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A REMARK ON THE BOX-COUNTING DIMENSION OF THE

SINGULAR SET FOR THE NAVIER–STOKES EQUATIONS∗

WITOLD SADOWSKI†

Abstract. Let u be a suitable weak solution of the Navier–Stokes equations and let S be the set
of its singular points in space-time. We prove that if ut is square integrable then the box-counting
dimension of S is no larger than one.
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1. Introduction

In this paper we consider the Navier–Stokes equations for an incompressible fluid:

ut−∆u+(u ·∇)u+∇p=0, divu=0, (1.1)

where u=(u1,u2,u3) is the velocity of the fluid and p is the pressure. The domain
of the flow is an open set Ω⊆R

3. There is no external force acting on the fluid. We
consider the problem (1.1) with an initial condition u0:

u(·,0)=u0. (1.2)

Throughout the paper we assume that u0∈V , where V is the completion of smooth,
divergence-free functions with compact support in the norm of H1.

The only global in time solutions of the system (1.1)-(1.2) that have been con-
structed to date are weak solutions (Leray [13], Hopf [6]). Unfortunately, such solu-
tions are not known to be unique and regular. As a result the existence of singular
times1 and of singular points in space-time2 has not been ruled out. However, many
results show that both the set of singular times and the set of singular points in space-
time are rather “small”. The smallness of these sets is usually measured in terms of
the Hausdorff and the box-counting dimensions (for definitions of these dimensions
see the next section). In particular, one can construct weak solutions to (1.1)-(1.2)
that are smooth on an open set Ω×R, where R=(0,∞)\T and T is the “small”
set of singular times (see for example Heywood [5]). Both the Hausdorff and the
box-counting dimensions of T can be bounded above by the same number:

dH(T )≤1/2 and dB(T )≤1/2

(see Leray [13] and Scheffer [18] for the Hausdorff dimension and Robinson & Sadowski
[14] for the box-counting dimension).

The set S of singular points in space-time was first investigated by Scheffer [18]
and then addressed in a seminal paper of Caffarelli, Kohn, and Nirenberg [1]. The
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1A time t is called a singular time of u if ||Du(s)|| := ||Du(·,s)||L2(Ω) is unbounded in every
neighbourhood of t.

2A point z∈R
4 is called a singular point of u if u is unbounded in every neighbourhood of z.
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authors considered a special class of weak solutions called ‘suitable weak solutions’.
Such solutions have two additional properties: they satisfy a local energy inequality
and their associated pressure p belongs to L3/2. For such solutions it can be proved
that the Hausdorff dimension of S is no greater than 1. It can also be deduced from
the proof that the box-counting dimension of the singular set is no greater than 5/3
(see for example Robinson & Sadowski [15]). The gap between the upper bounds for
both dimensions:

dH(S)≤1 and dB(S)≤5/3

is the outcome of different criteria for regularity that are used in the proofs of the
above bounds. The bound for the Hausdorff dimension of the singular set follows from
the fact that there exists a constant ε>0 such that if

limsup
r→0

1

r

∫

Qr(x,t)

|∇u|2≤ ε, (1.3)

then (x,t) is a regular point of u. Here Qr is the space-time cylinder (see the next
section for notation). On the other hand, the upper bound on the box-counting
dimension is a simple corollary from the following criterion for regularity. If for some
sufficiently small ε>0 we have

1

r2

∫

Qr(x,t)

|u|3+ |p|3/2≤ ε, (1.4)

then u is regular in a neighbourhood of (x,t).
The gap between the two upper bounds on dB(S) and dH(S) was recently reduced

by Kukavica [10], who proved that in fact the box-counting dimension of a singular
set in space-time is no greater than 135/82:

dB(S)≤
135

82
≈1.646.

