
COMMUN. MATH. SCI. c© 2013 International Press

Vol. 11, No. 2, pp. 603–633

ANALYSIS OF A DIFFUSE-INTERFACE MODEL FOR THE BINARY

VISCOUS INCOMPRESSIBLE FLUIDS WITH THERMO-INDUCED
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Abstract. In this paper we study the well-posedness and long-time dynamics of a diffuse-

interface model for the mixture of two viscous incompressible Newtonian fluids with thermo-induced

Marangoni effects. The governing system consists of the Navier–Stokes equations coupled with

phase-field and energy transport equations. We first derive an energy inequality that illustrates

the dissipative nature of the system under the assumption that the initial temperature variation is

properly small. Then we establish the existence of weak/strong solutions and discuss the long-time

behavior as well as the stability of the system.
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1. Introduction

The study of interface dynamics is of great importance in the hydrodynamic the-

ory of complex fluids. In the classical approaches (e.g., the sharp-interface model),

the interface is usually considered to be an n−1 dimensional free surface of zero width

that evolves in time with the fluid. The resulting hydrodynamic system describing the

mixture of two immiscible Newtonian fluids with a free interface usually consists of

Navier–Stokes equations in each fluid domain with kinematic and force balance bound-

ary conditions on the interface. On the other hand, the so-called diffuse-interface

model (or phase-field model), recognizes micro-scale mixing of the macroscopically

immiscible fluids and the interface represents a thin region with a steep transition

property between two fluids (cf. Anderson et al. [2]). Within this region, the fluid is

mixed and has to store certain “mixing energy”. The diffuse-interface model can be

viewed as a physically motivated level-set method that describes the interface by a

proper mixing energy. Compared with the sharp-interface model, the diffuse-interface

model can describe topological transitions of interfaces (like pinchoff and reconnec-

tion) in a natural way (cf. Lowengrub et al. [21]) and it has many advantages in

numerical simulations of the interfacial motion (cf. [8, 18, 33] and references therein).

The Marangoni effect was initially observed by Thomson [30] during the study

of the interesting phenomenon “tears of wine”. Afterwards this phenomenon was

defined in more detail in Marangoni [22] in terms of surface tension gradients and

named after the author. The Marangoni effect is a phenomenon whereby mass transfer

occurs due to differences in surface tension. Such differences can either be attributed
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604 BINARY FLUIDS WITH MARANGONI EFFECTS

to non-uniform distributions of surfactants (cf. Mendes-Tatsis and Agble [23]) or

to the existence of temperature gradient in the neighborhood of the interface (cf.

Sterling and Scriven [26]). The latter is called the thermo-capillary convection or

the Marangoni–Benard convection, which becomes more and more important in the

application of complex fluids, liquid-gas systems, and ocean-geophysical dynamics (cf.

e.g. [3, 4, 15,16,34]).

The conventional Marangoni–Benard convection for the mixture of two Newtonian

flows can be described by a sharp-interface model involving the Boussinesq approxi-

mation (cf. e.g., Liu et al. [19]):

ρ(ut +(u ·∇)u)+∇p−ν∆u=−ρθgj, (1.1)

∇·u= 0, (1.2)

θt +u ·∇θ=k∆θ, (1.3)

where u, p, and θ stand for the fluid velocity, the pressure, and the relative temperature

(with respect to the reference background temperature θb, which is assumed to be a

constant for the sake of simplicity), respectively. ρ is the density of fluid mixture, ν is

the viscosity, g is the gravitational acceleration, j is the upward direction and k>0 is

the thermal diffusion constant. We assume that the temperature-dependent density

ρθ is described by the Boussinesq approximation

ρθ =ρ(1−αθ), (1.4)

where α is the coefficient of thermal expansion. The background density ρ is assumed

to be a constant and the difference between the actual density and ρ only contributes

to the buoyancy force. Interface conditions are given by

lt +u ·∇l= 0, (1.5)

[T ] ·n=−σHn+(τ ·∇σ)τ, (1.6)

where l stands for the interface length of the mixture. The kinematic condition (1.5)

indicates that the surface (l= 0) evolves with the fluid. Equation (1.6) is the balance

of forces on the interface, where H is the curvature of the interface, [T ] is the jump

of the stress across the interface, σ is the surface tension, τ is the tangential direction

on the interface and n is the normal direction.

In this paper, we shall investigate a diffuse-interface model, which was used to

describe the thermo-induced Marangoni effects in the mixture of two incompressible

Newtonian fluids. A phase-field variable φ is introduced as the volume fraction to

demarcate the two species and to indicate the location of the interface. The region

{x :φ(x,t) = 1} is occupied by fluid 1 while {x :φ(x,t) =−1} is occupied by fluid 2. The

interface is represented by {x :φ(x,t) = 0}, with a (fixed) transition layer of thickness

ε. In the diffuse-interface approach, one usually introduces an elastic (mixing) energy

of Ginzburg–Landau type

E(φ) =

∫

Ω

[

1

2
|∇φ|2 +F (φ)

]

dx, (1.7)

which represents the competition between the hydrophobic and hydrophilic effects

of the two different species. The physically relevant energy density function F that
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represents the two phases of the mixture usually has a double-well structure. A typical

example of F is the so-called logarithmic potential (cf. Cahn and Hillard [6])

F (φ) =γ1(1−φ2)+γ2[(1+φ)ln(1+φ)+(1−φ)ln(1−φ)], γ1,γ2>0.

In practice, this (singular) potential is often replaced by a smooth double-well poly-

nomial approximation

F (φ) =
1

4ε2
(φ2−1)2.

In this paper, we start with the simple case that the two components of the binary

fluid have matched densities and the same constant viscosity ν as well as the same

constant heat conductivity k. As a consequence, we consider the following system (cf.

e.g., [18, 19,27]):

ρ(ut +(u ·∇)u)+∇p−ν∆u=−∇·

[

λ(θ)∇φ⊗∇φ−λ(θ)
(1

2
|∇φ|2 +F (φ)

)

I

]

−ρθgj,

(1.8)

∇·u= 0, (1.9)

φt +u ·∇φ=γ
(

∆φ−F ′(φ)
)

, (1.10)

θt +u ·∇θ=k∆θ, (1.11)

for (x,t)∈Ω×(0,+∞). Here, we assume that Ω is a bounded domain in R
n (n= 2,3)

with smooth boundary Γ. The usual Kronecker product is denoted by ⊗, i.e.,

(a⊗b)ij =aibj for a,b∈R
n. The system (1.8)–(1.11) contains the Navier–Stokes equa-

tions, an Allen–Cahn type equation for the phase-field function, and an energy trans-

port equation for the temperature. The parameter γ represents the microscopic elastic

relaxation time due to the presence of the microstructure of the mixture. As γ→0,

the internal dissipative mechanism will disappear and the limiting equation is equiv-

alent to the mass transport equation for incompressible fluids (cf. [19, 34]). The

temperature-dependent surface tension coefficient λ(θ) is supposed to be

λ(θ) =λ0(a−bθ),

where λ0>0, a>0, b 6= 0 are constants. Usually λ0 is assumed to be proportional to

the interface length ε (cf. Sun et al. [27]). Numerical experiments have been made

in the recent paper Sun et al. [27] to illustrate the role played by thermal energy in

the interfacial dynamics of two-phase flows due to the thermo-induced surface tension

heterogeneity on the interface. Their results suggest that the system (1.8)–(1.11)

(and its generalizations) turns out to be a suitable mathematical representation that

reflects the thermo-induced Marangoni effects in the mixture of fluids.

We suppose that the system (1.8)–(1.11) is subject to the initial conditions

u|t=0 =u0(x) with ∇·u0 = 0, φ|t=0 =φ0(x), θ|t=0 =θ0(x), x∈Ω. (1.12)

Moreover, we assume a no-slip boundary condition on the velocity u,

u(x,t) = 0, (x,t)∈Γ×(0,+∞), (1.13)
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nonhomogeneous Dirichlet boundary condition on the phase function φ,

φ(x,t) =−1, (x,t)∈Γ×(0,+∞), (1.14)

and homogeneous Dirichlet boundary condition on the temperature θ,

θ(x,t) = 0, (x,t)∈Γ×(0,+∞). (1.15)

The goal of this paper is to provide a detailed mathematical theory of existence,

uniqueness, regularity, and long-time behavior of solutions to the non-isothermal

Navier–Stokes–Allen–Cahn system (1.8)–(1.15). First, we prove the existence of global

weak solutions in two and three spatial dimensions (cf. Theorem 2.2). Next, we ob-

tain the existence and uniqueness of a global strong solution in 2D (cf. Theorem 3.2),

a local strong solution in 3D (cf. Theorem 3.3), and a global strong solutions in 3D

provided that the viscosity ν is properly large (cf. Theorem 3.4). The long-time dy-

namics of the system seems to be more complicated than the uncoupled Navier–Stokes

equations. We prove that as t→+∞, the phase function φ converges to a solution

of the stationary Allen–Cahn equation and the velocity u as well as the temperature

θ converges to zero (cf. Theorem 4.3). Stability for minimizers of the elastic energy

is also discussed (cf. Theorem 4.9). We just remark that our results can be easily

extended to the cases with more general Dirichlet boundary conditions for the phase

function. For instance, (1.14) can be replaced by φ(x,t)|Γ =h(x) on Γ×(0,+∞), with

h(x) =φ0(x)|Γ and h(x)∈H
3
2 (Γ), |h(x)|≤1 (we refer to Lin and Liu [17] for a similar

situation for a simplified nematic liquid crystal system).

It is easy to verify that for the isothermal case of system (1.8)–(1.15) without the

Boussinesq approximation term, there is a dissipative energy law

d

dt

(

1

2
‖u‖2 +

λ

2
‖∇φ‖2 +λ

∫

Ω

F (φ)dx

)

=−ν

∫

Ω

|∇u|2dx−λγ

∫

Ω

|−∆φ+F ′(φ)|2dx. (1.16)

This basic energy law reveals the underlying physics for the isothermal Navier–Stokes–

Allen–Cahn system and it plays an important role in the study of well-posedness as

well as long-time behavior of the system. We refer to the recent work [9, 11] for

detailed mathematical analysis on an isothermal NSAC system for the incompressible

two-phase flows, where long-time behavior of global solutions was analyzed within

the theory of infinite-dimensional dissipative dynamical systems (e.g., the existence

of global attractors, exponential attractors, trajectory attractors, and convergence to

single equiblibria).

However, in our present case, the surface tension parameter λ in (1.8) depends

on the temperature such that it is no longer a constant. Moreover, the Boussinesq

approximation is also applied. These bring us challenges in mathematical analysis

of the system. We are not able to derive the same dissipative energy equality as

for the isothermal case. In particular, the special cancellation between the induced

stress term in the momentum equation and the transport term in the phase-field

equation is no longer valid (see Remark 2.2 below). This relation is crucial to derive

the dissipative energy law like (1.16) (cf. [9, 17, 33]). Nevertheless, taking advantage

of proper maximum principles for the phase function and temperature, we show that
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if the initial temperature variation is not large (bounded in terms of coefficients of the

system), we can derive an energy inequality for the system (1.8)–(1.15), which reflects

the dissipative nature of the flow.

