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ON THE CONTINUITY OF IMAGES BY TRANSMISSION IMAGING*

CHUNLIN WUT

Abstract. Transmission imaging is an important imaging technique which is widely used in
astronomy, medical diagnosis, and biology science, whose imaging principle is quite different from
that of reflection imaging used in our everyday life. Images by reflection imaging are usually modeled
as discontinuous functions and even piecewise constant functions in most cases. This discontinuity
property is the basis for many successful image processing techniques such as the popular total
variation (TV) regularization. In this paper we prove that almost all images by transmission imaging
are continuous functions. For the convenience of description, we will consider transmission imaging
with parallel line geometry of wave beam, which is a fundamental geometry in transmission imaging
and has been extensively applied in microscopes. In this kind of imaging, people take images of
the physical scene from many different projection directions. We will prove that for almost every
projection direction, the generated image is a continuous function, even if the density function
of the physical scene is discontinuous. If the density functions of the objects to be imaged are
radial regardless of some coordinate shifts, then all the projection directions generate continuous
images. This continuity property has not been published yet in the literature. As a straightforward
application, we finally present a simple yet effective improvement of TV regularization for Poisson
noise (which is the most significant noise in transmission imaging) removal. Numerical examples and
comparisons verify our analysis and demonstrate the effectiveness of the improved model.

Key words. Transmission imaging, reflection imaging, Radon transform, parallel line geometry,
continuity, measure zero, radial function, Poisson noise, variational method.
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1. Introduction

Imaging is an important technique which translates a physical scene to lower
dimensional (typically 2D) data for convenient observation and record. It has been
applied to many fields, including our everyday life, medical diagnosis, exploring the
universe, and biological structure analysis. Many imaging systems and instruments,
such as various digital cameras, X-ray CT, telescopes, and microscopes, have been
developed. Different imaging systems are based on different physical principles. Dig-
ital cameras used in our everyday life record the reflection part of the white light
from objects [22] except when capturing the sky, whereas transmission electron mi-
croscopes generate images by counting the electrons having transmitted the scene
[18, 11, 23]. We refer to these two kinds of imaging techniques by reflection imaging
and transmission imaging in this paper for clarity.

As is well known, images by reflection imaging are usually modeled as discon-
tinuous functions and even piecewise constant functions in most cases. Consequently
most of them have sparse gradients. Due to this property, many image processing
techniques, such as the popular total variation (TV) regularization [29], have achieved
great successes.

Although the central topic in transmission imaging is the reconstruction of the 3D
objects from their 2D projection data (which are our so-called images) [4, 11, 16, 24,
34], restoration of these data (before 3D reconstruction) is sometimes also important
due to the involvement of noise and other degradations during the imaging procedure
[37, 25, 28, 38]. A typical problem is how to remove the Poisson noise (which is the
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dominant noise) in images by transmission imaging. Very recently, many scholars
studied the application of TV regularization to this ill-posed problem [10, 20, 12, 32,
40, 42] and piecewise constant images were widely used in their numerical tests.

In this paper we show that almost all images by transmission imaging are actu-
ally continuous and consequently TV regularization for this kind of images can be
greatly improved. For convenience of description and consistency of notation, we
consider transmission imaging with parallel line geometry of wave beam, which is a
fundamental beam geometry [18, 23] and has been extensively used in microscopes
[11]. In transmission imaging (with parallel line geometry), people take images (also
called projections in the literature) from many different projection directions in order
to reconstruct the density functions of the imaged objects. Each projection direction
corresponds to one image. We will prove that for almost every projection direction,
the generated image is a continuous function, even if the density functions of the
imaged objects are discontinuous (discontinuous density functions are very common).
The set of projection directions generating discontinuous images has measure zero.
If the density functions of the objects to be imaged are radial regardless of some
coordinate shifts, then all the projection directions will generate continuous images.
As is well known, the Radon transform [27] is the essential mathematical tool to de-
scribe the imaging procedure. As far as we know, theoretical results on the Radon
transform in the literature focus on the analysis of the imaging procedure as a map-
ping operator [15, 18, 23], e.g., the invertability of the operator. In addition, most
analyses assume that the density function of the object to be imaged is a continu-
ous or even Schwartz function all over the Euclidean space [15, 23, 27]. So far our
analysis has not appeared in the literature, although discontinuous density functions
of objects are very common and thus important in applications. As a consequence
of our results, most current digital image processing techniques, which are based
on the discontinuities (edges) of the image, may not be best for images generated
via transmission imaging. The popular TV regularization for Poisson noise removal
[4, 10, 20, 12, 24, 32, 40, 42] can be greatly improved. We will finally present a simple
variational approach for Poisson noise removal by appropriately combining some ex-
isting regularization and fidelity terms, which improves the TV regularization based
methods [4, 10, 20, 12, 24, 32, 40, 42] dramatically. The regularization term to be used
is a high order generalization of TV. Recently many high order generalizations of TV
have been proposed in the context of reducing staircase effect or image decomposition
[7, 21, 30, 35, 41, 17, 26, 6, 8, 31, 33, 3, 19]. Please see Section 4 for a review and
classification of them.

The paper is organized as follows. To better understand the background of our
analysis, we will present in Section 2 the principles of reflection imaging and trans-
mission imaging and brief comparisons between the features of images generated by
them. In Section 3, we will focus on the continuity problem of images taken via
transmission imaging. A simple yet effective improvement of the most popular TV
regularization for Poisson noise removal will be presented in Section 4, verifying our
analysis and showing a straightforward application of our theoretical results. The
paper is concluded in Section 5.