No better upper bounds on the box-counting dimension of the singular set S are
known. The problem of closing the gap between upper bounds on dB(S) and dH(S)
seems to be even more interesting if we recall that there are sets of Hausdorff dimension
zero whose box-counting dimension can be arbitrarily large. For example a set Xα⊂
l2 given by Xα={0}∪{n−αen}

∞
n=1 has box-counting dimension α−1 and Hausdorff

dimension 0, since it is countable (see Robinson [17] for more details).
In this paper we prove that if the classical time derivative, which due to the

epochs of regularity property is defined almost everywhere (namely, on the set Ω×R),
is square integrable in the space-time, then not only the Hausdorff but also the box-
counting dimension of the singular set is no greater than 1.

2. Notation

By Br(x) we denote a ball of radius r centered at x. A space-time cylinder is
denoted by Qr(x,t):

Qr(x,t)=(t−r2,t)×Br(x).

The set of singular times T is the set of all times t>0 such that

limsup
s→t

||Du(s)||=∞.
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A point z=(x,t)∈R
3×R is called regular if u is bounded in some neighbourhood of

z. A point z is called singular if it is not regular.

Remark 2.1. In what follows we will use the fact (see Skalak and Kučera [20]) that
for each regular point z=(x,t) one can find a cylinder (t−ǫ,t+ǫ)×Bδ(x) such that
for almost all x̃∈Bδ(x) the function u(x̃, ·) is absolutely continuous on (t−ǫ,t+ǫ).

The set of all singular points in space-time is denoted S. We also define the
projection of S onto R

3:

ΠS={x∈R
3 : (x,t)∈S for some t∈ (0;∞)}.

Let X be a compact set in R×R
3. The parabolic Hausdorff dimension of X,

denoted by dH(X), is given by

dH(X)= inf {s≥0 : µs(X)=0} ,

where µs(X) denotes parabolic Hausdorff measure:

µs(X)= lim
δ→0

inf







∞
∑

i=1

rsj : X⊂

∞
⋃

j=1

Qrj (xj ,tj), rj <δ







.

The box-counting dimension of X, denoted by dB(X), is defined by the formula

dB(X)= limsup
ǫ→0

logN(X,ǫ)

− logǫ
,

where N(X,ǫ) is the maximum number of disjoint balls of radius ǫ centered at points
of X.3

3. Main result

Little is known about regularity of the time derivative of a weak solution u of the
Navier–Stokes equations. It can be shown that ut∈L4/3(0,T ;H−1) (see for example
Galdi [4]), but even the question whether ut is continuous in a neighbourhood of
a regular point is an open problem (see Skalak and Kučera [20]). On the other
hand, some conditional results about regularity of the Navier–Stokes equations involve
assumptions on ut. For example, Serrin ([19]) proved that if in addition to his criterion
for regularity4 we also have ut∈Lp with p>1, then the space derivatives of u are
absolutely continuous functions of time. Kohn in [8] showed how the assumption
ut∈L3/2 leads to a simplified proof of the partial regularity theorem by Caffarelli,
Kohn, and Nirenberg [1]. Below we prove a conditional result on the box-counting
dimension of the singular set making an assumption on the integrability of ut. We
use the fact that ut is defined in a classical way for all t∈R.

Theorem 3.1. Let u be a suitable weak solution of the Navier–Stokes equations (1.1)-
(1.2) with u0∈V and Ω=R

3. Moreover, let ut be the classical time derivative of u
defined on R

3×R. If ut is square integrable then the box-counting dimension of the
singular set is no greater than 1.

3In an equivalent (and more popular) definition N(X,ε) denotes the minimum number of balls
of radius ε needed to cover the set X (see Falconer [2]).

4Serrin’s criterion states that if u∈Lr(t1,t2;Lp(Bδ(x))) with 2/r+3/p<1, then u and its space
derivatives are uniformly bounded on compact subsets of the space-time cylinder.
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Proof. Let us begin with some remarks on the boundedness of the set S. Since
u0∈V a weak solution u is regular on some time interval (0,T ∗). Moreover, the set T
(see for example Heywood [5]) is bounded so u is regular for sufficiently large times.
Therefore S ⊂ΩT where

ΩT := (T1,T2)×R
3,

for some T1,T2>05.