We remark that in the phase-field equation (1.10), the dynamics of the phase

function φ is assumed to be driven by a gradient flow of Allen–Cahn type. In order

to keep the conservation of overall volume fraction, people usually assume that the

internal dissipation is described through a Cahn–Hillard equation (with convection)

for φ, which can be viewed as a gradient flow of the elastic energy in the Sobolev

space H−1 (cf. [18, 21]). The resulting system is nevertheless much more involved

in mathematical analysis, because it contains a fourth-order differential operator and

thus the maximum principle for the phase function φ no longer holds (see, for instance,

[1, 5, 10, 35] for the isothermal Navier–Stokes–Cahn–Hilliard system). It seems that

our results cannot be extended to this case in a straightforward way. For instance, in

the derivation of the dissipative energy inequality (2.3), we rely on the L∞-estimate

of φ, which will no longer be available due to the lack of maximum principle. This

problem will be studied in our future work.

The rest of the paper is organized as follows. In Section 2, we derive an energy

inequality that guarantees the dissipative nature of the system and establish the

existence of global weak solutions. In Section 3, we discuss existence and uniqueness

of strong solutions in both 2D and 3D. In Section 4, we study the long-time dynamics

and stability of the system.

2. Global weak solutions

If X is a real Hilbert space with inner product (·, ·)X , then we denote the induced

norm by ‖·‖X . X ′ indicates the dual space of X and 〈·, ·〉X′,X will denote the corre-

sponding dual product. We indicate by X the vectorial space Xn endowed with the

product structure. For simplicity, the scalar product in L2(Ω) (also L2(Ω)) will be

denoted by (·, ·), and the associated norm by ‖·‖. For two n×n matrices M1,M2, we

denote M1 :M2 = trace(M1M
T
2 ). Let

V =C∞
0 (Ω,Rn)∩{v :∇·v= 0}.

We denote by H (respectively V) the closure of V in L2 (respectively H1):

H={u∈L2 :∇·u= 0, u ·n= 0 on Γ}, V={u∈H1
0 :∇·u= 0}.

H and V are Hilbert spaces with norms ‖·‖ and ‖·‖H1 , respectively. We recall the

Stokes operator S :H2(Ω)∩V→H such that Su=−∆u+∇π∈H, for all u∈H2(Ω)∩

V. S−1 is a compact linear operator on H and ‖S ·‖ is a norm on D(S) that is

equivalent to the H2-norm. Then there exists a positive constant C=C(n,Ω), for

which (cf. Temam [29])

‖u‖H2 +‖π‖H1\R≤C‖Su‖. (2.1)

In the following text, we denote by C, Ci the generic constants depending on a, b,

g, k, λ0, α, γ, Ω, ε, and the initial data. Special dependence will be pointed out

explicitly in the text if necessary.

Without loss of generality, we assume ρ= 1 in the remaining part of this paper.

Now we introduce the weak formulation of the initial boundary value problem (1.8)–

(1.15):
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Definition 2.1. For any T ∈ (0,+∞), the triple (u,φ,θ) satisfying

u∈L∞(0,T ;H)∩L2(0,T ;V),

φ∈L∞(0,T ;H1∩L∞)∩L2(0,T ;H2), |φ|≤1, a.e. in Ω× [0,T ],

θ∈L∞(0,T ;H1
0 ∩L

∞)∩L2(0,T ;H2),

is called a weak solution of the problem (1.8)–(1.11) if the initial and boundary con-

ditions (1.12)–(1.15) are satisfied and for a.e. t∈ (0,T ),

〈ut,v〉V′,V +

∫

Ω

(u ·∇)u ·vdx+ν

∫

Ω

∇u :∇vdx

=

∫

Ω

[λ(θ)∇φ⊗∇φ] :∇vdx+αg

∫

Ω

θj ·vdx, ∀v∈V,

φt +u ·∇φ=γ(∆φ−F ′(φ)), a.e. in Ω,

θt +u ·∇θ=k∆θ, a.e. in Ω,

u|t=0 =u0(x), φ|t=0 =φ0(x), θ|t=0 =θ0(x), in Ω.

Remark 2.1. In order to derive the variational formulation for u, we use the following

facts due to the incompressibility condition: for any v∈V, it holds that
∫

Ω

∇p ·vdx=

∫

Ω

j ·vdx= 0,

∫

Ω

[

∇·

(

λ(θ)
(1

2
|∇φ|2 +F (φ)

)

I

)]

·vdx=

∫

Ω

∇

[

λ(θ)
(1

2
|∇φ|2 +F (φ)

)

]

·vdx= 0.

Next, we state the result on the existence of global-in-time weak solutions.

Theorem 2.2 (Existence of weak solutions). Suppose n= 2,3. For any initial

data (u0,φ0,θ0) ∈ H×(H1(Ω)∩L∞(Ω))×(H1
0 (Ω)∩L∞(Ω)) satisfying

‖φ0‖L∞ ≤1, ‖θ0‖L∞ ≤
1

4C2
1 |b|

√

aγν

2λ0
, (2.2)

where C1 is a constant depending only on n and Ω, the problem (1.8)–(1.15) admits

at least one global weak solution such that

u∈L∞(0,+∞;H)∩L2
loc(0,+∞;V),

φ∈L∞(0,+∞;H1∩L∞)∩L2
loc(0,+∞;H2), |φ|≤1, a.e. in Ω× [0,+∞),

θ∈L∞(0,+∞;H1
0 ∩L

∞)∩L2
loc(0,+∞;H2).

2.1. Dissipative energy inequality. An important feature of problem (1.8)–

(1.15) is that φ and θ satisfy the following weak maximum principles, which will be

useful in the derivation of the dissipative energy inequality for the system.

Lemma 2.3. Suppose u∈L∞(0,T ;H)∩L2(0,T ;V). If φ∈L∞(0,T ;H1∩L∞)∩

L2(0,T ;H2) is the weak solution of the initial boundary value problem

φt +u ·∇φ=γ(∆φ−F ′(φ)), a.e. in Ω,

φ(x,t)|Γ =−1, (x,t)∈Γ×(0,T ),
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φ|t=0 =φ0(x)∈H1∩L∞, with |φ0|≤1 a.e. in Ω,

then |φ(x,t)|≤1, a.e. in Ω for each t∈ (0,T ).

Proof. The proof is similar to that for the liquid crystal system (cf. e.g., [7,17]),

so we omit the details here.

Lemma 2.4. Suppose u∈L∞(0,T ;H)∩L2(0,T ;V). If θ∈L∞(0,T ;H1
0 ∩L

∞)∩

L2(0,T ;H2) is the weak solution of the initial boundary value problem

θt +u ·∇θ=k∆θ, a.e. in Ω,

θ|Γ = 0, (x,t)∈Γ×(0,T ),

θ|t=0 =θ0(x)∈H1
0 ∩L

∞,

then ‖θ(t)‖L∞ ≤‖θ0‖L∞ for every t∈ (0,T ).

Proof. Multiplying the equation by |θ|q−1θ (q>1), integrating over Ω, we get

1

1+q

d

dt

∫

Ω

|θ|1+qdx+
1

1+q

∫

Ω

u ·∇|θ|q+1dx+
4(q−1)

(1+q)2

∫

Ω

k
∣

∣

∣
∇(|θ|

q−1
2 θ)

∣

∣

∣

2

dx= 0,

which implies that

‖θ(t)‖Lq ≤‖θ0‖Lq ≤|Ω|
1

1+q ‖θ0‖L∞ , ∀q>1, t∈ (0,T ).

Taking the limit q→+∞, we arrive at our conclusion.

In what follows, we derive a dissipative energy inequality, which turns out to be

crucial in the study of well-posedness as well as long-time dynamics of the problem

(1.8)–(1.15).

Proposition 2.5 (Dissipative energy inequality). For n= 2,3, we assume that

the initial phase function φ0 and the initial temperature θ0 satisfy the assumption

(2.2). Then there exist constants ζ,ω>0 that depend only on Ω and coefficients of the

system such that if (u,φ,θ) is a smooth solution to the problem (1.8)–(1.15), then the

following energy inequality holds:

dE

dt
≤−

ν

2
‖∇u‖2−aλ0γ‖∆φ−F ′(φ)‖2−kζ‖∆θ‖2≤0, ∀t>0, (2.3)

where

E(t) =‖u(t)‖2 +aλ0‖∇φ(t)‖2 +2aλ0

∫

Ω

F (φ(t))dx

+ζ‖∇θ(t)‖2 +ω‖θ(t)‖2

≥0. (2.4)

Proof. Multiplying (1.8) with u, (1.10) with −aλ0(∆φ−F ′(φ)), (1.11) with

−ζ∆θ (ζ >0 is a constant to be determined later), respectively, adding them up, and

integrating over Ω, we have

1

2

d

dt

(

‖u‖2 +aλ0‖∇φ‖
2 +2aλ0

∫

Ω

F (φ)dx+ζ‖∇θ‖2
)
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+ν‖∇u‖2 +aγλ0‖∆φ−F ′(φ)‖2 +kζ‖∆θ‖2

=

∫

Ω

(

λ(θ)∇φ⊗∇φ
)

:∇udx+α

∫

Ω

θgj ·udx+ζ

∫

Ω

(u ·∇)θ∆θdx

+aλ0

∫

Ω

(u ·∇)φ(∆φ−F ′(φ))dx

:=J1 +J2 +J3 +J4.

In the following we just treat the case n= 3, while the case n= 2 is similar. Recall

the Gagliardo–Nirenberg inequality

‖∇φ‖L4 ≤C1(‖∆φ‖
1
2 ‖φ‖

1
2

L∞ +‖φ‖L∞), ∀φ∈H2,

where C1 =C1(n,Ω) depends only on n and Ω. Combining it with the Poincaré in-

equality and the Young inequality, we deduce that

J1 +J4 =−aλ0

∫

Ω

u ·∇

(

|∇φ|2

2
+F (φ)

)

dx−bλ0

∫

Ω

θ∇u : (∇φ⊗∇φ)dx

≤|b|λ0‖θ‖L∞‖∇u‖‖∇φ‖2
L4

≤
ν

4
‖∇u‖2 +

|b|2λ20
ν

‖θ‖2L∞‖∇φ‖4
L4

≤
ν

4
‖∇u‖2 +

8C4
1 |b|

2λ20
ν

‖θ‖2L∞‖∆φ‖2‖φ‖2L∞ +
8C4

1 |b|
2λ20

ν
‖θ‖2L∞

≤
ν

4
‖∇u‖2 +

16C4
1 |b|

2λ20
ν

‖θ‖2L∞(‖∆φ−F ′(φ)‖2 +‖F ′(φ)‖2)‖φ‖2L∞

+
8C4

1 |b|
2λ20

ν
‖θ‖2L∞ .