2. Principles of reflection imaging and transmission imaging

As indicated by the terms, reflection imaging relies on the reflection of the light
wave on the surface of the objects [22], whereas transmission imaging is based on some
radial wave (such as electron wave or X-ray) arriving at the image plane by transmit-
ting the physical scene [18, 11, 23]; see figure 2.1. For simplicity, we here focus on the
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essentially different parts of these two imaging procedures and omit other common
parts (such as focus and magnification subsystems). In the following we will explain
the principles of these two imaging procedures in both physical and mathematical
points of view with brief comparisons. The principle and implementation of an imag-
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F1ac. 2.1. A simple illustration of reflection and transmission imaging

ing system depends on the physical properties of both the objects to be imaged and
the source (e.g., visible light, X-ray, and electron beam) used for imaging. Usually the
source produces a composition of waves with frequencies in a certain range (including
the case of just one single frequency). Waves with different frequencies have different
reflection and transmission abilities. The visible light in our everyday life has lower
frequencies and thus is difficult to transmit most objects. When it hits most objects, a
portion of it reflects while the remainder is absorbed by the objects. Different objects
can absorb waves with different frequencies. Consequently the reflected waves have
different frequencies. We do recognize objects by these reflected waves, which exhibit
their colors. See figure 2.1 (a), where 01,02,03 are three objects and the image plane
records the reflection light from 01,02,03. Note that not all the reflection light of an
object can be observed by the image plane, since some portions of the reflection light
may be blocked by other objects.

The situation is totally different in transmission imaging case. Transmission imag-
ing adopts the strong transmission ability of the source, e.g., v radial, X-ray, and high
speed electron beams, whose frequencies are much higher. These kinds of imaging
techniques are mostly applied to medical diagnosis and biological structure analysis
[18, 11]. Ideally, the source produces a wave with a single frequency during one single
measurement. When hitting a medical or biological scene (e.g., some biological tissue
or specimen), the wave transmits the objects and then arrives at the image plane.
During the transmission, the wave interacts with the objects. Usually this interaction
is very complicated and very hard to precisely describe, especially in micro structure
analysis at molecular or atomic level. Figure 2.1 (b) is an illustration, where 01,02,03
are three (biological) objects and the image plane records the electrons successfully
transmitting the objects. As mentioned before, here we consider transmission imag-
ing with parallel line geometry of the wave beam [18, 11, 23]. Some other types of
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geometry such as fan beam are introduced in [18, 23].

In the following, we explain these two imaging procedures from the mathematical
point of view. As shown in figure 2.1, we assume three objects 01,02,03 to be imaged.
We represent them via their density functions p; (r),p2(r),p3(r) (r € R3). These func-
tions can be mass density, electron density, or others of the objects, depending on by
which density the objects will interact with the source wave.

In the reflection imaging case, the light wave hits the objects and reflects. The
reflection depends on the material and the position of the outer boundary of the
object. (Note that we can always assume that the material of a single object is nearly
homogeneous; otherwise we can further decompose it.) Each object will reflect waves
with some particular small range of frequencies (even particular single frequency in
many cases), which indicate the colors of the object. The direction of the reflected
wave and within which domain of the image plane the wave will arrive at depend on
the position of the outer boundary of the object. The inner boundary of an object (see
01), and actually its whole interior body, have no effect on the reflection. Therefore,
if we consider only 0 and remove 02,03 from the scene, an intensity function, which
is nearly constant within its domain and usually discontinuous at the boundary, will
be recorded on the image plane. Suppose that the intensity function generated by o;
is I"(o1;7). Similarly, we have I"(02;r) and I"(og;r). Here the super script r means
“reflection imaging” and the argument r is the coordinate in the image plane. Now,
we consider the whole scene. If no object is warded off by others, then the total
intensity in the image plane is simply a linear combination:

I"(01;7)+1"(02;7) + 1" (03;7).

However, in most scenes some objects are warded off by others. A portion of the
reflection light of the warded object is blocked. The image plane records the sum of
the blocked reflection light, which reads

I" (014094 03;7) =b1(r)I"(01;7) + b2 (r)I" (02;7) + bs(r)I" (03;7), (2.1)

where b;(r),i=1,2,3 are some truncation functions indicating the block effect. b;,i=
1,2,3 depend on the positions of the outer boundaries of the objects and are actually
indicator functions. Therefore, we have the following conclusion:

e As an operator, reflection imaging is in general nonlinear with respect to the
objects in the scene.

Since the functions I"(0;;7),V i are piecewise smooth and usually discontinuous at the
boundaries of their supports, and the functions b;(r),V i are piecewise constant (thus
discontinuous), I" (01 + 02+ 03;7) is piecewise smooth and discontinuous at the com-
mon boundaries between objects. In most cases, the image is piecewise constant. This
is exactly the classic mathematical modeling of reflection images in [22]. Nevertheless,
we conclude that:

e In reflection imaging, the image is a discontinuous function, unless a single
object is imaged with no background (this case seldom happens). In most
cases, it is piecewise constant.

This is a very important property, based on which many image processing and seg-
mentation techniques, models, and algorithms have been proposed in the literature.
Now let us turn to the transmission imaging; see figure 2.1 (b). In transmission
imaging, the source wave transmits the scene (such as some biological specimen) and
a portion of the wave arrives at the image plane. The information recorded in the
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image plane is then used to infer the structure of the scene. The interaction between
the wave and the objects in the scene depends on some certain density functions of
the objects. Mathematically this procedure can be modeled by the Radon transform
[27]. For convenience of description, we assume the direction of the wave beam in
figure 2.1 (b) is z. Let us first consider o; and remove 09,03 from the scene. The
image generated by o; is as follows

It(ol;r)z/pl(r)dz, (2.2)

where we use the super script ¢ to denote “transmission imaging”. (Physically speak-
ing, the intensity sensed in the image plane is actually C' — I'*(o1;7) with a constant C
indicating the strength of the source wave. In mathematical modeling and analysis,
there is no difference between them.) Putting o1,02,03 all together in the scene, the
total density function is pi(r)+ ps(r)+ p3(r), since in many cases we can omit the
interaction between these objects. Therefore, the total intensity sensed in the image
plane is

I*(01+ 02 +0i7) = / pr(X) + pa(r) + pa (r)dz = I (01;7) + I' (0037) + ' (0si7). (2.3)

Hence we conclude:

e As an operator, transmission imaging is linear with respect to the objects in
the scene for given projection direction.