We claim that u∈W 1,2(ΩT ). As we already know that u and its space derivatives
belong to L2(ΩT ) we only need to check that ut is well defined as a distributional
derivative over the space-time domain.

To this end we notice that ui(x, ·), i=1,2,3 is absolutely continuous on [T1,T2] for
almost all points x∈R

3. Indeed, take any R>0 and consider a closed ball B̄(0,R).
It is enough to show that for almost all x∈ B̄(0,R) the function ui(x, ·), i=1,2,3
is absolutely continuous on the interval [T1,T2]. Take any sufficiently small ε>0.
Since the box-counting dimension of the singular set is less than 5/3 we can cover
the set ΠS∩B̄(0,R)⊂R

3 with a finite collection C of open balls of total measure
ε. Now choose any point x̃ in the compact set B̄(0,R)\C. The line segment Ix̃=
(x̃,t), t∈ [T1,T2] consists only of regular points. Simple compactness arguments and
the remark in the previous section show that we can cover the points of Ix̃ with
a finite number of cylinders {Qri(x̃,ti)}, i=1,2, ...,N such that u(x, ·) is absolutely
continuous on (ti−ri,ti+ri) for almost every x∈Qri(x̃,ti), i=1,2, ...N . Therefore
for each point x̃∈ B̄(0,R)\C we can find an open ball Bδ(x̃) such that for almost all
x∈Bδ(x̃), ui(x, ·) is absolutely continuous on [T1,T2]. We choose finite subcovering
of B̄(0,R)\C to conclude the assertion.

As u is absolutely continuous on almost all lines parallel to the axis (u is ACL)
and u with its derivatives belong to L2(ΩT ), we invoke Lemma 5.6.2 from Kufner
et al. [9] to deduce that u∈W 1,2(ΩT ). From the Sobolev embedding theorem it
follows then that u∈L4(ΩT ). From the Calderon–Zygmund inequality we conclude
that p∈L2(ΩT ). Now the result follows from Theorem 1 in Robinson and Sadowski
[16], where a more general case was treated. However, in the case considered here the
argument may be substantially simplified, so we present this simpler version below.

Choose sufficiently small r>0 and let Cr be a set consisting of the maximal
number of 4-dimensional balls of radius 2r centered at points of S:

Cr={B2r(z1),B2r(z2), ...,B2r(zN )}.

Consider a family of cylinders:

Qr={Qr(z1),Qr(z2), ...,Qr(zN )}.

For all sufficiently small r we have Qr(zi)⊂B2r(zi).

5In fact, from the condition (1.4) and integrability of |u|3 and |p|3/2 it follows that the set S
must be bounded. Therefore we have

S ⊂ (T1,T2)×B(0,R̃)

for some R̃>0.
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Since the parabolic cylinders are disjoint we obviously have

N(S,r)
∑

i=1

∫

Qr(zi)

|u|4+ |p|2≤

∫

ΩT

|u|4+ |p|2<∞. (3.1)

Since points z1,z2, ...,zN are singular it follows from (1.4) that for all i=1,2, ...,N
we have

ε≤
1

r2

∫

Qr(zi)

|u|3+ |p|3/2.

From Hölder’s inequality we get

r3/4ε≤

(

∫

Qr(zi)

|u|4

)3/4

+

(

∫

Qr(zi)

|p|2

)3/4

. (3.2)

Combining (3.1) and (3.2) we obtain, for ǫ=(ε/2)4/3,

ǫrN(S,r)<∞. (3.3)

If dB(S) was greater than 1 then for some d>1 we would have N(S,r)≥ r−d. Then
the left hand side of (3.3) would tend to infinity, contradicting the integrability of
|u|4+ |p|2 on ΩT .
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