Then by Lemmas 2.3, 2.4, and the assumption (2.2), we obtain that

16C4
1 |b|

2λ20
ν

‖θ‖2L∞‖∆φ−F ′(φ)‖2‖φ‖2L∞ ≤
aλ0γ

2
‖∆φ−F ′(φ)‖2,

16C4
1 |b|

2λ20
ν

‖θ‖2L∞‖F ′(φ)‖2‖φ‖2L∞ ≤
16C4

1C2|b|
2λ20|Ω|2

νε4
‖∆θ‖

3
2 ‖θ‖

1
2

≤
kζ

8
‖∆θ‖2 +

54 ·164C16
1 C4

2 |b|
8λ80|Ω|8

ν4ε16k3ζ3
‖θ‖2,

and

8C4
1 |b|

2λ20
ν

‖θ‖2L∞ ≤
8C4

1C2|b|
2λ20

ν
‖∆θ‖

3
2 ‖θ‖

1
2

≤
kζ

8
‖∆θ‖2 +

54 ·84C16
1 C4

2 |b|
8λ80

ν4k3ζ3
‖θ‖2,

where C2 depends only on Ω. As a result,

J1 +J4≤
ν

4
‖∇u‖2 +

aλ0γ

2
‖∆φ−F ′(φ)‖2 +

kζ

4
‖∆θ‖2 +

C3

ζ3
‖θ‖2,

with

C3 =
54 ·164C16

1 C4
2 |b|

8λ80|Ω|8 +54 ·84ε16C16
1 C4

2 |b|
8λ80

ν4ε16k3
.
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Next, by the Poincaré inequality

J2≤|α||g|‖θ‖‖u‖≤CP |α||g|‖θ‖‖∇u‖≤
ν

4
‖∇u‖2 +

C2
P |α|

2|g|2

ν
‖θ‖2,

where CP depends only on Ω. For J3, we have

J3 =−ζ

∫

Ω

u ·∇

(

|∇θ|2

2

)

dx+ζ

∫

Ω

u · [∇·(∇θ⊗∇θ)]dx

=−ζ

∫

Ω

∇u : (∇θ⊗∇θ)dx

≤ ζ‖∇u‖‖∇θ‖2
L4 ≤C2

1ζ‖∇u‖‖∆θ‖‖θ‖L∞

≤
kζ

4
‖∆θ‖2 +

C4
1ζ

k
‖θ0‖

2
L∞‖∇u‖2

≤
kζ

4
‖∆θ‖2 +

aγνζ

4k|b|2λ0
‖∇u‖2.

Taking

ζ=
k|b|2λ0
aγ

,

we infer from the above estimates that

d

dt

(

‖u‖2 +aλ0‖∇φ‖
2 +2aλ0

∫

Ω

F (φ)dx+ζ‖∇θ‖2
)

+
ν

2
‖∇u‖2 +γaλ0‖∆φ−F ′(φ)‖2 +kζ‖∆θ‖2

≤C4‖θ‖
2, (2.5)

where

C4 =
2C3

ζ3
+

2C2
P |α|

2|g|2

ν
.

Multiplying (1.11) by 2ωθ, ω=
C2

PC4

2k >0, integrating over Ω, and using the Poincaré

inequality, we obtain

ω
d

dt
‖θ‖2 =−2ωk‖∇θ‖2≤−

2ωk‖θ‖2

C2
P

=−C4‖θ‖
2. (2.6)

Adding (2.5) with (2.6), we arrive at our conclusion.

Remark 2.2. For the isothermal case of the system (1.8)–(1.15) without the Boussi-

nesq approximation term, there is a special cancellation between the induced stress

term in the Navier–Stokes equations and the convection term in the Allen–Cahn equa-

tion, which yields the dissipative energy equality (1.16). However, for the current

non-isothermal system (1.8)–(1.15), there exists an extra high-order term

−bλ0

∫

Ω

θ∇u : (∇φ⊗∇φ)dx
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containing the velocity, phase function, and temperature that cannot be eliminated

(the Boussinesq approximation is a lower-order term and is easier to handle). In order

to overcome this difficulty, we introduce the smallness assumption (2.2) and try to

seek certain energy dissipative inequality instead.

Remark 2.3. It is worth mentioning that the conditions in (2.2) do not involve the

interfacial parameter ε.

2.2. Proof of Theorem 2.2. The proof is based on a semi-Galerkin method

(see, for instance, Lin and Liu [17] for a simplified nematic liquid crystal system). Let

{wi} (i∈N) be an orthonormal basis of V formed by the eigenvectors of the Stokes

problem

−∆wi +∇Pi =λiwi, in Ω, wi|Γ = 0,

with ‖wi‖= 1 and 0<λ1≤λ2≤···≤λn≤··· with λn→∞ as n→+∞.

For every m∈N, let Vm =span{w1,w2, · · · ,wm}. We denote by Pm :H→Vm the

orthogonal projection. Given (u0,φ0,θ0)∈H×(H1(Ω)∩L∞(Ω))×(H1
0 (Ω)∩L∞(Ω))

satisfying (2.2), we consider the following approximate problem:

〈∂tum,vm〉V′,V +

∫

Ω

(um ·∇)um ·vmdx+ν

∫

Ω

∇um :∇vmdx

=

∫

Ω

[λ(θm)∇φm⊗∇φm] :∇vmdx+αg

∫

Ω

θmj ·vmdx, ∀vm∈Vm, (2.7)

∂tφm +um ·∇φm =γ(∆φm−F ′(φm)), a.e. in Ω, (2.8)

∂tθm +um ·∇θm =k∆θm, a.e. in Ω, (2.9)

φm(x,t) =−1, θm(x,t) = 0 on Γ, (2.10)

um|t=0 = Pmu0(x), φm|t=0 =φ0(x), θm|t=0 =θ0(x). (2.11)

Indeed, we observe that all of the a priori bounds derived (formally) from the energy

inequality (2.3) still hold for the approximate problem. If we fix ũm∈C([0,T ];Vm),

then we can find φm =φm[ũm] and θm =θm[ũm] solving (2.8) and (2.9) (with um =

ũm), respectively. Inserting φm and θm into the equation (2.7), we can find a solution

um =T [ũm] that defines a mapping ũm 7→T [ũm]. On account of the a priori bounds,

we can easily show that T admits a fixed point by means of the classical Schauder’s

argument on (0,T0), with 0<T0≤T . Finally, applying again the a priori estimates,

we are allowed to conclude that the approximate solutions can be extended to the

whole time interval [0,+∞) (cf. also Ezquerra et al. [7, Appendix]). Since the a

priori estimates of the approximate solution are uniform in parameter m, using a

similar argument as in [17, Section 2] we can pass to the limit m→+∞ and complete

the proof of Theorem 2.2. The details are omitted here.

Corollary 2.6. Suppose n= 2,3. Under the assumptions of Theorem 2.2, the weak

solution (u,φ,θ) to the problem (1.8)–(1.15) satisfies

‖φ(t)‖L∞ ≤1, ‖θ(t)‖L∞ ≤
1

4C2
1 |b|

√

aγν

2λ0
, ∀t≥0,

and the energy inequality

E(t)+

∫ +∞

0

(ν

2
‖∇u‖2 +aλ0γ‖∆φ−F ′(φ)‖2 +kζ‖∆θ‖2

)

dt≤E(0), ∀t≥0,
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which yields the following uniform estimates:

‖u(t)‖2 +‖φ(t)‖2H1 +‖θ(t)‖2H1 ≤M, ∀t≥0,
∫ +∞

0

(

‖∇u(t)‖2 +‖∆φ(t)−F ′(φ(t))‖2 +‖∆θ(t)‖2
)

dt≤M,

where M>0 is a constant depending on ‖u0‖, ‖φ0‖H1 , ‖θ0‖H1 , Ω, and coefficients of

the system.

3. Strong solutions

In this section, we prove the existence and uniqueness of strong solutions to the

problem (1.8)–(1.15).

Definition 3.1. For any T ∈ (0,+∞], u0∈V, φ0∈H
2(Ω), θ0∈H

2(Ω)∩H1
0 (Ω), we

say that the triple (u,φ,θ) is a strong solution to the problem (1.8)–(1.15), if (u,φ,θ)

is a weak solution and

u∈L∞(0,T ;V)∩L2(0,T ;H2), φ,θ∈L∞(0,T ;H2)∩L2(0,T ;H3).

Based on the semi-Galerkin scheme in the previous section, in order to prove

the existence of strong solutions, it suffices to derive proper uniform higher-order

estimates for the approximate solutions and then pass to the limit m→+∞. We

observe that the approximate solutions satisfy the same basic energy inequality and

higher-order differential inequalities as smooth solutions of the problem (1.8)–(1.15).

Thus, for the sake of simplicity, all the calculations below will be carried out formally

for smooth solutions.

The main results of this section are as follows.

Theorem 3.2 (Global strong solution in 2D). Suppose n= 2. For any u0∈

V, φ0∈H
2(Ω), θ0∈

(

H1
0 (Ω)∩H2(Ω)

)

satisfying the assumption (2.2), the problem

(1.8)–(1.15) admits a unique global strong solution such that

u∈L∞(0,+∞;V)∩L2
loc(0,+∞;H2),

φ∈L∞(0,+∞;H2)∩L2
loc(0,+∞;H3),

θ∈L∞(0,+∞;H2∩H1
0 )∩L2

loc(0,+∞;H3).

Theorem 3.3 (Local strong solution in 3D). Suppose n= 3. For any u0∈

V, φ0∈H
2(Ω), θ0∈

(

H1
0 (Ω)∩H2(Ω)

)

satisfying the assumption (2.2), the problem

(1.8)–(1.15) admits a unique local strong solution.

Theorem 3.4 (Global strong solution in 3D under large viscosity). Suppose

n= 3. For any u0∈V, φ0∈H
2(Ω), θ0∈

(

H1
0 (Ω)∩H2(Ω)

)

satisfying the assumption

(2.2), if in addition, the lower bound of the viscosity, i.e., ν is sufficiently large (cf.

(3.12)), then the problem (1.8)–(1.15) admits a unique global strong solution.

3.1. Two dimensional case. First, we are going to derive a specific type of

higher-order energy inequality in the spirit of [17].

Lemma 3.5. Suppose n= 2. Let (u,φ,θ) be a smooth solution to the problem (1.8)–

(1.15). We introduce the quantity

A1(t) =‖∇u(t)‖2 +aλ0‖∆φ(t)−F ′(φ(t))‖2 +η1‖∆θ(t)‖2. (3.1)
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Then the following differential inequality holds:

d

dt
A1(t)+ν‖Su‖2 +aλ0γ‖∇(∆φ−F ′(φ))‖2 +η1k‖∇∆θ‖2

≤C(A2
1(t)+A1(t)), ∀t>0. (3.2)

η1 and C are two positive constants which may depend on ‖u0‖, ‖φ0‖H1 , ‖θ0‖H1 , Ω,

and coefficients of the system.