In the following section we focus on analyzing the features of 2D images (projections)
recorded by the image plane. As mentioned previously, in transmission imaging with
parallel line geometry, people take images from many projection directions. Each
projection direction corresponds to an image. We will show that most images gen-
erated in transmission imaging can be modeled as continuous functions, even if the
density functions of objects are discontinuous. This is totally different from reflection
imaging.

3. The continuity property of images generated by transmission imag-
ing

In this section, we study the continuity property of images taken by transmis-
sion imaging with parallel line geometry of wave beam. We will discuss the topic in
two cases, which are very common in real applications. In the first case compactly
supported density functions are considered. Real applications with density functions
such as mass density fall into this case. We will prove that for almost every projec-
tion direction, the image taken in this direction is a continuous function. The set of
discontinuous images corresponds to a set of projection directions which has measure
zero. In the second case we consider radial density functions (not restricted to be
compactly supported). We will show that in this case, all images from all the pro-
jection directions are continuous functions. All of these results will be presented in
general Euclidean space R™ (typically n=2,3).

We first give some notation. We use By ; to denote the open ball centered at r
with radii §. S”~! is denoted for the n— 1 dimensional unit sphere. Its upper part is
denoted by

Si_l ={r=(r1,r2, - ,rn) ER":|r|=1,r, >0}. (3.1)
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A straight line [ C R™ is expressed as
r=ro+vt, —oo<t<+o0, (3.2)

where rp € R™, and v€R" is a unit direction vector, i.e., [v|=1. For simplicity, we
denote a straight line determined by r¢ and v as [, in the following.

In transmission imaging, people take images of objects from different projection
directions by computing the integrals of the density of the objects along straight
lines with those directions. Regardless of the symmetry of direction, we need only to
consider those images generated in the projection directions, which are elements of
one half of the n—1 dimensional sphere denoted by

Sffl ={veR":|v|=1,(61,02, - ,0,_1) €[0,7]" "2 x [0,7),

(3.3)
(01,04, ,0,_1) are the Euler angles of v}

For each v in S’j_l, people take one image from that projection direction. We denote
2
the image generated by veS?™! as It (we remind that the super script ¢ means
2

“transmission imaging”). If there are no repeated images, the images are as many as
the points in S77'.
2

3.1. Compactly supported density functions. Before presenting our
results, we give an example in R?; see figure 3.1. Here the object to be imaged is
a rectangle o, whose density function is supported in the rectangle and is constant
p(r)=0.5. In transmission imaging, the object is projected from different directions
to the corresponding image planes. The projection from each direction generates one
image. In R?, the projection direction is v & S %, or, equivalently, can be described by

an azimuthal 6 € [0,7). That is, the unit vectors indicating the projection directions
are on a half circle. In figure 3.1, we only show two projection directions and the
corresponding images of the object. As one can see, the image in figure 3.1 (a) is
continuous over the whole image plane (R! here), whereas the image in figure 3.1
(b) is discontinuous. This example shows that different projection directions may
generate images with different smoothness, even for the object of constant density.
In this example, there are in total 2 projection directions (parallel to the edges of
the rectangle respectively) which generate discontinuous images. In the following,
we will prove that the set of projection directions generating discontinuous images
has measure zero within the set of all the projection directions. We will present our
results in general Euclidean space R™. By the linearity of the transmission imaging
operator, we only need to consider just one single object. We denote it by o, whose
density function is p(r). The support of p(r) is D (singly connected because of one
single object) with boundary B. In many real applications, we can assume:
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Electron beam

Image plane

(a) a continuous projection of a rectangle (b) a discontinuous projection of a rectangle

FiG. 3.1. An example of transmission imaging in R2.

Assumption 1 p(r) is compactly supported, i.e., D is bounded;
Assumption 2 p(r) is continuous over D;
Assumption 3 B is a simple, continuous, and piecewise C! hypersurface;

Assumption 4  For any straight line [ in R"™, [ intersects B at either empty
set, or finite number of points, or finite number of line seg-
ments, or the union of finite number of points and finite num-
ber of line segments.

Assumption 5 Let P,_1 be an n—1 dimensional domain of an n—1 di-
mensional hyperplane H,,_; such that P,_y=H,_1NB and
Vpe(H,—1NB)\P,_1, P,—1U{p} is not a domain of H,,_1.
That is, P,_1 is a locally largest n—1 dimensional affine
patch of B. We denote the set of such patches by P, 1. We
similarly and recursively define sets B,,_2,Bn_3,--,P1, with
the requirement that V Py €By and Pyiq € PVaxr1, ma(PyN
cl(Pg+1))=0 where cl(:) is the closure and mgy is d di-
mensional measure, d=n—2,---,1. As one can see, all
the line segments on B are on the affine patches in P =
PBr_1UP,_oU---UP;. It is obvious that there may be par-
allel affine patches in 3. For each d=1,2,--- ,n—1, we fur-
ther modify P4 by keeping only one affine patch of each
class of parallel affine patches. The new set is still de-
noted by P4, d=1,2,--- ,n—1, and P, 1 UP,_2U---UPy
by 8. The new sets have the same unit vectors on
affine patches as before, respectively. Let €;={P,:P;€
Ba, Pa\HUpeg p,3 ) are dense on Py}, d=1,2,--- ,n—
1. We assume that ¢;,d=1,2,--- ,n—1 are all finite sets.

