1e4+01
2 97 6.9e+4-01
1 111 7.9e+01

Ezample 4.  This example has m =4 as well. The coefficient functions ay(y) are
given by

1,  Jy1—1/2|>1/4,

al(y1,y2,y3) :a4(y17y27y3) = {0 1. otherwise

0.1, otherwise,

az(yl,yz,ys){

and

]-a |y371/2|21/43

0.1, otherwise.

a3(y1,y2,y3):{

The % operators are all min(+,-). The number of samples and the construction cost
(in seconds) of the interpolant at each level are listed in table 3.4.
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1 1

O+ s S

-1 -1
4 2 0 2 4 42 0 2 4 42 0 2 4

1 pH——+—t 1

O+ ——+— O+

-1 -4 -1
4 2 0 2 4 42 0 2 4 -4-2 0 2 4

1
-2
-3

-1 -1
4 2 0 2 4 42 0 2 4 -4 -2 0 2 4

FiG. 3.5. Ezample 3. The homogenization map T1i(-) plotted in the log-log form Tlll(-). Each
subplot shows a single component.

Figure 3.6 plots the homogenization map 73(-) in the log-log scale. Once the
map T is available, the homogenized coeflicients are calculated for three test cases
ap(x)=0.1,0.5,1. The coefficients A in these three cases are equal to

0.1000 O 0 0.1077 0 0 0.1093 0 0
0 0.1000 0 , 0 0.1167 0 , 0 01265 0 ,
0 0  0.1000 0 0 0.1125 0 0 0.1173
respectively.

TABLE 3.4. Example 4. The number of samples at each level and the interpolant construction
time in seconds.

k  No. of samples Construction time(s)
4 110 7.7e4-01
3 134 9.8e+-01
2 134 1.0e+02
1 134 1.0e+02

3.3. Convergence in c.  We now study how the finite-e problem approaches
the homogenization limit as € goes to zero. To do that, we vary the parameter ¢, form
the coefficients A°(z) following (1.7) for each value of e, and calculate the finite-e
effective coefficients A by solving the cell problem

(A2)y :=/Y(Vwi(y)+ei)TA€(y)(ij(y)+ei)dy, (3.1)
where w;(y) satisfies

—div(A®(y)(Vwi(y) +€:)) =0, yeY
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-2.5

-3 O+ ———t  Of
-35

-1
4 2 0 2 4 42 0 2 4 42 0 2 4

-4 -2 0 2 4 -4-2 0 2 4 -4-2 0 2 4

-2.5

o+ et O st -3
-35

-1 -1
4 2 0 2 4 42 0 2 4 42 0 2 4

Fi1G. 3.6. Ezample 4. The homogenization map T1i(-) plotted in the log-log form Tlll(-). Each
subplot shows a single component.

with periodic boundary conditions. When either the dimension d or the number
of levels m is large, the full representation of the coefficient matrix A®(x) quickly
exhausts the memory space as € decreases. Therefore, we restrict our numerical tests
to the 2D case (d=2) with m=2.

Example 5. In this test, the coefficient functions are given by

1, max(jy1 —1/2],|y2—1/2)) > 1/4,
0.1, otherwise,

ak(yhyz):{

for k=1,2 and the binary operators x;, are the min(-,-) function at all levels. We pick
ap(z)=0.5, and the limiting homogenized coefficients A are equal to

0.2666 0
0 0.2666 ) -

The finite-¢ effective coeflicients are computed for 1 /e=2,3,...,8, and the difference
[|A= — A]| is plotted in figure 3.7. We see clearly that as e approaches zero the finite-¢
effective coefficients approach the homogenized coeflicients computed by our algo-
rithm.

Ezample 6. In this example, the coefficient functions are

0.1, otherwise

al(yl,yQ){
and

Lo ly2—1/2|21/4,
0.1, otherwise.

a2(y1,y2){

The binary operators xj are again the min(-,-) function at all levels. We choose
ap(z)=0.5, and the homogenized coefficients A are equal to

0.1496 0
0 0.1330/)°
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Fic. 3.7. Ezample 5. Convergence of the finite-e effective coefficients A€ to the homogenized
coefficients A as € goes to zero.

10°

5
1le

F1c. 3.8. Ezample 6. Convergence of the finite-c effective coefficients A# to the homogenized
coefficients A as € goes to zero.

The finite-¢ effective coefficients are computed for 1 /e=2,3,...,8, and the differ-
ence between A¢ and A is plotted in figure 3.8.

4. Conclusions and future work

This paper describes an efficient algorithm for computing the homogenized coef-
ficients for a certain class of linear reiterated homogenization problems. The essential
idea is to introduce a novel object called the homogenization map, approximate it
through adaptive interpolation, and replace expensive solutions of cell problems with
fast evaluations of the interpolant. The resulting algorithm is accurate and provides
a drastic speedup over the naive algorithm. Numerical results are provided in both
2D and 3D for practical examples.

There are several directions for future work. First, the methodology clearly ex-
tends to the nonlinear homogenization problems discussed in [6, 7, 24, 25, 26]. Second,
the component functions a;(y) considered here are scalar functions, and a slightly more
general case is that of matrix-valued component functions, as we already mentioned.
Third, we have so far only considered scalar elliptic problems in the divergence form,
and it would be of practical interest to consider homogenization for Maxwell’s equa-
tions and also systems of linear elasticity. Finally, the idea behind the homogenization
map can also be applied to numerical averaging of multiscale dynamical systems [30].
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