Proof. We observe that −(∆u,ut) = (Su,ut), since ut∈H. Besides, due to (1.14),

we infer that φt|Γ = 0, so by (1.13) and the equation (1.10) we see that ∆φ−F ′(φ)
∣

∣

Γ
=

φt +u ·∇φ|Γ = 0. Using equations (1.8) and (1.10), we compute that

1

2

d

dt

(

‖∇u‖2 +aλ0‖∆φ−F ′(φ)‖2
)

+ν‖Su‖2 +aλ0γ‖∇(∆φ−F ′(φ))‖2

=−(u ·∇u,Su)+bλ0(∇·(θ∇φ⊗∇φ),Su)+αg(θj,Su)

−aλ0
(

∇φ(∆φ−F ′(φ)),∇π
)

−aλ0γ(F ′′(φ)(∆φ−F ′(φ)),∆φ−F ′(φ))

−2aλ0

∫

Ω

(∆φ−F ′(φ))∇jui∇j∇iφdx

=

6
∑

m=1

Km. (3.3)

In what follows, we proceed to estimate the right-hand side of (3.3) by using the

uniform estimates obtained in Corollary 2.6 and properties of the Stokes operator.

K1≤
ν

32
‖Su‖2 +C‖u‖2

L∞‖∇u‖2

≤
ν

32
‖Su‖2 +C‖u‖‖∆u‖‖∇u‖2

≤
ν

16
‖Su‖2 +C‖∇u‖4.

For the second term K2, we have

K2 = bλ0

∫

Ω

∇jθ∇iφ∇jφ(Su)idx+
bλ0

2
(θ∇|∇φ|2,Su)+bλ0(θ∆φ∇φ,Su)

= bλ0

∫

Ω

∇jθ∇iφ∇jφ(Su)idx−
bλ0

2
(|∇φ|2∇θ,Su)+bλ0(θ∆φ∇φ,Su)

:=K2a +K2b +K2c.

K2a +K2b

≤C‖∇θ‖L6‖∇φ‖2
L6‖Su‖

≤
ν

16
‖Su‖2 +C

(

‖∇∆θ‖
2
3 ‖∇θ‖

4
3 +‖∇θ‖2

)(

‖∇∆φ‖
4
3 ‖∇φ‖

8
3 +‖∇φ‖4

)

≤
ν

16
‖Su‖2 +C

(

‖∇∆θ‖
2
3 ‖∇θ‖

4
3 +‖∇θ‖2

)

×(‖∇(∆φ−F ′(φ))‖
4
3 +‖F ′′(φ)‖

4
3

L∞‖∇φ‖
4
3 +C)

≤
ν

16
‖Su‖2 +

aλ0γ

8
‖∇(∆φ−F ′(φ))‖2 +C5‖∇∆θ‖2

+C(‖∇θ‖2 +‖∇θ‖6),
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where C5 is a constant depending on ‖u0‖, ‖φ0‖H1 , ‖θ0‖H1 , Ω, and coefficients of the

system.

K2c≤|b|λ0‖θ‖L∞‖∆φ‖‖∇φ‖L∞‖Su‖

≤C‖θ‖L∞‖∆φ‖‖∇φ‖
1
2

H2‖∇φ‖
1
2 ‖Su‖

≤
ν

16
‖Su‖2 +C‖θ‖2L∞(‖∆φ−F ′(φ)‖2 +C)

×(‖∇(∆φ−F ′(φ))‖+‖∆φ−F ′(φ)‖+C)

≤
ν

16
‖Su‖2 +C‖∆φ−F ′(φ)‖2‖∇(∆φ−F ′(φ))‖

+C‖θ‖‖∆θ‖(‖∇(∆φ−F ′(φ))‖+‖∆φ−F ′(φ)‖3 +C)

≤
ν

16
‖Su‖2 +

aλ0γ

8
‖∇(∆φ−F ′(φ))‖2

+C(‖∆φ−F ′(φ)‖2 +‖∆φ−F ′(φ)‖4 +‖∆θ‖2 +‖∆θ‖4).

The remaining terms can be estimated as follows:

K3≤|α||g|‖θ‖‖Su‖≤
ν

16
‖Su‖2 +C‖∆θ‖2.

K4≤aλ0‖∇π‖‖∇φ‖L4‖∆φ−F ′(φ)‖L4

≤C‖Su‖
(

‖∆φ−F ′(φ)‖
1
2 +C

)

‖∆φ−F ′(φ)‖
1
2 ‖∇(∆φ−F ′(φ))‖

1
2

≤
ν

16
‖Su‖2 +

aλ0γ

8
‖∇(∆φ−F ′(φ))‖2

+C(‖∆φ−F ′(φ)‖2 +‖∆φ−F ′(φ)‖4).

K5≤aλ0γ‖F
′′(φ)‖L∞‖∆φ−F ′(φ)‖2≤C‖∆φ−F ′(φ)‖2.

K6 = 2aλ0

∫

Ω

∇i(∆φ−F
′(φ))∇jui∇jφdx

≤C‖∇(∆φ−F ′(φ))‖‖∇u‖L4‖∇φ‖L4

≤
aλ0γ

12
‖∇(∆φ−F ′(φ))‖2 +C‖∇u‖‖∆u‖

(

‖∆φ−F ′(φ)‖+‖F ′(φ)‖
)

‖∇φ‖

≤
ν

16
‖Su‖2 +

aλ0γ

8
‖∇(∆φ−F ′(φ))‖2

+C(‖∇u‖2 +‖∇u‖4 +‖∆φ−F ′(φ)‖4).

It follows from the above estimates and the Sobolev embedding that

1

2

d

dt
(‖∇u‖2 +aλ0‖∆φ−F ′(φ)‖2)+

5ν

8
‖Su‖2 +

aλ0γ

2
‖∇(∆φ−F ′(φ))‖2

≤C5‖∇∆θ‖2 +C(‖∇u‖4 +‖∆φ−F ′(φ)‖4 +‖∆θ‖4)

+C(‖∆u‖2 +‖∆φ−F ′(φ)‖2 +‖∆θ‖2). (3.4)

We infer from (1.15) that θt|Γ = 0, so it follows from (1.13) and the θ-equation (1.11)

that ∆θ|Γ = 0. Applying ∆ to both sides of (1.11), and taking the L2-inner product

of the resultant with ∆θ, we obtain

1

2

d

dt
‖∆θ‖2 +k‖∇∆θ‖2 =−

∫

Ω

∆(u ·∇θ)∆θdx :=K7, (3.5)
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such that

K7 =

∫

Ω

∇(u ·∇θ) ·∇∆θdx

≤
k

8
‖∇∆θ‖2 +

2

k
‖∇(u ·∇θ)‖2

≤
k

8
‖∇∆θ‖2 +C

(

‖∇u‖2
L4‖∇θ‖2L4 +‖u‖2

L∞‖∆θ‖2
)

≤
k

8
‖∇∆θ‖2 +C‖∆u‖

3
2 ‖u‖

1
2 (‖∆θ‖‖∇θ‖+‖∇θ‖2)

+C‖∆u‖‖u‖‖∆θ‖2

≤
k

4
‖∇∆θ‖2 +

ν

8kC5
‖Su‖2 +C‖∇u‖2 +C‖∆θ‖4. (3.6)

Hence, multiplying (3.5) by η1 =kC5, and adding the result to (3.4), we deduce our

conclusion (3.2) from (3.6). The proof is complete.

Proof of Theorem 3.2.

Proof. Since u0∈V, φ0∈H
2(Ω), θ0∈

(

H1
0 (Ω)∩H2(Ω)

)

, we have A1(0)<+∞.

It follows from Corollary 2.6 that A1(t)∈L1(0,+∞). Then we infer from Lemma 3.5

and [36, Lemma 6.2.1] that A1(t) is uniformly bounded for all time, which implies

∀t≥0, it holds that

‖u(t)‖H1 +‖φ(t)‖H2 +‖θ(t)‖H2

+

∫ t+1

t

(‖u(s)‖2
H2 +‖φ(s)‖2H3 +‖θ(s)‖2H3)ds≤C, (3.7)

where C is a positive constant depending on ‖u0‖H1 , ‖φ0‖H2 , ‖θ0‖H2 , Ω, and coef-

ficients of the system. Then we can prove the existence of a global strong solution,

which is actually unique by Proposition 3.9. The proof is complete.

For the weak solution, we still have A1(t)∈L1(0,+∞). Then by (3.2) and the

uniform Gronwall lemma (cf. Temam [28, Lemma III.1.1]), we conclude that for any

δ>0,

A1(t+δ)≤C

(

1+
1

δ

)

, ∀t≥0,

where C is a positive constant depending on ‖u0‖, ‖φ0‖H1 , ‖θ0‖H1 , Ω, and coefficients

of the system. As a result, we have the following proposition.

Proposition 3.6 (Regularity of weak solutions in 2D). When n= 2, under the

assumptions of Theorem 2.2, any weak solution to problem (1.8)–(1.15) becomes a

strong one for t>0 and the following estimate holds:

‖u(t)‖2
H1 +‖φ(t)‖2H2 +‖θ(t)‖2H2 +

∫ t+1

t

(‖u(s)‖2
H2 +‖φ(s)‖2H3 +‖θ(s)‖2H3)ds≤D(t),

where D is a positive function depending on ‖u0‖, ‖φ0‖H1 , ‖θ0‖H1 , Ω, and coefficients

of the system. In particular, lim
t→0+

D(t) = +∞.
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3.2. Three dimensional case. First, we have the following lemma.

Lemma 3.7. Suppose n= 3. Let (u,φ,θ) be a smooth solution to problem (1.8)–(1.15).

For the quantity A2(t),

A2(t) =‖∇u(t)‖2 +aλ0‖∆φ(t)−F ′(φ(t))‖2 +‖∆θ(t)‖2, (3.8)

the following differential inequality holds:

d

dt
A2(t)+ν‖Su‖2 +aλ0γ‖∇(∆φ−F ′(φ))‖2 +k‖∇∆θ‖2

≤C∗(A4
2(t)+A2(t)), ∀t>0. (3.9)

C∗ is a positive constant which may depend on ‖u0‖, ‖φ0‖H1 , ‖θ0‖H1 , Ω, and coeffi-

cients of the system.

Remark 3.1. We note that the coefficient of the third term in A2(t) is different from

the one in A1(t) (see (3.1)).

Proof. We re-estimate the right-hand side of (3.3) and (3.5) by using the

3D version of Sobolev embedding theorems. The estimates for K3 and K5 remain

unchanged. Next,

K1≤‖u‖L∞‖∇u‖‖Su‖≤C‖Su‖
3
2 ‖∇u‖

3
2 ≤

ν

12
‖Su‖2 +C‖∇u‖6.

K2a +K2b≤C‖∇θ‖L6‖∇φ‖2
L6‖Su‖

≤
ν

12
‖Su‖2 +C‖∆θ‖2‖∆φ‖4

≤
ν

12
‖Su‖2 +C‖∆θ‖2‖∆φ−F ′(φ)‖4 +C‖∆θ‖2.

K2c≤|b|λ0‖θ‖L∞‖∆φ‖‖∇φ‖L∞‖Su‖

≤C‖∆θ‖
1
2 ‖∇θ‖

1
2 ‖∆φ‖‖∇φ‖

1
2

H2‖∆φ‖
1
2 ‖Su‖

≤
ν

12
‖Su‖2 +C‖∆θ‖‖∇θ‖(‖∆φ−F ′(φ)‖3 +1)

×(‖∇(∆φ−F ′(φ))‖+‖∆φ−F ′(φ)‖+1)

≤
ν

12
‖Su‖2 +

aλ0γ

6
‖∇(∆φ−F ′(φ))‖2

+C(‖∆φ−F ′(φ)‖2 +‖∆φ−F ′(φ)‖8 +‖∆θ‖2 +‖∆θ‖8).