We mention that the above assumptions are actually quite mild in real applica-
tions, although they look a little bit complicated. A common example is that D is a
polyhedron and p(r) is constant over D.
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LEMMA 3.1. Assume that g is the metric tensor of the mapping ¢ from the n—1
dimensional open ball By, ,1 (0n—1 is the origin of R"™1) to ST~ defined by

— 2
(Ulvv%"'v’un1)_>(’Ulav27"'7vn1avn)—<vlvv27"'vvnla 1- E 'U7;>'
1<i<n-—1

Then detg:#:i.

1<i<n—1

Proof. By basic calculation we have

g=1+V,

where I is the identity matrix and V =(v;;) with elements v;; = UUZJ From linear
algebra, we know

detg:1+ Z Z V(l .2 ‘k>7
11 12 0 U
1<k<n—141<i2< - <ig

where V(Z Z z:) is a principal minor of V. It is easy to see that all the principal

minors with orders greater than 1 have zero determinant. Therefore,

1 1
detg:l—i_ZV(ii):,ﬁ’

i1
which completes the proof. 0
Based on Lemma 3.1, we can prove the following result.

THEOREM 3.2. Assume Z={ve ST :3rq, s.t. m(ly, v N B) >0} where m(ly, N B)

is the Lebesgue measure in RY (along the straight line). Then Z has zero spherical
measure.

Proof. By restricting the direction vector on Sz_l, we know that Z is nothing

but the set of unit direction vectors of the line segrrients in the affine patches in P
defined in Assumption 5, i.e., Z=v(P), by denoting all the unit direction vectors of
line segments in affine patches in P as v(P).

We now construct another set 93, without affecting the unit direction vectors of
the line segments in the affine patches in B. Recall that

m:mn—l Umn—ZU'“Uml-
We first consider 3;. We have

PB1=(P1\E1)UE £0,U¢;.

From Assumption 5, for any P} €97 (actually a line segment in this case), there
exists a closed 1D neighborhood P; C P; (with positive 1D measure) such that no
intersection between P; and the closure of the union of all the other affine patches in
P lies on P{. We put these neighborhoods of all the 1 dimensional affine patches in
9, together and denote this new set as Q). It is obvious that

‘BﬁzQﬁU@l
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and P; have the same set of unit direction vectors of line segments on them.
Let us consider ‘Bs. Similarly to 31, we first decompose By to be

Pa = (Pa\E2) UE =0 UEs.

From Assumption 5, for any P, €05, there exists a closed 2D neighborhood Pj C P,
(with positive 2D measure) such that no intersection between P, and the closure of
the union of all the other affine patches in 3 lies in this neighborhood. Again we
collect all of these neighborhoods of all the affine patches in Qs and denote the new
set as 9QF. We now generate a new set as follows:

For P4,d=3,4,--- ,n—1, with the decompositions
Pa=(Pa\Ca) UE; £Q4UE,, d=3,4,--- ,n—1,

we apply similar procedures as above and get new sets Q/,, B/, d=3,4,--- ,n—1, with
the following decompositions:

Pr=Q,U¢;, d=34,--- n—1.
We now consider the sets €3, d=1,2,---,n—1. Recall that
Cq={Py: Pi€PBa, Pancl(Upeqp\(p,} P) are dense on Py},d=1,2,---,n—1.

We can now modify the affine patches in the sets &4, d=1,2,---,n—1. We start
from &, _;. Since any affine patch in |J; 4,1 Q) does not intersect with any affine
patch in U1<d<n 1 €4, the only affine patches intersecting with P,_; € &,_1 are in
U1<dg<n_1 €4, which are finitely many affine patches with lower or the same dimen-
sions. We conclude that, for any affine patch P,_; €&, _1, there exists a closed
n—1 dimensional neighborhood P/_; such that no intersection between P,_; and
affine patches in (J;. <, _;€q lies in this neighborhood. We collect all of these
neighborhoods of all the affine patches in &,_; together and denote the new set as
¢! _,. Similar procedures can be applied recursively to €;, d=n—2,---,1, to generate
Lyd=n—2,---,1.
By the above procedures, we can construct 3 as follows:
P=(Q,1UE,_)U(Q), ,UE,_,)U---U(QjUE)
2P 1 U2 U UP1.
Note that the line segments in the affine patches in 9 still have the same unit direction
vectors as those in Z, i.e., Z= v(‘B). However, the structure of B is better for the

following analysis. We have YV PQeP, P£Q, PNQ=0.
We now define the distance between two elements in ‘B For any P,Q 6‘}3,

d. t P == i f - n
ist(P,Q)=__inf [lp—alr

:per;}géQHP_QHR”,

where ||p— ¢||r~ is the usual Euclidean distance, since P, are both closed sets. Then
we have

VY P,QeP, P#Q, dist(P,Q)>0
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Since ¢,,d=1,2,---,n—1 are all finite sets, there exists a natural number kq such
that min ) dist(P,Q) > k%) We define Ui<g<n—1€} as Pko . that is, the set of

P,QEVI<a<n 1€}
all the affine patches (closed neighborhoods with various dimensions) in Ulgdgn,lég.
From ‘i?kg, we construct a sequence ‘1~3k, k=ko,ko+1,--- as follows. Starting from
k=ko, for any k and accordingly q}k , there exists a superset (maybe multiple sets,
but we choose only one) in which any two elements have distance > %ﬂ and this
property will become false if any new element is added. This superset is denoted as
PrHL We thus obtain a sequence {P* k=ko,ko+1,---} satisfying
o V PQeP", dist(P,Q)> ¢, k=koko+1,-+;

o V PEP\PF, 3 QePF, st dist(P,Q) < &, k=ko+1,ko+2,--.
By taking into account that any element of fi3 is a closed set and fbko =Ur<q<n—1¢,
it can be verified by contradiction that

B=J "
k=ko
According to the construction of ‘ﬁk , forany Pe ‘ﬁk , we can assign a neighborhood
(surface patch) Bp C B with positive n —1 dimensional surface area A(Bp) such that
PCBp and V P,Q €P*, BpNBg=0. We have

oo

= {Pept: A(Bp)>%}é Dq}kﬂ'.
j=1

j=1

_As above, the set of all the unit direction vectors of line segments in affine patches
in PB* is denoted as v(PF); the set of all the unit direction vectors of line segments in
affine patches in ¥ is denoted as v(*7). We further denote

Yk :{Vn—l = (121,1)2,"' 7Un—1) ERn_l :

V:<’U1,'U27"'7’Unla 1- Z U?) EV("Bk)}v

1<i<n—1
and
Yk’jZ{an:(m,vz,“'7Un71)ER"_1;
V:<Ul,1}27...’yn1, 1-— Z U?)Gv(q}k’j)}.
1<i<n—1
We have

yr |yt
Y

For any fixed k,j, due to the finite total area of the boundary B, ‘ﬁk’j contains only
finitely many affine patches. Therefore, Y*J contains nothing but the union of finitely
many d dimensional circles with d€ {n—2,---,1} in the unit n—1 dimensional ball.
This indicates that Y*7 is measurable and has zero measure in R*~!. Hence, Y* is
measurable and has zero measure in R"~!. We further have that the following set

Y ={v,_1=(v1,02,,vp_1) ER"
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V:<Ul,1}27"',’l}”_1, 1- Z U?) EV({B)},

which is actually

Y:{V’nfl = (’Ul,'UQ,"' 7vn71) 6Rn_1:

V:(’l}l,’L)Q’.-~7'l_)n1, 1-— Z U?>62}7

1<i<n—1

is measurable and has measure zero in R"~!, since Y = Uzozko Yk,
We now decompose Y as

Y =Y,UY,,
where
Yo={vn-1=(v1,02, " ,0p_1) eR" ! v= (v1,02,-+ ,Up—1,0) € Z},
and

Yy ={va_1=(v1,02,,vn 1) ER" |V 1|lgn-1 <1,

v:<v17v2,m,vn1, 1— Z v?)eZ},

1<i<n—1
Accordingly, we have

Z=7yUZ,,
where

Zy={v=_(v1,v2,--,0p) 652—1 10 =0,Vp_1 = (v1,V2, -+, V1) €Yo},

and
Z+ :{V: (WI)UQa"' 7Un) eSg_l ‘Un >O,Vn_1 = (vla’l}?v"' a’U’n—l) GYJ’-}
={v=(v1,v2, ", vn) €S} V1= (v1,02," - ,vp_1) €Y} }.
As a subset of {v = (v1,v2,++,v,) € S" 110, =0}, Zy has zero spherical measure.

As a subset of Y, Y, has zero measure in R""1. On the other hand, Y, can be
reformulated as

Y+:G{vn,1€Y+:vn: 1— Z v12>%}.

k=1 1<i<n—1
By Lemma 3.1, one can show that Z, has zero spherical measure. The theorem is
proven. 0

THEOREM 3.3. In transmission imaging with parallel line geometry, for almost every
projection direction v € 52717 the image taken in direction v is a continuous function.
2
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The subset of projection directions generating discontinuous images has zero measure
n—1

on ST,
2

Proof.  We will prove that ¥V v€ ST\ Z, I is a continuous function. Here Z is
2

as in Theorem 3.2.
According to our assumptions, V v € Srj*l \ Z, any straight line with direction v
2

intersects with B at at most finitely many points.

Without loss of generality, we can assume v =(0,0,---,0,1) (if (0,0,---,0,1) € Z, we
can rotate the coordinate system to make sure in the new system the n/th axis is not in
Z). In this case, we will generate an image whose pixels are in the R"~! space with
coordinates r,,_1 =(r1,r2, - ,7,—1). We denote this image as If,(o;rhrg,--- Tr—1)-
We now show that it is a continuous function with respect to the image coordinates
(r1,r2, = ,rp_1). At any rj_,=(r},r5,---,7%_;) €R"7L, the straight line for integra-
tion can be written as

r=(r;_;,0)+vt, —oo<t<+o0,

which is, in short, l(r;,l,(l),V' We discuss the continuity in three cases as follows.

a. = 0)vNB=0. In this case, there exists a neighborhood B+ s CR" Y

n—17
such that Vrp,_1 € Bys 5, l(r,_,,00vNB =(). Therefore, the image intensity
ne1

bl oy NB={(t;_1,r")ci=1,--- 2M,rt <ri? <. <r?M} and all the
intersecting points are secant points. By the continuity of the boundary B
and that any intersecting point is a secant point, V 1 <7 <2M, there exists a

local continuous mapping ¢’ from a small neighborhood By 51 C R" ! to

If,(o;rn,l) =0forVr,_1€ Br,ﬁ_lﬁ‘ It is thus continuous at r

a small neighborhood of (r}_,,r>%) on B, which is

@i(rnfl) = (rnflahi(rnfl))av rp—1€ Br;_l,éia
for some continuous function h*(r,_;) (otherwise there will be more than one

intersection between [+ )y and B around this secant point). This also

means that, V 1<i<2M, the secant point (r_;,r*) is in the interior of
the set @Z(Brrlil,éi). It follows that, V r,—1 € Brs i, l(r,_, 0)v intersects
with @i(Br;7175i) at a secant point. Note that we can choose §° small enough

so that SDi(Br:l7175i)m(,Dj(Br:L717§j):®, Y i#7, since ril <rp? <. <p2M

n
Let § =min(6',62,---,62™). We conclude that, V r,_; €Brs 55 lrn_1,0)v
intersects with B at a series of secant points {(r,_1,7}):1<i<2M,rl <r2 <
- <r2MY o Again by the continuity, V i=1,2,---,2M, |ri —7r%"| <6. and
§—0 as —0. This, together with the continuity of the density function
p(r), indicates that

I (osrn_1) — I, (0ir} )

/l( s [ wa

(ry _1,0),v

’l"fj ,,,,:/,27‘,
DI R Sl A ()
1<i<M 7™ 1<i<m T
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*,2i

S NY ORI

1<i<M Y7Tn
—0,

as 6 — 0. Hence the image is continuous at r,_;.