K4≤aλ0‖∇π‖‖∇φ‖L6‖∆φ−F ′(φ)‖L3

≤C‖Su‖
(

‖∆φ−F ′(φ)‖+1
)

‖∆φ−F ′(φ)‖
1
2 ‖∇(∆φ−F ′(φ))‖

1
2

≤
ν

12
‖Su‖2 +

aλ0γ

6
‖∇(∆φ−F ′(φ))‖2

+C(‖∆φ−F ′(φ)‖2 +‖∆φ−F ′(φ)‖6).

K6 = 2aλ0

∫

Ω

∇j(∆φ−F
′(φ))ui∇j∇iφdx
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−2aλ0
(

∇(∆φ−F ′(φ)),F ′(φ)u
)

≤C‖∇(∆φ−F ′(φ))‖
(

‖u‖L6‖∇2φ‖L3 +‖F ′(φ)‖L∞‖u‖
)

≤C‖∇(∆φ−F ′(φ))‖‖∇u‖

×
(

‖∆φ−F ′(φ)‖
1
2 ‖∇(∆φ−F ′)‖

1
2 +‖∆φ−F ′(φ)‖+1

)

≤
aλ0γ

6
‖∇(∆φ−F ′(φ))‖2

+C(‖∇u‖2 +‖∇u‖8 +‖∆φ−F ′(φ)‖2 +‖∆φ−F ′(φ)‖8).

K7≤
k

2
‖∇∆θ‖2 +

1

k
‖∇(u ·∇θ)‖2

≤
k

2
‖∇∆θ‖2 +C

(

‖∇u‖2
L4‖∇θ‖2L4 +‖u‖2

L∞‖∆θ‖2
)

≤
k

2
‖∇∆θ‖2 +C‖Su‖

3
2 ‖∇u‖

1
2 ‖∆θ‖2

≤
k

2
‖∇∆θ‖2 +

ν

12
‖Su‖2 +C‖∇u‖2‖∆θ‖4.

Collecting all the estimates above, we arrive at our conclusion (3.9).

Proof of Theorem 3.3.

Proof. Due to Lemma 3.7, a standard argument of the ordinary differential equa-

tion yields that there is a time T0 =T0(u0,φ0,θ0)<+∞ such that A2(t) is bounded

on [0,T0]. This enables us to prove that problem (1.8)–(1.15) admits a local strong

solution. Uniqueness of the strong solution follows from Proposition 3.9.

Since our problem contains the Navier–Stokes equation as a subsystem, in the 3D

case, we cannot expect the existence of global strong solutions to problem (1.8)–(1.15)

for arbitrary large initial data. However, the global strong solution will exist if we

further assume that the lower bound of the viscosity ν∗ is sufficiently large.

Set

Ã2(t) =A2(t)+1.

Then Theorem 3.4 is a direct consequence of the following higher-order differential

inequality concerning Ã2(t).

Lemma 3.8. Suppose n= 3. We assume that ν≥1 and (2.2) is fulfilled. Let (u,φ,θ)

be a smooth solution to the problem (1.8)–(1.15). Then the following inequality holds:

d

dt
Ã2(t)+

[

ν−M1ν
1
2 Ã2(t)

]

‖Su‖2

+
(

aλ0γ−
M1Ã2(t)

ν
1
2

)

‖∇(∆φ−F ′(φ))‖2 +k‖∇∆θ‖2

≤M2A2(t), (3.10)

where M1 and M2 are constants depending on ‖u0‖, ‖φ0‖H1 , ‖θ0‖H1 , Ω, and coeffi-

cients of the system, but not on ν.

Proof. We note that the uniform estimates in Corollary 2.6 still hold. Then we

re-estimate the terms K1, ...,K7 in an alternative way. The estimates for K3 and K5
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remain unchanged. For the other terms, we have

K1≤C‖Su‖
7
4 ‖u‖

1
4 ‖∇u‖

≤
ν

12
‖Su‖2 +ν

1
2 ‖∇u‖2‖∆u‖2 +Cν−

11
2 ‖∇u‖2,

K2a +K2b

≤C‖∇θ‖L6‖∇φ‖2
L6‖Su‖

≤C‖∇∆θ‖
1
2 ‖∇θ‖

1
2 (‖∆φ−F ′(φ)‖+1)

×
(

‖∇(∆φ−F ′(φ))‖
1
2 ‖∇φ‖

1
2 +1

)

‖Su‖

≤C‖∇∆θ‖
1
2 ‖∇θ‖

1
2 (‖∆φ−F ′(φ)‖+1)‖Su‖

+C‖∇∆θ‖
1
2 ‖∇θ‖

1
2 (‖∆φ−F ′(φ)‖+1)‖Su‖‖∇(∆φ−F ′(φ))‖

1
2

≤
[ ν

12
+ν

1
2 (‖∆φ−F ′(φ)‖+‖∇θ‖)

]

‖Su‖2 +
k

4
‖∇∆θ‖2

+
C

ν
(1+‖∆φ−F ′(φ)‖2)‖∇(∆φ−F ′(φ))‖2

+C
(1

ν
+

1

ν2

)

(‖∇θ‖2 +‖∆φ−F ′(φ)‖2),

K2c≤|b|λ0‖θ‖L∞‖∆φ‖‖∇φ‖L∞‖Su‖

≤C‖∆θ‖
1
2 ‖∇θ‖

1
2 ‖∆φ‖

3
2 (‖∇∆φ‖

1
2 +‖∆φ‖

1
2 )‖Su‖

≤C‖∆θ‖
1
2 ‖∇θ‖

1
2 (‖∆φ−F ′(φ)‖

3
2 +1)(‖∇(∆φ−F ′(φ))‖

1
2 +1)‖Su‖

≤
[ ν

12
+ν

1
2 (‖∆φ−F ′(φ)‖2 +‖∆θ‖)

]

‖Su‖2

+
(aλ0γ

6
+

1

ν
‖∆φ−F ′(φ)‖2

)

‖∇(∆φ−F ′(φ))‖2

+C

(

1+
1

ν

)

(‖∆θ‖2 +‖∆φ−F ′(φ)‖2),

K4≤C‖Su‖
(

‖∆φ−F ′(φ)‖+1
)

‖∆φ−F ′(φ)‖
1
2 ‖∇(∆φ−F ′(φ))‖

1
2

≤
( ν

12
+ν

1
2 ‖∆φ−F ′(φ)‖2

)

‖Su‖2

+
aλ0γ

6
‖∇(∆φ−F ′(φ))‖2 +

C

ν
‖∆φ−F ′(φ)‖2,

K6≤C‖∆φ−F ′(φ)‖L3‖∇u‖L6‖∆φ‖

≤C‖∇(∆φ−F ′(φ))‖
1
2 ‖∆φ−F ′(φ)‖

1
2 ‖Su‖

(

‖∆φ−F ′(φ)‖+1
)

≤
( ν

12
+ν

1
2 ‖∆φ−F ′(φ)‖

)

‖Su‖2

+

(

aλ0γ

6
+

1

ν
‖∆φ−F ′(φ)‖2

)

‖∇(∆φ−F ′(φ))‖2

+C

(

1+
1

ν2

)

‖∆φ−F ′(φ)‖2,

K7≤
k

2
‖∇∆θ‖2 +C

(

‖∇u‖2
L4‖∇θ‖2L4 +‖u‖2

L∞‖∆θ‖2
)
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≤
k

2
‖∇∆θ‖2 +C‖Su‖

3
2 ‖∇u‖

1
2 ‖∆θ‖

3
2 ‖∇θ‖

1
2 +C‖Su‖

3
2 ‖u‖

1
2 ‖∆θ‖2

≤
k

2
‖∇∆θ‖2 +ν

1
2 ‖∆θ‖2‖Su‖2 +

C

ν
3
2

(‖∇u‖2 +‖∆θ‖2).

Combining the above estimates, using the fact ν≥1 and the definition of Ã2(t), we

deduce the inequality (3.10). The proof is complete.

Proof of Theorem 3.4.

Proof. It follows from Corollary 2.6 that

∫ t+1

t

A2(τ)dτ ≤M̃, ∀t≥0, (3.11)

where M̃ >0 may depend on Ω, ‖u0‖, ‖φ0‖H1 , ‖θ0‖H1 , and coefficients of the system

except ν. Moreover, if the viscosity ν is sufficiently large such that

ν
1
2 ≥max

{

1,
1

aλ0γ

}

M1

(

Ã2(0)+M2M̃+2M̃
)

+1, (3.12)

then following the same argument as in [17,31], we can use Lemma 3.8 to obtain the

uniform estimate

Ã2(t)≤
ν

1
2 min{aλ0γ,1}

M1
, ∀t≥0, (3.13)

which yields the required conclusion.

3.3. Uniqueness of strong solutions. The uniqueness of strong solutions

to the problem (1.8)–(1.15) can be obtained by the energy method.

Proposition 3.9 (Uniqueness of strong solutions). For n= 2,3, let (u1,φ1,θ1)

and (u2,φ2,θ2) be two strong solutions on [0,T] that start from the same initial

data (u0,φ0,θ0)∈V×H2(Ω)×
(

H1
0 (Ω)∩H2(Ω)

)

satisfying (2.2). Then (u1,φ1,θ1) =

(u2,φ2,θ2).

Proof. We provide the proof for 3D case and the proof for 2D is similar. Denote

ū=u1−u2, φ̄=φ1−φ2, θ̄=θ1−θ2.

We can see that (ū,φ̄, θ̄) satisfy

〈ūt,v〉V′,V +

∫

Ω

[(u1 ·∇)u1−(u2 ·∇)u2] ·vdx+ν

∫

Ω

∇ū :∇v̄dx

=

∫

Ω

[λ(θ1)∇φ1⊗∇φ1−λ(θ2)∇φ2⊗∇φ2] :∇vdx

+αg

∫

Ω

θ̄j ·vdx, ∀v∈V, (3.14)

φ̄t +u1 ·∇φ1−u2 ·∇φ2 =γ(∆φ̄−F ′(φ1)+F ′(φ2)), a.e. in Ω, (3.15)

θ̄t +u1 ·∇θ1−u2 ·∇θ2 =k∆θ̄, a.e. in Ω. (3.16)
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Taking v= ū in (3.14), testing (3.15) by −aλ0∆φ̄ and (3.16) by −∆θ̄ in L2(Ω), re-

spectively, adding up these three resultants, then performing integration by parts and

using the incompressible condition for the velocity, we get

1

2

d

dt

(

‖ū‖2 +aλ0‖∇φ̄‖
2 +‖∇θ̄‖2

)

+ν‖∇ū‖2 +aλ0γ‖∆φ̄‖2 +k‖∆θ̄‖2

= −(ū ·∇u1,ū)−aλ0(∇φ̄∆φ1,ū)+aλ0(u1 ·∇φ̄,∆φ̄)−bλ0
(

θ̄∇φ1⊗∇φ1,∇ū
)

−bλ0
(

θ2∇φ̄⊗∇φ1,∇ū
)

−bλ0
(

θ2∇φ2⊗∇φ̄,∇ū
)

+αg
(

θ̄j,ū
)

+aλ0γ
(

F ′(φ1)−F ′(φ2),∆φ̄
)

+(ū ·∇θ1,∆θ̄)+(u2 ·∇θ̄,∆θ̄)

:=

10
∑

m=1

Im. (3.17)

Keeping in mind the uniform estimates obtained in Corollary 2.6, we proceed to

estimate the right hand side of (3.17),

I1≤‖ū‖2
L4‖∇u1‖≤C‖∇ū‖

3
2 ‖ū‖

1
2 ‖∇u1‖

≤
ν

12
‖∇ū‖2 +C‖∇u1‖

4‖ū‖2.