¢ s oy NB={(x;_,rp)ii=1, 2M + K,ript <rp? << MR
withm which 2M points are secant points and the remainder are touching
points. Assume that the index set of the secant points is A; whereas the
index set of the touching points is Ay. First, let us consider the secant points.

By the argument in the above case, there always exists a neighborhood

Byr 5 (with 6; small enough) such that V r,_ €By» 5 and V i€ Ay,

lir, _,0),v intersects with B around the secant point (r; _ 1,7’;”) at another

secant point (r,_1,7%). We have ril <ri2 ¥V iy iy € Ay, i1 <is. In addition,

by the continuity, V i€ Ay, |rf —r}? <(§1, and 8; — 0 as §; — 0.

Now let us consider the touching points. V i€ Ay, we decompose a small
enough neighborhood of (r}_ 17r,’;l) on B to the union of the upper half
U with the nth coordinate 7, Zr;*ﬂ and the lower half L with the nth co-
ordinate r, <% There exists a continuous mapping from a subset of a
neighborhood B, . i to U, and a continuous mapping from a subset of
a neighborhood B si— to L, respectively. Let 5 :min(5§’+,5§"7). Then,

n172

Vr,1€B S the straight line I, , )+ intersects UUL at an empty

set, or a single touching point 7%, or two secant points r&+ ri— Agaln by
the continuity of the mappings, |r& —rp |<(52, ri= —rk |<(52, and 5Z —0
as 05 —0. Now we let do =min{dy:i€ Ay}. Therefore, V 1,1 € Bex_ 5, and
V i€ Ay, the straight line I, oy intersects B around the touching point
(rZ?l,r:‘;i) at an empty set, or a single point, or two secant points ri +,7’n
In addition, |rit — 75| < &y, |rb~ — 15| < &y, and 93 — 0 as dy — 0.

Let 6 =min(d1,d2). We conclude that, V r, 1 € Bex s,

—1>
Il (o;rp—1) — It (0;rf_1) —0,as §—0,

by a similar argument as in the previous case, with a trick to delete some of the
touching points {(r}_,,r"):i € A2} and make the remainder of multiplicity 2
according to how many intersections there are between the line and B around
the touching points. The image is also continuous at r)_; in this case. QO

Theorem 3.2 and 3.3 show that in transmission imaging with parallel line ge-
ometry, images taken in almost all the projection directions are continuous functions.
The discontinuous images are so sparse that in real applications they seldomly appear.
This will provide some information for processing images generated by transmission
imaging, which is totally different from reflection imaging.

The following corollary is on our results applied to a combination of finite objects.

COROLLARY 3.4. Suppose that a physical scene consists of finite objects {0;:1<i<
M} with compactly supported density functions {p;(r):1<i< M} which are continu-
ous over their supports {D;:1<i< M}, respectively. The set of projection directions
generating discontinuous images has measure zero on S%’*l. In particular, even if
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{pi(r)=ci, v€D;:c; ER is a constant ,1 <i< M}, i.e., the whole density is piecewise
constant, the result still holds.

Since in real applications the case of R? is very important, we give the following
corollary.

COROLLARY 3.5. Assume that a physical scene in R consists of finite objects with

compactly supported density functions which are continuous over their domains. The

set of projection directions generating discontinuous images has measure zero on S=.
2

3.2. Radial density functions. In some applications, the density functions
are not compactly supported. However, they are radial functions or combinations of
some translations of radial functions. This subsection contributes to this case.

Again we need only consider one single object. We denote it by o and assume
the density function is p(|r|), r€R™. Since p depends only on |r|, the images are
independent of projection directions. All the projection directions will generate the
same image. Therefore, without loss of generality, we can assume the projection
direction is v=(0,0,---,0,1), for convenience of description. The coordinates in the
image plane is thus r,_;. We then have

+o0
Blowa)= [ plai= [ o/l 64

(tn_1,0)v —o0
It is straightforward to verify that the image I (o;r,,—1) is a radial function of
r,—1. Under some mild assumptions, it is continuous.

THEOREM 3.6. The image It (0;1,_1) is also radial, when the density of the object is
a radial function.

THEOREM 3.7. Assume thatV r,—1 € R*™Y, [ p2(\/lr, i 2 +72)dr, < +oo. Then
the image 1. (0;r,,—1) is continuous with respect to r,_1.

Proof.  Assume that rj;_; €R" ' r, ;€R"! and r,_; —r}_;. Without loss
of generality, we consider the case of |r,_1|>|r}_;| (the case of |r,_1|<|r}_;]| can

be treated similarly). Let z=/|r,—1]> —|r}_,|?. We have
“+ o0 —+o00
Bosmnn) - o )= [ ot~ [ o[,

— 00 —0o0

+oo
- / (o P F72)dr,s

e
([ R
+o0 +oo
=2 [ o2 [ oy
0 .
[ o(yeaer ),

z

+o0 r
=2 Vitn_12+7r2) | 1 - —2— |dr,

z
—/ P( |r:—1‘2+7’%)d7’n

—Zz
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=0 +1I,.

We now estimate the integral 1.

24 52
0 etz

2
2 oo 2 2 2 e n
I | <4 ; p°(VItn—_1]2+712)dr, 1—-——— | drp

2
+o0 +oo 2 2 __
:4/ pQ(«/|rn_41‘2+T%)drn/ VIt g
0 0 r2 422
—+oo
<[ PP
0

———dr
2 2 n
0 ri+z

+oo
:m/ (Ve B 12)drn.