I2≤aλ0‖∇φ̄‖L6‖ū‖L3‖∆φ1‖≤C‖∆φ1‖‖ū‖
1
2 ‖∇ū‖

1
2 ‖∆φ̄‖

≤
ν

12
‖∇ū‖2 +

aλ0γ

10
‖∆φ̄‖2 +C‖∆φ1‖

4‖ū‖2.

I3≤‖u1‖L6‖∆φ̄‖‖∇φ̄‖L3 ≤C‖∇u1‖‖∆φ̄‖
3
2 ‖∇φ̄‖

1
2

≤
aλ0γ

10
‖∆φ̄‖2 +C‖∇u1‖

4‖∇φ̄‖2.

I4 +I7≤|b|λ0‖∇ū‖‖θ̄‖L∞‖∇φ1‖
2
L4 + |α||g|‖θ̄‖‖ū‖

≤C‖∇ū‖‖∇θ̄‖
1
2 ‖∆θ̄‖

1
2 +C‖∇ū‖‖∇θ̄‖

≤
ν

12
‖∇ū‖2 +

k

6
‖∆θ̄‖2 +C‖∇θ̄‖2.

I5≤|b|λ0‖θ2‖L∞‖∇ū‖‖∇φ̄‖L3‖∇φ1‖L6

≤C‖∇ū‖‖∆φ̄‖
1
2 ‖∇φ̄‖

1
2 ‖∆φ1‖

≤
ν

12
‖∇ū‖2 +

aλ0γ

10
‖∆φ̄‖2 +C‖∆φ1‖

4‖∇φ̄‖2.

I6≤|b|λ0‖θ2‖L∞‖∇ū‖‖∇φ̄‖L3‖∇φ2‖L6

≤C‖∇ū‖‖∆φ̄‖
1
2 ‖∇φ̄‖

1
2 ‖‖∆φ2‖

≤
ν

12
‖∇ū‖2 +

aλ0γ

10
‖∆φ̄‖2 +C‖∆φ2‖

4‖∇φ̄‖2.

I8≤aλ0γ
∥

∥

∥
φ̄

∫ 1

0

F ′′(sφ1 +(1−s)φ2)ds
∥

∥

∥

L∞

‖∆φ̄‖
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≤C‖F ′′‖L∞‖φ̄‖L∞‖∆φ̄‖

≤C‖∆φ̄‖
3
2 ‖∇φ̄‖

1
2

≤
aλ0γ

10
‖∆φ̄‖2 +C‖∇φ̄‖2.

I9≤‖ū‖L3‖∇θ1‖L6‖∆θ̄‖≤C‖∆θ1‖‖ū‖
1
2 ‖∇ū‖

1
2 ‖∆θ̄‖

≤
ν

12
‖∇ū‖2 +

k

6
‖∆θ̄‖2 +C‖∆θ1‖

4‖ū‖2.

I10≤‖u2‖L6‖∇θ̄‖L3‖∆θ̄‖≤C‖∇u2‖‖∇θ̄‖
1
2 ‖∆θ̄‖

3
2

≤
k

6
‖∆θ̄‖2 +C‖∇u2‖

4‖∇θ̄‖2.

Summing up, we obtain that

d

dt
(‖ū‖2 +aλ0‖∇φ̄‖

2 +‖∇θ̄‖2)+ν‖∇ū‖2 +aλ0γ‖∆φ̄‖2 +k‖∆θ̄‖2

≤Q(t)(‖ū‖2 +aλ0‖∇φ̄‖
2 +‖∇θ̄‖2), (3.18)

where

Q(t) =C(1+‖∇u1‖
4 +‖∆φ1‖

4 +‖∆θ1‖
4 +‖∇u2‖

4 +‖∆φ2‖
4)

with C being a constant that may depend on M , Ω, and coefficients of the system.

Since the V×H2×H2-norm of strong solutions to problem (1.8)–(1.15) are bounded

on its existence time interval, Q(t) is bounded on [0,T ]. Then we can complete the

proof by applying the Gronwall inequality.

Remark 3.2.

(1) If n= 2, it is easy to check that (3.18) holds with

Q(t) =C(1+‖∇u1‖
2 +‖∆φ1‖

2 +‖∆θ1‖
2 +‖∇u2‖

2 +‖∆φ2‖
2).

On the other hand, Corollary 2.6 implies that

∫ t+1

t

Q(s)ds≤C, ∀ t≥0.

As a consequence, we can actually obtain the uniqueness of weak solutions to the

problem (1.8)–(1.15) for the two dimensional case.

(2) It is interesting to ask whether the problem (1.8)–(1.15) has a weak-strong unique-

ness result in 3D as for the Navier–Stokes equations (c.f. Serrin [24]). The main diffi-

culty here is that due to the temperature-dependence of the surface tension coefficient

λ, we lose some dissipation in the derivation of the basic energy inequality (2.3) in

order to control the corresponding higher-order nonlinear stress terms. When λ is a

constant, one can obtain the weak-strong uniqueness result as in [17] for a simplified

liquid crystal system.
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4. Long-time dynamics and stability

In this section, we shall discuss the long-time behavior of global weak/strong

solutions and stability properties of the problem (1.8)–(1.15). First, we present an

alternative result that indicates the eventual regularity of weak solutions in 3D and

is helpful to understand the long-time behavior of global solutions.

Proposition 4.1. Suppose n= 3. For any (u0,φ0,θ0)∈V×H2(Ω)×
(

H1
0 (Ω)∩

H2(Ω)
)

satisfying (2.2) and

A2(0) =‖∇u0‖
2 +aλ0‖∆φ0−F

′(φ0)‖2 +‖∆θ0‖
2≤R, (4.1)

where R>0 is a constant, there exists ε0>0 depending on ‖u0‖, ‖φ0‖H1 , ‖θ0‖H1 , Ω,

R, and coefficients of the system such that either

(i) the problem (1.8)–(1.15) admits a unique global strong solution that is uni-

formly bounded in time in V×H2×(H1
0 ∩H

2), or

(ii) there is a T∗∈ (0,+∞) such that E(T∗)<E(0)−ε0.

Proof. The proof follows from the idea in [17]. For the convenience of the

readers, we sketch it here. Recalling the higher-order differential inequality (3.9), we

consider the following initial value problem of an ordinary differential equation:

d

dt
Y (t) =C∗(Y 4(t)+Y (t)), Y (0) =R≥A2(0). (4.2)

We denote by I= [0,Tmax) the maximal existence interval of Y (t) such that

lim
t→T

−

max

Y (t) = +∞. It is easy to check that

0≤A2(t)≤Y (t), ∀t∈ I,

which indicates that A(t) exists on I. We note that Tmax is determined by Y (0) =R

and C∗ such that Tmax =Tmax(R,C∗) is increasing when R is decreasing. Taking

t0 = 3
4Tmax(R,C∗)>0, then we have

0≤A2(t)≤Y (t)≤K, ∀t∈ [0,t0], (4.3)

where K is a constant that only depends on R, C∗, t0. Take

ε0 =
1

3
Rt0min{ν,γ,k}. (4.4)

If (ii) is not true, namely, E(t)≥E(0)−ε0 for all t≥0, we infer from (2.3) that

∫ +∞

0

(ν

2
‖∇u‖2 +aλ0γ‖∆φ−F ′(φ)‖2 +k‖∆θ‖2

)

dt≤ ε0.

Hence, there exists a t∗∈ [ 23 t0,t0] such that

A2(t∗)≤max
{2

ν
,
1

γ
,
1

k

}3ε0
t0

=R.

Taking t∗ as the initial time and Y (t∗) =R in (4.2), then it follows from the above

argument that Y (t) (and thus A2(t)) is uniformly bounded at least on [0,t∗ + t0]⊃
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[0, 53 t0]. Its bound remains the same as that on [0,t0]. By iteration, it follows that

A2(t) is uniformly bounded for t≥0. Thus, we can extend the (unique) local strong

solution to infinity to get a global one.

Proposition 4.2 (Eventual regularity of weak solutions in 3D). When n= 3,

let (u,φ,θ) be a global weak solution of the problem (1.8)–(1.15). Then there exists a

time T0∈ (0,+∞) such that (u,φ,θ) becomes a strong solution in [T0,+∞).

Proof. We simply take

R= 1, t0 =
3

4
Tmax(R,C∗), ε0 =

1

3
t0min

{ν

2
,γ,k

}

in the proof of Proposition 4.1. It follows from (2.3) that there exist a T1>0 such

that

∫ +∞

T1

(ν

2
‖∇u‖2 +aλ0γ‖∆φ−F ′(φ)‖2 +k‖∆θ‖2

)

dt≤ ε0.

Then we can find a time T0∈ [T1,T1 + 1
3 t0] such that A2(T0)≤1 and

E(t)−E(T0)≥E(t)−E(T1)≥−ε0, ∀ t≥T0.

Taking T0 as the initial time, we can apply Proposition 4.1. The proof is complete.

4.1. Convergence to equilibrium. We shall show the convergence of global

solutions to single steady states as time tends to infinity. Let (u,φ,θ) be a global weak

solution of the problem (1.8)–(1.15). We infer from either Proposition 3.6 (n= 2) or

Proposition 4.2 (n= 3) that after a certain time T >0, the weak solution will be a

strong one that is uniformly bounded in V×H2×H2 for all t≥T . Since we are now

considering the long-time behavior as t→+∞, we can simply use a shift in time and

reduce our study to the case of bounded strong solutions.

The main result of this subsection is as follows.

Theorem 4.3. Suppose n= 2,3. Any bounded global strong solution (u,φ,θ) of the

problem (1.8)–(1.15) converges to a steady state (0,φ∞,0) as time goes to infinity such

that

lim
t→+∞

(‖u(t)‖H1 +‖φ(t)−φ∞‖H2 +‖θ(t)‖H2) = 0, (4.5)

where φ∞ satisfies the following nonlinear elliptic boundary value problem:

−∆φ∞ +F ′(φ∞) = 0, x∈Ω, with φ∞|Γ =−1. (4.6)

Moreover, we have the convergence rate

‖u(t)‖H1 +‖φ(t)−φ∞‖H2 +‖θ(t)‖H2 ≤C(1+ t)−
ξ

(1−2ξ) , ∀ t≥0. (4.7)

ξ∈ (0, 12 ) is a constant depending on φ∞. Furthermore, θ satisfies an exponential decay

such that there exists a constant C0 =C0(n,Ω)>0,

‖θ(t)‖≤‖θ0‖e
−C0t, ∀ t≥0. (4.8)
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Remark 4.1. Decay properties of the velocity u and temperature θ as time tends to

infinity can be obtained by the energy method (see Proposition 4.4 below). However,

convergence for the phase function φ is usually nontrivial because the structure of the

set of equilibria may be complicated and the solutions to elliptic problem like (4.6) may

form a continuum if the spatial dimension n≥2 (cf. e.g., Haraux [12, Remark 2.3.13]).