—00

+oo 22

As for the integral I, the absolute continuity of integral gives that |Io| —0, as z—0.
Therefore, as r,_1 —r)_; and thus z—0, we have |I;|+ |Iz| =0, which implies

It (0;r,—1) is continuous at r}_. 0

COROLLARY 3.8. Suppose that a physical scene consisting of finite objects {0;:1<
i< M} with translations of radial density functions {p;(|r —r;|),r; ER":1<i< M}
satisfying the condition in Theorem 3.7. Then ¥ v € ST, It (01 + o0y +---+opr;-) is
continuous. ’

4. Improving TV regularization for Poisson noise removal

In this section we present a straightforward application of our analysis, i.e., a
simple yet effective improvement of the popular TV regularization for Poisson noise
reduction of images generated by transmission imaging. We should mention that there
are also many other very successful image denoising methods which are not based on
energy minimization and the variational principle.

TV regularization was first introduced in [29] and has been extensively applied
in various digital image processing problems; see [9] and references therein. The
definition in 2D image processing is as follows:

TV (u)= A |Vu|dQ=sup { /QudivﬁdQ € CHOR), €0 < 1}, (4.1)

where v is a function defined on Q C R?; and C!(Q;R?) is the space of C'! mappings
from € to R? with compact supports. TV has many extensions such as multi-channel
TV and high order models. Since high order models are much more related to our
problem, we review these generalizations in the following. High order models were
mainly proposed for the reduction of staircase effect of TV or for image decomposition
and texture extraction. Most of them allow piecewise affine linear reconstructions or
decompositions. Similarly to [2], we categorize them to be the following three classes.
They are structurally quite different from each other, as one can see from their dual
formulations.

e Generalizations by directly involving high order derivatives. This class has
the following form:

J(u) :/ ¢(U,Vu,v2u, e ’vku)dﬂa
Q
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where ¢ is some positive function and possibly convex. Examples include
[7, 17, 21, 26, 30, 35, 41] where the models are defined via either primal or
dual formulations.

e Generalizations by infimal convolution. This class has the following form:

J)=(H0-0J) ()= inf 3" Ji(u),

u=u1+--+ug 1Si<k
where J;(u;),1 <i<k are some convex functionals which may involve high
order derivatives such as Hessian and Laplacian of the their arguments. Ex-
amples include [6, 8, 31, 33], among which [33] is a general modification of
infimal convolution based approach.

e Total generalized variation (TGV). This is a very new generalization of total
variation regularization, which reads

TGV (u) =sup { / udiv®edQ € € CF(Q;Sym” (R?)),
Q
|divie]| o < ay,0<i <k — 1},

where Sym”(R?) is the space of symmetric k-tensors and « is a parameter
vector; see [3], [19] for more details. TGV has the ability to balance different
orders of derivatives. We mention that the modified infimal convolution [33]
is a discrete variant of TGV.
These high order generalizations achieved great successes in staircase reduction and
image decomposition.

Very recently, many scholars studied the combination of TV and the Kullback-
Leibler (KL) fidelity [24, 20] for Poisson noise removal [4, 10, 20, 12, 24, 32, 40, 42]
and many numerical tests therein used piecewise constant images. The minimization
model reads

min/ |Vu|dQ—i—oz/(u—flogu)dQ7 (4.2)
v Jo Q

where f is an observed image defined on Q C R?, and « is a model parameter. As in
[40], we call this model as TV-KL model.

However, according to our results in the previous section, images generated by
transmission imaging are usually continuous. Since TV often suffers from the staircase
effect and generates piecewise constant solutions, it destroys the continuity structure
of the true images by transmission imaging. Hence the TV-KL model needs to be
improved.

Intuitively we would like to consider high order regularizations. This is our first
try after realizing the continuity property of images by transmission imaging. We
therefore propose to solve the following simple one:

muin/ﬂ\/u%—l—uz—i—uiw—l—uiy—i—u?ﬂ+u§de+a/Q(u—flogu)dQ, (4.3)

which combines the first order and the second order derivatives Vu and Hessian(u).
We call (4.3) as MoTV(Multi-order TV)-KL model, since it uses a combination of Vu
and Hessian(u). Here we give the following remarks to this model.
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Original. TV-KL Recovered. MoTV-KL Recovered.
SNR:Inf a: 11, t: 2.0s, SNR:27.47 a: 11, t: 3.5s, SNR:29.21

Noisy. TV-KL Recovered. MoTV-KL Recovered.
SNR:21.70 a: 20, t: 1.5s, SNR:26.99 a: 20, t: 3.3s, SNR:29.84

Fic. 4.1. Comparisons between the TV-KL and MoTV-KL models for a 256 X 256 synthetic
image. The second and fourth rows are zoom-in images of the first and third rows, respectively. The
first column: original and noisy (with Poisson noise) images. The second column: TV-KL recovered
tmages. The third column: MoTV-KL recovered images. According to our test, the TV-KL model
gives a result with nearly highest SNR with the model parameter ao= 11, whereas the MoTV-KL model
generates a result with nearly highest SNR with ao=20. For both parameter values, the MoTV-KL
model gives much higher SNR than the TV-KL model. In addition, the TV-KL model suffers from
staircase effect, whereas the MoTV-KL model does not.
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Original. TV-KL Recovered. MoTV-KL Recovered.
SNR:Inf a: 15, t: 0.3s, SNR:16.83 a: 15, t: 1.0s, SNR:18.02

-~ o
i-j
-
d
Noisy. TV-KL Recovered. MoTV-KL Recovered.
SNR:10.29 a: 26, t: 0.3s, SNR:15.63 a: 26, t: 0.6s, SNR:19.24

Fic. 4.2. Comparisons between the TV-KL and MoTV-KL models for a 95x95 molecular
image. The second and fourth rows are zoom-in images of the first and third rows, respectively. The
first column: original and noisy (with Poisson noise) images. The second column: TV-KL recovered
images. The third column: MoTV-KL recovered images. According to our test, the TV-KL model
gives a result with nearly highest SNR with the parameter a=15, whereas the MoTV-KL model gives
a result with nearly highest SNR with a=26. For both parameters, the MoTV-KL model gives much
higher SNR than the TV-KL model. In addition, the TV-KL model suffers from staircase effect,
whereas the MoTV-KL model does not.
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REMARK 4.1. The regularizer in (4.3) is an extension of TV and not new. It falls
in the first class of high order generalizations listed above. Here we just combine it
with KL fidelity to remove Poisson noise.