As we have mentioned in the introduction, our results and their proofs hold for general

Dirichlet boundary data for the phase function such that −1 in (1.14) can be replaced

by a certain generic function h(x). Since our problem enjoys a dissipative energy

inequality (2.3), we can achieve the goal by using the  Lojasiewicz–Simon approach

(cf. e.g., [9, 13, 14, 25]). One advantage of this approach is that we can obtain the

convergence result without investigating the structure of equilibria.

The ω-limit set of (u0,φ0,θ0)∈V×H2(Ω)×
(

H1
0 (Ω)∩H2(Ω)

)

is defined as follows:

ω(u0,φ0,θ0) ={(u∞(x),φ∞(x),θ∞(x))∈V×H2×(H2∩H1
0 ) :

there exists {tn}ր∞ such that

(u(tn),φ(tn),θ(tn))→ (u∞,φ∞,θ∞) in L2×H1×H1}.

Proposition 4.4. Let n= 2,3. For any global strong solutions to problem (1.8)–

(1.15), there exists E∞≥0 such that

lim
t→+∞

E(t) =E∞, (4.9)

and it holds that

lim
t→+∞

(‖u(t)‖H1 +‖∆φ(t)−F ′(φ(t))‖+‖∆θ(t)‖) = 0. (4.10)

Proof. The total energy E(t) is nonnegative and decreasing as t increases (cf.

(2.3)). Then (4.9) easily follows. For a global bounded strong solution (u,φ,θ), we

have A1(t)≤C (n= 2) or A2(t)≤C (n= 3), so it follows from Lemma 3.5 (n= 2) or

Lemma 3.7 (n= 3) that dAi(t)
dt

≤C (i= 1,2). On the other hand, we know from (2.3)

that Ai(t)∈L
1(0,+∞). As a result, we can infer from Zheng [36, Lemma 6.2.1] that

limt→+∞Ai(t) = 0, which yields (4.10).

Corollary 4.5. ω(u0,φ0,θ0) is a nonempty bounded subset in V×H2×(H2∩H1
0 ).

Moreover, ω(u0,φ0,θ0)⊂S =
{

(0,φ̃,0)
∣

∣−∆φ̃+F ′(φ̃) = 0 in Ω, φ̃|Γ =−1
}

and E =E∞
on ω(u0,φ0,θ0).

It is easy to verify that a critical point of the elastic energy E(φ) given by (1.7)

is equivalent to a solution to the following elliptic boundary value problem:

−∆φ+F ′(φ) = 0, x∈Ω, φ|Γ =−1. (4.11)

We recall the following  Lojasiewicz–Simon type inequality (cf. [13]).

Lemma 4.6 ( Lojasiewicz–Simon inequality). Let ψ be a critical point of E(φ).

Then there exist constants ξ∈ (0, 12 ) and β>0 depending on ψ such that for any φ∈

H1(Ω), φ|Γ =−1 satisfying ‖φ−ψ‖H1(Ω)<β, it holds that

‖−∆φ+F ′(φ)‖H−1 ≥|E(φ)−E(ψ)|1−ξ. (4.12)
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For any global bounded strong solution, it follows from Corollary 4.5 that there is an

increasing unbounded sequence {tn}n∈N and a function φ∞∈S such that

lim
tn→+∞

‖φ(tn)−φ∞‖H1 = 0. (4.13)

As a result, we infer from Proposition 4.4 and (4.13) that

lim
tn→+∞

E(tn) =aλ0E(φ∞) =E∞ and E(t)≥aλ0E(φ∞), ∀ t>0. (4.14)

If E(t∗) =aλ0E(φ∞) for some t∗>0, then E(t) =E∞ for all t≥0. Thus, by (2.3), we

have ‖u(t)‖V =‖θ(t)‖H2 =‖∆φ(t)−F ′(φ(t))‖= 0 for t≥ t0. Besides, it follows from

equation (1.10) that

‖φt‖≤‖u‖L4‖∇φ‖L4 +‖∆φ−F ′(φ)‖≤C(‖∇u‖+‖∆φ−F ′(φ)‖), (4.15)

thus ‖φt(t)‖= 0 for t≥ t∗, and due to (4.13), we have φ(t) =φ∞ for t≥ t0.

Then we only have to consider the case E(t)>E∞ =aλ0E(φ∞), for all t>0. Based

on the sequential convergence (4.13) and the  Lojasiewicz–Simon inequality, by using

the classical argument in Jendoubi [14], we can show that after a certain time, the

trajectory φ(t) will fall into a certain small neighborhood of φ∞ and stay there for all

time.

Proposition 4.7. There is a t0>0, such that ‖φ(t)−φ∞‖H1 <β, for all t≥ t0.

Thus, for all t≥ t0, φ(t) fulfills the condition in Lemma 4.6. Since (1−ξ)> 1
2 ,

then we infer from (4.12) that

(

E(t)−aλ0E(φ∞)
)1−ξ

≤
(

‖u‖2 +ζ‖∇θ‖2 +ω‖θ‖2 +aλ0|E(φ)−E(φ∞)|
)1−ξ

≤C(‖u‖2 +‖∇θ‖2 +‖θ‖2)1−ξ +C|E(φ)−E(φ∞)|1−ξ

≤C‖u‖+C‖∇θ‖+C‖∆φ−F ′(φ)‖,

which combined with the energy inequality (2.3) yields that for t≥ t0, it holds that

−
d

dt

(

E(t)−E∞
)ξ

=−ξ
(

E(t)−aλ0E(φ∞)
)ξ−1 dE

dt

≥Cξ
‖∇u‖2 +‖∆φ−F ′(φ)‖2 +‖∆θ‖2

‖u‖+‖∇θ‖+‖∆φ−F ′(φ)‖H−1

≥C
(

‖∇u‖+‖∆φ−F ′(φ)‖+‖∆θ‖
)

. (4.16)

Integrating (4.16) with respect to t, using (4.15) and the fact E(t)>E∞, we have

∫ ∞

t0

‖φt(t)‖dt≤C

∫ ∞

t0

(‖∇u‖+‖∆φ−F ′(φ)‖)dt

≤C(E(t0)−E∞)ξ<+∞,

which combined with the compactness of φ in H1 yields that limt→+∞‖φ(t)−

φ∞‖H1 = 0. Furthermore, since

‖∆φ−∆φ∞‖≤‖∆φ−∆φ∞−F ′(φ)+F ′(φ∞)‖+‖F ′(φ)−F ′(φ∞)‖
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≤‖∆φ−F ′(φ)‖+‖φ(t)−φ∞‖H1 , (4.17)

we conclude from (4.10) that

lim
t→+∞

‖φ(t)−φ∞‖H2 = 0.

It remains to prove the convergence rate (4.7). By Lemma 4.6 and (4.16), we obtain

that

d

dt

(

E(t)−E∞
)

+C
(

E(t)−E∞
)2(1−ξ)

≤0, ∀t≥ t0,

which implies the decay rate for the total energy E

0≤E(t)−E∞≤C(1+ t)−
1

1−2ξ , ∀t≥ t0.

Integrating (4.16) on (t,+∞), where t≥ t0, it follows from (4.15) that

∫ +∞

t

‖φt(τ)‖dτ ≤C(E(t)−E∞)ξ ≤C(1+ t)−
ξ

1−2ξ .

Adjusting the constant C properly, we get

‖φ(t)−φ∞‖≤C(1+ t)−
ξ

1−2ξ , ∀t≥0. (4.18)

Higher-order estimates on the convergence rate can be achieved by constructing proper

differential inequalities via that energy method. It is clear that for the asymptotic

limit (0,φ∞,0), the system (1.8)–(1.11) is reduced to

∇P∞ +
1

2
∇
(

|∇φ∞|2
)

=−∇φ∞ ·∆φ∞, (4.19)

−∆φ∞ +F ′(φ∞) = 0, with φ∞|Γ =−1. (4.20)

Denote ϕ=φ−φ∞. Then (u,ϕ,θ) satisfies

ut +u ·∇u+∇p̃−ν∆u

=−aλ0(∆ϕ∇φ+∆φ∞∇ϕ)+bλ0∇·(θ∇φ⊗∇φ)+αθgj, (4.21)

∇·u= 0, (4.22)

ϕt +u ·∇φ=γ∆ϕ−γ
(

F ′(φ)−F ′(φ∞)
)

, (4.23)

θt +u ·∇θ=k∆θ, (4.24)

where we absorb all those gradient terms into the modified pressure p̃.

Multiplying (4.21) by u, (4.23) by aλ0(−∆ϕ+
(

F ′(φ)−F ′(φ∞)
)

)+ϕ, and (4.24)

by −∆θ, respectively, integrating over Ω and adding them together, we have

1

2

d

dt
Y(t)+ν‖∇u‖2 +aλ0γ‖∆φ−F ′(φ)‖2 +γ‖∇ϕ‖2 +k‖∆θ‖2

= −bλ0

∫

Ω

θ∇iφ∇jφ∇juidx+αg(θj,u)+(u ·∇θ,∆θ)

−(u ·∇φ,ϕ)−γ
(

F ′(φ)−F ′(φ∞),ϕ
)
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:=

5
∑

m=1

Rm, (4.25)

where

Y(t) =‖u‖2 +aλ0‖∇ϕ‖
2 +2aλ0

∫

Ω

[F (φ)−F (φ∞)−F ′(φ∞)ϕ]dx

+‖ϕ‖2 +‖∇θ‖2. (4.26)

In the derivation of (4.25), we have used (4.19), (4.20), and the following fact

∫

Ω

(∆ϕ∇φ+∆φ∞∇ϕ) ·udx+

∫

Ω

u ·∇φ
[

−∆ϕ+
(

F ′(φ)−F ′(φ∞)
)]

dx

=

∫

Ω

(∆φ∞−F ′(φ∞))∇φ ·udx+

∫

Ω

u ·∇F (φ)dx−

∫

Ω

∆φ∞∇φ∞ ·udx

= 0.

Since we are now dealing with global strong solutions that are uniformly bounded in

V×H2×H2, it follows that

R1≤‖θ‖L∞‖∇u‖‖∇φ‖2
L4 ≤C‖∆θ‖

3
4 ‖θ‖

1
4 ‖∇u‖‖φ‖2H2

≤
ν

12
‖∇u‖2 +

k

4
‖∆θ‖2 +C‖θ‖2,

R2≤|α||g|‖θ‖‖u‖≤
ν

12
‖∇u‖2 +C‖θ‖2,

R3≤
k

8
‖∆θ‖2 +C‖u‖2

L6‖∇θ‖2L3 ≤
k

8
‖∆θ‖2 +C‖θ‖

1
2 ‖∆θ‖

3
2

≤
k

4
‖∆θ‖2 +C‖θ‖2,

R4 +R5≤‖u‖L6‖∇φ‖L3‖ϕ‖+C‖ϕ‖2≤
ν

12
‖∇u‖2 +C‖ϕ‖2.

From the definition of F (φ), we have
∣

∣

∫

Ω
[F (φ)−F (φ∞)−F ′(φ∞)ϕ]dx

∣

∣≤C1‖ϕ‖
2.

Combined with the definition of Y(t) in (4.26), it yields that

Y(t)+C1‖ϕ‖
2≥C(‖u‖2 +‖ϕ‖2H1 +‖∇θ‖2). (4.27)

It follows from (4.25), (4.27), and the estimates on Rm (m= 1, ...,5) that

d

dt
Y(t)+C2Y(t)+C3Ai(t)≤C(‖ϕ‖2 +‖θ‖2), i= 1,2. (4.28)

Recalling Lemma 3.5 (n= 2) or Lemma 3.7 (n= 3), we have

d

dt
Ai(t)≤C4Ai(t). (4.29)

Multiplying (4.29) with η= C3

2C4
, and adding the resultant to (4.28), we get from (4.8)

and (4.18) that

d

dt

[

Y(t)+ηAi(t)
]

+C ′
[

Y(t)+ηAi(t)
]

≤C(‖ϕ‖2 +‖θ‖2), ∀t≥0.
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Consequently,

Y(t)+ηAi(t)

≤Ce−C′t +Ce−C′t
(

∫ t
2

0

eC
′τ (1+τ)−

2θ
1−2θ dτ+

∫ t

t
2

eC
′τ (1+τ)−

2θ
1−2θ dτ

)

=Ce−C′t +Ce−C′t

∫ t
2

0

eC
′τ (1+τ)−

2θ
1−2θ dτ

+Ce−C′t

[

eC
′τ

C ′
(1+τ)−

2θ
1−2θ

∣

∣

∣

τ=t

τ= t
2

+
2θ

C ′(1−2θ)

∫ t

0

eC
′τ (1+τ)−

1
1−2θ dτ

]

≤Ce−C′t +Ce−C′t
(

e
C′t
2

∫ t
2

0

(1+τ)−
2θ

1−2θ dτ+(1+ t)−
2θ

1−2θ eC
′t
)

≤C(1+ t)−
2ξ

1−2ξ , ∀t≥0. (4.30)

Then our conclusion (4.7) follows from (4.30), the definitions of Ai(t), Y(t), and

(4.17). The exponential decay of θ (see (4.8)) easily follows from (2.6). The proof of

Theorem 4.3 is complete.

4.2. Stability of energy minimizers. We have shown that any global weak

(or strong) solution of problem (1.8)–(1.15) will converge to a steady state as time goes

to infinity (without smallness restrictions on the initial data). However, it is not clear

to which equilibrium it will converge, since the set of equilibria may be a continuum

(for general Dirichlet boundary data of the phase function). This is different from the

classical concept of stability in the literature. Below we shall show that if u0 and θ0
are close to zero and φ0 is near a certain local minimizer of the elastic energy E(φ),

problem (1.8)–(1.15) admits a unique global strong solution. Moreover, the energy

minimizer is Lyapunov stable. As in Remark 4.1, the results and their proofs in this

subsection actually hold for general Dirichlet boundary conditions for φ, not only the

special case (1.14).

Definition 4.8. The function φ∗∈K :={φ∈H1(Ω) : φ|Γ =−1} is called a local min-

imizer of E(φ) if there exists σ>0, such that for any φ∈K satisfying ‖φ−φ∗‖H1 ≤σ,

it holds that E(φ)≥E(φ∗).

Remark 4.2. It is easy to verify that any local minimizer of E(φ) is a critical point

of E(φ) and satisfies the elliptic boundary value problem (4.11).

Theorem 4.9. Suppose n= 3 and (2.2) is satisfied. Let φ∗∈H2(Ω)∩K be a local

minimizer of E(φ). For arbitrary r>0, we consider the set

Br =
{

(u,φ,θ)∈V×(H2(Ω)∩K)×
(

H2(Ω)∩H1
0 (Ω)

)}

:

‖u‖H1 ≤ r, ‖φ−φ∗‖H2 ≤ r, ‖θ‖H2 ≤ r}. (4.31)

Then there exist positive constants σ1,σ2,σ3 depending on r, Ω, σ, ν∗, φ∗, and coef-

ficients of the system, such that for any initial data (u0,φ0,θ0)∈Br satisfying

‖u0‖≤σ1, ‖φ0−φ
∗‖H1 ≤σ2, ‖θ0‖H1 ≤σ3, (4.32)

we have
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(i) the problem (1.8)–(1.15) admits a unique global strong solution (u,φ,θ);

(ii) the energy minimizer φ∗ is Lyapunov stable;

(iii) the global strong solution has the same long-time behavior as in Theorem 4.3.

Although the limit function φ∞ may differ from the minimizer φ∗, the total energy

E(t) will converge to the same energy level of φ∗;

lim
t→+∞

E(t) =aλ0E(φ∞) =aλ0E(φ∗). (4.33)

Moreover, if φ∗ is an isolated local minimizer, then φ∞ =φ∗ and thus φ∗ is asymptot-

ically stable.

Proof. By Proposition 4.1, in order to prove the existence of global strong

solutions, we only have to verify that

E(t)−E(0)≥−ε0, ∀ t∈ [0,+∞), (4.34)

where ε0 is defined as in (4.4). We know from the argument in Proposition 4.1 that

there exists t0 = 3
4Tmax and that A2(t) is uniformly bounded on [0,t0] by a constant

depending on r, φ∗, Ω, and coefficients of the system. Since A2(t) is bounded on

[0,t0], it holds that

E(t)−E(0)

=
1

2
‖u(t)‖2−

1

2
‖u0‖

2 +aλ0(E(φ(t))−E(φ0))+
ζ

2
‖∇θ(t)‖2

+
ω

2
‖θ(t)‖2−

ζ

2
‖∇θ0‖

2−
ω

2
‖θ0‖

2

≥−
1

2
‖u0‖

2 +aλ0(E(φ(t))−E(φ∗)+E(φ∗)−E(φ0))

−
ζ

2
‖∇θ0‖

2−
ω

2
‖θ0‖

2

≥−
1

2
‖u0‖

2−
ζ

2
‖∇θ0‖

2−
ω

2
‖θ0‖

2−C1‖φ0−φ
∗‖H1

+aλ0(E(φ(t))−E(φ∗)),

where ζ and ω are as in Proposition 2.5 and C1 depends on r, φ∗, Ω, and coefficients

of the system. We assume that σm (m= 1,2,3) are sufficiently small such that

1

2
σ2
1 +

1

2
max{ζ,ω}σ2

3 +C1σ2≤ ε0. (4.35)

If we can ensure that

E(φ(t))−E(φ∗)≥0, ∀ t∈ [0,t0], (4.36)

then we have

E(t)−E(0)≥−ε0, ∀ t∈ [0,t0]. (4.37)

This enables us to apply the argument in the proof for Proposition 4.1 to extend the

local strong solution from [0,t0] to [0,t0 + 2t0
3 ] = [0, 5t03 ].
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By Definition 4.8, (4.36) can be reduced to the following condition:

‖φ(t)−φ∗‖H1 <min{σ,β} := δ, ∀ t∈ [0,t0], (4.38)

where β>0 is the constant depending on φ∗ given in Lemma 4.6 (taking ψ=φ∗

therein, we note that φ∗ is a critical point of E(φ)). We shall show that one can

choose a smaller σ2 satisfying

σ2≤
1

4
δ, (4.39)

such that (4.38) holds. This can be done via the  Lojasiewicz–Simon approach by

a contradiction argument (cf. Wu et al. [32]). If (4.38) is not true, then since

φ∈C([0,t0];H1
0 ), there exists a minimal time T0∈ (0,t0], such that ‖φ(T0)−φ∗‖H1 = δ.

We observe that E(t)≥aλ0E(φ∗) for any t∈ [0,T0]. If for some T ≤T0, E(T ) =

aλ0E(φ∗), then we deduce from the definition of the local minimizer and the ba-

sic energy inequality (2.3) that for t≥T , E(t) cannot drop and will remain aλ0E(φ∗).

Thus, ∇u= ∆φ−F ′(φ) = ∆θ≡0 for all t≥T and the evolution becomes stationary.

The conclusion easily follows. In the following, we just assume E(t)>aλ0E(φ∗) for

t∈ [0,T0]. Applying Lemma 4.6 with ψ=φ∗, we get (similar to (4.16))

−
d

dt
[E(t)−aλ0E(φ∗)]ξ ≥C(‖∇u‖+‖∆φ−F ′(φ)‖+‖∆θ‖), ∀t∈ (0,T0).

Then we infer from (4.15) that

‖φ(T0)−φ0‖H1 ≤C‖φ(T0)−φ0‖
1
2 ‖φ(T0)−φ0‖

1
2

H2

≤C
(

∫ T0

0

‖φt(t)‖dt
)

1
2

≤C[E(0)−aλ0E(φ∗)]
ξ
2

≤C2

(

‖u0‖
2 +‖θ0‖

2
H1 +‖φ0−φ

∗‖H1

)

ξ
2

. (4.40)

Choosing σm (m= 1,2,3) satisfying (4.35), (4.39), and

C2

(

σ2
1 +σ2

3 +σ2

)

ξ
2

≤
1

2
δ, (4.41)

we can see that

‖φ(T0)−φ∗‖H1 ≤‖φ(T0)−φ0‖H1 +‖φ0−φ
∗‖H1 ≤

3

4
δ<δ,

which leads to a contradiction with the definition of T0. Thus, (4.38) is true and

(4.37) holds.

By iteration, we conclude that the local strong solution (u,φ,θ) can be extended

by a fixed length 2t0
3 in each step and it is indeed a global solution with A2(t) being

uniformly bounded. Then by Theorem 4.3, there exists a critical point φ∞ of E(φ),

such that the global solution (u(t),φ(t),θ(t)) satisfies the same long-time behavior

(4.5) with convergence rate (4.7). It is easy to see from the above argument that for

any ǫ>0, by choosing sufficiently small σm (m= 1,2,3), it holds that ‖φ(t)−φ∗‖H1 ≤
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ǫ for all t≥0. This implies the Lyapunov stability of the local minimizer φ∗. In

particular, we have

‖φ∞−φ∗‖H1 ≤‖φ(t)−φ∞‖H1 +‖φ(t)−φ∗‖H1 ≤min{σ,β}.

Applying the  Lojasiewicz–Simon inequality once more with ψ=φ∗, we conclude that

|E(φ∞)−E(φ∗)|1−ξ ≤‖−∆φ∞ +F ′(φ∞)‖= 0, (4.42)

which together with (4.5) yields (4.33). The proof is complete.
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