REMARK 4.2. Since the underlying density functions of imaged objects are diverse,
the corresponding most suitable regularizers should be also diverse. To the best of our
understanding, the proposed MoTV-KL model (4.3) may be the simplest improvement
of the TV-KL model. Although it seems to favor piecewise linear images, which are the
simplest non-constant continuous images, it also at least improves the effectiveness of
the TV-KL model for more complicated continuous images (our test images are not
restricted to be piecewise linear images). This section is devoted not for a perfect
denoising model for all continuous images, but a simple yet effective improvement of
the TV-KL model, showing a straightforward application of our theoretical analysis.

REMARK 4.3.  According to our test, the model involving only the second order
derivatives Hessian(u) does not work well. Therefore, the Vu in (4.3) cannot be
deleted. This indicates that, in denoising problems, Vu in regularization is even quite
important for images with no discontinuity. This also verifies Remark 4.2 in the sense
that the involvement of Hessian(u) in the MoTV-KL model is helpful for continuous
images with continuity orders higher than piecewise linearity.

REMARK 4.4. The aim of this section is to show that TV regularization for Poisson
noise removal can be greatly improved, verifying our theoretical analysis and giving a
straightforward application of our continuity result. As our first try after realizing the
continuity property, we therefore propose to solve a simple model, which still exhibits
much improvement. This is the first high order variational model applied to Poisson
noise removal. Of course many other high order methods could also be used, such as
infimal convolution methods and TGV. We plan to report a detailed summary study
on comparisons between several major high order methods and wavelet methods in
our future.

The problem (4.3) is an L; minimization problem. Recently many efficient meth-
ods have been developed to solve this kind of problem; see, e.g., [5, 14, 36, 39, 40]
and references therein. In our implementation we applied operator splitting and an
augmented Lagrangian method with single inner iteration [13] to solve it based on
our previous work [36, 39, 40].

Two numerical examples are shown in figures 4.1 and 4.2. In figure 4.1,
the image is synthesized by projecting 4 objects (1 sphere + 2 polyhedrons
+ 1 ellipse, with constant density functions within their domains, respectively)
to an image plane. The molecular image in figure 4.2 was downloaded from
http://blake.becm.edu/emanwiki/EMAN2. The experiments were performed under
Windows Vista and Matlab R14 (Version 7.0.4) on a laptop with Intel CPU (Core 2)
at 2.53GHz and 4GB memory. We used % <10~* as the stopping condition
of the iteration for all the examples, where ||-||r denotes the Frobenius norm of the
data expressed as a matrix. From figures 4.1 and 4.2, one can clearly see the continu-
ity of the clean images. The MoTV-KL model (4.3) generates much smoother results
with much higher SNRs than the TV-KL model (4.2). In the tests, we adjusted the
model parameter « to figure out how high SNRs the two models can achieve respec-
tively. For the parameter value with which the TV-KL model generates nearly highest
SNR, we computed the result by the MoTV-KL model, and vice versa. We found that
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the MoTV-KL model gives results with much higher SNRs, even with the parameter
value which is best for the TV-KL model. Besides, the TV-KL model suffers from
staircase effect, whereas the MoTV-KL model does not. The fact that the smoother
solutions have higher SNRs also demonstrates our analysis on the continuity of the
images generated by transmission imaging with parallel line geometry.
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5. Conclusions and future work

In this paper, we analyzed the continuity property of images generated by trans-
mission imaging with parallel line geometry of wave beam (which is a fundamental
and widely used geometry) and showed a simple yet natural application of our theo-
retical analysis. Transmission imaging is widely applied in astronomy and biomedical
sciences for macro and micro scale objects, which is quite different from reflection
imaging frequently used in our everyday life for common scale objects. As is well
known, images generated by reflection imaging are usually modeled as discontinuous
functions. However, we showed that almost all images generated by transmission
imaging are continuous functions, even if the density functions of the imaged objects
are discontinuous. Discontinuous images scarcely appear in real transmission imaging
applications. This analysis has not appeared yet in the literature. Our results may
help us to understand the structures of images generated by transmission imaging
and provide some information for designing and testing image processing techniques
for transmission imaging. As a straightforward application, we proposed a simple
yet effective improvement of the most popular TV regularization applied to Poisson
noise removal. In addition, more reasonable test images for models and algorithms
should be continuous, instead of the currently widely used piecewise constant images
and other discontinuous images. Numerical tests and comparisons demonstrated our
analysis and the effectiveness of the improved variational model.

There are some future works. In this paper we only considered the transmission
imaging with parallel line geometry. The corresponding results for fan beam geometry
will be reported in our near future. In addition, the variational model presented here
is just our first try to handle this kind of images after our realizing the continuity of
the images. We believe that better restoration models exist and need to be found.
Since the density functions of the imaged objects are diverse, ideally we would like
to construct good models which can adaptively capture the local structures of the
images. This is not easy. We will first test and compare several major high order
methods and wavelet methods.

Acknowledgment. We thank Prof. Weixiao Shen and Prof. Zuowei Shen for
their helpful discussions and suggestions. We also thank the National Center for
Macromolecular Imaging (http://ncmi.bem.edu/nemi) for providing the second test
image online.
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